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BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS1
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Dust storms in the earth’s major desert regions significantly influence
microphysical weather processes, the CO2-cycle and the global climate in
general. Recent increases in the spatio-temporal resolution of remote sensing
instruments have created new opportunities to understand these phenomena.
However, the scale of the data collected and the inherent stochasticity of the
underlying process pose significant challenges, requiring a careful combina-
tion of image processing and statistical techniques. Using satellite imagery
data, we develop a statistical model of atmospheric transport that relies on a
latent Gaussian Markov random field (GMRF) for inference. In doing so, we
make a link between the optical flow method of Horn and Schunck and the
formulation of the transport process as a latent field in a generalized linear
model. We critically extend this framework to satisfy the integrated conti-
nuity equation, thereby incorporating a flow field with nonzero divergence,
and show that such an approach dramatically improves performance while
remaining computationally feasible. Effects such as air compressibility and
satellite column projection hence become intrinsic parts of this model. We
conclude with a study of the dynamics of dust storms formed over Saharan
Africa and show that our methodology is able to accurately and coherently
track storm movement, a critical problem in this field.

1. Introduction. Dust storms are global meteorological phenomena originat-
ing from arid and semi-arid regions. They interfere with human modes of living
and transportation, alter the radiation transmittance and circulation of the earth’s
atmosphere, and interact with microphysical cloud processes. Moreover, dust de-
position provides vital nutrients for microorganisms that ultimately influence the
CO2-cycle. The detection of dust storms, the prediction of their development and
the estimation of sources are therefore of immediate interest for a wide range of
environmental applications. Remote sensing systems play an indispensable role in
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characterizing the dynamics of these systems, thereby providing the raw data that
enables statistical analysis.

This article discusses the development of a comprehensive Bayesian hierarchi-
cal framework that uses remote sensing data to detect dust plumes, track their
movement and pinpoint their source in a statistically sound manner. We show that
a probabilistic approach is capable of coherently detecting the presence and ab-
sence of atmospheric aerosols. Furthermore, we show how standard models for
aerosol flow can be linked to statistical models involving latent dependent random
effects and then extend these basic models to incorporate more realistic features
pertinent to dust storms. In particular, we develop a statistical method for estimat-
ing flow fields under flux that directly translates to the estimation of a GMRF in
a hierarchical Bayesian model. While clear in retrospect, such a development is
lacking in the applied community, with the effect that existing flow models fail to
capture important features specific to aerosol transport. Our framework then allows
a rich set of questions to be investigated both to pinpoint sources of dust storms
and to track their motion.

The Meteosat series of satellites and, in particular, the Spinning Enhanced Vis-
ible and InfraRed Imager (SEVIRI) aboard the geostationary Meteosat-9 poses a
unique opportunity, as it is the first time that the respective spatial and temporal
coverage allows for the analysis of local and sub-daily processes of dust emission
and transport. Alongside visible spectra, SEVIRI provides infrared measurements
at frequencies from 3.9 to 13.4 µm every 15 minutes at a spatial resolution of 3 km
at nadir. Figure 1 shows a visual depiction of the so-called SEVIRI falsecolor im-
agery (SFI), a common mode of visually assessing dust aerosols which forms the
basis of our data.

Contemporary analysis of dust aerosols follows two different paradigms. Moti-
vated by physical models of conditions for dust emission, transport via wind fields
and radiative filtering properties of aerosols, the work of Klüser and Schepanski
(2009) and Brindley et al. (2012) is based on connections between SFI and aerosol
optical depth (AOD). Here, the presence of dust is quantified by a combination of
different SFI thresholds derived from case- and simulation-studies. In contrast, the
work of Rivas-Perea, Rosiles and Chacon (2010) and Eissa et al. (2012) employs
methods from machine learning and image processing by using neural nets to learn
nonlinear dust detection criteria from a data set with labels set by a human expert.

From a statistical viewpoint, both approaches suffer shortcomings. Directly im-
posing thresholds partly based on expert opinion might lead to misleading conclu-
sions due to human subjectivity. Also, neither Klüser and Schepanski (2009) nor
Brindley et al. (2012) include quantification of uncertainty in their analysis. Neural
nets, on the other hand, are directly driven by data and interpretable in a probabilis-
tic sense. However, these methods are often criticized for a lack of transparency
and nonphysical motivation, which in turn obfuscates scientific interpretability.

Further, none of the previously mentioned approaches imposes a coherent
spatio-temporal structure. As a respective smoothness assumption can easily be
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FIG. 1. (a) SEVIRI falsecolor imagery according to Lensky and Rosenfeld (2008) superimposed on
a Google Earth depiction of Niger, Chad and Sudan. The central pink area is a dust plume emerging
on January 18, 2010 at about 9.30 am GMT over Chad. Panels (b) to (d) visualize the development
of the plume at 7.30 am, 8.30 am and 9.30 am GMT, respectively.

justified by the corresponding transport process, this omits valuable information.
Previous attempts, for example, by Schepanski et al. (2007), to localize and char-
acterize areas being sources of dust storms have to rely on human visual data in-
spection. Bachl and Garbe (2012) show that a data-driven estimation of the dust
flux allows for automation of this process and can indicate dust source presence.
Dust flux may also be employed to perform hazard forecasts, to interpolate areas
with missing observation data (such as areas covered by clouds), or to validate
atmospheric wind field-based models.

Various approaches in different scientific disciplines capture similar problems
and are closely related to our methodology. Statistical approaches are predomi-
nantly driven by applications related to either the verification of numerical weather
predictions or the issuing of so-called nowcasts, forecasts for very short lead-times;
see, for example, Gilleland, Lindström and Lindgren (2010) and Xu, Wikle and
Fox (2005). Here, a transformation between two spatial fields (e.g., a prediction
and the corresponding observation) is determined via a deformation field that as-
sociates spatial locations of the two fields in a smooth fashion. In prediction prob-
lems, the deformation field then serves as a tool to assess the prediction field both
in terms of mislocalization and quantification error. In contrast, in nowcasting a
current spatial observation and a given deformation field are utilized to predict the
spatial field representing future realizations.

Xu, Wikle and Fox (2005) apply an integro-difference equation where infor-
mation is propagated between the two fields through a kernel function. In image
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processing, differential approaches—which can be interpreted as special cases of
the integro-difference equation—have been popular since the advent of the Optical
Flow (OF) method of Horn and Schunck (1981), for brevity called HS-OF from
here on. These methods have already entered the statistics community; see, for ex-
ample, Marzban and Sandgathe (2010), who employ the connate OF approach of
Lucas and Kanade (1981).

In this contribution we begin with the HS-OF method and illustrate how to for-
mulate this approach as a Bayesian hierarchical model. This gives an interpretation
of the flow as a latent Gaussian Markov random field with a precision hyperpa-
rameter of the imposed conditional autoregression model reflecting the intrinsic
smoothness parameter of the HS-OF method. While the link is relatively straight-
forward, to the best of our knowledge, this is the first time that the full distribu-
tional aspects of the method and the associated uncertainty are taken into account.
This perspective comes with several long- and short-term benefits. It allows for
inference via computationally efficient integrated nested Laplace approximations
(INLA) [Rue, Martino and Chopin (2009)] and leads to an extended interpretability
of the flow field in terms of the physical nature of the phenomenon under consid-
eration.

