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CONVEX HIERARCHICAL TESTING OF INTERACTIONS

BY JACOB BIEN, NOAH SIMON AND ROBERT TIBSHIRANI1

Cornell University, University of Washington and Stanford University

We consider the testing of all pairwise interactions in a two-class problem
with many features. We devise a hierarchical testing framework that considers
an interaction only when one or more of its constituent features has a nonzero
main effect. The test is based on a convex optimization framework that seam-
lessly considers main effects and interactions together. We show—both in
simulation and on a genomic data set from the SAPPHIRe study—a potential
gain in power and interpretability over a standard (nonhierarchical) interac-
tion test.

1. Introduction. We consider the standard two-class problem with yi ∈ {1,2}
and p features {xi1, xi2, . . . , xip} measured on each of i = 1,2, . . . , n observations.
Large-scale hypothesis testing for the effects of individual features (such as genetic
markers; see Section 5) is a challenging problem and has received much attention
in recent years [e.g., Dudoit and van der Laan (2008), Efron (2010)]. The prob-
lem of testing for interactions between pairs of features is even more difficult, as
there are

(p
2

)
interactions. Buzková, Lumley and Rice (2011) show that standard

permutation tests cannot be used for interaction testing (because the correct null
hypothesis is difficult to enforce) and propose instead a parametric bootstrap-based
approach. Simon and Tibshirani (2012) devise a permutation approach that ex-
ploits the close relationship between the “forward” logistic model (based on Y |X)
and a “backward” discriminant analysis (Gaussian) model (based on X|Y ).

When p is large, the large number of potential pairwise interactions can result
in low power for detecting the true effects. One strategy used by data analysts is
to first screen the data for significant main effects, and then to test for interactions
only among those features that are themselves significant. This approach can be
effective, but it has some drawbacks. Specifically, at what threshold does one stop
entering main effects? And should this threshold vary across main effects depend-
ing on the strength of the interactions?

The above two-stage strategy can be viewed as “hierarchical”: Interactions are
considered only if both constituent main effects are significant. In this paper we
propose a convex formulation that models main effects and interactions together,
in a hierarchical fashion. It provides a testing framework that seamlessly com-
bines main effects and interactions. We call the method convex hierarchical testing
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(CHT). The method is closely related to the recently proposed hierarchical lasso
regression method (“hierNet”) of Bien, Taylor and Tibshirani (2013). A difference
is that CHT seeks marginal interactions while hierNet looks for conditional in-
teractions. We focus exclusively on pairwise interactions in the paper but discuss
possible extensions to higher order interactions in Section 7.

2. Testing interactions using a convex formulation. Our proposal has three
main components. The first is to define interactions and main effects in terms of
a “backward model” [Simon and Tibshirani (2012)]. The second component is to
relate the testing problem to the solution path of a convex optimization problem.
The third component is to introduce hierarchical sparsity within the convex opti-
mization framework. We present these components in the next three subsections.

2.1. Defining interaction and main effects via the backward model. A com-
mon approach to testing interactions is to consider

(p
2

)
logistic regression models

of the form

log
[

p(Y |Xj,Xk)

1 − p(Y |Xj,Xk)

]
= α0 + αjXj + αkXk + αjkXjXk

and then to test whether αjk = 0. However, Simon and Tibshirani (2012) argue
that this definition of interaction is less natural than one coming from considering
a “backward model” in which the feature vector X ∈ R

p is modeled conditional
on the class label Y ∈ {1,2}:

X|Y = � ∼ Np

(
μ(�),�(�)).

In particular, they redefine an interaction between Xj and Xk to mean that

Cor(Xj ,Xk|Y = �) = ρ
(�)
jk = (�

(�)
jj �

(�)
kk )−1/2�

(�)
jk depends on �. Their main crit-

icism of defining interactions based on the forward model is that if the marginal
quantity Var(Xj |Y = �) = �

(�)
jj depends on �, then αjk �= 0 for all k. This does

not correspond to what a biologist, say, would consider an interesting interaction
because it is not a property of the pair of variables (Xj ,Xk). Likewise, a natural
definition for main effects in the backward model is a difference in class mean for
that variable. Hence, we work in the backward model and test hypotheses of two
kinds, which we will refer to as “main effects” and “interactions”:

H0,j :μ(1)
j = μ

(2)
j for 1 ≤ j ≤ p,

H0,jk :ρ(1)
jk = ρ

(2)
jk for 1 ≤ j < k ≤ p.

