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Surveys often ask respondents to report nonnegative counts, but respon-
dents may misremember or round to a nearby multiple of 5 or 10. This phe-
nomenon is called heaping, and the error inherent in heaped self-reported
numbers can bias estimation. Heaped data may be collected cross-sectionally
or longitudinally and there may be covariates that complicate the inferential
task. Heaping is a well-known issue in many survey settings, and inference
for heaped data is an important statistical problem. We propose a novel re-
porting distribution whose underlying parameters are readily interpretable as
rates of misremembering and rounding. The process accommodates a variety
of heaping grids and allows for quasi-heaping to values nearly but not equal
to heaping multiples. We present a Bayesian hierarchical model for longitu-
dinal samples with covariates to infer both the unobserved true distribution of
counts and the parameters that control the heaping process. Finally, we apply
our methods to longitudinal self-reported counts of sex partners in a study of
high-risk behavior in HIV-positive youth.

1. Introduction. When survey respondents report numeric quantities, they
often recall those numbers with error. Respondents sometimes round up or down,
for example, to the nearest integer, decimal place or multiple of 5 or 10. This kind
of misreporting is called heaping, and when the probability of heaping depends on
the true value of the unheaped variable, the mechanism is nonignorable [Heitjan
and Rubin (1991)]. Heaping is a well-known problem in many survey settings, and
robust inference for heaped data remains an important problem in statistical infer-
ence [Crockett and Crockett (2006), Heitjan (1989), Schneeweiss, Komlos and Ah-
mad (2010), Wang and Heitjan (2008), Wright and Bray (2003)]. Reporting errors
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are frequently observed for a variety of measurements, including self-reported age
[Myers (1954, 1976), Stockwell and Wicks (1974)], height and weight [Rowland
(1990), Schneeweiss and Komlos (2009)], elapsed time [Huttenlocher, Hedges
and Bradburn (1990)] and household purchases [Browning, Crossley and Weber
(2003)]. Respondents may be inclined to misreport when the survey addresses
topics that seem private, embarrassing or culturally taboo [Schaeffer (1999)]. For
example, there may be significant misreporting in studies of drug use [Klovdahl
et al. (1994), Roberts and Brewer (2001)], cigarette use [Brown et al. (1998), Wang
and Heitjan (2008)] or number of sex acts or sexual partners [Fenton et al. (2001),
Ghosh and Tu (2009), Golubjatnikov, Pfister and Tillotson (1983), Weinhardt et al.
(1998), Westoff (1974), Wiederman (1997)].

Several authors have proposed approximations to correct estimates using
heaped data [Schneeweiss and Augustin (2006), Schneeweiss and Komlos (2009),
Sheppard (1897), Tallis (1967), Schneeweiss, Komlos and Ahmad (2010), Lindley
(1950)]. Others have explored smoothing techniques for heaped data on the
grounds that smoothing may have the effect of “spreading out” grouped responses
[Hobson (1976), Singh, Suchindran and Singh (1994)]. Heitjan (1989) and Heitjan
and Rubin (1990, 1991) provide an important unifying perspective on heaped and
grouped data by introducing the concept of coarsening, in which one observes
only a subset of the complete data sample space. Based on this paradigm, Wang
and Heitjan (2008) formulate a model for heaped cigarette counts and apply these
ideas to study impact of a drug treatment on smoking. Jacobsen and Keiding (1995)
discuss extensions of the coarse data concept to more general sample spaces than
those considered by Heitjan and Rubin (1991). Wright and Bray (2003) model
heaped nuchal translucency measurements as samples from a mixture model and
propose a Gibbs sampling scheme to draw from the joint distribution of the true
counts and unknown rounding parameters. Bar and Lillard (2012) model the age
at which subjects quit smoking by supposing that heaping takes place on a grid of
multiples of 5 or 10.

Most attempts to disentangle heaped count responses from latent true values
can be understood as mixture models. To illustrate, suppose each subject draws
their latent true count x from a distribution with mass function f (x|φ) on the
nonnegative integers that depends on parameters φ and then reports a possibly
different value y from a reporting distribution with mass function g(y|x, θ) that
depends on the true count x and parameters θ . Because the reporting distribution
g depends on the latent true count x, the heaping mechanism is nonignorable. The
likelihood contribution of an observed count y is therefore

L(θ ,φ;y) =
∞∑

x=0

g(y|x, θ)f (x|φ).(1)

Figure 1 shows a graphical representation of this mixture model for heaped counts.
The objects of inference are often the true counts x and the parameters φ underly-
ing the true count distribution f (x|φ).
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FIG. 1. Mixture model schematic for reported counts. Each subject chooses their true count x

from the distribution f (x|φ), then reports the possibly different count y drawn from the distribution
g(y|x, θ).

Many approaches characterize the reporting mechanism as a choice between
reporting truthfully and misreporting at suspected heaping grid points [e.g., Bar
and Lillard (2012), Wang and Heitjan (2008), Wang et al. (2012), Wright and Bray
(2003)]. The probability of reporting a particular heaped value depends on the
value of the latent true value: Wang and Heitjan (2008) use a proportional odds
model for different heaping grids; Bar and Lillard (2012) propose a multinomial
distribution governing the choice of different heaping rules; McLain et al. (2014)
propose a semi-parametric model for heaping (digit preference) of duration-time
data in which subjects are equally likely to round up or down. Most models for
count data only allow exact heaping to the multiple of 5, 10 or 20 that is nearest
to the latent true count, and the heaping rule is the same for all subjects. However,
limiting heaped responses to the nearest grid point can produce inferences of true
counts that are unrealistically constrained. For example, if the reported count is
y = 35 and the model only allows heaping to multiples of 5, then one must infer
x ∈ {33, . . . ,37}. Furthermore, established models do not allow for misremember-
ing as a function of the true count or quasi-heaping to counts close to, but not equal
to, the specified grid values (e.g., a subject whose true count is 93 may report 101
or 99 instead of the heaped value 100).