Our second contribution is to leverage the hierarchical Bayesian framework to
overcome deficiencies in the HS-OF formulation. A typical quirk of statistical
warping and optical flow is the underlying preservation assumption of the respec-
tive quantity along its trajectory. For remote assessment of dust aerosols (as well
as other natural phenomena) this might lead to false conclusions, since gaseous so-
lutions are compressible and only a nonbijective mapping of a three-dimensional
quantity to a two-dimensional data space is at hand. As a remedy, we extend the
HS-OF method to incorporate the water vapor related work of Corpetti, Memin
and Perez (2002) and put the inherent integrated continuity equation (ICE) in a
Bayesian hierarchical model context. As our work emphasizes by a simulation
study, this considerably reduces errors in the estimated flow field. The main ad-
vantage of the ICE comes from the fact that it implicitly considers a multiplicative
accumulation effect that is driven by the divergence of the flow field itself.

The article proceeds as follows. Section 2 offers a description of the data and
background on the equipment used in their collection. Section 3 is twofold. As a
first step it illustrates the basic thresholding concept for dust detection as well as
our approach to employ a generalized linear model for this task. The Horn and
Schunck method for motion estimation is then reviewed and extended by incorpo-
rating the integrated continuity equation, and a probabilistic interpretation of both
approaches is provided. In Section 4 we evaluate our framework in three ways.
First, we assess the detection method in comparison to thresholding and linear
discriminant approaches. Section 4 then focuses on a simulation study analyzing
Bayesian inference of the motion estimation techniques mentioned above. Finally,
we show results of applying ICE motion estimation to dust detected from SEVIRI
measurements, demonstrating forecasting capabilities and a method way to detect
dust sources. Section 5 provides a discussion of our results and future work.
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2. Data and operative products. The SEVIRI instrument resides aboard the
Meteosat-9 satellite launched on December 21, 2005 in a joint effort of the Euro-
pean Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
and the European Space Agency (ESA). SEVIRI measures electromagnetic radia-
tion at 12 visible and infrared spectra [Schmetz et al. (2002)]. Residing at 0 degrees
of latitude, 0 degrees of longitude and a height of approximately 36 km, data are
collected for up to approximately 80 degrees of deviation from nadir where the res-
olution is about 3 × 3 km. With the per-image scan time of 12 minutes and three
minutes of calibration, this results in a 3712 × 3712 pixel per-channel imagery
every 15 minutes.

The most dominant influence of dust aerosols on this data is to filter the infrared
radiation, leaving the terrestrial surface in a frequency dependent fashion. This
phenomenon is reflected by the channels BT12.0, BT10.8 and BT8.7, where sub-
script denotes the respective frequency in microns. For example, it is well known
that in the presence of dust aerosols the difference �TBR = BT12.0 − BT10.8 in-
creases while �TBG = BT10.8 − BT8.7 decreases [Schepanski et al. (2007)]. This
connection results in popular operative products such as the SFI for which the red
(R), green (G) and blue (B) visualization channels are defined as

R = (�TBR + 4K)/(2K + 4K),

G = (�TBG/15K)γ ,

B = (BT10.8 − 261K)/(289K − 261K),

where γ = 0.4 and K denotes the unit of brightness temperature in Kelvin. This
maps the data to the interval [0,1] such that changes due to dust activity are
most noticeable during on-screen inspection by experts [see Lensky and Rosen-
feld (2008) for a detailed discussion on this and related visualization procedures].
Moreover, a study of Brindley et al. (2012) shows that this leads to a correlation
between the tendency of the SFI to appear pink and the optical depth τ10 of the
atmosphere at 10 µm being increased by the presence of dust aerosols. Recently,
Ashpole and Washington (2012) proposed an extended thresholding scheme for
dust detection given by

�TBR > 0K,(1)

�TBG < 10K,(2)

BT10.8 < 285K,(3)

�TBR − M < −2K,(4)

where M is a two-week cloud masked rolling mean of �TBR . Alongside requir-
ing the fixed conditions given in equations (1) and (2) in order to flag a pixel to
contain dust, they introduce two additional requirements. Since the blue channel is
generally saturated in the presence of dust while the occurrence of clouds lowers
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its brightness, the threshold BT10.8 < 285K in equation (3) removes artifacts com-
ing from the latter. The last threshold is data dependent and serves two purposes.
By requiring equation (4) to hold, it rules out false positive dust detections where
clouds are present and over regions where the red channel is close to saturation
even under pristine conditions.

3. Methods. This section is twofold. We first discuss dust aerosol detection,
that is, the task of assigning a given pixel of the SEVIRI imagery with a quantity
representing the evidence for dust. The methodology we ultimately employ comes
from a series of results [Bachl and Garbe (2012), Bachl, Fieguth and Garbe (2012,
2013)] in this area. However, for completeness we briefly review the main aspects
of this literature below, which culminates in our final model depicted in (8).

Section 3.2 contains our main new methodological contribution. In this section
we use the output of this dust detection model to infer the motion of the aerosol
by modeling the underlying transport process relying on a differential perspective.
We show that industry-standard methods, presently fit in a “engineering oriented”
manner, have natural analogues in statistical models of dependent random effects.
Further, these differential models can be extended nontrivially to incorporate more
realistic features of aerosol transport without sacrificing computational feasibility
in estimating their parameters.

One feature of the current methodology is that parameters of the two compo-
nents of our model—dust detection and flow modeling—are fit separately. A pro-
cedure for estimating all parameters jointly is left for future work; see Section 5
for further discussion. All software related to this project is available from Bachl
et al. (2015).

3.1. Dust detection. Let S ⊂ R
2 denote the image domain and assume we

have a series of images obtained over the time interval [0, T ]. Our first goal is to
determine the dust indicator variable dxyt with dxyt = 1 if location (x, y) ∈ S is
covered by a dust plume at time t ∈ [0, T ] and dxyt = 0 otherwise. This assess-
ment is made on the basis of the observation vector Ixyt = (I1xyt , I2xyt , I3xyt ),
where the three components of Ixyt correspond to the red, blue and green chan-
nels as discussed in Section 2. Since the surface in S is naturally varied, a critical
component in determining dxyt is the background appearance Axyt at each loca-
tion (x, y) ∈ S and time t when no dust or cloud cover exists. The background is
compared to Ixyt to assess whether a dust plume covers the location at time t .

Our method of detecting dust aerosols is a progressive refinement of linear dis-
criminant analysis (LDA). LDA infers projection coefficients ri and an offset q

such that the sign of

η(x, y, t) = q +
3∑

i=1

Iixyt ri(5)
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serves as a label for the dust content of a particular location. In Bachl and Garbe
(2012), a three-level Bayesian hierarchical model is developed where the projec-
tion coefficients and intercepts are functions of the appearance estimate Axyt . In
the first level, the dust indicator variable dxyt is modeled via the logistic sigmoid

P(dxyt = 1) = 1/
(
1 + exp

[−η(x, y, t)
])

,

η(x, y, t) =
3∑

i=1

Iixytf
1
i (Aixyt ) + f 2

i (Aixyt ).(6)

The second and third levels are prior distributions on the latent functions f 1
i and

f 2
i and their parameters, respectively. The functions f 1

i and f 2
i are modeled semi-

parametrically by binning each component of Axyt into 100 distinct bins taken
over the range of each component over the image domain S . These functionals are
then modeled as second-order random walks (RW2s). That is,

f 1
i ∼ N100

(
0,QRW2(�i )

)
,

f 2
i ∼ N100

(
0,QRW2(�i )

)
,

where QRW2 is set up such that the second-order forward differences are indepen-
dent normals

�2f 1
i,j ∼ N (0,1/κi),

�2f 2
i,j ∼ N (0,1/ιi)

and the parameters �i and �i are given independent log gamma priors for the
increment precisions κi and ιi , respectively. A detailed discussion of this model is
given in Section 3.4 of Rue and Held (2005).

