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Although genome-wide association studies (GWAS) have proven pow-
erful for comprehending the genetic architecture of complex traits, they are
challenged by a high dimension of single-nucleotide polymorphisms (SNPs)
as predictors, the presence of complex environmental factors, and longitu-
dinal or functional natures of many complex traits or diseases. To address
these challenges, we propose a high-dimensional varying-coefficient model
for incorporating functional aspects of phenotypic traits into GWAS to for-
mulate a so-called functional GWAS or fGWAS. The Bayesian group lasso
and the associated MCMC algorithms are developed to identify significant
SNPs and estimate how they affect longitudinal traits through time-varying
genetic actions. The model is generalized to analyze the genetic control of
complex traits using subject-specific sparse longitudinal data. The statistical
properties of the new model are investigated through simulation studies. We
use the new model to analyze a real GWAS data set from the Framingham
Heart Study, leading to the identification of several significant SNPs asso-
ciated with age-specific changes of body mass index. The fGWAS model,
equipped with the Bayesian group lasso, will provide a useful tool for genetic
and developmental analysis of complex traits or diseases.

1. Introduction. Phenotypic traits of paramount importance to agriculture
and human health are quantitatively inherited, involving an unknown (usually very
high) number of genes and undergoing a series of developmental pathways and
events [Lynch and Walsh (1998); Wu and Lin (2006)]. These complexities have
made the genetic analysis of quantitative traits one of the most difficult tasks in
biological sciences. Recently emerging genome-wide association studies (GWAS)
have provided a great promise to systematically characterize the genetic control of
complex traits and have been increasingly instrumental for the identification of sig-
nificant genetic variants that control phenotypic variation [Shuldiner et al. (2009);
Takeuchi et al. (2009); Teichert et al. (2009); Yang et al. (2010)]. In human ge-
netics, these results have started to gain a growing body of novel findings with
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potential clinical relevance [Daly (2010)]. In plant and animal genetics, GWAS,
with the advent of a continuously falling genotyping cost, have been considered
more seriously than any time before [Filiault and Maloof (2012)]. Despite their
powerful impact on genetic studies, however, GWAS also encounter tremendous
challenges from statistical analysis and interpretation.

First, GWAS usually genotype hundreds of thousands of single-nucleotide poly-
morphisms (SNPs) on thousands of subjects, leading to a number of SNPs strik-
ingly larger than the sample size used. Thus, to analyze these SNPs, simple uni-
variate linear regression has to be used for individual tests. However, this method
ignores the effects of other SNPs while assessing one particular SNP, and is sub-
jected to a severe adjustment issue for multiple comparisons. Moreover, in bi-
ology and biomedicine, a phenotypic trait can always be better described by a
dynamic trajectory because the trait undergoes a developmental process [Wu and
Lin (2006)]. For example, human body height growth is a process from infancy
to adulthood; the genetic study of adult height only, as conducted in many cur-
rent GWAS [Lettre (2011)], provides limited information about the developmental
genetics of height and its relationship with physical and mental characteristics at
various stages of growth. In clinical trials, longitudinal measures are one of the
most common data types, including HIV dynamics, cancer growth and drug re-
sponse to varying doses [Wang et al. (2009)]. In this article, we address these
issues by developing novel statistical models and algorithms that can analyze mul-
tiple SNPs simultaneously and integrate the developmental mechanisms of trait
formation into a general GWAS framework through mathematical functions. The
extension of the models to tackle genotype-environment interactions using GWAS
is straightforward.

In a linear regression model for GWAS where SNPs are predictors, multiple re-
gression breaks down when the number of predictors far exceeds the number of
subjects. Alternatively, variable selection approaches could identify important ge-
netic factors and enhance the predictive power of the final model. For example, in
analyzing case-control cohorts, lasso regression [Tibshirani (1996)] and elastic-net
regression [Zou and Hastie (2005)] were studied by Wu et al. (2009) and Cho et al.
(2009), respectively. Li et al. (2012) and He and Lin (2011) further proposed two-
stage variable selection approaches to identify disease susceptibility genes. These
methods, however, are restricted to models with a single phenotypic measurement
from each subject.

For genetic studies of dynamic traits that are measured repeatedly at multiple
time points, Wu and Lin (2006) proposed a conceptual model called functional
mapping by incorporating longitudinal and functional data analysis into a genetic
design. Depending on the availability of explicit mathematical equations to de-
scribe a biological process, functional mapping uses parametric, nonparametric or
semiparametric approaches for modeling nonlinear effects of genetic variants over
time and further revealing a dynamic landscape of interplay between genes and
developmental pattern. Das et al. (2011) implemented functional mapping into a
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GWAS setting, leading to the birth of a so-called functional GWAS or fGWAS
model. The basic principle of functional mapping and fGWAS is to model and
predict the temporal pattern of genetic effects on a particular trait or disease in
a quantitative manner. Time-varying change of gene expression has been found
to be a ubiquitous phenomenon because different metabolic pathways, regulated
by genes directly or indirectly, are required for an organism to best adapt to de-
velopmental alteration. In a genetic study of body mass index (BMI) by linkage
mapping, Gorlova et al. (2003) identified different BMI susceptibility genes as well
as different modes of inheritance triggered by these genes in children and adults.
A common variant in the obesity-associated FTO gene, identified by a genome-
wide search, was observed to be reproducibly associated with BMI and obesity
from childhood into old age, but displayed varying magnitudes of genetic effects
between child and adult stages [Fraying et al. (2007)].

To increase its applicability in clinical genomics, fGWAS could further ac-
commodate irregular longitudinal data measured at subject-specific time points.
But both functional mapping and fGWAS analyze SNPs individually or pairwise,
and are incapable of depicting a comprehensive picture of the genetic architec-
ture of dynamic traits. The motivation of this article is to develop a variable se-
lection model for fGWAS, with a focus on nonparametric modeling of temporal
genetic effects of SNPs. Variable selection in a nonparametrical setting is equiv-
alent to selecting a subset of predictors with nonzero functional coefficients. Lin
and Zhang (2006) developed COSSO for model selection in a smoothing spline
ANOVA model, with the penalty term being the sum of component norms. Zhang
and Lin (2006) further extended it to nonparametric regression in an exponential
family. Wang, Li and Huang (2008) estimated time-varying effects using basis ex-
pansion and selected significant predictors by imposing SCAD penalty functions
on the Ly-norm of these basis expansions.