In this paper, we relax several of these restrictive assumptions and incorporate
rigorous analysis of heaped data into a hierarchical regression model. In Section 2
we propose a novel reporting distribution by imagining the true count x as the
starting point of a continuous-time Markov chain on the nonnegative integers N

known as a general birth–death process (BDP). The ending state of this Markov
chain after a specified epoch is the reported count y. Jumps from integer state k to
k + 1 or k − 1 occur with instantaneous rates λk and μk , respectively, with μ0 = 0
to keep the process on N. We specify λk and μk so that the process is attracted
to nearby heaping grid points. Our BDP heaping model characterizes an infinite
family of reporting distributions g(y|x, θ) that is (1) indexed by the true count x;
(2) controlled by a small number of parameters θ that are readily interpretable; and
(3) can be computed quickly to provide a reporting likelihood. The model permits
heaping to values beyond the nearest grid point, provides for multiple heaping
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grids and continuous transitions between them, allows misremembering and quasi-
heaping, and accommodates subject-specific heaping intensities. In Section 3 we
outline a Bayesian hierarchical model for longitudinal counts and a Metropolis-
within-Gibbs scheme for drawing inference from the joint posterior distribution
of the unknown parameters. We are interested in learning about the parameters
φ underlying the true counts, the true counts x themselves and the parameters θ

that govern the reporting/heaping process. Finally, in Section 5 we demonstrate
our method on longitudinal self-reported counts of sexual partners from a study of
HIV-positive youth.

2. Constructing the reporting distributions. Let x be the true count for a
subject and let y be their reported count. Let g(y|x, θ) be the probability of re-
porting y, given that their true count is x under the parameter vector θ . To param-
eterize g(y|x, θ) to allow heaping, suppose y represents the state of an unbounded
continuous-time Markov random walk, taking values on N, starting at x and evolv-
ing for a finite arbitrary time. We accomplish this task by defining the birth and
death rates λk and μk of a general BDP in a novel way so that the process is
attracted to grid points on which we expect heaping to occur. The transition prob-
abilities of this process give rise to the family of reporting distributions g(y|x, θ).
We extend the proportional odds framework of Wang and Heitjan (2008) to allow
heaping to different grid values depending on the magnitude of the count. First we
present background on general BDPs and show how to use the transition probabil-
ities of a general BDP to model heaping.

2.1. General birth–death processes. A general BDP is a continuous-time
Markov random walk on the nonnegative integers N [Feller (1971)]. Let U(t) ∈ N

be the location of the walk at time t . Define the transition probability Pab(t) =
Pr(U(t) = b|U(0) = a) to be the probability that the process is in state b at time t ,
given that it started at state a at time 0. A general BDP obeys the Kolmogorov
forward equations

dPab(t)

dt
= λb−1Pa,b−1(t) + μb+1Pa,b+1(t) − (λb + μb)Pab(t),(2)

for all a, b ∈N, where Pab(0) = 1 if a = b, Pab(0) = 0 if a �= b, and μ0 = λ−1 = 0
to keep the BDP on N. In this setting, t is arbitrary; for example, halving t and
multiplying all birth and death rates by two does not change the distribution of
U(t)|U(0). The forward equations (2) form an infinite sequence of ordinary dif-
ferential equations describing the probability flow into and out of state b within
a small time interval (t, t + dt). Karlin and McGregor (1957) provide a detailed
derivation of properties of general BDPs. Unfortunately, it remains notoriously
difficult to find analytic expressions for the transition probabilities in almost all
general BDPs, and often one must resort to numerical techniques [Novozhilov,
Karev and Koonin (2006), Renshaw (2011)]. Appendix A gives an overview of the
Laplace transform technique we use to numerically compute the transition proba-
bilities efficiently.
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In our heaping parameterization, we model the true count U(0) = x as the start-
ing state of a BDP and U(t) = y as the ending state. We therefore set t = 1 and
define g(y|x, θ) = Pxy(1) so that Pxy is a function of the unknown parameter vec-
tor θ , where the {λk} and {μk} are all functions of θ . We emphasize that the time
parameter t is meaningless in this context, because scaling t by a constant and di-
viding the birth and death rates by the same constant does not change the transition
probabilities.

2.2. Specifying the jumping rates λk and μk . Grunwald et al. (2011) and Lee,
Weiss and Suchard (2014) model under- and over-dispersion in count data using
a simple linear BDP with λx = μx = λx, but do not address heaping. In addi-
tion to modeling dispersion, BDPs can be used to parameterize general families of
probability measures on N [Klar, Parthasarathy and Henze (2010)]. In our heap-
ing model, we imagine errors in self-reported counts to come from two sources:
dispersion due to misremembering and heaping. Misremembering adds variance
by spreading reported counts around the true count. Heaping results in preference
for reporting certain counts, for example, on a grid of values such as multiples of
5 or 10. We specify both of these sources of misreporting error using a BDP with
jumping rates {λk} and {μk} that are modeled as functions of the finite-dimensional
parameter vector θ .

To motivate development of our general BDP model for heaping, suppose for
now that heaping occurs at multiples of 5. We wish to define a random walk on N

that is dispersed around its starting point and attracted to multiples of 5, with this
attraction increasing with proximity to each multiple of 5. For example, if the true
count is x = 49, then the reported count y is more strongly attracted to 50 than
45, because 49 is closer to 50. Here, attraction to a given multiple means that the
likelihood of the BDP moving toward that multiple is greater than the likelihood of
moving in the other direction. Informally, we wish to assign birth and death rates
such that

λk = (dispersion around k) + (attraction to multiple of 5 above),
(3)

μk = (dispersion around k) + (attraction to multiple of 5 below).

One way to quantify the strength of attraction to the multiple of 5 immediately
above k is (k mod 5). Likewise, the attraction to the multiple of 5 immediately
below k is (−k mod 5), which is equal to 5 − (k mod 5). In both directions, the
closer k is to the nearby multiple of 5, the greater its attraction to it.