For testing H0,j , a common choice would be the standard t-statistic,

wj = x̄
(1)
j − x̄

(2)
j√

s
(1)2
j /n1 + s

(2)2
j /n2

,
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where x̄
(�)
j = n−1

�

∑
i : yi=� xij and s

(�)2
j = (n� − 1)−1 ∑

i : yi=�(xij − x̄
(�)
j )2 are the

sample means and variances within class �. For testing H0,jk , a common choice
would be based on the difference of the Fisher transformed sample correlations
between the two classes:

zjk =
(

1

n1 − 3
+ 1

n2 − 3

)−1/2[
arctanh

(
ρ̂

(1)
jk

) − arctanh
(
ρ̂

(2)
jk

)]
.

Here, ρ̂
(�)
jk = (n� − 1)−1 ∑

i : yi=�(x
(�)
ij − x̄

(�)
j )(x

(�)
ik − x̄

(�)
k )/(s

(�)
j s

(�)
k ) is the sample

correlation within class �. Both wj and zjk are scaled so that they are approxi-
mately standard normal (for large n1 and n2).

2.2. Test statistics through convex optimization. We would like to select inter-
actions based on the size of |zjk| but also somehow give a “boost” to interactions
whose main effects are large. One could try to achieve this through a two-stage
procedure in which one first screens the individual features and then tests for inter-
actions only among those features selected at the first phase. This kind of method
is explored, for example, in Kooperberg and LeBlanc (2008), Hsu et al. (2012) and
Wu and Zhao (2009). However, such an approach to the hierarchy requirement can
lead to algorithmic shortsightedness. In particular, a very strong interaction will
be ignored if the corresponding main effects fail to make the threshold in the first
phase. We seek a method that enforces the hierarchy constraint but jointly consid-
ers which interactions and main effects to include in the model.

Suppose that we define a testing procedure through a convex optimization prob-
lem involving both wj and zjk . Let β+, β− ∈R

p and θ ∈ R
p(p−1) be optimization

variables. Given the objective function

Lλ

(
β+, β−, θ

) = 1

2

p∑
j=1

(
wj − (

β+
j − β−

j

))2 + 1

2

p∑
j=1

∑
k : k �=j

(zjk − θjk)
2

(2.1)

+ λ

p∑
j=1

[
β+

j + β−
j

] + λ

p∑
j=1

∑
k : k �=j

|θjk|,

we may define the problem

min
β+,β−,θ

Lλ

(
β+, β−, θ

)
s.t. β+

j ≥ 0, β−
j ≥ 0 for 1 ≤ j ≤ p,

where λ is a tuning parameter. For each fixed λ ≥ 0, the pair (β̂+(λ) −
β̂−(λ), θ̂(λ)) is unique. Consider the path of solutions formed by varying λ from
∞ to 0. The solution path goes from (0,0) ∈ R

p+p(p−1) to (w, z) and is piecewise-
linear with knots at the values of λ for which individual coordinates of θ̂jk(λ) or
β̂+

j (λ) − β̂−
j (λ) become nonzero. It is straightforward to show that these knots oc-
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cur precisely at the values of the standard test statistics introduced in the previous
section:

|w1|, . . . , |wp|, |z12|, . . . , |zp−1,p|.(2.2)

This observation suggests how a regularized regression problem can be viewed as
producing test statistics: One defines the test statistic associated with a variable to
be the λ value at which the corresponding parameter becomes nonzero.

Now in this setup, the kth knot is just equal to the kth largest value among
those in (2.2), so our test for interactions is just the usual one, based on the size
of |zjk|. We have not obtained anything new. To exploit hierarchy, we will modify
the optimization problem as described in the next section.