We propose a Bayesian group lasso approach for variable selections in nonpara-
metric varying-coefficient models. Group lasso was first proposed by Yuan and Lin
(2006). They considered the problem of selecting important groups of independent
variables in linear regression models and generalized lasso by encouraging spar-
sity at the group level. However, since the Hessian is not defined at the optimal
solution, they did not provide variance estimates for the regression coefficients.
Here, we express time-varying effects as a linear combination of Legendre poly-
nomials, and in such a case, the selection of important predictors corresponds to
the selection of groups of polynomials. We develop a Bayesian hierarchical model
for group variable selection and estimate all parameters by MCMC algorithms.
Our method provides not only point estimates but also interval estimates of all pa-
rameters, and the traditional Bayesian lasso [Park and Casella (2008)] is its special
case in which the response variable is univariate.

In Section 2, we introduce the fGWAS model that connects genotypes and ir-
regular longitudinal phenotypical data. Section 3 shows the Bayesian hierarchi-
cal representation for this nonparametric varying-coefficient model, where group
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lasso penalties are applied to individual functional coefficients. The posterior com-
putations as well as the interpretation of the results are described in Section 4. In
Section 5, the statistical properties of the model are investigated through simu-
lation studies. Section 6 provides the application to a real GWAS example from
the Framingham Heart Study that analyzes age-specific changes of genetic ef-
fects on body mass index (BMI). BMI is a heuristic measure of body weight
based on a person’s weight and height, providing the most widely used diagnos-
tic tool to identify whether individuals are underweighted, overweighted or obese,
and, further, to examine their risk of developing obesity-related diseases, such as
hypertension, type 2 diabetes and cardiovascular diseases [Frayling (2007)]. We
use a nonparametric approach based on orthogonal polynomials to approximate
age-specific change in BMI. The discussion about the new model is given in Sec-
tion 7.

2. The fGWAS model. The model for functional genome-wide association
studies (fGWAS) is the integration of functional data analysis and genome-wide
association studies. The primary goal of the fGWAS is to study the dynamic pat-
tern of genetic actions and interactions triggered by significant SNPs throughout
the entire genome. Beyond traditional GWAS, fGWAS targets phenotypic traits
that are measured longitudinally at repeated time points. Suppose in a genome-
wide association study involving n subjects, a continuous longitudinal trait of in-
terest is measured at irregularly spaced time points, which are not common to

all subjects. Lety; = (y; (ti1), ..., Yi (tiT,.))T be the T;-dimensional vector of mea-
surements on subject i where t; = (t;q, ..., tiTl.)T is the corresponding vector of
measurement time points after standardization. y; can be described as
i (ti1) u(tin) or(tin) - og(tin) Xi1
: = : + : :
yi(tiT,) u(tiT;) ar(tity) - oq(tit) /) \Xig
ayr(tiy) - ap(tin) &il
2.1 +
ai(tit,) --- ap(tit;)/) \Sip
di(tiy) - dp(tir) Gil ei(ti1)
+ : . S B :
di(tit,) - dptir) Sip e (tit;)
We introduce matrix notation for a succinct presentation. Let e (#;7) = (o1 (fi¢), - . .,
oy ;)T be the g-dimensional vector of covariate effects, X; = (X;1,..., X ,-q)T

be the observed covariate vector for subject i, a(t;¢) = (ai(ti¢), ..., ap(t; )T and
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dte) = (di(tie), ..., dp (tie))T be the p-dimensional vectors of the additive and
dominant effects of SNPs, respectively. Furthermore, let &; = (&1, ..., & p)T and
¢ =1, -5 8 p)T be the indicator vectors of the additive and dominant effects
of SNPs for subject i. Thus, at time point #;,,

yi(tie) = u(tio) + o (ti) ' X; +a(ti) & +dti0) T ¢; + ei(tie),
i=1,....,n,8=1,...,T;,

(2.2)

where (1 (t;¢) is the overall mean and e; (¢;¢) is the residual error assumed to follow
a N(0, 0%(t;¢)) distribution. The jth elements of &; and ¢; are defined as

1, if the genotype of SNP j is AA,

&.j=10, if the genotype of SNP j is Aa,

-1, if the genotype of SNP j is aa,

1, if the genotype of SNP j is Aa,

Gi.j = 0, if the genotype of SNP j is AA or aa.

In other words, a;(f;¢) represents the average effect of substituting one allele for
the other, and d; (#;¢) represents how the average genotypic value of the heterozy-
gote deviates from the mean of the homozygotes.

In the fGWAS model, the effects of covariates and SNPs are assumed to be
functions of time. Many methods of estimating time-varying coefficients of a lin-
ear model in a longitudinal data setting have been proposed and studied, including
basis expansion methods, local polynomial kernel methods and smoothing spline
methods. Among these techniques, Legendre polynomials have been widely used
by quantitative geneticists for modeling the growth curves [Lin and Wu (2006)],
the programmed cell death (PCD) process [Cui et al. (2008)] or the genetic effects
responsible for other traits [e.g., Suchocki and Szyda (2011); Yang and Xu (2007);
Das et al. (2011)]. By approximating time-varying effects using Legendre poly-
nomials, the expansion coefficients can be solved through regression. Moreover,
the biological evidence or the prior belief about the time-dependency of genetic
control can be integrated by just truncating the series. Motivated by these studies,
we approximate the effect of the kth covariate by a Legendre polynomial of order
v—1:

T
(2.3) (ak(ti1), - ... k(i) = Uiry, k=1,....q,
where ry = (1o, ..., rk(v,l))T are the Legendre polynomial coefficients, and
u} 1o 33 -1)
2.4) U; = : =

T (3,2
Wi, U nr Qg = 1)
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are Legendre polynomial functions. Similarly, other time-varying effects can be
represented as

(2.5) (aj (1), ....a;r)) =Ubj,  j=1,...,p,

(2.6) (djti). ... d;r)) =Uiej.  j=1.....p,

@.7) (i), ... u(tiz))" = Upm,

where b; = (bjo,...,b j(v_l))T are the Legendre polynomial coefficients for the
additive effect of the jth SNP, ¢; = (cjo,...,c j(v_l))T are the Legendre polyno-
mial coefficients for the dominant effect of the jth SNP,and m = (mq, ..., my—_ I

are the Legendre polynomial coefficients for the overall mean function.
After introducing Legendre polynomials to approximate time-varying effects of
covariates and SNPs, the full model of fGWAS becomes

yi(tig) = “iTIm + (ul.Tlrl, e, uiTIrq)Xi
(2.8) + (uiT,bl, e, u,-T,bp)é‘l- + (u,-T,cl, ey uiTlcp)I;,- +e;(tip),
i=1,....n,8=1,...,T;.