Subjects whose true number of sex partners is greater than 100, for example,
may be less able to accurately recall this number than subjects whose true count is
less than 10. We therefore model dispersion around the true count in the reported
counts due to misremembering as increasing the true count. Consider a general
BDP with jumping rates

λk = θdisp(1 + k) + θheap(k mod 5),
(4)

μk = θdispk + θheap(−k mod 5),
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FIG. 2. Birth rates λk (left), death rates μk (center) and reporting probabilities for true count
x = 33 (right) in the heaping model (4) for different values of the dispersion parameter θdisp and
heaping intensity θheap. Larger values of θdisp result in more dispersion about the true count. Larger
values of θheap result in more heaping to nearby multiples of 5.

where the (1 + k) in the birth rate arises because we wish to allow the BDP to
escape from zero with positive rate. In this formulation of the birth and death rates,
the dispersion parameter θdisp ≥ 0 is the propensity to over- or under-report and
θheap ≥ 0 is the propensity of rounding up or down to multiples of 5. Figure 2 shows
the birth rates λk , death rates μk and reporting probabilities with true count x = 33
for this heaping model. The complexity of the reporting distributions generated
by the heaping model is evident in Figure 2; the BDP tends toward multiples of
5 and the magnitude of θheap controls the severity of heaping. The BDP heaping
model exhibits subtler behavior than a dispersion distribution with added mass at
the heaping points.

Figure 3 shows reporting distributions for the true count x = 7. When θheap = 0,
the reporting distribution only adds variance to the true count. As θheap becomes
larger, the peaks in the reporting distribution at the heaping points become more
pronounced. When θheap is large and θdisp is small, the reporting distribution is
sharply peaked at nearby multiples of 5 and the values between heaping points
have little probability mass.

In general, suppose that heaping occurs at equally-spaced grid points mk where
m ∈ N is the grid spacing; for example, m could be one of 5, 10, 20, 25 or 100.
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FIG. 3. Reporting probabilities for heaping at multiples of 5 with true count x = 7 using different
values of the dispersion parameter θdisp and the heaping parameter θheap. Larger values of θdisp
allow reports closer to zero; when θheap is positive, heaping occurs at zero, providing a mechanism
for zero-inflated reports.

Analogous to (4), the birth and death rates become

λk = θdisp(1 + k) + θheap(k mod m),
(5)

μk = θdispk + θheap(−k mod m).

Figure 4 shows birth and death rates for several heaping grid spacings m.
We can analytically characterize the properties of the reporting distribution

when θheap is zero. Given the true count x, the mean and variance of the reported
count y are

E[y|x] = x + θdisp and
(6)

Var[y|x] = (2x + 1)θdisp + θ2
disp.

Appendix B provides a derivation of these expressions. It is evident that both the
mean and variance of y|x increase linearly with the true count x, consistent with
our belief that the severity of misremembering scales in proportion to the magni-
tude of the true count.

2.3. Heaping regimes. As true counts become larger, coarseness often in-
creases; small counts appear to be heaped at multiples of 5, then 10, and finally
50 or 100 for larger counts. Models such as (4) that enforce heaping to the same
grid regardless of the magnitude of the count may provide insufficient rounding
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FIG. 4. Birth rates λk (left), death rates μk (center) and reporting probabilities (right) for differ-
ent heaping grids with true count x = 33 and θdisp = 1. The first row shows the reporting distribu-
tion for θheap = 0. Subsequent rows show the birth and death rates and reporting probabilities with
θheap = 2.5 with heaping at multiples of 5, 10 and 50. When heaping is to multiples of 50 (bottom
row), reporting is concentrated at y = 50.

behavior when the coarseness increases with x. Consider J distinct heaping grids
and suppose mj is the grid spacing for regime j , where j = 1, . . . , J . Let vj (x)

be the intensity of regime j as a function of the true count x. Regime 0, with in-
tensity v0(x), is the probability of accurately reporting the true count. Regime j ,
with intensity vj (x), corresponds to heaping at multiples of mj . We follow Wang
and Heitjan (2008) to develop a proportional odds model for smooth transitions
between heaping grids.

Define birth and death rates

λk = θdisp(1 + k) + θheap

J∑
j=1

vj (x)(k mod mj),

(7)

μk = θdispk + θheap

J∑
j=1

vj (x)(−k mod mj),

where the heaping regime probabilities are

v0(x) = (
1 + eγ1+γ0x

)−1
,

v1(x) = (
1 + eγ2+γ0x

)−1 − (
1 + eγ1+γ0x

)−1
,(8)
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v2(x) = (
1 + eγ3+γ0x

)−1 − (
1 + eγ2+γ0x

)−1
,

...

vJ (x) = 1 − (
1 + eγJ +γ0x

)−1
,

and we restrict the regime transition parameters γ0 > 0 and γ1 > γ2 > · · · > γJ .
We have, by construction,

J∑
j=1

vj (x) = 1,(9)

for every x ∈ N. In this proportional odds model, γ0 determines the transition
rate between regimes and γj/γ0 controls the midpoint of the transition between
regimes j − 1 and j . Figure 5 shows the heaping regime model defined above.
Each row shows a different heaping regime model and reporting distribution
g(y|x, θ,γ ), where γ = (γ0, . . . , γJ ) for x = 14,23,53 and θ = (0.5,1.5).

2.4. Justification for the BDP heaping model. We formulate the heaping
model as a continuous-time Markov process for three reasons: mathematical con-

FIG. 5. Heaping regimes. Each row shows a different heaping regime model with reporting prob-
abilities for θdisp = 0.5 and θheap = 1.5. A gray line denotes the true counts x = 14,23,53. In the
first row, the regime intensities are shown with regime parameters γ = (0.5,−10,−20,−40). For
x = 14, the reporting distribution is dominated by regime 0, which specifies no heaping. For x = 23,
the reporting distribution is dominated by regime 1, so rounding to nearby multiples of 5 is evident.
At x = 53, regime 2 is dominant, and the reporting distribution is peaked at multiples of 10. In the
second row, γ = (1.5,−10,−25,−40), and the reporting distribution for x = 53 is dominated by
regime 3, so the model exhibits heaping to multiples of 50. In the third row, γ = (1,−5,−10,−20).
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venience, diversity of reporting distributions, and parsimony in parameterization.
First, the theory of general BDPs is well developed and efficient methods now
exist for computing transition probabilities for any specification of the birth and
death rates [Crawford and Suchard (2012)]. The heaping probability mass function
g(y|x) is automatically normalized to integrate to one (since it is the likelihood
of a Markov process), so the mixture model (1) is always well defined. Second,
the model described in (7) and (8) exhibits a great diversity in reporting distribu-
tions, from no heaping to always heaping, under a wide variety of magnitude-based
regimes (see Figures 2–5, e.g.). Third, the general BDP achieves this complex be-
havior using only two parameters for the heaping process and four in the regimes
specification. Additionally, the specification of heaping regimes via (7) and (8)
results in an appealing property: the reporting distribution can by highly asymmet-
rical when the true count is subject to two heaping regimes. For example, the third
row of Figure 5 shows how the true count x = 14 can be pulled toward 10 and 20
with very different probabilities.