Bachl, Fieguth and Garbe (2012) note that a drawback of this approach is that
the signal noise in (6) is carried over in a linear fashion which can hamper consec-
utive motion estimation. As a remedy, they propose to shift the SFI to be a part of
the domain of the latent functions such that

η(x, y, t) =
3∑

i=1

hi(Aixyt ,Aixyt − Iixyt ),(7)

where the domain of Aixyt − Iixyt is discretized in a manner similar to that of
Aixyt . The functions hi are modeled as two-dimensional conditional autoregres-
sion (CAR) GMRFs [see Rue and Held (2005) for details] with

p(hi) ∝ ρ(n−1)/2 exp
(
−ρ

2

∑
(l,m)∼(j,k)

(
hi(l,m) − hi(j, k)

)2
)
,

where “∼” denotes the four nearest neighbors on the two-dimensional discretiza-
tion grid of Aixyt × (Aixyt − Iixyt ).
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Yet, as discussed in Bachl, Fieguth and Garbe (2013), the estimation of the back-
ground radiation remains a critical aspect. Alongside the cyclic issue of requiring
a criterion to mark a region as dust free, the radiative characteristics of this region
generally vary even under pristine conditions. However, the vegetative properties
of the largely unpopulated African continent significantly determines the general
appearance of the SFI. The study therefore proposes to employ the monthly aver-
age surface emissivity Exyt product at 8.4 µm according to Seemann et al. (2008).
It strongly correlates with the vegetation and supersedes the anomaly indicating
term A − I , hence,

η(x, y, t) =
3∑

i=1

gi(Iixyt ,Eixyt ),(8)

where the new functional gi is modeled in a manner similar to hi above. In the fol-
lowing, we refer to the model in (8) as the latent signal mapping (LSM) approach.

Our model therefore uses the functional (8) to predict the presence of dust. In
practice, we are therefore required to determine several quantities, namely, the
background appearance Axyt or the emissivity Exyt , and subsequently fit a statisti-
cal model for η(x, y, t). The Appendix gives the full model description and details
regarding prior distributions. Estimation of this model is performed by using a
large set of labeled training data; see Figure 2 for an example of one image used
in our training set.

3.2. Motion estimation. Rheology, the study of the flow of liquid matter and
the motion estimation of quasi-rigid bodies, has been an active research field of
image processing and computer vision during the last two decades. With respect
to image analysis in experimental fluid dynamics, these efforts led to an increasing
expertise in correlation-based particle image velocimetry methods and variational
approaches to the problem. See Heitz, Mémin and Schnörr (2010) for a review on
this topic. Similar frameworks have been developed in computational statistics due
to the increasing interest in modeling spatio-temporal processes for environmental
science applications, for example, ozone and precipitation interpolation and fore-
casting. In particular, methods based on the perspective of warping have been in
active development; see, for example, the review by Glasbey and Mardia (1998)
and the work of Aberg et al. (2005).

However, to the best of our knowledge, the connection between probabilistic
and variational approaches is reflected only by a few publications. Simoncelli,
Adelson and Heeger (1991) point out the distributional aspects of the well-known
Horn and Schunck (HS) method of optical flow [Horn and Schunck (1981)].
A maximum-a-posteriori approach to the free parameters of this method was illus-
trated by Krajsek and Mester (2006a) through the use of a Bayesian hierarchical
model. Krajsek and Mester (2006b) further show the limit-equivalence of the vari-
ational solution of the HS functional to the mode of a normal distribution defined
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via the maximum entropy principle with respect to observations at discretized lo-
cations.

Our approach utilizes the dust detection link function η(x, y, t) estimated via
the methods discussed in Section 3.1 as the primary input for modeling the flow
field. Naturally, this quantity is estimated statistically and the most appropriate
course of action would be to incorporate its uncertainty into the flow modeling.
However, for computational reasons the posterior median of η(x, y, t) is used in-
stead. See the additional discussion of this feature in Section 5.

3.2.1. The horn and schunck approach to optical flow. Once the linear pre-
dictors of dust probability η(x, y, t) are determined, it is helpful to model their
dynamics in both space and time. This allows the projection of dust storm proba-
bilities forward in time as well as “rewinding” the storm to determine its source.

As above, fix (x, y) ∈ S . We then aim to determine the vector field w(x, y, t) =
(u(x, y, t), v(x, y, t)), where u(x, y, t) and v(x, y, t) are the instantaneous change
in η(x, y, t) in the vertical and horizontal directions. As discussed in Section 1, we
follow the motion estimation literature in our development and subsequently show
that it is related to the Bayesian estimation of spatially dependent random effect
models.

Like most motion estimation techniques, the HS-OF method is based on a
preservation assumption concerning a photometric or geometric quantity in the
image sequence. For a given triplet (x, y, t), suppose that η(x, y, t) = k. The HS-
OF brightness constancy equation (BCE) then stipulates that there is a path in S ,
(x(r), y(r)) for all r ∈ [0, T ] such that

η
(
x(r), y(r), r

) = k.(9)

Thus, the total derivative of the intensity function with respect to time vanishes.
Assuming no higher order dependencies of x and y (i.e., dx/dt = ∂x/∂t and
dy/dt = ∂y/∂t), it holds that

0 = d

dt
η = ∂

∂t
η + dx

dt

∂

∂x
η + dy

dt

∂

∂y
η ≈ ηt + uηx + vηy,

where the dependence on (x, y, t) has been dropped.
This equation is under-determined, an issue known as the aperture problem.

The HS optical flow therefore imposes an additional constraint. In order to main-
tain physical plausibility and to propagate information into image regions with
ambiguous gradient properties, nonsmoothness of the flow is penalized via the Eu-
clidean norm of the gradient. The final optical flow is then defined as the minimizer
of the squared deviations of the BCE fit plus a smoothness term integrated over the
image domain S . That is,

(u, v)(α) = argmin
u,v

LHS(α),
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where α is a regularization parameter and

LHS(α) =
∫
S
(ηt + uηx + vηy)

2 + α2(|∇u|2 + |∇v|2)
.

Existence and uniqueness of the minimizer were shown by Schnörr (1991) under
mild restrictions on η and (u, v) in terms of Sobolev spaces.

In the discrete sense the BCE error term is equivalent to an interpretation of the
image gradients as an observational system of the latent flow variables u and v

with additive Gaussian noise, that is,

−ηt = uηx + vηy + ε, ε ∼ N
(
0, σ 2)

.