2.3. Convex hierarchical testing. The procedure described above does not
share information between main effects and interactions. Our proposal in this paper
is to add a convex hierarchy constraint to the problem, which will lead to main-
effect “informed” thresholds for testing the interactions (and likewise interaction
“informed” thresholds for testing main effects).

Bien, Taylor and Tibshirani (2013) develop a hierarchical interactions lasso
method in the forward model. The hierarchical sparsity is achieved by adding a
set of convex constraints to the lasso problem. We may similarly impose hierarchy
in the backward model by modifying (2.1) to get a hierarchical interactions test in
the backward model:(

β̂+, β̂−, θ̂
) = arg minLλ

(
β+, β−, θ

)
subject to β+

j , β−
j ≥ 0,

(2.3) ∑
k : k �=j

|θjk| ≤ β+
j + β−

j .

We solve this problem for all λ and define the test statistic associated with an inter-
action to be the λ value at which the corresponding parameter becomes nonzero.
This is the main proposal of this paper.

The addition of the constraint imposes a “budget” β+
j +β−

j on the total interac-

tions that involve feature j . In particular, the constraint
∑

k : k �=j |θjk| ≤ β+
j + β−

j

implies that at least one of β+
j and β−

j must be nonzero in order for θjk to be

nonzero. Although in theory we could have β̂+
j = β̂−

j with both values positive,
this happens with probability zero under reasonable assumptions [Bien, Taylor and
Tibshirani (2013)]. As a result, θ̂jk �= 0 implies β̂j �= 0, and similarly for θ̂kj . Thus,
the jkth interaction is nonzero if at least one of β̂j or β̂k is nonzero. This property
has been called weak hierarchy [see, e.g., Bien, Taylor and Tibshirani (2013)], in
contrast to strong hierarchy, which requires both β̂j and β̂k to be nonzero in order
for θ̂jk to be nonzero. Problem (2.3) is convex, due to the fact that we have repre-
sented each main effect βj as the difference of two nonnegative quantities β+

j , β−
j .
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It would not be convex if we had used |βj | in place of β+
j + β−

j in the constraint
above. This is because the set {(x, t) :‖x‖1 ≤ |t |} is not convex.

Working in the optimization-based testing framework of the previous section,
we consider the solution path (parameterized by λ) of this problem and then define
the test statistics for interactions and main effects to be the λ values at which these
values become nonzero (i.e., the knots of the path). In particular, for testing the
jkth interaction, we take the largest λ for which either θ̂jk or θ̂kj is nonzero, and
for testing the j th main effect we compute the largest λ for which either β̂+ − β̂−
is nonzero. That is, letting β̂(λ) = β̂+(λ) − β̂−(λ) and θ̂ (λ) denote the solution as
a function of λ, our proposed test statistics are

λ̂j = sup
{
λ ≥ 0 : β̂j (λ) �= 0

}
,

λ̂′
jk = max{λ̂jk, λ̂kj },

where

λ̂jk = sup
{
λ ≥ 0 : θ̂jk(λ) �= 0

}
.(2.4)

In Lemma 2 of the online supplement [Bien, Simon and Tibshirani (2015)],
we prove that (2.3) has a unique solution for each λ > 0, so λ̂j and λ̂jk are well
defined. Furthermore, we prove in Proposition 2 of the online supplement [Bien,
Simon and Tibshirani (2015)] that |θ̂jk(λ)| is nonincreasing in λ, which means that
λ̂jk is in fact the unique point in the path where θ̂jk(λ) becomes nonzero.

Without the hierarchy constraints in (2.3), we would have λ̂jk = |zjk| and λ̂j =
|wj | as in Section 2.2. The weak hierarchy property of the solution to (2.3) implies
that

λ̂′
jk ≤ max{λ̂j , λ̂k}.

While one might assume that finding the knots of (2.3) would be computationally
intensive, requiring one to solve the problem at many values of λ, it turns out
that there is an explicit analytical form for the knots of this path, meaning that
computing the test statistics is in fact computationally simple.