3. A hierarchical model for longitudinal counts. We describe a generalized
linear mixed model (GLMM) for longitudinal counts. Label subjects i = 1, . . . ,N ,
with each subject’s true count Xit and self-reported count Yit at real calendar
timepoints tij for j = 1, . . . , ni . We record d-dimensional covariates Wit and c-
dimensional Zit for each subject at each timepoint. Consider the following hierar-
chical model:

Xit ∼ Poisson(ηit ),(10)

logηit = Witα + Zitβi(11)

and

βi ∼ Normal(0,�β),(12)

where the vector of regression coefficients α is d × 1, the subject-specific random
effect β i is c × 1 with the covariance matrix �β is c × c, and ηit is the subject-
timepoint-specific mean of the outcome distribution in the GLMM.

A model without heaping arises when we set Yit = Xit for all i and t . To incor-
porate heaping, let

Yit ∼ BDP(Xit , θ,γ ).(13)

We allow the BDP heaping model to have a separate heaping intensity parameter
θheap,i for each subject. If Xit = x, the birth and death rates for subject i are

λk = θdisp(1 + k) + θheap,i

3∑
j=1

vj (x)(k mod mj) and

(14)

μk = θdispk + θheap,i

3∑
j=1

vj (x)
(
mj − (

(k − 1) mod mj

))
,
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where m1 = 5, m2 = 10, m3 = 50, and v1(x), v2(x), and v3(x) are defined above
in (8). The subject-specific heaping intensity is

log θheap,i = Hiω + ξi,(15)

where Hi is a heaping covariate vector for subject i, ω is an unknown parameter
vector of corresponding dimension, and ξi is a subject-specific random effect, with
distribution

ξi ∼ Normal(0, σξ ).(16)

To complete our Bayesian hierarchical model for longitudinal studies, we specify
conditionally conjugate prior distributions for α and �β :

α ∼ Normal(0,Vα),

θdisp ∼ Inverse-Gamma(a, b),

ω ∼ Normal(0,�ω),(17)

γ ∼ Normal(0,Vγ ) subject to γ0 < · · · < γJ and

�β ∼ Inverse-Wishart(Aβ,mβ),

where Vα , a, b, Vγ , Aβ and mβ are fixed hyperparameters of corresponding di-
mension that we specify in Section 5.

Finally, we fit an alternative model of Wang and Heitjan (2008) in which re-
sponses not equal to a heaping point are assumed to be reported accurately. The
model for the latent counts Xit is identical to (10)–(12), but the heaping distribu-
tion is different. If x is the true count, then y is reported as

y =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, with probability v0(x),

nearest multiple of 5, with probability v1(x),

nearest multiple of 10, with probability v2(x),

nearest multiple of 50, with probability v3(x).

(18)

Once the heaping regime in (18) has been determined, the reported count y arises
deterministically.

3.1. Posterior inference. We estimate the joint posterior distribution with
Markov chain Monte Carlo (MCMC). We describe standard Gibbs and Metropolis–
Hastings samplers for the full conditional distributions of α, β = (β1, . . . ,βN), θ ,
γ and �β in the supplemental material [Crawford, Weiss and Suchard (2015)].
Sampling from the conditional posterior distribution of the true counts is more
challenging because of the lack of conjugacy between Pr(Xit |Zit ,Wit ,α,βi ) and
g(Yit |Xit , θ). Fortunately, the discrete nature of count data makes some simpli-
fications possible. The conditional distribution of the unobserved true count Xit
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is

Pr(Xit |Yit ,Zit ,Wit ,Hi , θ,α,βi )
(19)

∝ g(Yit |Xit , θ)Pr(Xit |Zit ,Wit ,Hi ,α,βi ).

It is computationally costly to evaluate g(y|x, θ) hundreds of times to construct
the distribution of Xit . In the Appendix we present a method for approximating
this density by a discretized normal distribution derived from the dynamics of the
BDP with θheap = 0, allowing efficient sampling. We then employ a Metropolis–
Hastings accept/reject step to sample from the correct posterior.

4. Simulation study. To validate the proposed heaping model and the associ-
ated Bayesian inference framework, we simulate data under a simplification of the
hierarchical model described in Section 3:

Yit ∼ BDP(Xit , θ,γ ),

Xit ∼ Poisson(ηit ),
(20)

logηit = α + βi and

βi ∼ Normal
(
0, σ 2

β

)
,

for subjects i = 1, . . . , n and repeated measures t = 1, . . . ,5, with α and βi scalars.
The heaping parameter θheap,i = θheap is constant for every subject. Setting α = 2,
σ 2

β = 1.21, γ = (0.5,−5,−10,−20), and θdisp = 0.5 and θheap = 2 yields ob-
served counts qualitatively similar to those we observe in the application section
below. From this model, we simulate data sets with N = 100, 250 and 500 total
observations from n = N/5 subjects. Using 100 replicates, Table 1 reports true
parameter values, average posterior means, average posterior variances and mean
squared error (MSE) for each data set. Standard deviations are given in paren-
theses. As expected, simulations with larger N give, in general, more accurate
parameter estimates, with posterior variance and MSE decreasing with N . Poste-
rior mean estimates of the heaping regimes parameters γ2 and γ3 are close to their
true values, but their MSE does not appear to decrease monotonically with N . The
regime parameters may be only weakly identified in data sets with few large re-
ported counts. Since these parameters control the midpoints of transitions between
heaping regimes, they may be highly variable unless many counts fall near these
transitions. In addition to larger N , it may be necessary to observe a greater pro-
portion of heaped counts near regime transitions in order to achieve a substantial
reduction in posterior variance for γ2 and γ3.