It follows that the partial derivatives of η(x, y, t) define a Gaussian likelihood
p(∇η|u,v) for the discretized optical flow. The regularization term is discretized
by approximating the integral over the image domain S with the Riemann sum
over a regular grid G ⊂ S , that is,∫

S
α2|∇u|2 = α2

∫
S

u2
x + u2

y ≈ α2
∑

(i,j)∈G
u2

x(i, j) + u2
y(i, j)

in case of the horizontal flow gradient ∇u and equivalently for ∇v. Concomitantly,
the partial derivatives are approximated by horizontal and vertical differences, that
is, ux(i, j) = uij − ui−1,j and uy(i, j) = uij − ui,j−1. By summing up both over
all grid points, it then follows that the regularization part of LHS related to ∇u

reduces to ∫
S

α2|∇u|2 ≈ α2
∑

s1∼s2

(us1 − us2)
2,

where s1 ∼ s2 denotes the set of all unordered grid neighbors s1 and s2 [for details
see Rue and Held (2005), Section 3.2.2]. This formulation is analytically identical
to the log-density of a CAR GMRF, illustrating the equivalence of the estimation
of HS optical flow and Bayesian modeling of spatially dependent systems [Besag
(1974)]. Thus, the smoothness part of the HS functional defines intrinsic GMRF
priors p(u) = N (0,Q−1

u ) and p(v) = N (0,Q−1
v ) for the latent flow fields if the

precision matrices are defined via

Qij (α) = α2

⎧⎨
⎩

ni, i = j ,
−1, i ∼ j ,
0, otherwise,

(10)

where ni is the number of neighbors on the grid. This formulation also clarifies the
role of the smoothness parameter α as a hyperparameter of the precision matrix Q.
Assuming independence from other variables of the model, the optical flow is thus
given as the posterior

p(u,v|∇η) ∝
∫

p(∇η|u,v)p(u,v|α)p(α)dα.
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3.2.2. The integrated continuity model. While HS optical flow, and particu-
larly the BCE assumption, is sufficient to model motion of rigid bodies in many
areas of image processing, it is clearly insufficient in capturing the dynamics of
η(x, y, t). Constancy of image brightness implies that the flux of the quantity un-
der consideration is divergence-free. This assumption is often violated for two
reasons. On the one hand, the observed material itself might be compressible, as
is the case for dust aerosols. Alternatively, even if incompressible fluids like water
are considered, the imaging technique might deliver a two-dimensional projection
of a three-dimensional process. Thus, even if this process obeys a divergence-free
flow, the projection might miss strong sources and sinks due to the fluid convection
through the layers of the z-axis.

The idea of the integrated continuity equation (ICE) [Corpetti, Memin and Perez
(2002)] is that it relates the local intensity change to the flux of the quantity through
the boundary surface of an infinitesimal volume:

0 = d

dt
η = ηt + div(ηw)

= [w,1] · ∇η + η div(w).

This equation also shows the connection to the BCE as it reduces to the former for
incompressible materials when the divergence of w is zero and most importantly
implies

η(x + u,y + v, t + �t) = η(x, y, t) exp
(−div(w)

)
(11)

in a discrete setting where �t is the time between two images. Hence, if the diver-
gence is zero, the image intensity is conserved along the motion trajectory while
it is increased or decreased with progressing time for negative and positive values
of the divergence, respectively. Note that given a flow field w, this equation is also
easily employed to infer the temporal predecessor or successor of a given image,
for example, by bilinear interpolation of the intensity values and scaling according
to an approximation of the divergence.

Finally, we define the optical flow according to the ICE as the minimizer of the
functional

LICE(α) =
∫
S

([w,1] · ∇η + η div(w)
)2 + α2(|∇u|2 + |∇v|2)

.

Using the discrete divergence approximation

div
([u, v]ij ) ≈ 1

2

(
(ui,j+1 − ui,j−1) + (vi+1,j − vi−1,j )

)

leads to the following likelihood equation of the flow field given the image

uijηx + vij ηy + η

2

(
(ui,j+1 − ui,j−1) + (vi+1,j − vi−1,j )

) = −ηt + εij ,



BAYESIAN MOTION ESTIMATION FOR DUST AEROSOLS 1309

where again εij ∼ N (0, σ 2). It should be noted that under both the HS and the
ICE method, the scale of motion that can be recovered is limited by the range over
which the partial derivatives are computed. A well-known remedy is to determine
the flow on a pyramid of different scales. For the sake of simplicity, we refrain
from following this strategy for the study at hand and determine image derivatives
on a resolution of 5 pixels, as we found that this suffices to capture large-scale flow
fields of fast dust storms.

It should be noted that both the HS and ICE methods follow an Eulerian per-
spective with an infinitesimal volume following the flow field. The principle dif-
ference is the surface of the volume. HS assumes that there is no flux through the
surface, while the ICE approach imposes no such constraint and thus requires the
additional modeling of the field’s divergence. It is this additional feature that is
able to appropriately capture the dynamics present in the flow fields.

In what follows we show that the ICE approach to determining optical flow
of dust storms considerably improves estimated flow fields obtained using HS
methods, largely for the obvious reasons that dust storms grow and then diminish
through time. As should be clear from the development, estimation of the poste-
rior distribution p(u,v|∇η) for the flow vector fields under either the HS or ICE
paradigms is easily performed using the INLA methodology [Rue, Martino and
Chopin (2009)].

4. Applications. We now proceed with a series of studies that investigate the
performance of the individual components of our framework and conclude with
a set of case studies that show how the entire system performs at detecting and
tracking dust storms. Section 4.1 focuses on the storm detection component—the
model for determining η(x, y, t)—and compares our method with several refer-
ence methods. Section 4.2 then conducts a simulation study (since ground truth
of vector fields is unavailable) that assesses the performance of the ICE formula-
tion of optical flow over the original HS formulation. In Section 4.3 an in-depth
investigation of two dust storms is presented and we show how our method is able
to correctly identify the storm, model its flow and infer aspects of its source. We
then demonstrate the forecasting capabilities of the ICE formulation on the basis
of a large-scale dust event featured in Section 4.4. As Section 4.5 shows, these
forecasts can be improved upon by means of the Bayesian approach we take, that
is, by postprocessing using marginal flow densities. Finally, we conclude in Sec-
tion 4.6 with a procedure capable of tracing a dust storm back to its source and
indicate the respective emission strength.

4.1. Aerosol detection. The basis of the following analysis is a SEVIRI data
set spanning January 10–26, 2010, a period with several small- and large-scale
dust events. By visual inspection we performed an extensive labeling of dusty and
pristine regions. An example for a labeled frame of the sequence is given in Fig-
ure 2.
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FIG. 2. Training data in falsecolor representation. Red: pixels labeled as pristine. Green: pixels
labeled as dusty.

With these samples at hand, we conducted a two-fold cross-validation study.
This procedure splits the samples into two randomly chosen disjoint sets, one of
which serves to perform inference on the model via the given labels. The test set is
employed to infer their dust probability and to compare it to the manually declared
labels. These samples were flagged as dusty whenever the respective probability
was above 0.5. This thresholding is performed in order to compare to the alterna-
tives which are “pure classifiers,” such as the ASH and ASH-no10.8 methods. In a
second run the roles of the sets are exchanged and, subsequently, the performance
results of the runs are averaged. The SEVIRI signal changes strongly with the rela-
tive position of the sun and dust plume genesis often predominantly occurs during
the forenoon. Thus, in order to assess the prediction performance as a function of
the local time of the pixel, samples of the respective test set were grouped accord-
ing to their time stamp. As a last step, within group sensitivity and specificity were
computed. We compared the performance of four methods for estimating the prob-
ability of dust, the latent signal mapping (LSM) approach stated in equation (8), a
simple linear discriminant analysis (LDA) and two thresholding approaches intro-
duced by Ashpole and Washington (2012). In the case of LDA and LSM, a pixel is
classified as dusty if the probability of dust is greater than 0.5 and as pristine oth-
erwise. The first approach of Ashpole and Washington (ASH-no10.8) determines a
pixel to be dusty if equations (1) and (2) hold. For the second method (ASH), also
(3) is required to hold. Figure 3 shows the percentage of correctly classified clear
pixels (left panel) and those containing dust (right panel), stratified by the time of
day of the image.