THEOREM 1. The knots of the solution path of (2.3) have the following closed-
form expressions:

λ̂j = max
{
|wj |, |wj | + ‖zj ·‖∞

2

}
,

(2.5)

λ̂jk = min
{
|zjk|, |zjk|

2
+ [|wj | − ‖S(zj ·, |zjk|)‖1]+

2

}
,

where zj · = {zjk :k �= j} ∈ R
p−1 is the vector of interaction contrasts involving

the j th variable and S is the soft-thresholding function so that ‖S(zj ·, |zjk|)‖1 =∑
� : |zj�|>|zjk |(|zj�| − |zjk|).
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PROOF. See Proposition 4 in the online supplement [Bien, Simon and Tibshi-
rani (2015)]. �

These formulae are somewhat complex, but we can interpret them loosely as
follows. Each main effect is “boosted” by the size of the largest interaction in
its row due to the hierarchy constraint. In contrast, each interaction is shrunk by
as much as half of its size, with the shrinkage amount less when the main effect
is large or the interaction is large relative to the other interactions in that row.
Interestingly, λ̂jk depends only on wj and on those interactions in the j th row that
are at least as large (in absolute value) as zjk .

At one extreme, suppose wj = 0. In this case, λ̂j = ‖zj ·‖∞/2 and λ̂jk = |zjk|/2
(compared to the nonhierarchical statistics, which would be 0 and |zjk|). On the
other extreme, |wj | 
 ‖zj ·‖1, in which case λ̂j = |wj | and λ̂jk = |zjk| (which are
identical to the nonhierarchical statistics).

Figure 1 gives a graphical illustration of the formula in (2.5). We set the number
of interactions to 50. In the left panel the interaction contrasts z1k , for k > 2, are
generated as N(0,1). The plot shows the test statistic λ̂12 as a function of |z12|
and the main effect w1 (different colored curves with main effect indicated), along
with the 45◦ line. We see that the interaction effect is shrunk substantially until it
reaches about 2.75 and that the amount of shrinkage is less when the main effect
is larger. In the right panel there are 49 small interactions distributed as N(0,0.52)

and one large interaction whose value varies along the horizontal axis. Now we see
that there is shrinkage only until a value of about 1.5 and that a main effect of 1.5
is sufficient to ensure no shrinkage at all.

The knot-based test statistics produce a single ranking of all interactions and
main effects. Our test rejects any null hypotheses whose corresponding knots are
greater than a threshold. This threshold is chosen to meet a desired false discovery

FIG. 1. Graphical illustration of formula (2.5) for two different distributions of interactions (two
panels) and different size of main effects w (colored lines). Broken line is the 45◦ line. Figures show
how test statistic λ̂12 varies with |z12|. Full details in text.
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Algorithm 1: Algorithm for convex hierarchical testing

Input: Main effect and interaction contrasts, w1, . . . ,wp and zjk for
1 ≤ j, k ≤ p, j �= k, as defined in Section 2.1 and a threshold λ̄.

1 Compute λ̂j for 1 ≤ j ≤ p and λ̂′
jk for 1 ≤ j < k ≤ p using (2.5).

2 Reject all hypotheses H0,jk for which λ̂′
jk ≤ λ̄ (and, if main effects are of

interest, all H0,j for which λ̂j ≤ λ̄).
3 Repeat B times: do steps 1–2 on data permuted as described in Section 6.
4 Use (6.1) to compute F̂DR(λ̄).

rate (FDR). In Section 6, we give a method for estimating the FDR. In this way,
a practitioner can choose a cutoff with an acceptable FDR. As mentioned above,
we call our method convex hierarchical testing (CHT). Algorithm 1 spells out the
full procedure, which consists of computing the test statistics and then estimating
the FDR at a series of cutoffs. The corresponding version of this proposal given
in (2.1) that does not have the hierarchy constraints we call the all-pairs method.