5. Application to self-reported counts of sex partners. To illustrate the ef-
fectiveness of our mixture model and general BDP characterization of the reporting
distributions g(y|x, θ), we analyze a survey of HIV-positive youth regarding their
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TABLE 1
Summary of estimated parameters from 100 simulated datasets of size N = 100, 250 and 500 under the heaping model given by (20). Averages of the

posterior means, averages of the posterior variances and mean squared errors are shown with standard deviations in parentheses

N = 100 N = 250 N = 500

True Mean Var MSE Mean Var MSE Mean Var MSE

α 2.00 1.991 (0.28) 0.059 (0.03) 0.078 1.970 (0.14) 0.026 (0.01) 0.021 2.030 (0.12) 0.013 (0.00) 0.014
σ 2
β 1.21 1.368 (0.32) 0.210 (0.12) 0.123 1.270 (0.22) 0.081 (0.03) 0.052 1.211 (0.16) 0.037 (0.01) 0.027

θdisp 0.50 0.516 (0.17) 0.026 (0.01) 0.030 0.508 (0.09) 0.011 (0.00) 0.008 0.492 (0.08) 0.006 (0.00) 0.007
θheap 2.00 2.013 (1.11) 0.572 (0.68) 1.220 2.288 (0.89) 0.615 (0.90) 0.858 2.157 (0.71) 0.368 (0.61) 0.527
γ0 0.50 0.494 (0.08) 0.004 (0.01) 0.007 0.497 (0.07) 0.003 (0.00) 0.005 0.492 (0.06) 0.003 (0.00) 0.004
γ1 −5.00 −5.022 (1.37) 0.840 (0.56) 1.867 −5.204 (0.92) 0.657 (0.48) 0.881 −5.231 (0.86) 0.616 (0.46) 0.790
γ2 −10.00 −9.677 (1.70) 1.617 (1.31) 2.949 −9.916 (1.41) 1.516 (0.98) 1.985 −10.282 (1.50) 1.418 (0.91) 2.290
γ3 −20.00 −19.603 (2.21) 2.343 (2.05) 4.969 −19.388 (2.17) 3.126 (2.58) 5.050 −19.351 (2.26) 3.250 (2.09) 5.486
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FIG. 6. Summary of self-reported counts of sex partners. At left, the histogram shows the aggregate
reported number of partners in the previous three months, for all subjects, at all timepoints. At right
is the same histogram with the vertical axis limited to (0,0.01) to show greater detail. There is an
apparent preference for reporting counts in multiples of 5, 10 and 50.

sexual behavior from the Choosing Life: Empowerment, Action Results (CLEAR)
longitudinal three-arm randomized intervention study designed to reduce HIV
transmission and improve quality of life [Rotheram-Borus et al. (2001)]. Respon-
dents (175, interviewed between 2 and 5 times for 816 total observations) report the
number of unique sex partners they had during the previous three months. Figure 6
summarizes the reported counts. There are several striking features of the reported
counts: (1) a fair proportion (27%) of the counts are zero; (2) the histogram shows
peaks at integer multiples of 10; and (3) a few counts are very large.

We let Wit in (11) be an 8 × 1 vector of covariates for subject i at time t by
including subject baseline age, gender (1 for male, 0 for female), an indicator for
men who have sex with men (MSM), an indicator for injection drug use, time since
baseline interview, an indicator for post-baseline educational intervention and an
indicator for use of methamphetamine or other stimulant drugs. Time since base-
line interview, use of drugs and post-baseline intervention, depend on the time-
point t . To facilitate comparison of estimated effects, subject age and time since
baseline interview were standardized by subtracting the mean and dividing by the
standard deviation. We let Zit = 1, making βi a scalar; this provides a subject-
specific random intercept. We fit two subject-specific heaping models. In the first,
we let Hi = 1 so that θheap,i is a subject-specific random intercept. In the second,
Hi = (1,gender). Based on the histogram of aggregate counts in Figure 6, we use
the BDP rate model in equation (7) with J = 3 regimes corresponding to heaping
at grid points at multiples of 5, 10 or 50.

We assign hyperparameters as follows: for the fixed effects α, α0 = 0 and �α =
10I where I is the identity matrix; for the heaping parameters θ , a = 0.001 and
b = 0.001, such that each has a prior expectation of 1 and variance 1000; for γ ,
σ 2

γ = 100. Since the subject-specific random effects βi are scalars, βi has inverse
gamma distribution with parameters Aβ = 4 and mβ = 5.

5.1. Results. To evaluate the usefulness of our heaping distributions and to
compare to previous approaches, we fit six hierarchical Bayesian models: (1) Pois-
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son mixed effects (PME) with Xit = Yit and no heaping; (2) the model of Wang
and Heitjan (2008) (WH08) as defined by (18); (3) BDP with dispersion and
no heaping; (4) BDP model with dispersion and global heaping parameter θheap;
(5) BDP model with subject-specific heaping intensity; and (6) BDP model with
subject-specific heaping intensity and a fixed effect controlling heaping propensity
for male and female subjects. In each case, the model for the underlying true count
is identical to (10)–(12). The priors on equivalent parameters are also the same for
all models.

Table 2 shows posterior summaries for each model. The first eight rows are re-
gression coefficients for the fixed effects α. Estimates of fixed effects in the WH08
model are similar to those found in the PME model without heaping. In general,
fixed effects estimates all have larger variance in the heaping models because the
BDP reporting distribution induces over-dispersion. Use of stimulants is positively
associated with increased true count. While the intervention is not significantly as-
sociated with decreased reported counts in the model without heaping and in the
Wang and Heitjan (2008) model, the intervention has a clear association with re-
duced true counts in the BDP heaping models. This result suggests that heaping in
reported counts may obscure important associations between covariates and count
outcomes. Figure 7 plots the posterior distribution of true counts Xit versus their
corresponding reported values Yit . The points are slightly jittered to show the den-
sity of samples. The gray dashed line traces Xit = Yit . Larger reported counts often
correspond to smaller estimated true counts, possibly because the same subjects
also reported very low counts at other timepoints.