From Figure 3 we draw several interesting conclusions. First, we see that the
two thresholding approaches perform poorly in correctly classifying clear, or pris-
tine, regions. Even the more involved “ASH” leads only to slight improvements.
Further, these effects vary considerably throughout the day, largely due to the man-
ner that changes in overall illumination interact with the fixed boundaries of these
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FIG. 3. Cross-validation results for pixel-wise dust detection under the LSM emissivity approach,
linear discriminant analysis and the two thresholding methods of Ashpole and Washington (2012).
The plots show the percentage of correctly classified (a) dusty pixels and (b) pristine pixels, stratified
by the hour of the day.

methods. By contrast, the simpler “ASH-no10.8” thresholding approach performs
essentially perfectly at classifying clear regions while the additional threshold of
“ASH” significantly decreases the fraction of correctly recognized dusty samples.
By contrast, the LDA perfectly classifies pristine areas, but performs poorly during
the early hours (between 8 am and 10 am) at classifying dusty pixels. Finally, the
LSM method considerably improves on LDA for dusty pixels and achieves nearly
perfect classification in both situations throughout the entire time frame. These re-
sults extend those found in Bachl, Fieguth and Garbe (2013) and justify our use of
the LSM emissivity modeling approach in (8) on these data.

Figure 4 provides some indication of why LSM improves over LDA and thresh-
olding. In this figure, the left column shows pixels labeled as clear, or pristine,
while the right-hand column pertains to dust-filled pixels. In each figure, points are
placed relative to their green channel intensity (x-axis) and red channel intensity
(y-axis). Dotted lines show the thresholding cutoffs of Ashpole and Washington
(2012). From the dotted lines, we immediately see why the thresholding approach
performs poorly at classifying clear pixels—a large portion are inside the thresh-
old.

The data displayed in Figure 4 also demonstrate why LDA alone performs
poorly in the early hours. In the first row points are colored according to the local
time at which the data was collected, with earlier time points shown in blue. As we
can see, the red and green channel intensities for both dusty and clear points are
initially very similar, while, subsequently, the intensities begin to diverge. Since
the LDA method classifies the data based on these intensities only, it struggles in
the early hours, while it improves significantly as the day progresses. The emissiv-
ity information in the data are displayed in the bottom row of Figure 4. For clear
pixels there is a strong relationship between green and red channel intensity and
emissivity levels. By contrast, for dusty pixels, the emissivity has no relation to
channel intensity since strong dust events completely block 8.3 µm radiation. In
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FIG. 4. Green channel intensity (x-axis) versus red channel intensity (y-axis) of the labeled train-
ing data. Left column: pixels labeled as pristine; right column: pixels labeled as dusty; top row: points
are colored by local time of the day, from blue (early) to red (later); bottom row: points are colored
by emissivity, from blue (low) to red (high). The white dashed lines indicate the “no10.8” thresh-
olding of Ashpole and Washington (2012) and the background coloring shows the appearance of a
pixel assuming a fully saturated blue channel. As the entire data set is very large, each plot shows a
random subsample of the full data set.

combining this information with channel intensity in the LSM approach, we thus
achieve an improved classification in the early-morning data.

4.2. Simulation study: Aerosol flow. We now compare the HS method to the
ICE method in reconstructing a flow field, both under classical and the pro-
posed Bayesian perspective. Since ground truth is unavailable for the Saharan dust
storms, we use a synthetic image sequence to illustrate the difference between the
two approaches. Figure 5 shows the progression we consider, a constant flow field
with a growing dust plume.

We assume the location of the dust plume is known and estimate the flow field
under HS and ICE based on this sequence. Figure 6 shows the mean absolute error
in angular (left panel) and magnitude (right panel) estimates for four approaches:
ICE and HS where the precision parameter α is set by hand (equivalent to the cur-
rent best practices) and the corresponding Bayesian approaches where the INLA
methodology is used to estimate this parameter. Figure 6 shows several interesting
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FIG. 5. Synthetic image sequence of a dust plume and aerosol flow.

features. The first is that for any level of α and any error metric, the ICE approach
outperforms the HS approach. This indicates the benefit of using ICE over the BCE
when the preservation of brightness assumption is clearly violated.

The second conclusion speaks to the benefit of estimating α via Bayesian meth-
ods. In this context we see that, depending on the metric, different choices of α

are optimal in case of ICE. However, by intrinsic parameter integration, the ICE
method under Bayesian estimation outperforms the regular ICE approach for al-
most all levels of α, and, even at its best, the standard ICE method is barely better
than the Bayesian approach.

Finally, there is an interesting warning regarding model misspecification. We
see that the HS method, when estimated by Bayesian methods, performs consider-
ably worse than all other approaches. Remember that the posterior flow field under
the Bayesian approach is an average with weights according to the posterior of the
tuning parameter. When the BCE is violated, this posterior may yield little infor-
mation (e.g., it remains flat) or put an unreasonable amount of mass extremely
close to zero. This way, severe degeneracies of the flow field can occur. For in-
stance, we might obtain a field that is constant but points in the wrong direction.

FIG. 6. Quantification of (a) absolute angular and (b) absolute magnitude error of aerosol flow
estimation for the synthetic image sequence in Figure 5. The plots compare the errors of the ICE
and the HS methods under both standard and Bayesian inferences as a function of the smoothness
parameter α.
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FIG. 7. Marginal variances of the flow field vectors derived via the Bayesian ICE [(a) to (c)] and
HS [(d) to (f)] approaches applied to the simulated data frames shown in Figure 5. Red coloring
represents the uncertainty in the horizontal flow field component, while green expresses the same
for the vertical component. Regions with low uncertainty in both components appear as black [e.g.,
panel (b)], while equally high variance is shown in yellow.

These outliers overwhelm the sensible points of the posterior distribution, thereby
leading to the poor performance observed.

A clear motivation to apply Bayesian hierarchical modeling and inference with
INLA is the straightforward assessment of the marginal distributions of the latent
fields. Figure 7 shows why this is of great importance, in particular, in applied con-
texts. It visually compares the marginal flow component variances of the Bayesian
ICE and HS approach applied to the simulated data shown in Figure 5.

From Figure 7(a) to (c) it becomes obvious that the uncertainty in the ICE flow
estimates exactly corresponds to those that are inherent to the model. The outer
boundary of the simulated dust source region is colored in either red or green,
displaying a high variance in either one of the field components. This is due to
the aperture problem mentioned in Section 3.2.1. Information about the direction
of the motion can only be obtained in the direction of the gradient of the image
sequence. Motion perpendicular to the gradient is locally not accessible and can
thus not be detected by the model. Hence, as the vertical gradient is prominent at
the lower and upper boundary of the dust source, the respective motion variance is
low (less green color content), while the horizontal motion component is largely
unknown and leads to a red coloring. Similarly, the left and right boundary of the
plume show a high variance in the vertical direction (green coloring), while the
horizontal motion is accessed with comparably large certainty.