3. Some insight into the optimization problem (2.3). Although the ranking
of interactions from the above procedure comes from a seemingly complicated
optimization problem, the solutions actually have a simple form. In particular,
we prove in the online supplement [see Lemma 1 of Bien, Simon and Tibshirani
(2015)] that

θ̂jk(λ) = S
(
zjk, λ + α̂j (λ)

)
,

(3.1)
β̂+

j (λ) − β̂−
j (λ) = S

(
wj , λ − α̂j (λ)

)
.

Here S(x, t) = sign(x) · (|x| − t)+ is the soft-thresholding function, and the value
α̂j (λ) ∈ [0, λ] emerges from the solution to problem (2.3), with α̂j (λ) = 0 if the
hierarchy constraint

∑
k : k �=j |θ̂jk| ≤ β̂+

j + β̂−
j is loose (i.e., a strict inequality).

For the all-pairs problem following (2.1), α̂(λ) = 0 gives the solution. Thus,
we can think of α̂j (λ) as the bridge between the main effects and interactions that
ensures hierarchy. Its value depends on both the interactions and the main effects. It
is easy to see from (3.1) that the j th main effect becomes nonzero at the knot λ̂j =
|wj | + α̂j (λ̂j ) and the jkth interaction becomes nonzero at λ̂jk = |zjk| − α̂j (λ̂jk).
Thus, the solution path α̂j (λ) ≥ 0 is responsible for the hierarchy-related “boost”
we described in the introductory section.

When |wj | is large enough relative to the |zjk|’s, α̂j (λ) = 0, that is, hierar-
chy holds automatically. When |zjk| is large relative to |wj |, then we may have
α̂j (λ) > 0, and this can be as large as λ. From (3.1), we see that α̂j (λ) > 0 means
that |wj | are shrunk by less [or even not at all if α̂j (λ) = λ] and that the interac-
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tions are shrunk by more (up to twice as much as in the all-pairs approach). This
gives some intuition for Theorem 1.

4. A simulation study. We simulate Gaussian data from the backward model
with n = 200 observations and p = 50 features in two classes y ∈ {1,2}. In all
cases, we take μ(1) = 0 and �(1) = Ip . We consider six scenarios, each of which
has 10 nonzero interactions:

• Weak Hierarchical Truth (small interactions): We take μ
(2)
j = 2 for j = 1, . . . ,5,

and then select a random 10 interactions (ji, ki) ∈ {1, . . . ,5} × {6, . . . , p} to be
nonzero:

�
(2)
jk =

{
0.3, if (j, k) = (ji, ki) for some i = 1, . . . ,10,

�
(1)
jk , otherwise.

• Weak Hierarchical Truth: Same as above, but with 0.5 instead of 0.3.
• Strong Hierarchical Truth: We take μ

(2)
j = 2 for j = 1, . . . ,5, and then take

�
(2)
jk =

{
0.5, if 1 ≤ j, k ≤ 5, j �= k,

�
(1)
jk , otherwise.

• No Main Effects Truth: Same as Strong Hierarchical Truth except μ(2) = 0.
• No Main Effects Truth (large interactions): Same as above, but with 0.9 instead

of 0.5.
• Anti-Hierarchical Truth: We take μ

(2)
j = 2 for j = 1, . . . ,5, and then take

�
(2)
jk =

{
0.5, if 6 ≤ j, k ≤ 10, j �= k,

�
(1)
jk , otherwise.

We compare CHT with the all-pairs testing procedure, along with two different
two-stage screening methods: In the “strong” version we retain all main effects
with z scores above the 75th percentile and then in the second stage test for in-
teractions only among the retained variables. In the weak version, we consider
all interactions among pairs of variables where at least one variable has a z score
above the 75th percentile.