Last, since measurements within each subject are possibly correlated with one
another, we assume that e¢; = (¢;(¢;1),...,¢; (t,-Tl.))T follows a multivariate nor-
mal distribution with zero mean and covariance matrix ;. Both parametric and
nonparametric methods have been developed to model the structure of covari-
ance between longitudinal measurements [Ma, Casella and Wu (2002); Zhao et al.
(2005); Yap, Fan and Wu (2009)]. In particular, we employ the first-order autore-
gressive [AR(1)] model to approximate the residual covariance matrix. This co-
variance structure allows different measurement time points for different subjects,
and assumes a constant variance over time and an exponentially decaying cor-
relation, p'i27%1l 0 < p < 1, between two measurements. Moreover, the matrix
determinant in the likelihood function can be easily computed. In our real data ex-
ample, the variance of repeated measurements is stable over time. In longitudinal
data sets with variance heteroscedasticity, however, a Transform-Both-Sides (TBS)
technique [Wu et al. (2004)] can be employed to satisfy the variance stationarity
assumption in the AR(1) model.

3. Bayesian hierarchical representation for group Lasso penalties. In
high-dimensional regression problems, such as GWAS, a regularized approach is
preferred to identify predictors with nonzero effects and to achieve better out-of-
sample predictive performance. When parameters that we would like to penal-
ize are finite-dimensional, we may apply different penalty functions to them to
perform variable selection. But when these parameters are nonparametric smooth
functions, a traditional regularization procedure cannot be directly applied. In this
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situation, regularized estimation for selecting important predictors is equivalent to
selecting functional coefficients that are not identically zero.

Let ||b;|| be the L, norm of the vector b;. The time-varying additive effect of
the jth SNP is identically zero if and only if ||b;|| = 0. Therefore, if we estimate
additive effects by a Legendre polynomial of order v, and would like to identify
significant additive effects via penalized methods, we could partition all parame-
ters of additive effects (b7, ..., bIT,) into p groups of size v according to p SNPs,
and encourage sparse solution at the group level or select a subset of groups with
nonzero Ly norms. That is, the group lasso minimizes the following penalized least
square:

3.1) —||y el +AZ||b,||+A*Z||c,||
Jj=1 Jj=1
whereyT=(y1T,...,yn) /1, Ey =(;L1T,...,u,n)and)»and)\* are two reg-

ularization parameters. A and A* control the amount of shrinkage toward zero: the
larger their values, the greater the amount of shrinkage. They should be adaptively
determined from the data to minimize an estimate of expected prediction error.

From a Bayesian perspective, the group lasso estimates can be interpreted as
posterior mode estimates when the regression parameters have multivariate inde-
pendent and identical Laplace priors. Therefore, when group lasso penalties are
imposed on the Legendre coefficients of additive and dominant effects, the condi-
tional prior for b; is a multivariate Laplace distribution with the scale parameter
(U)\.Z/O’z)_l/zi

(3.2) 7 (bjlo?) = (v2%/0?) " exp(~(va?/o%) b)),
and the conditional multivariate Laplace prior for dominant effect ¢; is
(3.3) 7(cjlo?) = (w2 /a2) " exp(—(wA*2 /o) "2 les1).

To ensure the derived conditional distribution of b; has a standard form, we
rewrite the multivariate Laplace prior distribution as a scale mixture of a multi-
variate Normal distribution with a Gamma distribution, that is,

M-Laplace(b; |0, (U)LZ/UZ)_UZ)
2
v/ exp(—(vkz/az) Ib;l)

e.¢]
0(/0 MVN(b;|0, diag(aztjz,..., 2 ]2)) Gamma(t]

o (vA?/a?) 172

vl 2 )d 2
2 T uA?

where (vA2 / 02)~1/2) is the scale parameter of the multivariate Laplace distribu-
tion, a v-by-v diagonal matrix diag(azrjz, ..., 0% 2) is the covariance matrix of

v+

the multivariate normal distribution with mean zero, %1 is the shape parameter of

the Gamma distribution, and 5 is the scale parameter of the Gamma distribution.
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After integrating out r , the conditional prior on b; has the desired form (3.2).
Then, in a Bayesian hlerarchlcal model, we can rewrite the multivariate Laplace
priors on b; as

b; |rj2, o2~ MVN(0, diag(azrjz, e, 0272)),

v+1 2)

2
T5|A ~ Gamma| ——, —
il ( 2 T uA?

Likewise, the multivariate-Laplacian prior on ¢; can be replaced by

¢j|t??, o2 ~ MVN(0, diag(o’t *2 . 0tt),

i J
v+1 2 >
2 a2

r}‘2|k ~ Gamma<

Then, given A and A*, we have the following hierarchical representation of the
penalized regression model:

n
yim, rg, bj,¢;, p, 07 Qm)~ @i T/ (l_[ |2i|_1/2)€_1/22?(Yi—ﬂi)T2[I(Yi_ll«i)’
i
m ~ Ny (0, Xy0),
ri ~ Ny(0, Xy0), k=1,...,q,