The outer region as well as inside of the dust source behaves as expected as well.
In both no gradient is present, which leads to large uncertainty in both components.
As a mixture of green and red, these regions therefore appear yellow in the figure.
This phenomenon is most prominent at the borders of the image region. Here, the
least information is propagated through the latent GMRF coupling from the central
region.

As one can see from Figure 7(d) to (f), the marginal variances can be very in-
formative in terms of misspecifications of the model as well. In Figure 7(d) and (e)
the Bayesian HS approach contributes the uncertainty either fully to the horizontal
or vertical flow field component, a highly undesirable behavior, and presumably
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an effect of the violated brightness preservation assumption. In Figure 7(f) the sit-
uation is more balanced, but still predominance of the uncertainty in the horizontal
(red) component can be observed. Last, the central area of the dust source region
in this figure seems slightly more pronounced than in Figure 7(c). This is an addi-
tional indicator for the fact that, in particular, the HS approach struggles to reflect
dust source effect, for example, the influx of dust mass into the atmosphere.

4.3. Case studies: Detection and flow estimation. After establishing the good
performance of our dust detection routine and the Bayesian ICE method of recon-
structing the flow field, we highlight the use of our framework during the evolution
of two separate dust storms. Figure 8 shows dust storms that occurred during Jan-
uary 8, 2010 and January 16, 2010. The figures show the pixel-wise probability of
dust estimates under the emissivity LSM approach and, furthermore, compare the
estimated flow fields under the Bayesian HS and the Bayesian ICE approaches.

We see several features from Figure 8(a) and (b). The first is that the detec-
tion appears to be working well. Points which are clearly dusty are correctly given
high probabilities, while the model captures uncertainty in the estimates around
the edges of the dust plumes. Second, we see why the ICE method is preferred
over standard HS. There is considerably more regularity to the estimated flow field
in the respective third rows than the second rows, especially in the first two time
points. This enables a coherent reconstruction of the dust plume flow. Furthermore,
the Bayesian HS method seems unable to detect the flow of smaller dust storms,
such as the one featured in the lower right-hand corner of the plots in Figure 8(a).
Given the results in Figure 8, we proceed in the rest of our studies by only consid-
ering the Bayesian ICE model.

4.4. Forecasting dust event evolution. We now discuss an application of our
method that is relevant for areas in proximity of regions that emit dust. In a study
reflected by Figure 9, we focus on the area surrounding a massive dust storm oc-
curring on January 17, 2010 and a respective assessment of the risk to be affected
by it. Equation (11) implies a straightforward method of extrapolating the future
development of a spatial dust density estimate given a flow field one time step
ahead. This can be employed in an iterative scheme.

First, we compute the dust predictor and flow with respect to the imagery of
11.45 h and 12.00 h GMT. Figure 9(a) shows the outcome of this procedure as an
overlay to the earth surface imagery as shown by Google Earth. Three dust plumes
of large size are clearly visible: (A) One over northeastern Niger predominantly
moving to the south, (B) one over southern Niger moving in a southern and west-
ern direction and, last, (C) a plume emerging at the borders between Algeria, Niger
and Mali moving westward in the direction of central Mali. Then we extrapolate
the field through iterative application of equation (11) for 96 steps, under the as-
sumption that the given flow field remains approximately constant throughout this
time period. As one time step in the SEVIRI imagery corresponds to 15 minutes
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FIG. 8. Dust plumes on (a) January 8, 2010 at 7.15 am, 8.30 am and 11 am GMT; (b) January 16,
2010 at 10.15 am, 11.45 am and 1 pm GMT. Top rows: observed satellite data in false color; middle
rows: pixel-wise LSM probability of dust estimates overlaid with the Bayesian HS flow field; bottom
rows: same pixel-wise probability of dust estimates as above now overlaid with the Bayesian ICE
flow field.
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FIG. 9. Forecast of a dust event I. Panel (a) shows the linear predictor of a dust event over northern
Africa on January 17, 2010, 12 h GMT as a transparent overlay on Google Earth imagery including
country borders and the flow field computed with the ICE method. Panel (b) depicts the contour
lines of 30% dust density according to the forecast derived from the data in (a) for 0 (dark blue, the
data itself), 6 (light blue), 12 (green), 18 (orange) and 24 (red) hours after the event. Note that the
detection in the top right corner is a false positive due to influence of a water cloud.

of time difference, this results in an estimate of the dust density development 24
hours ahead. One can now make use of this forecast to predict the future location
of the main body of dust mass. Figure 9(b) shows the 30% dust density contour
lines of the initial imagery as well as for forecasts of 6, 12, 18 and 24 hours ahead.
It is easy to see that these forecasted contours develop according to the estimated
flow field. While plume (A) predominantly moves toward the south, (B) and (C)
mostly move to the west. Our method thus results in an informative large-scale
directional assessment of the dust plume development.

Figure 10 shows how our forecast gains accuracy with a decreasing prediction
interval. The actual dust density at January 18, 2010 12.00 h GMT is shown in

FIG. 10. Forecasted dust densities. Panel (a) shows the actual predictor for dust density on January
18, 12 h GMT with a 30% contour line (black). The pink ellipses mark dust plumes emerging during
the morning of this day. Panels (b), (c) and (d) show the dust density forecasted for this time based
on data from 24, 3 and 1 hour before, respectively.
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FIG. 11. Postprocessing of flow estimates. Panel (a) shows the sum of the marginal flow component
precisions derived for the dust forecast procedure elaborated in Section 4.4. These are employed to
weight the local linear fit term of the ICE method, which leads to the flow field shown in panel (b)
and the 24 hour forecast depicted in (c). For comparison (d) shows the actual dust density and 30%
density contour line (black) after 24 hours together with the contour lines of the unweighted (red)
and the weighted (blue) forecast method.

Figure 10(a). During the morning of this day, three new dust events emerge that
mix with the large plume from the day before. These are not yet reflected in the
24 h forecast depicted in Figure 10(b), from which another observation can be
made. The forecasts of plumes (B) and (C) do not appear as widespread as the
actual outcome. The reason for this is underestimation of the flow magnitude in the
western part of the imagery. This causes the forward projection of the dust density
to slow down and accumulate mass in this region. Plume (A) shows a similar effect
as can be seen from visual inspection of the falsecolor data (not shown here), where
it actually leaves the region depicted for this study at the southern border while
undergoing a large-scale spreading effect that indicates a corresponding wind field
during the night. However, the 3 h and 1 h forecasts shown in Figure 10(c) and (d)
gain accuracy. Both indicate the new dust event in the southeast and the 1 h forecast
also picks up the two weaker events.