Estimates of θdisp are similar for all BDP models with heaping, suggesting that
dispersion or misremembering carries information that is distinct from heaping or
rounding in the data. The regime parameters γ0, . . . , γ3 are similar for all the BDP
heaping models, but likely not comparable to the WH08 model, as the heaping
mechanism is different. Estimates of the regime parameters can be interpreted by
transforming them into their regime transition midpoints −(γ1, γ2, γ3)/γ0. For ex-
ample, the posterior mean estimates for the “heaping” model indicate that the “no
heaping” regime dominates when the true count is between 0 and −γ1/γ0 = 10.7
(posterior mean), and heaping to multiples of 50 dominates when the true count
is greater than −γ3/γ0 = 16.2. Between these values, heaping to multiples of 5 or
10 dominates. Estimates of γ1, γ2, γ3 exhibit fairly large posterior variance, and
posterior intervals for γ1 and γ2 show substantial overlap. This indicates that there
is not strong evidence of heaping to multiples of 5 and 10 in the data; rather, small
counts exhibit little heaping, and large counts show strong heaping to multiples
of 50.

We find that there is no significant difference in heaping by gender under our
model: the gender-specific effect ω in the last model is not significantly different
from zero. This finding is in contrast to those of other researchers who see a strong
effect of gender on reporting of sexual behaviors [Wiederman (1997)]. One of the
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TABLE 2
Parameter estimates, intervals, and goodness-of-fit measures of the CLEAR data. We fit six models, each using the basic Bayesian Poisson regression
setup (10) for the true counts. In the model without heaping, the reported counts are assumed to be equal to true counts. In the dispersion-only model,

the BDP allows misremembering but not heaping. The Wang and Heitjan (2008) model involves deterministic heaping under different regimes (18). The
BDP heaping model has global dispersion and heaping parameters, the subject-specific BDP heaping model allows subject-specific effects (15), and the
subject-specific model with covariates includes a fixed effect for the influence of gender on heaping behavior. Parameter estimates (posterior means) and

95% posterior quantiles are shown for each parameter. The fixed effects are age, gender, men who have sex with men (MSM), injection drug user,
intervention, stimulant use and trading sex. The random intercept variance σ 2

β is also shown. The heaping parameters θdisp and θheap control dispersion
and heaping for the BDP models. The heaping regime parameters γ0, γ1, γ2 and γ3 are shown for the heaping models. The heaping random intercept

variance σ 2
ξ and the gender-specific heaping fixed effect ω are also shown. Finally, we provide two measures of goodness of fit for each model: deviance

information criterion (DIC) and the sum of squared mean prediction errors, and the sum of squared prediction errors (SSPE)

Subject-specific Subject-specific
No heaping WH08 Dispersion-only Heaping heaping heaping + gender

Age −0.11 (−0.27,0.08) −0.07 (−0.25,0.1) −0.15 (−0.56,0.25) −0.20 (−0.58,0.14) −0.12 (−0.55,0.23) −0.14 (−0.43,0.22)

Male −0.26 (−0.78,0.25) −0.24 (−0.74,0.28) −1.48 (−2.77,−0.27) −0.85 (−1.81,0.12) −1.01 (−2.16,−0.01) −0.98 (−2.05,−0.02)

MSM 0.82 (0.33,1.32) 0.81 (0.3,1.32) 0.57 (−0.59,1.75) 0.89 (−0.06,1.85) 0.99 (0.03,1.99) 0.92 (−0.06,1.95)

Inject −0.37 (−0.88,0.11) −0.29 (−0.72,0.18) −0.38 (−1.45,0.65) −0.29 (−1.2,0.56) −0.35 (−1.3,0.55) −0.38 (−1.54,0.44)

Time −0.89 (−1.06,−0.72) −0.85 (−1.03,−0.66) −1.72 (−2.27,−1.18) −1.02 (−1.46,−0.6) −1.09 (−1.51,−0.67) −1.06 (−1.5,−0.61)

Intv −0.24 (−0.57,0.05) −0.18 (−0.5,0.1) −1.29 (−2.05,−0.6) −1.07 (−1.76,−0.45) −1.09 (−1.85,−0.32) −1.16 (−2.06,−0.47)

Stim 1.00 (0.88,1.12) 0.97 (0.84,1.1) 1.51 (1.14,1.88) 1.09 (0.82,1.39) 1.15 (0.83,1.47) 1.05 (0.77,1.36)

Trade 1.32 (1.2,1.45) 1.21 (1.08,1.35) 2.49 (1.98,3) 1.81 (1.41,2.21) 1.79 (1.44,2.15) 2.00 (1.65,2.34)

σ 2
β 1.15 (0.88,1.48) 1.07 (0.82,1.36) 3.63 (2.2,5.66) 2.77 (1.75,4.47) 2.93 (1.79,4.81) 2.93 (1.93,4.45)

θdisp 1.57 (1.4,1.75) 1.04 (0.86,1.22) 1.08 (0.9,1.27) 1.06 (0.91,1.24)

θheap 0.82 (0.59,1.12)

γ0 0.07 (0.05,0.11) 0.42 (0.26,0.84) 0.29 (0.21,0.4) 0.45 (0.28,0.79)

γ1 −2.37 (−2.86,−1.95) −4.51 (−6.09,−3.46) −4.66 (−5.78,−3.68) −5.50 (−8.43,−4.16)

γ2 −2.90 (−3.47,−2.42) −5.44 (−8.75,−3.95) −5.40 (−6.87,−4.21) −7.23 (−10.11,−5)

γ3 −4.07 (−4.9,−3.39) −6.81 (−12.47,−4.75) −6.22 (−7.68,−5.1) −8.40 (−11.55,−6.36)

σ 2
ξ 0.74 (0.61,0.98) 0.94 (0.87,1)

ω −0.03 (−0.69,0.54)

DIC 4585 524 3329 3214 3195 3175
SSPE 47,773 55,078 28,005 25,371 25,336 24,364
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FIG. 7. Posterior samples of true counts on the horizontal axis versus reported counts on the ver-
tical axis for the CLEAR data under the BDP heaping model. The points have been slightly jittered
to show the density of posterior samples. A gray dashed line is shown on the diagonal.