Jlr o NMVN(O, diag(dzsz, ...,aZrZ)), j=1,...,p,

f}lANGamma(vzl,%) j=1,...,p,
¢;lti?, 0% ~ MVN(0, diag(ozr}"z, e ozrj’-‘z)), i=1...,p,
‘E]*2| ~Gamma(v;1,%> j=1...,p,
p~U=L1),
o2 ~n(o?),
a2, M, A >0,

where A and A™ are regularization parameters or group lasso parameters that con-
trol the shrinkage intensities in estimating genetic effects. We assign a conjugate
multivariate normal prior to m when estimating the overall mean function. We
also assign conjugate multivariate normal priors to the Legendre coefficients of
covariates ry, k =1, ..., g, because covariates in GWAS are usually low dimen-
sional and are not the target of variable selection. We assume a Uniform prior
on [—1, 1] for p, the autoregressive parameter in the assumed AR(1) covariance
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matrix. Finally, since the data are usually sufficient to estimate o, we can use a
noninformative prior such as 7 =1 /02 for o2,

Traditionally, two group lasso parameters A and A* can be prespecified by cross-
validation or generalized cross-validation. However, in the Bayesian group lasso
setting, A and A* can be estimated along with other parameters by assigning appro-
priate hyperpriors to them. This procedure determines the amount of regularization
from the data and avoids refitting the model. In particular, the following conjugate
gamma priors are considered,

)»2 )L*Z
n(;) ~ Gamma(a, b) and JT(7> ~ Gamma(a*, b*),

where a, b, a* and b* are small values so that the priors are essentially noninfor-
mative. With this specification, group lasso parameters can simply join the other
parameters in the Gibbs sampler.

4. Posterior computation and interpretation. We estimate the unknown pa-
rameters and hyperparameters by sampling from their conditional posterior distri-
butions through MCMC algorithms. Given the data likelihood and prior distri-
butions, the posterior distributions of all unknowns can be obtained by Bayes’
theorem. For most of the parameters, the conditional posterior distributions have
closed forms by conjugacy, which facilitates drawing posterior samples.

Assuming that priors for different predictors are independent, we can express
the joint posterior distribution of all parameters as

*2’ )»*

ﬂ(m rk,b],f )\' c], s02»10|3’)

o 7 (y|)m (m)m (o) (p) 1‘[ 7 (rg)

k=1
p
l_[ J|‘L' (13 |A)n(k)n(cj|‘c]’-"2)n(t]’~"2|)»*)n()\*).

Conditional on the parameters (rg, b;, r JALCG, T *2 A*,02, p), we derive the

conditional posterior distribution of m as

*2’ 2

(m|y,rk,b],r rocj, T o2, p)

o (m)7m (y|-)

1
(' exp(— 5 TEmOm

-3 Z(yl Ri(—m) — Um) = (y; - Ri—my — Uim)>
1_1
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n
o exp <mT Toom+ Y (Um)' 27 (Um)

i=1

n
—23 (yi — u,-<_m))T2;1<Ul-m>)
i=1

n n
x exp<mT (z,;g +3 UiTE,.—IU,-)m -2 (yi — ;L,.(_m))Tzi—l(U,-m))

i=1 i=1
Hence, the conditional posterior distribution of m is MVN,,(&,,,, X,;), where
T

n -1 n
W = (22(1) +2 UiTEi_lUl) (Z(yi - ﬂi(—m))TEi_lUi> :
i=1

i=l

and

-1
n
pIMES <z,;g +3 U,-TEl._lUi) :

i=1
Similarly, since rg, b; and ¢; have conjugate multivariate normal priors, the
posterior distribution for ry is MVN, (u,, , ), with

-1

n

Iy, = (Er_ol + Z(XikUi)TEi_l(XikUi)>
i=1

T
n

X (Z(yi —Mi(_rk))TE,-_l(XikUi)> ,
i=1

and

-1

n

DI (2;01 + Z(X,-kU,-)Tzi‘l(X,-kU,-)) :
i=1

the posterior distribution for b; is MVN, (y,bj, Xp;), with

; -1
Wy, = <(62r12)l + Z(SijUi)TE,-l(fijUi)>

i=I

" T
X (Z(Yi —ﬂi(—b,))TZ,-_l(EijUi)) ,
i=1

and

n -1
;= ((o*zr%)‘l + Z@UU»TE#@UU,-)) ,
i=1
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and the posterior distribution for ¢; is MVN,, (ucj, pI j), with

—1
uc_,.=(( )" +Z<;,,Ul> by (a,Uz))

i=1

n T
X (Z(Yi —Mi(—c,-))TE,-_l({ijUi)) ,
i=1
and
-1
26/ - ((Gzr;kz +Z(§UU) 2 (;:;U)> .
i=1

Now, we derive the conditional posterior distribution for tj2 and A2 from the
joint posterior distribution. Since

*2 )\*

(r ly,m, g, bj, 2, ¢, 7] a2, p)

% 7T(‘L'j |A)n(bj|rj ,o?)

2\ (@WtD)/2)-1 2VAZ\ o
o((rj) exp —th (rj)

1 _
X exp(——b?(ozdiag(rjg, e tlz)) 1bj>

vA2 1 12
ocexp( 2o el )( 212

and

*2 )\*

n(kzly,m,rk,bj,r ¢}, T a2, p)

p
l_[ rlk

_ 14 )\2 (v+1)/2 )\’2
x (kz)a ! exp(—bkz) jl:[l <v7> exp(—%ﬁ),

the posterior distribution for tl_z is inverse-Gaussian (vA2, 1|}|?) {ﬁZ ) and the posterior
' v P 12
distribution for A2 is Gamma(a + 2 ”2+ P p+ /2:1 Y
: . . . . . . . 3 5 >
Similarly, the posterior distribution for % is inverse-Gaussian(vA*2, UHAI:I(IZ )

J
p *2

and the posterior distribution for A*? is Gamma(a* + 2 ”2+ L b+ =55 ). From
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these posteriors, we can see that the hierarchical expansion of the Multivariate
Laplace prior indeed gives closed forms of posterior distributions for efficient
Gibbs sampling.
Last, if we assume a stationary AR(1) covariance structure, that is,
1 p\fil—tiz\ e
) ) pltiz—til 1 plliT,- —ti2]
Yi=o0T;, =0 . . . . ,

|tir; —ti1

pltil—liT,-l p|ti2—tiTi| 1

the posterior distribution for o2 is an inverse chi-square distribution, or

n n g N T v —
7T(O’2|‘)'\'IHV-X2<2T1',Zi:l(yz ”’l) Fl (yl ”’l))’

n .
P i=1Ti

where the first parameter is the degree of the freedom parameter and the second
one is the scale parameter, and

w(pl) < (yl)m(p)

1‘[ IT; 17172 eXp( >y =)' (i —ui)>.
i=1

Based on this expression, the corresponding Metropolis—Hastings algorithm can
be developed to update p.