4.5. Postprocessing using marginal densities. As shown in the previous sec-
tion, missing or noisy predictor gradient information can lead to poor forecasts.
However, the acquired marginal posteriors of the flow field offer valuable infor-
mation on where this is the case. We will now show a simple but effective way
to make use of this information to alleviate the effects of noninformative regions.
Consider again the dust event of January 17, 2010 and Figure 11(a) that shows the
per-pixel sum of the estimated flow component posterior precisions derived with
the INLA method. Clearly, most precision is obtained at the borders of the dust
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plumes where the gradient has a sufficient magnitude. This fact can be used to
re-estimate the flow field via a spatially weighted variant of the ICE method:

LICEW(α) =
∫
S

(
q(γ1 + γ2)

)2([w,1] · ∇η + η div(w)
)2 + α2(|∇u|2 + |∇v|2)

,

where γ1 and γ2 are the respective precisions and q is a fixed factor that scales the
set of local precision to the range [0,1]. Figure 11(b) shows that this procedure
has the intended effect. While the main direction and curvature of the flow field
in regions with dust activity is approximately the same as for the unweighted ICE
estimates, significant regularity of the field outside these regions is obtained. This
effect is most dominant in the western and southeastern parts of the area under
investigation, and also in between dust plumes. Figure 11(c) and (d) show visibly
that this aides the forecast process and mitigates aforementioned problematic ef-
fects. In particular, plumes (B) and (C) move faster toward the west and the mass
accumulation effect of plume (B) that occurred with the unweighted method is de-
creased. The increase of the magnitude of the flow field in the southeastern region
leads to a similar observation with respect to plume (A). However, when compar-
ing the forecasted densities of the weighted and unweighted method with the true
observation, a general underestimation of the dust motion speed is still apparent.
This does not come as a complete surprise, as with increasing age dust plumes
dissipate into higher altitudes. In these heights the wind speed is most often larger
than at ground level. It is therefore highly likely that the underestimation of the
motion speed is due to the early stage of the plumes compared to forecast horizon.

4.6. Source detection. In the previous sections a flow field served to predict
the future development of a given dust plume. Given a sequence of flow fields, the
same idea of transporting the dust plume can be applied in the reverse direction.
This way, the mass of the plume is moved to the regions it emerged from and can
be used as an estimator of the respective local emission strength.

Such an estimate is of great interest in environmental sciences. For instance,
Jickells et al. (2005) note that the mineralogical composition of a dust plume is in-
herited from its source region and determines properties such as nutrition effects on
terrestrial and marine ecosystems on a global scale. Yet, in-situ measurement sites
in Africa are sparsely distributed and data such as horizontal visibility from syn-
optic stations is hardly sufficient for the identification of source areas [Mahowald
et al. (2005)]. There are, however, studies that employ dust indicators like aerosol
depth measured by satellites and perform a long-term temporal averaging of this
quantity to identify sources. Intrinsically, this leads to overestimating the source
strength of regions that are only traversed by dust plumes. This is demonstrated by
an experiment of Schepanski, Tegen and Macke (2012) where dust plume trajec-
tories and source regions were determined by human experts visually inspecting
SEVIRI imagery. Our method not only yields an automation of this procedure but
also compliments other data-driven approaches, for example, studies that rely on
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FIG. 12. Spatial estimation of dust emission strength. Panel (a) shows the linear predictor of a
dust even on January 18, 2010 at 15.00 h GMT over the Bodédé depression in northern Africa. This
dust plume originates from a cluster of source regions identified by visual inspection of the image
sequence and marked with black circles in panel (b). The flow field estimated from this sequence is
used to transport back the dust density in (c) to the presumed origin shown in panel (d) and serves
as a spatial estimator for the dust emission strength.

wind field averages and Lagrangian trajectories to trace back dust to its origin
[Alonso-Pérez et al. (2012)].

Figure 12 shows the result of the proposed method applied to a massive dust
plume occurring on January 18, 2010 over the Bodélé depression in northern
Africa. First signs of the event are visible in the data at 6.15 h GMT and the plume
reaches its maximal extent at around 15.00 h GMT. We compute the flow of the
plume for the whole period and then use equation (11) to transport the predictor of
the imagery at 15.00 h GMT [see Figure 12(a)] back according to these estimates.
In order to judge the accuracy of the estimated source regions, an extensive visual
inspection of the linear predictor sequence over time was performed. The black
circles in Figure 12(b) mark regions that can be recognized as actually emitting
dust rather than just being covered by the plume over the course of time. The lin-
ear predictor shown in this figure represents dust activity at 8.15 h GMT, where the
most active source regions are still identifiable as distinct areas. Note that, for in-
stance, the source at the very south of the active region appears rather faint but can
be clearly identified to emit a large amount of dust when inspecting the dynamics
of the image sequence.

Transporting the dust backward according to the determined flow field leads to
the emission strength estimate depicted in Figure 12(c), which is again superim-
posed with the source region markers. Most interestingly, almost all markers lie
within the bulk of the area estimated to have a high emission strength. Vice versa,
the emission strength is low outside the cluster of these markers. The only sources
that are not captured well are those in the northeastern corner of the imagery. How-
ever, as can be seen from the data, these sources are rather weak and have another
property that makes their flow estimation challenging. The spatial extent of all
three sources is comparably small, in particular, in the direction orthogonal to the
wind field that drives them. The imagery gradient necessary for our flow estima-
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tion technique thus has a small spatial extent as well and is likely to be too weak
to pick up the correct genesis of the plume.

5. Discussion. We have outlined a Bayesian framework for detecting and
tracking dust storms that significantly expands the existing methodology used in
the remote sensing and earth observation communities for addressing such prob-
lems. The approach makes several developments, including a superior dust de-
tection methodology, a link between the classical literature of optical flow and
GMRFs—which incidentally shows how Bayesian estimation can alleviate issues
related to the setting of tuning parameters—and the use of the ICE to model flow
fields where an assumption of brightness constancy is inconsistent with the physi-
cal process. Simulation studies have shown the improved performance of both our
storm detection framework and the Bayesian ICE model over existing procedures
and real-world examples have shown the implications of this improvement. Fur-
thermore, the use of the Bayesian approaches offers an automatic way of tuning
smoothing parameters that appear to achieve nearly optimal levels of smoothing
without the need for extensive cross-validation.

Considerable work remains, both from the application and methodological per-
spectives. The model for η appears to work quite well in our current data, but it
could be extended in several obvious manners. The most useful of these would be
to make the estimates of η not just depend on emissivity and image intensity, but
to also include spatial and temporal dependence on neighboring estimates. In prac-
tice, this appeared to be unnecessary in our current approach—and the computa-
tional effort to such coupled estimation proved challenging—however, as the com-
putational methodology for estimating such models continually improves, such de-
velopments may become helpful. Another worthwhile extension would be to take
the local time or other covariates, such as satellite viewing angle of a particular
pixel location, into account. In particular, if the dust analysis is extended from the
forenoon to a whole day, the former might be a critical feature to prevent a degrada-
tion of detection performance. Finally, the current two-dimensional model clearly
misses the three-dimensional nature of dust storms. This reduction is performed
since our data are column data, however, a latent understanding of the height of
the dust could extend the model’s capabilities.

The model relies on two main components whose parameters are currently esti-
mated separately. Namely, a dust detection model is first trained and the fitted val-
ues of this model are then fed into a model for flow. A major next step would be to
jointly estimate the detection and flow models, thereby feeding uncertainty in the
detection into the flow estimation. In early stages of this project, we experimented
with such a joint approach. However, we found the computational burden from
such an approach to substantially outweigh the modest—at best—improvement in
flow estimation that resulted. As new data and modeling scenarios are entertained,
it is possible that a joint estimation strategy can yield greater improvement and
should therefore be considered.
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Regarding our procedure for estimating flow fields, a general smoothness as-
sumption or even local constancy as within the Lucas and Kanade (1981) ap-
proach can in most cases be justified. Here, it is particularly appealing that the
work of Lindgren, Rue and Lindström (2011) as well as Simpson, Lindgren and
Rue (2012) reveals links between Gaussian fields and GMRFs via stochastic par-
tial differential equations (SPDEs). Future approaches may find this link as a mode
to refine the prior of the GMRF in terms of expressing a transport phenomenon via
its SPDE, and thereby gain further insight into how it is reflected by the given data.