goals of the CLEAR study was to show that educational intervention for HIV-
positive youth could reduce risky behaviors. While heaping behavior may differ
with respect to gender among subjects in the CLEAR study, the small number of
reported counts per subject does not permit us to detect such a difference under the
BDP heaping model. The intervention tended to reduce true counts, and Pr(αintv <

0) > 0.95 for every model.
We report two goodness-of-fit measures. The first is deviance information cri-

terion (DIC), computed by conditioning on posterior samples of the parameters
that directly affect the outcome Yit . For the “no heaping” model, these param-
eters are α and β; for the WH08 model, the Xit ’s and γ ; for the “dispersion-
only” model, the Xit ’s and θdisp; for the “heaping” model, the Xit ’s, θdisp, θheap

and γ ; for the “subject-specific heaping” model, the Xit ’s, θdisp, γ and σ 2
ξ ; and

for the “subject-specific heaping + gender” model, the Xit ’s, θdisp, γ , σ 2
ξ and ω.

The second goodness-of-fit measure is the sum of squared mean prediction errors,
SSPE = ∑n

i=1
∑ni

t=1(Yit − Ŷit )
2, where Ŷit is the mean posterior predictive value

of Yit , calculated by conditioning on the same parameters as used to calculate the
DIC. The Wang and Heitjan (2008) model is unique because Yit |Xit depends only
on the four rounding regimes parameters γ , so the DIC is low, and the heaping
models all show similar DIC. The SSPE tells a different story: the dispersion-only
model shows the worst fit, and the BDP heaping models outperform the WH08
model. These goodness-of-fit measures should be interpreted carefully since the
WH08 and BDP heaping models have a somewhat different structure.

The proportional odds model for different heaping regimes (rounding to 5, 10
and 50) introduced by WH08 proves to be an essential ingredient in our analy-
sis. The apparent heaping pattern observed in the CLEAR counts of sex partners
suggests that heaping to multiples of 50 happens often as counts become larger
than 30 or 40. We find that heaping models that required rounding to multiples
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FIG. 8. Marginal posterior distributions of true counts Xit for individual subjects under the BDP
heaping model with subject-specific heaping parameters and the model of Wang and Heitjan (2008).
The subject- and timepoint-specific covariate values are listed with each plot. A gray vertical line
denotes the reported count Yit = y. Not all inferred true count distributions are centered at the
reported count. Moreover, the inferred true counts become more dispersed as the reported count
increases. The Wang and Heitjan (2008) model does not allow responses beyond the nearest heaping
point and effectively puts a uniform prior distribution on responses that fall within this window. This
results in inferred true counts whose posterior distribution is a truncated version of the predictive
distribution of Xit .

of 5, even for large counts, provide a very poor fit (results not shown). However,
in our analyses, the model of WH08 has a serious drawback: when only one heap-
ing regime is in effect, it places a nearly uniform distribution on the true count.
The inferred true count distribution is proportional to the product of this uniform
distribution and the posterior predictive distribution of the true count. Figure 8 il-
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lustrates the problem for specific subjects. Both the WH08 model and the subject-
specific BDP heaping model have similar predictive distributions f (x|α,β) for
the latent true count x, and in both cases only the v3 regime (rounding to the near-
est multiple of 50) is in effect. But the rounding model of WH08 assumes that
rounding is always to the nearest grid point, so, for example, a reported value of
y = 200 means that x ∈ {175, . . . ,225} with probability one. The heaping distri-
bution g(y = 200|x, θ ,γ ) implicitly places a nearly uniform distribution on this
set, so the inferred posterior distribution of the true count x is a truncated version
of f (x|α,β). In contrast, the BDP heaping model provides a reporting distribu-
tion g(y = 200|x,γ , θ) that has support on all of N and preferentially places more
mass on those x that are most likely to deliver the reported count y. In settings
where the true counts themselves might be the objects of inference, we believe the
BDP heaping model provides more realistic and useful estimates.

6. Discussion. In this paper we have illustrated how researchers can infer the
posterior distribution of true integer counts from reported counts using a general
BDP reporting distribution within a hierarchical modeling framework. Our most
substantial innovation is the novel reporting distribution g(y|x, θ) based on the
BDP with specially defined jumping rates that make the Markov chain attracted
to heaping grid points. Use of simple linear BDPs to model over-dispersion or re-
porting error has been proposed before [Grunwald et al. (2011), Lee, Weiss and
Suchard (2014)]. However, we have substantially expanded the possibilities for
general birth–death models of reporting error to explicitly incorporate both over-
dispersion and heaping, while providing a computational method to evaluate likeli-
hoods and sample from the posterior distribution of the true counts. This approach
has the benefit of providing a sophisticated and highly configurable family of re-
porting distributions indexed by the true count and just a few unknown parameters
θ and γ .

Statisticians may understandably be wary of parametric assumptions about the
way study participants report data. However, applied and methodological research
in public health offers some clues into reporting mechanisms. Researchers in this
field often address the problem of reporting error in surveys related to sexuality
and other taboo topics [Schaeffer (1999)]. Wang and Heitjan (2008) discuss vali-
dation of reported counts of cigarettes smoked by measuring tobacco products in
the blood. In related work, Wang et al. (2012) compare instantaneous and retro-
spective self-reports of cigarette consumption under a similar model for heaping.
Other survey methods are possible, including using diary-like surveys or repeated
questionnaires to assess reporting error. Studies like these can provide useful infor-
mation about the parameters θ and γ in our BDP heaping model. Armed with prior
information about rounding propensities, perhaps stratified by personal attributes
such as gender, age or sexual orientation, public health researchers could proceed
with a Bayesian analysis similar to the one outlined in this paper to jointly estimate
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true counts and regression parameters. Designing a model that accommodates var-
ious assumptions about both the mechanism generating the true counts and the
cognitive processes that give rise to the reported counts can be challenging. The
BDP model for heaped counts presented in this paper is one promising step in this
direction.