We use MCMC algorithms to estimate the posterior distribution of each param-
eter by drawing posterior samples from the corresponding conditional posterior
distribution, given the current values of all other parameters and the observed data.
We use the potential scale reduction factor [PSRF; Gelman and Rubin (1992);
Gelman et al. (2004)] to access the convergence. Squared PSRF is defined as the
ratio of the marginal posterior variance to the within-chain variance, and a PSRF
less than 1.1 indicates good convergence. We run 4000 additional iterations after
all chains converge.

5. Computer simulation. We first investigate the new Bayesian group lasso
approach for selecting important time-varying effects through simulation studies.
We generate data in the fGWAS setting according to the model (2.8) with the
number of covariates ¢ = 1, the number of SNPs p = 3000, and the number of
individuals n = 600 or 800. Following the simulation techniques in the literature,
genotypical data &;; is derived from u;; fori =1,...,nand j=1,..., p, where
each u;; has a standard normal distribution marginally, and cov(u;;, uix) = pG =
0.1 or 0.5, representing two levels of linkage disequilibrium. We set

1, uij > c,
&i=10, —c=ujj <c,

—1, Lt,'j<—C,
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TABLE 1
Parameters used in the simulated example

Legendre coefficients

Time-varying effect Parameter 0 1 2 3
Mean effect m 13.40 -3.08 1.88 —-3.20
Covariate effect r 3.00 0.15 —2.67 3.25
Additive effect b 1.04 0.88 —2.05 0.00
by 1.17 —-0.22 0.74 —4.72
bs 1.40 0.00 0.00 0.00
Dominant effect c3 1.49 —2.13 4.82 1.42
cy 1.00 1.32 1.90 1.50
cs5 1.26 —1.22 0.00 0.00

where c is used to determine the minor allele frequencies. Then, we derive the
indicator matrix ¢;; of dominant effects from &;;.

We assume that the dynamic pattern of the trait is controlled by 5 SNPs
and 1 covariate. In particular, we set b; =0 for j =4,..., p, and ¢; = 0 for
j=1,2,6,..., p.Sexis included as a covariate and is generated by randomly as-
signing a sex to each subject. The time-varying effects of overall mean, covariate
and causal SNPs are generated by Legendre polynomials, with Legendre coeffi-
cients listed in Table 1. The true polynomial degrees for these causal SNPs could
be 0, 1, 2 or 3, allowing constant genetic effects, linear genetic effects or more
complicated patterns of genetic control.

To simulate irregular longitudinal phenotypical data, we assume that the number
of measurements for each subject is between 5 and 12, and all subjects are in the
age range of 30 to 80 years. For each subject with a specific number of measure-
ments, traits of interest are observed at ages randomly drawn from 30 to 80. The
residual covariance matrix among different time points was assumed to be AR(1)
with p = 0.4 and 0> = 4,9 or 16. The phenotypes observed at subject-specific
time points and genotypes of all subjects are collected for Bayesian analysis.

For each simulated data set, we implement MCMC algorithms as described in
Section 4. In practice, the degree of Legendre polynomials should be determined
a priori. We recommend a procedure that analyzes all SNPs with different poly-
nomial degrees, where group lasso penalties are used to regularize the estimation.
When the polynomial degree is 0 (constant effect), the group lasso penalty reduces
to a lasso penalty. Then the polynomial degree v that gives the lowest Bayesian
information criterion (BIC) of the final model is chosen. In simulations, howeyver,
this is computationally expensive. Therefore, the polynomial degree is fixed at
v = 3 in simulation studies. Simulation results (see Table 2) suggest that, as long
as the specified polynomial degree is greater than or equal to the largest degree of
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TABLE 2
Variable selection performance in the simulated example

No. of nonzeros Proportion of

n o2 C IC Under-fit Correct-fit Over-fit Time (h)
pG =0.1

600 16 3.77 0.00 0.86 0.14 0.00 17.99
600 9 4.93 0.00 0.07 0.93 0.00 17.67
600 4 5.00 0.00 0.00 1.00 0.00 17.40
800 16 4.99 0.00 0.01 0.99 0.00 23.69
800 9 5.00 0.00 0.00 1.00 0.00 24.78
800 4 5.00 0.00 0.00 1.00 0.00 24.35
pG =0.5

600 16 4.61 0.00 0.35 0.65 0.00 17.90
600 9 5.00 0.00 0.00 1.00 0.00 17.29
600 4 5.00 0.00 0.00 1.00 0.00 17.63
800 16 5.00 0.00 0.00 1.00 0.00 23.97
800 9 5.00 0.00 0.00 1.00 0.00 23.49
800 4 5.00 0.00 0.00 1.00 0.00 24.38

all nonzero effects, the proposed framework works well in selecting casual SNPs
and estimating their time-varying effects.

Once all posterior samples are collected from MCMC algorithms, SNPs are se-
lected in the following way: a time-varying additive effect a;(¢) or dominant effect
dj(t) is included in the final model if at least one of its four Legendre coefficients
has a two-sided 95% interval estimate that does not cover zero. In the supplemen-
tal article [Li et al. (2015)], we plot the potential scale reduction factor against
iterations for each parameter in by, bo, b3, €3, ¢4 and c¢s. This is a simulation ran-
domly drawn from the specification n = 600 and o> = 16. All chains converge
very quickly and stay below the threshold of 1.05 (the red line).