Figure 2 shows the true (as opposed to the estimated) false discovery rate for
testing interactions, averaged over 100 simulations. In the weak hierarchical sce-
nario with small interactions, we see that CHT shows a substantial improvement in
FDR over all-pairs, with the weak screen method performing a little worse. In the
weak hierarchical scenario with larger interactions, the same ordering of methods
holds, although the differences are less pronounced. In the strong hierarchical truth
scenario, the strong screening rule does best (by a small amount). We see that in
all other scenarios, the strong screening rule does unacceptably poorly. In the three
scenarios where hierarchy does not hold, all-pairs does best. When no main effects
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FIG. 2. (True) false discovery rates of four different procedures over six different settings. Error
bars are in light gray and mostly too narrow to be seen. CHT and the screening methods do better
than all-pairs when the truth is hierarchical (left column). When there are no main effects but there
are large interactions (middle right), CHT and all-pairs are able to perfectly identify all interactions,
whereas the screening methods do not.

are present and the interactions are large (middle right), CHT does as well as all-
pairs. This behavior can be explained by (2.5): When all main effects are small
enough, we have λ̂jk ≈ |zjk|/2, which has the same ordering as all-pairs. For the
screening methods, on the other hand, if a main effect is small, large interactions
can go completely undetected. In the anti-hierarchical setting, we construct a sce-
nario in which the hierarchy assumption is explicitly violated. Not surprisingly,
CHT and the screening methods do poorly compared to all-pairs. Figure 3 shows
the performance of the methods in a scenario identical to the “Weak Hierarchical
Truth” but with p = 100 and n = 50. There are still only ten nonzero interactions,
but now there are 4950 interactions to choose among. The high FDR values show
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FIG. 3. (True) false discovery rates of four different procedures when the truth is weak hierarchical
with p = 100, n = 50. Only ten of the 4950 interactions are actually nonzero.

that this is a more challenging scenario; however, CHT performs well compared to
the other methods.

In Figure 4, we vary the strength of the main effects in a weak hierarchical sce-
nario with 40 nonzero interactions. We compare all-pairs, CHT and weak-screen
in their ability to correctly detect interactions while controlling FDR at a given
sample size. We estimate the average number of nonnull interactions called signif-
icant (over 50 replications) with FDR < 0.2, for varying sample sizes (horizontal
axis) and size of the main effect (varying across panels). When no main effects
are present, the all-pairs method does best, and CHT does much better than weak-
screen (which is unable to detect over half of the interactions regardless of increas-
ing sample size because these interactions have main effects that are too small). In
the other two scenarios, CHT does best.

5. Real data example: SAPPHIRe study data. This data set was analyzed
in Park and Hastie (2008), following the study of Huang et al. (2004). The study
sought to find genes associated with hypertension. A sample of 580 Chinese
women, 216 hypotensive and 364 hypertensive, were studied. The predictors (see

FIG. 4. Average number of true positives (i.e., nonnull interactions called significant) with
FDR < 0.2 (over 50 replications), for varying sample sizes (horizontal axis, logarithmic scale) and
size of the main effect. True number of nonnull interactions is 40.
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TABLE 1
List of predictors in the SAPPHIRe data set

Predictor number Name Predictor number Name

1 Reached menopause? 14 PTPN1i4INV
2 insulin t=-10 15 Cyp11B2x1INV
3 insulin t=60 16 PTPN1x9INV
4 insulin t=120 17 ADRB3W1R
5 HUT2SNP5 18 KLKQ3E
6 HUT2SNP7 19 AGT2R1A1166C
7 BADG16R 20 AVPR2G12E
8 AVPR2A1629G 21 MLRI2V
9 AGT2R2C1333T 22 AGTG6A

10 PPARG12 23 Cyp11B2-5paINV
11 CD36x2aINV 24 PTPN1i1
12 MLRi6INV 25 PTPN1i4
13 Cyp11B2i4INV

Table 1) are menopausal and insulin resistance statuses as well as genotypes on 21
distinct loci.