APPENDIX A: NUMERICAL EVALUATION OF REPORTING
PROBABILITIES

We efficiently find the transition probabilities Pab(t) by first applying the
Laplace transform to both sides of the forward equations [Karlin and McGregor
(1957), Murphy and O’Donohoe (1975)]. This turns the infinite system of differ-
ential equations (2) into a recurrence relation whose solution yields an expression
for the Laplace transform of the transition probability Pab(t). To illustrate, let the
Laplace transform hab(s) of the transition probability Pab(t) be

hab(s) =
∫ ∞

0
e−stPab(t)dt.(21)

Then differentiating hab(s) with respect to t and setting a = b = 0, (2) becomes

sh00(s) − P00(0) = μ1h01(s) − λ0h00(s) and
(22)

sh0b(s) − P0,b(0) = λb−1h0,b−1(s) + μb+1h0,b+1(s) − (λb + μb)h0b(s)

for b ≥ 1. Rearranging (22), we find the recurrence

h00(s) = 1

s + λ0 − μ1(h01(s)/h00(s))
and

(23)
h0b(s)

h0,b−1(s)
= λb−1

s + μb + λb − μb+1(h0,b+1(s)/h0,b(s))
.

From this recurrence, we arrive at the well-known continued fraction representa-
tion for h00(s),

h00(s) = 1

s + λ0 − λ0μ1/(s + λ1 + μ1 − λ1μ2/(s + λ2 + μ2 − · · ·))(24)

[see Crawford and Suchard (2012), Murphy and O’Donohoe (1975) for fur-
ther details]. This is the Laplace transform of the transition probability P00(t).
From (24), we can derive similar continued fraction representations for hab(s)

for any U(0) = a and U(t) = b. These expressions are given in the supplemen-
tal material [Crawford, Weiss and Suchard (2015)]. Crawford and Suchard (2012)
present a numerical method for inverting transforms (24) to compute the transi-
tion probabilities in any general BDP with arbitrary jumping rates {λk}∞k=0 and
{μk}∞k=1. The supplementary material of Crawford, Minin and Suchard (2014)
shows how numerical error is controlled in the computation. Section B of this
appendix gives an approximation to the reporting distribution that is useful for
sampling.
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APPENDIX B: APPROXIMATION OF REPORTING PROBABILITIES

In this appendix we derive an approximation to the conditional distribution of
the reported count given the true count, Yit |Xit . The full conditional distribution
of the ith subject’s true count Xit at timepoint j is

Pr(Xit = x|Yit ,Zi ,Wit ,α,βi , θ)

∝ Pr(Yit |Xit = x, θ)Pr(Xit = x|Wit ,Zi ,α,βi )
(25)

= Px,Yit
(θ)

ηx
it e

−ηit

x!
= g(y|x, θ)f (x|ηit ),

where ηit = exp(Witα + Zitβi ) and Pxy(θ) = g(y|x, θ) is the general BDP tran-
sition probability under the model described in Section 2.2. Under a Metroplis–
Hastings scheme, we need to propose a new value of Xit efficiently; we approxi-
mate the density Pxy(θ) as normal. Let θheap = 0 and θdisp > 0. Then this simplified
BDP has birth and death rates

λk = θdisp + θdispk and μk = θdispk.(26)

This is a linear process with immigration that has an asymptotically normal distri-
bution. Similar to Section 2.1, let U(t) be a BDP starting at U(0) = a. Following
Lange (2010), we form the probability generating function (PGF)

H(s, t) =
∞∑

b=0

sbPab(t),(27)

where s is a “dummy” variable and Pab(t) = Pr(U(t) = b|U(0) = a) is the tran-
sition probability. Although H(s, t) has a closed-form solution that can be in-
verted to obtain the Pab(t) in analytic form, the details are somewhat compli-
cated, and we only require a normal approximation to this density. The mean
ma(t) = E(U(t)|U(0) = a) is given by

∂H(s, t)

∂s

∣∣∣∣
s=1

=
∞∑

b=0

jPab(t) = E
[
U(t)

] = ma(t),(28)

and likewise the second factorial moment ea(t) is given by

∂2H(s, t)

∂s2

∣∣∣∣
s=1

=
∞∑

b=1

b(b − 1)Pab(t) = E
[
U(t)2] −E

[
U(t)

] = ea(t),(29)

where the expectations are conditional on the process beginning in state U(0) = a.
This suggests that we can determine the mean and variance of U(t)|{U(0) = a}
by finding the partial derivatives of H with respect to the dummy variable s. To



SELF-REPORTED COUNTS 593

derive these quantities, we form a partial differential equation for the solution of
the PGF

∂H(s, t)

∂t
= θdisp

[
(s − 1)2 ∂H(s, t)

∂s
+ (s − 1)H(s, t)

]
.(30)

See Lange (2010), Bailey (1964) and Renshaw (2011) for the details of deriving
this generating function. Now, the time-derivative of the mean falls out as

dma(t)

dt
= ∂2H(s, t)

∂t ∂s

∣∣∣∣
s=1

= θdisp,(31)

and the time-derivative of the second factorial moment is

dea(t)

dt
= ∂3H(s, t)

∂t ∂2s

∣∣∣∣
s=1

= 4θdisp(a + θdispt).(32)

Solving these differential equations with the initial conditions ma(0) = a and
ei(0) = a2 − a yields

ma(t) = a + θdispt and ea(t) = a(a − 1) + 4aθdispt + 2θ2
dispt

2.(33)

From these, we determine that

E
[
U(t)|U(0) = a

] = a + θdispt and
(34)

Var
[
U(t)|U(0) = a

] = (2a + 1)θdispt + θ2
dispt

2,

where the second line arises because Var[U(t)|U(0) = i] = ea(t) + ma(t) −
ma(t)

2. Therefore, a reasonable approximation to the probability mass function
of U(t)|{U(0) = a} is the normal distribution with the mean and variance above.
This approximation serves as an effective proposal within a Metropolis–Hastings
accept/reject step.
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SUPPLEMENTARY MATERIAL

Supplemental article (DOI: 10.1214/15-AOAS809SUPP; .pdf). We provide a
derivation of the Laplace transform of transition probabilities for a general BDP,
the full posterior distribution and an outline of Monte Carlo sampling procedures
for unknown parameters.

http://dx.doi.org/10.1214/15-AOAS809SUPP
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