To evaluate the variable selection performance of the proposed procedure, we
calculate several measures of model sparsity for the final model, which are sum-
marized in Table 2. Column “C” shows the average number of SNPs with nonzero
varying-coefficients correctly included in the final model, and column “IC” is the
average number of SNPs with no genetic effect incorrectly included in the final
model. Column “Under-fit” represents the proportion of excluding any relevant
SNP in the final model. Similarly, column “Correct-fit” represents the proportion
that the extract true model was selected and column “Over-fit” gives the propor-
tion of including all relevant SNPs as well as one or more irrelevant SNPs. Clearly,
both sample size and the noise level play important roles in how well the Bayesian
group lasso could select the exactly correct model. However, as sample size de-
creases and noise increases, our procedure tends to select fewer important SNPs
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rather than produce more false positives. Moreover, the impact of linkage disequi-
librium is limited, and our method works slightly better in the presence of high
linkage disequilibrium.

Other than the performance of selecting truly important SNPs, we further in-
vestigate how well the procedure estimates the time-varying effects of selected
SNPs. To ameliorate the bias of the parameter estimates introduced by group lasso
penalties, we always refit the fGWAS model after variable selections, where only
selected SNPs are included in the final model and all regularization parameters are
set to zero. For each time-varying genetic effect of important SNPs, Tables 1 and 2
in the supplemental article [Li et al. (2015)] summarize the average estimates,
standard errors and the mean squared errors (MSEs) of Legendre coefficients over
replications where the effect is selected for pg = 0.1. As can be seen from these
tables, both bias and standard error decrease as noise level decreases. MSEs are
slightly lower for additive effects and lower order Legendre coefficients.

To compare the parameter estimates with those produced by another strategy
aimed at the same genetic model, we implement the univariate fGWAS approach
by Das et al. (2011) using the same data set. Specifically, this single-SNP analysis
extends the traditional GWAS analysis framework by allowing the phenotype to
be collected repeatedly over time and approximating the time-varying genetic ef-
fects by Legendre polynomials. A Benjamini-Hochberg false discovery rate (FDR)
controlling procedure is used to adjust for multiple comparisons in selecting sig-
nificant SNPs. Table 3 in the supplemental article [Li et al. (2015)] shows that this
single-SNP analysis produces biased estimates for all parameters.*

Finally, we compare the variable selection performance of four approaches:
(1) a Bayesian group lasso; (2) a univariate fGWAS approach by Das et al.
(2011); (3) a functional principal component analysis (fPCA) approach [Ramsay
and Silverman (2005)] that analyzes the fPCA of the longitudinal phenotype; and
(4) a slope model that simplifies the longitudinal phenotype to its slope.” In the
third and the fourth model, the leading three fPCA scores and the slope calculated
from each growth curve are tested against genetic predictors, respectively, where
group lasso or lasso regressions with 5-fold cross-validation are used to select rel-
evant SNPs.

For fairness of comparison, longitudinal phenotype data are not generated
from our nonparametric genetic model (2.8). Instead, we use the same geno-
type data with pg = 0.1 but assume the following time-varying genetic ef-
fects: aj(t) = 0.5 4 sin(0.2¢), a>(t) = 1/(0.5 + exp(—0.06¢)) — 0.5, az(t) =
log(0.05¢), d3(¢t) = —1.5, ds(t) = 60/t, and ds(t) = 0.2 — 0.035¢ for the first
five SNPs. These functional forms are unknown to researchers. Table 3 presents

4Since this approach cannot identify if the significance is due to the additive effect or the dominant
effect, both effects are reported for five important SNPs.

SWe thank the Associate Editor and an anonymous referee for pointing out the fPCA method and
the slope method, respectively.
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TABLE 3
Variable selection performance of alternative methods in the simulated example

Nonzeros Proportion of Nonzeros Proportion of

n o2 C IC U-fit C.fit O.fit C IC U-fit C.fit O.fit

Bayesian group lasso Das et al. (2011)

600 16 3.93 0.00 0.83 0.17 0.00 4.94 0.51  0.06 0.55 0.39
600 9 4.80 0.00 0.20 0.80 0.00  5.00 0.20  0.00 0.83 0.17
600 4 500 0.00  0.00 1.00 0.00 498 0.02 0.02 0.96 0.02
800 16 4.86 0.00 0.14 0.86 0.00 4.99 040 0.01 0.70 0.29
800 9 5.00 0.00  0.00 1.00 0.00  5.00 0.23  0.00 0.81 0.19
800 4  5.00 0.00  0.00 1.00 0.00  5.00 0.01  0.00 0.99 0.01

Functional PCA Slope model

600 16 0.51 4.46 1.00 0.00 0.00 1.06 1028  1.00 0.00 0.00
600 9 1.19 7.01 098 0.00 002 253 1642 099 0.00 0.01
600 4 275 1353 078 0.00 022 3.65 2122 097 0.00 0.03
800 16 0.77 5.02  1.00 0.00 0.00 1.82 1091 1.00 0.00 0.00
800 9 179 11.14 0.88 0.00 0.12  3.06 1490 098 0.00 0.02
800 4 290 17.16 0.61 0.00 039  3.82 19.00 0.99 0.00 0.01

variable selection results, where all measures strongly prefer the Bayesian
group lasso. Among the alternative approaches, the univariate fGWAS ap-
proach has the best variable selection performance. For the fPCA approach
and the slope approach, the probability of selecting casual SNPs increases with
the signal-to-noise ratio (column “C”), but the proportion of under-fit is al-
ways substantial. Interestingly, as signal-to-noise ratio increases, the probabil-
ity of identifying false positives also increases (columns “IC” and “Over-fit”),
especially when o2 decreases from 16 to 9. The inconsistency of these pro-
cedures suggests the risk of inflated false positive rates when only the ma-
jor movements of growth curves are captured and tested in association stud-
ies.

In the above simulation studies, the minor allele frequency is set to 0.3. Unre-
ported simulations also demonstrate that as the minor allele frequency decreases,
both statistical powers and false positive rates decrease. But our method is still
much better than the alternative approaches. Despite the Bayesian framework’s
theoretical advantages in handling parameter uncertainty, practically it could be
slower than frequentist methods. When n = 600, 02=09, pG = 0.1 and the number
of SNPs p = 1000, the Gibbs sampler’s computational time is about 5.70 hours.
Experiments show that a linear regression line® can describe almost perfectly
the relationship between the computational time in hours and p: log;((time) =
0.754 4 log;(p/1000).