The first four predictors (all nongenetic) have the strongest effects individually,
although none were (http://www.grammarmudge.cityslide.com/articles/article/
1026513/9903.htm) significantly different across the two groups (details not
shown). Table 2 shows the first ten interactions found by the all-pairs and CHT
methods. Five interactions are shared across these lists. It is interesting to observe
how these lists are similar and how they are different. Every gene–gene interac-
tion found by CHT is also in the all-pairs list. Every interaction found only by
all-pairs and not by CHT is a gene–gene interaction, while every interaction found

TABLE 2
Top ten interactions found by all-pairs and convex hierarchical test methods

All-pairs Convex hierarchical testing

PTPN1x9INV:Cyp11B2-5paINV PTPN1x9INV:Cyp11B2-5paINV
CD36x2aINV:MLRi6INV Reached menopause?:AGT2R1A1166C
Cyp11B2-5paINV:PTPN1i4 CD36x2aINV:MLRi6INV
PTPN1i4INV:Cyp11B2-5paINV insulin t=60:KLKQ3E
Cyp11B2i4INV:PTPN1x9INV insulin t=-10:HUT2SNP7
CD36x2aINV:KLKQ3E CD36x2aINV:KLKQ3E
PTPN1x9INV:MLRI2V insulin t=60:Cyp11B2i4INV
Reached menopause?:AGT2R1A1166C insulin t=-10:ADRB3W1R
Cyp11B2i4INV:PTPN1i4 PTPN1i4INV:Cyp11B2-5paINV
AGT2R2C1333T:CD36x2aINV Reached menopause?:insulin t=120

http://www.grammarmudge.cityslide.com/articles/article/1026513/9903.htm
http://www.grammarmudge.cityslide.com/articles/article/1026513/9903.htm
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FIG. 5. Convex hierarchical testing: main effects (black dots) and interactions (edges) for 9 differ-
ent decreasing values of λ. Weak hierarchy ensures that each edge is incident to at least one black
dot.

by CHT but not by all-pairs involves at least one nongenotype predictor. Figure 5
depicts the main effects and interactions found by CHT for different values of the
regularization parameter λ.

In Table 3, we present a bootstrap analysis to shed light on the behavior of
three methods: the all-pairs method, the weak screening method considered in the
simulation section, and CHT. We record the top ten interactions appearing in the
analysis from each of 100 bootstrap samples. The ten most frequently occurring
interactions for each method are shown in Table 3. We see that there is one gene–
gene interaction that stands out for all-pairs, which includes it 83% of the time;
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TABLE 3
Ten most frequent interactions found by all-pairs, weak-screening and CHT methods over

100 bootstrap replications

Predictors Bootstrap frequency

All-pairs
PTPN1x9INV:Cyp11B2-5paINV 0.83
Cyp11B2-5paINV:PTPN1i4 0.46
CD36x2aINV:MLRi6INV 0.45
PTPN1i4INV:Cyp11B2-5paINV 0.40
Cyp11B2i4INV:PTPN1x9INV 0.33
PTPN1x9INV:MLRI2V 0.28
CD36x2aINV:KLKQ3E 0.27
Reached menopause?:AGT2R1A1166C 0.22
MLRi6INV:Cyp11B2-5paINV 0.21
insulin t=60:KLKQ3E 0.20

Screen: weak
insulin t=-10:HUT2SNP7 0.96
Reached menopause?:AGT2R1A1166C 0.96
insulin t=-10:Cyp11B2i4INV 0.92
insulin t=60:Cyp11B2i4INV 0.92
CD36x2aINV:KLKQ3E 0.92
Reached menopause?:insulin t=120 0.88
insulin t=60:insulin t=120 0.88
insulin t=-10:ADRB3W1R 0.88
insulin t=-10:Cyp11B2-5paINV 0.88
insulin t=120:ADRB3W1R 0.84

Convex hierarchical test
PTPN1x9INV:Cyp11B2-5paINV 0.63
Reached menopause?:AGT2R1A1166C 0.47
insulin t=60:KLKQ3E 0.34
insulin t=-10:HUT2SNP7 0.33
insulin t=-10:ADRB3W1R 0.32
CD36x2aINV:MLRi6INV 0.31
insulin t=60:Cyp11B2i4INV 0.26
insulin t=-10:Cyp11B2i4INV 0.25
CD36x2aINV:KLKQ3E 0.25
Cyp11B2-5paINV:PTPN1i4 0.24

interestingly, this interaction does not even appear in the weak screening method’s
list. The weak screening method cannot detect this interaction because neither of
the genes involved has a large enough main effect. By contrast, in CHT this in-
teraction is the most frequently occurring of the interactions. This demonstrates
CHT’s greater malleability with the hierarchy requirement: Large interactions can
be detected even if they have small main effect contrasts. This same observation
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is true of the top three interactions in the all-pairs list. Six interactions are shared
between all-pairs and CHT; all the interactions appearing in the CHT list but not
in the all-pairs list involve clinical variables (and are in the weak-screen list).