The connection to continuously modeled phenomena also comes up at the
methodological intersection with image-processing methods. Traditionally, infer-
ring the HS optical flow was subject to solving a variational formulation of the
problem via the corresponding Euler–Lagrange equations. Most importantly, the
variational perspective leads to further insight about the properness of the result-
ing GMRF with respect to the function space the data are sampled from. As shown
by Schnörr (1991), relatively mild conditions, namely, a mildly restricted Sobolev
space, are sufficient to guarantee this properness. It should also be mentioned that
the likelihood term and respective choices of the error penalty of the HS optical
flow and related methods has consistently been subject to several studies. Here,
the corresponding flexibility of the GLM formulation and the INLA methodology
might excel in further in-depth analyses.

While showing that remote sensing equipment can be used to detect and track
dust storms was our initial goal, there are considerable applied advances that can
now be pursued. This relates to projecting the dust storm into the future, as well
as “rewinding” the storm to pinpoint its source. The advantage of our statistical
approach is that it inherently enables the uncertainty of such assessments to be
expressed. This, in turn, will allow us to issue probabilistic forecasts and lever-
age the recent work in forecasting methodology [Gneiting and Raftery (2005),
Schefzik, Thorarinsdottir and Gneiting (2013)]. Such probabilistic forecasts would
be of considerable interest to the Earth observation community and could also be
fed into larger models of global transport phenomena.

APPENDIX: FULL MODEL DESCRIPTIONS

A.1. The dust detection model. This section explicitly discusses the sta-
tistical formulation and estimation of the dust detection model η(x, y, t). The
model takes two inputs Iixyt and Eixyt , both of which are integral and indicate
which bin the associated values are placed in, out of 100 potential bins. Thus,
Iixyt ,Eixyt ∈ {1, . . . ,100} = X. The dust link function is then modeled by

η(x, y, t) =
3∑

i=1

gi(Iixyt ,Eixyt ),

where

gi :X×X →R.
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Each gi can be represented by a 100 × 100 matrix Gi where (Gi)kl = gi(k, l).
Each functional gi is the modeled semiparametrically via

vec{Gi} ∼ N1002
(
0,�−1

ρ

)
,

where �ρ is a 1002 × 1002 sparse precision matrix with zeroes according a graph
G = (V ,E). The graph G is such that V = (1, . . . ,1002) and each v ∈ V can be
mapped to a pair (l,m) ∈ X × X. The edge set of G is such that (v, v′) ∈ E only
when the corresponding pairs (l,m) and (l′,m′) have l = l′ and/or m = m′. Let
nb(v) be the number of edges in E involving the vertex v ∈ V . Given this con-
struction, the elements of 
ρ are such that

(�ρ)vv = ρnb(v),

while for v �= v′ with (v, v′) ∈ G,

(�ρ)vv′ = −ρ

with (�ρ)v,v′ = 0 when (v, v′) /∈ G. The elements of each Gi are modeled inde-
pendently of the others. Thus, the full model is

pr(dxyt = 1) = exp(η(x, y, t))

1 + exp(η(x, y, t))
,

η(x, y, t) =
3∑

i=1

gi(Iixyt ,Eixyt ),

vec(Gi ) ∼ N1002
(
0,
−1

ρi

)
, i ∈ {1, . . . ,3},

ρi ∼ LogGamma(1,0.1), i ∈ {1, . . . ,3}.
A.2. The flow model. Recall at this junction that the linear component from

the dust detection model η(x, y, t) is now taken as given for all locations in S
and time points. Since the majority of points in S have a vanishingly small value
of η(x, y, t), we find a rectangular subdomain which contains all points with a
nonnegligible η value. That is, we find S0 ⊂ S such that (x, y) ∈ S0 implies
xmin < x < xmax, ymin < y < ymax for some xmin, xmax, ymin, ymax chosen such
that (x, y) /∈ S0 implies that η(x, y, t) < a for all t . In practice, we set a = −5, but
results are insensitive to reasonable choices of this cutoff.

Once the subdomain of interest S0 is formed, the dust detection link η(x, y, t)

must be scaled down so that flow in a given time point cannot span more than one
pixel as discussed in Section 3.2. In our applications a three-pixel downscaling
typically proved sufficient. This means that we form a subgrid S1

0 ⊂ S0 such that
(x, y), (w, z) ∈ S1

0 only when |x −w| > 1 and |y − z| > 1 and for each (w, z) ∈ S0

there exists a point (x, y) ∈ S1
0 such that |x − w| ≤ 1 and |y − z| ≤ 1. Relative to

S1
0 , we form the downscaled dust predictor

η̃(x, y, t) = ∑
l∈{−1,0,1}

∑
m∈{−1,0,1}

η(x + l, y + m, t), (x, y) ∈ S1
0 .(12)
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This way, η̃ has a third of the spatial resolution of η. In the case of the simulated
data, no averaging was performed, as the data was generated in a way that the
artificial dust plume does not move more than one pixel per time step.

The next postprocessing step uses η̃ to form the numerical derivatives. The spa-
tial gradient was computed by the temporal average of the forward differences:

η̃x(x, y, t) = 1
2

{(
η̃(x + 1, y, t) − η(x, y, t)

)
(13)

+ (
η(x + 1, y, t + 1) − η(x, y, t + 1)x,i,j,t+1

)}
,

η̃y(x, y, t) = 1
2

{(
η̃(x, y + 1, t) − η̃(x, y, t)

)
(14)

+ (
η̃(x, y + 1, t + 1) − η̃(x, y, t + 1)

)}
.

Similarly, the temporal partial derivative is simply

η̃t (x, y, t) = η̃(x, y, t + 1) − η̃(x, y, t).

These derivatives are then used as data to estimate the downscaled vector fields
ũ(x, y, t) and ṽ(x, y, t) for (x, y) ∈ S1

0 . This is modeled as

−η̃t (x, y, t) = η̃x(x, y, t)ũ(x, y, t) + η̃y(x, y, t)ṽ(x, y, t) + ν(x, y, t)

separately for each time point t , where ν(x, y, t) ∼ N(0,1e−4) is an i.i.d. white
noise process reflecting instrument error. Hence, ũ(x, y, t) and ṽ(x, y, t) are now
random parameters to be estimated and each can be considered a matrix Ut and
Vt of size (xmax − xmin) × (ymax − ymin). Following similar steps as in the section
above, we then place the prior

vec(Ut ) ∼ N
(
0,Q−1

αu

)
,

vec(Vt ) ∼ N
(
0,Q−1

αv

)
,

where Qαu,Qαv have the structure given in (10) and αu,αv ∼ LogGamma(1,0.1)

in the prior. Once the posterior distribution of ũ and ṽ are determined over S1
0 , the

values for u(x, y, t) on S0 are found via linear interpolation.
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SUPPLEMENTARY MATERIAL

Software (DOI: 10.1214/15-AOAS835SUPP; .zip). All software related to
this project is available as supplemental material provided in Bachl et al.
(2015). For an up-to-date version check the corresponding author’s website,
www.nr.no/~lenkoski.

http://dx.doi.org/10.1214/15-AOAS835SUPP
http://www.nr.no/~lenkoski
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