5We thank the Editor for sharing the idea of using this regression.
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6. Worked example. We use the newly developed model to analyze a real
GWAS data set from the Framingham Heart Study (FHS), a cardiovascular study
based in Framingham, Massachusetts, supported by the National Heart, Lung, and
Blood Institute, in collaboration with Boston University [Dawber, Meadors and
Moore (1951)]. Recently, 550,000 SNPs have been genotyped for the entire Fram-
ingham cohort [Jaquish (2007)], from which 493 males and 372 females were ran-
domly chosen for our data analysis. These subjects were measured for body mass
index (BMI) at multiple time points from age 29 to age 61. The number of mea-
surements for a subject ranges from 2 to 18, and the intervals of measurement are
also highly variable among subjects. As is standard practice, SNPs with rare allele
frequency <10% were excluded from data analysis. The numbers and percentages
of nonrare allele SNPs vary among different chromosomes and range from 4417
to 28,771 and from 0.64 to 0.72, respectively.

A single-SNP analysis was used to analyze the phenotypic data of BMI for
males and females separately. Figure 1 gives —log;, p-values for each SNP in the
two sexes, from which 33,239 SNPs with —log,, p-values greater than 2.0 in at
least one sex were selected. Before applying Bayesian group lasso analysis to this
irregular longitudinal data set, we imputed missing genotypes for a small propor-
tion of SNPs according to the distribution of genotypes in the population. Then, by
treating the sex as a covariate, we imposed group lasso penalties on both additive
effects and dominant effects in hopes of identifying SNPs with notable effects on
BMI, where all effects are possibly functions of time. According to our discus-
sions in Section 5, the whole procedure was repeated with polynomial degrees:
0, 1, 2, 3 and 4, and the corresponding BICs of the final model are as follows:
27,470, 27,444, 27,416, 27,408 and 27,426. Therefore, a polynomial degree of 3
is appropriate in this real data example.

The Bayesian group lasso selected 24 significant SNPs, located on chromo-
somes 1, 2, 3,4, 6,7, 12, 14, 16 and 23. Table 4 tabulates the names, positions,
alleles and estimated Legendre coefficients of these SNPs. The first allele in the
column “Alleles” represents the minor allele. Using the Legendre coefficient es-
timates, we plot their time-varying additive effects and dominant effects in Fig-
ures 2 and 3, respectively, where the associated interval estimates’ are also pro-
vided. Some of these detected SNPs are located in a similar region of candidate
genes for obesity. For example, the detected SNPs on chromosomes 4, 6 and 12
are close to candidate genes for BMI-related type 2 diabetes [Frayling (2007)].

Figures 2 and 3 show that the time courses of the genetic effects of some SNPs
are relatively constant (magenta), monotonically increasing (black) or decreasing

7Suppose for one varying-coefficient, the interval estimate of the gth Legendre coefficient is
(bq,u, bq,L)T,q =1,..., 4, and the Legendre polynomials are (uq, uq, u, u3)T =(1,¢, %(312 -
1), %(5[3 —3))T for each standardized time point ¢t € [—1, 1]. Then the interval estimate of the
varying-coefficient at time ¢ is (23:1 l;q,Uuq, 23:1 l;q,Luq)T, where l;q‘U = by u if ug is posi-
tive and by 1 otherwise, and by | = by, 1 if ug is positive and by 7 otherwise.
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FI1G. 1. Manhattan plot of p-values for association by genomic position for male and female, where
different colors across the x-axis represent different chromosomes, and the horizontal line indicates
the significance level obtained by the Benjamini-Hochberg FDR adjustment at & = 5%.

(blue). That is, given a population carrying one of these SNPs in the same environ-
ment, the expected BMI is different at different ages. Individuals carrying certain
SNPs may have lower BMI in mid-life but tend to have higher BMI when they are
younger or older (red). Conversely, individuals carrying certain SNPs tend to have
higher BMI in mid-life (green), which may increase the risk for stroke later in life,
according to a prospective study [Jood et al. (2004)].

7. Discussion. When the number of predictors p is much larger than the
number of observations 7, highly regularized approaches, such as penalized re-
gression models, are favorable to identify nonzero coefficients, to enhance model
predictability and to avoid overfitting [Hastie, Tibshirani and Friedman (2009)].
In this article, we proposed a Bayesian regularized estimation procedure for non-
parametric varying-coefficient models that could simultaneously estimate time-



Information about selected SNPs in the real data example

TABLE 4

Estimated legendre coefficients

Chr Name Position Alleles Additive effect Dominant effect
1 $866334458 79,393,823 C/T —1.504 —1.656 —1.334 —0.143 1.136 2.645 2.480 0.780
1 $s66050888 93,240,623 A/G —0.431 —0.532 —0.344 —0.111 0.737 0.745 —0.185 0.190
1 $866275851 93,245,738 C/T —0.128 —0.949 —1.096 —0.448 0.079 —0.254 0.278 —0.004
1 $s66048018 115,427,398 A/G 0.396 0.217 0.028 0.418 0.213 —0.007 0.571 0.294
1 $866287256 221,051,934 G/A 0.497 0.788 0.934 —0.047 0.386 —1.065 —0.672 0.221
1 $s66104828 234,701,498 A/C 0.111 —0.620 —0.951 —0.461 1.445 1.833 1.307 0.205
2 $s66484730 103,489,666 G/A —0.341 0.254 0.335 0.098 0.057 0.612 0.552 —0.565
2 $866232775 103,493,541 T/C 0.476 —1.098 —0.806 —0.220 0.043 —0.816 —1.011 0.810
2 $s66185516 239,065,169 G/T 0.397 0.074 —0.053 0.228 1.039 0.852 0.687 0.269
3 $866397464 73,251,862 C/T 0.415 0.183 —0.198 —0.192 0.677 0.895 0.437 —-0.212
4 $566402098 186,281,132 T/C —0.225 0.630 0.565 —0.009 0.418 0.651 0.744 0.244
6 $s66218814 3,311,818 C/T —0.724 0.043 0.159 0.182 0.237 —0.795 —1.056 —0.336
7 $s66083459 89,430,534 T/G —0.744 0.518 0.336 0.141 0.377 —1.070 —1.555 —1.214
12 $$66288005 29,860,263 A/G —0.342 0.724 0.541 0.322 0.096 0.563 0.875 0.806
14 $866282595 24,339,998 G/A 1.461 1.471 1.217 —0.246 —0.588 —1.194 —0.973 0.022
14 $s66411959 24,340,175 G/A —0.782 —1.357 —1.311 —0.080 0.307 0.323 0.068 —-0.276
14 $s66416767 24,348,496 G/T —0.232 —0.589 —0.117 —0.033 0.507 0.610 —0.098 —0.559
14 $866281419 77,702,561 G/A —0.802 0.151 0.488 0.252 0.438 —0.109 0.254 —0.189
16 $s66091573 57,829,089 C/T 1.402 2.674 1.450 0.400 0.999 2.747 1.859 0.426
16 $866242525 57,935,351 C/T —0.548 —0.516 0.465 0.579 —0.537 —0.479 0.093 1.234
16 $866489647 57,938,934 A/G —-0.217 —2.058 —1.834 —1.059 0.595 —0.350 —1.070 —0.967
16 $s66444701 82,976,515 C/IG —0.672 —0.259 0.831 0.481 0.639 1.552 0.876 —0.143
16 $566529263 84,383,030 G/T 0.478 0.539 —0.033 0.301 0.066 —-0.313 —0.037 —0.111
23 $866369851 121,966,143 G/T —0.419 —0.108 —0.052 —0.025 0.050 —0.663 —0.454 —0.185
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FI1G. 2. Additive effects of selected SNPs in the real data example.