Finally, we note that only one of the top interactions found by our procedure
were not found in Park and Hastie (2008). However, this may not be surprising, as
their paper focused on multivariate modeling and conditional effects.

6. Estimation of the false discovery rate. Permutations provide a convenient
and robust way to estimate false discovery rates in large-scale hypothesis testing.
For example, Simon and Tibshirani (2012) devise a permutation scheme for the
all-pairs interaction test. In this scheme, one randomly assigns a component of the
interaction contrast to group 1 or group 2 by flipping the sign of the component at
random.

This scheme can be easily adapted to the present setting: The idea is to retain
the main effect contrasts wj from the original fit and to create randomized versions

of the interactions. In particular, let f :Rn → R
p2−p represent the function of the

class labels such that zjk = f (y)jk . For b = 1, . . . ,B , we get random permutations
y∗(b) ∈ R

n of y and compute z∗(b) = f (y∗(b)).
Using (2.5), we get λ̂

′∗(b)
jk based on (w, z∗(b)). Finally, we estimate the FDR as

F̂DR(λ) = min
{(1/B)

∑
j,k,b I (λ̂

′∗(b)
jk > λ)∑

jk I (λ̂′
jk > λ)

,1
}
.(6.1)

Note that this estimate of FDR pools the null distributions from all jk pairs. This
kind of pooled null distribution is commonly used, for example, in the SAM pro-
cedure [Tusher, Tibshirani and Chu (2001)] and in the aforementioned interaction
test of Simon and Tibshirani (2012). Its accuracy is quite high in simulation stud-
ies, although we know of no rigorous results on its asymptotic properties.

Figure 6 shows the estimated FDR from this method for three of the scenarios
described earlier. We observe that the estimate is fairly accurate, especially when
the number of interactions called is small, but tends to overestimate the true FDR
by a moderate amount for larger numbers of interactions called. This may be due to
the interdependence of the test statistics λ̂jk for each j . Overestimation of the FDR
corresponds to being conservative, which is of less concern than underestimation.

In future work, it would be important to study the theoretical properties of this
permutation estimate.

7. Discussion. We have proposed a hierarchical method for large-scale in-
teraction testing that biases its search toward interactions exhibiting at least one
moderate main effect. Our testing procedure is defined in terms of a convex opti-
mization problem but can be expressed in closed form. Examination of the form
of the statistic shows that it incorporates hierarchy in a gentler way than two-step



CONVEX HIERARCHICAL TESTING OF INTERACTIONS 41

FIG. 6. Estimation of FDR for convex hierarchical testing using permutations. Result is an average
over 50 simulations (with one standard error bars shown as well). Vertical line is drawn at true
number of nonzero interactions.

procedures that screen out interactions based on main effects. This distinction al-
lows it to include large interactions even when hierarchy is violated (as seen in the
simulation).

This work could be generalized in several ways. We have focused exclusively
on pairwise interactions: Extensions to k-way interactions, for k > 2, would bound
the sum of such interactions by the size of the k − 1 order effect. With appropriate
definitions for the interaction components, zjk , one could also apply this procedure
to interaction testing for the proportional hazards model in survival analysis. More
generally, the idea of formulating a test statistic based on the knots of a convex
optimization problem’s solution path may be of interest in contexts beyond testing
interactions.

Acknowledgments. The authors would like to thank the referees and two ed-
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SUPPLEMENTARY MATERIAL

Supplement to “Convex hierarchical testing of interactions” (DOI: 10.1214/
14-AOAS758SUPP; .pdf). We provide a detailed look at the optimization prob-
lem (2.3) and prove all results in the paper.
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