varying effects and implement variable selection. The procedure extends the stan-
dard Bayesian lasso [Park and Casella (2008)] and standard group lasso [Yuan and
Lin (2006)] to a nonparametric setting, and is applicable to irregular longitudinal
data.

We approximated time-varying effects by Legendre polynomials and presented
a Bayesian hierarchical model with group lasso penalties that encourages sparse
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solutions at the group level. The group lasso penalties are introduced by assign-
ing multivariate Laplace priors to regression coefficients, and are implemented
on the basis of its hierarchical expansion which yields an efficient Gibbs sampler
in the MCMC estimation. Although computationally intensive, it outperforms the
standard group lasso in the sense that it provides not only point estimates but also
interval estimates of all parameters. In addition, the Bayesian group lasso treats the
regularization parameters as unknown hyperparameters and estimates them along
with other parameters. This technique avoids choosing the tuning parameters by
cross-validation and automatically accounts for the uncertainty in its selection that
affects the estimates of regression coefficients.

In one of the most powerful but challenging areas in genetics, we incorpo-
rated our new procedure to genome-wide association studies (GWAS) by test-
ing a large number of SNPs simultaneously, particularly with p > n, based on
the dynamic pattern of genetic effects on complex phenotypes or diseases. We
first applied the new approach to fGWAS for age-specific changes of BMI and
successfully identified several significant SNPs, some of which are confirmed
by empirical genetic studies [Frayling (2007)]. For example, previous molecu-
lar studies have observed a candidate gene (F7O) coding alpha-ketoglutarate-
dependent dioxygenase, a fat mass and obesity-associated protein. Our model de-
tected SNPs ss66091573, ss66242525 and ss66489647 on chromosome 16 in a
region of the FTO gene, suggesting the biological relevance of these SNPs in fat-
related trait control. Our model also detected other SNPs in close proximity of
different candidate genes; that is, SNP ss66397464 in peroxisome proliferator-
activated receptor-y gene (PPARG) on chromosome 3, SNP ss66402098 in the
Wolfram syndrome 1 gene (WFSI) on chromosome 4, SNP ss66218814 in CDK5
regulatory-subunit-associated protein 1-like 1 gene (CDKAL1) on chromosome 6,
and SNP 5566288005 in potassium inwardly-rectifying channel, subfamily J, mem-
ber 11 gene (KCNJ11) on chromosome 12 [Frayling (2007)]. Among these four
genes, PPARG and KCNIJ were found to be associated with obesity [Vidal-Puig
et al. (1997); Morgan et al. (2010)], while WFSI and CDKALI1 are believed to be
associated with diabetes [Sandhu et al. (2007); Scott et al. (2007); Steinthorsdottir
et al. (2007)]. Therefore, all these discoveries have well validated the biological
relevance of the new model.

To address challenges for the post-GWAS era, genetic association studies began
to focus on SNPs within a set of functional candidate genes. For instance, Michel
et al. (2010) analyzed 566 SNPs from 14 candidate genes that are believed to
be associated with asthma. Xu and Taylor (2009) developed tools to recommend
SNPs based on information on gene expression studies, regulatory pathways and
functional regions that appear to be linked to the disease. In their example, 1361
SNPs were recommended for a genetic association study on prostate cancer. These
tools could be used as a preprocessing step for the proposed procedure in this
article. Statistically, on the other hand, variable screening approaches [Fan and Lv
(2008)] for longitudinal data can be developed to recommend a subset of SNPs.
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From a theoretical point of view, the proposed method can also approximate
varying-coefficients by nonparametric techniques other than Legendre polynomi-
als, and model the within-subject correlation by other parametric or nonparametric
covariance structures. Given its potential influence, an optimal model for longitu-
dinal covariance structure should be chosen based on the nature of practical data
[Zhao et al. (2005); Yap, Fan and Wu (2009)]. More generally, it can be easily
extended to the problem where the number of variables in each group varies, such
as the multi-factor ANOVA with each factor having several levels. Also, gene-
gene interactions and gene-environment interactions can be incorporated to better
decipher a detailed picture of the genetic architecture of a complex trait.
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work. The authors are grateful to the Editor, the Associate Editor and three anony-
mous referees for providing valuable comments that significantly improved the

paper.

SUPPLEMENTARY MATERIAL

Convergence diagnostics and summary of parameter estimates (DOI:
10.1214/15-AOAS808SUPP; .pdf). We plot the potential scale reduction factor
(PSRF) against iterations and summarize the average estimates, standard errors
and mean squared errors (MSEs) of corresponding Legendre coefficients for the
first five genetic predictors.
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