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This paper explores the topic of preferential sampling, specifically sit-
uations where monitoring sites in environmental networks are preferentially
located by the designers. This means the data arising from such networks may
not accurately characterize the spatio-temporal field they intend to monitor.
Approaches that have been developed to mitigate the effects of preferential
sampling in various contexts are reviewed and, building on these approaches,
a general framework for dealing with the effects of preferential sampling in
environmental monitoring is proposed. Strategies for implementation are pro-
posed, leading to a method for improving the accuracy of official statistics
used to report trends and inform regulatory policy. An essential feature of
the method is its capacity to learn the preferential selection process over time
and hence to reduce bias in these statistics. Simulation studies suggest dra-
matic reductions in bias are possible. A case study demonstrates use of the
method in assessing the levels of air pollution due to black smoke in the UK
over an extended period (1970–1996). In particular, dramatic reductions in
the estimates of the number of sites out of compliance are observed.

1. Introduction. This paper addresses the location of monitoring sites within
environmental monitoring networks. In many cases, sampling locations may be de-
pendent on the responses themselves or parameters of the underlying environmen-
tal process, leading to what Diggle, Menezes and Su (2010b) (hereafter referred
to as D10) refers to as “preferential sampling.” Since measurements from these
sites may be critical for informing policy, assessing adherence to standards or for
health analyses, the potential effects of such sampling may be of concern. For ex-
ample, urban air pollution monitoring sites provide information that may be used
to detect noncompliance with air quality standards [EPA (2006)]. The designer
may then locate the sites where air pollution levels are believed to be the highest,
although reaching that goal presents its own challenges as shown in Chang et al.
(2007). Reaching this goal would mean the measured concentrations would over-
estimate the levels of the pollutant in that urban area. That could render these data
unsuitable for other purposes, for example, in epidemiological studies estimating
risks to health.
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The focus here is on the calculation of official statistics, where both simplicity
and transparency are important. Such statistics traditionally estimate population
averages, totals and proportions. Their widespread use and importance means that
unbiased estimates are essential and that aggregates of such statistics will also be
unbiased. In this paper we propose an approach based on the Horvitz–Thompson
(HT) estimator, which has played a key role in the theory of survey sampling, to
producing unbiased estimates of such statistics. The approach builds on the idea
of response biased sampling surveyed in Scott and Wild (2011) (hereafter S11),
which extends the work in Lawless, Kalbfleisch and Wild (1999).

The work was motivated by changes in a large scale air pollution monitoring
network in the UK. The network measured Black Smoke (BS), a measure of fine
particulate matter, and was in operation for more than fifty years. The very high
annual concentrations seen in the early part of its operation led to successful mit-
igation measures and a dramatic decline in those levels. As a result, the need to
monitor BS decreased and the number of sites was reduced. At its peak in the
1960s, there were over 1000 sites, but of these only 35 were still operational in the
mid-nineties. The sites that were removed from the network had lower concentra-
tions than those that remained and the (small number of) sites that were added to
the network over this time had higher levels [Shaddick and Zidek (2014)]. There is
therefore clear evidence of preferential sampling over time and, thus, the decline
in reported annual levels of BS was systematically underestimated. This in turn
means that exceedances of statutory limits may be overestimated and estimates of
health effects of BS may be biased.

A primary aim of this paper is to develop a methodology to adjust annual aver-
ages of BS and the proportions of regions in noncompliance with criteria imposed
as part of the mitigation strategies for preferential sampling. It is more generally
about approaches to correcting for the deleterious effects of preferential sampling
on population parameter estimates. In order to address these issues, a new theory
is developed and assessed.

The remainder of the paper is organized as follows. Section 2 provides a back-
ground to previous approaches to preferential sampling in both nonspatial and spa-
tial settings with consideration of issues commonly encountered in environmental
modeling. Section 3 provides a superpopulation framework for building a unified
approach to dealing with the effects of preferential selection. This is followed in
Section 4 by strategies for implementation based on the HT approach. Section 5
demonstrates the use of the proposed methods using simulation studies which are
then applied in Section 6 to the case study of changes in the UK BS monitoring
network from 1970 to 1996. In these examples, we show that correcting for bias
can substantially reduce estimates of the number of sites, monitored and unmon-
itored, that are out of compliance with regulatory standards. Section 7 discusses
our findings and provides some suggestions for alternative approaches to mitigat-
ing the effects of preferential sampling in a number of settings.
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2. Background. In this section we review previous approaches that have been
proposed to mitigate the effects of preferential sampling. We start with methods
that were originally proposed in a nonspatial context but which we contend can
contribute to the development of the field and which we relate to a spatial setting.
This is followed by a review of methods which have recently been proposed in the
field of spatial modeling. The methodology that we propose here, which is unique
in this setting in its use of temporal changes to infer the levels of preferential
sampling, draws on aspects of many of these approaches and this is discussed at
the end of the section.

We note the distinction between the design-based and model-based approaches
to spatial design and inference as described by Cicchitelli and Montanari (2012),
who argue that the former is appropriate when inference relates to global quan-
tities, such as means or totals, and the latter when “constructing a map,” that is,
when performing spatial prediction or interpolation. The approaches that have
been used to develop monitoring networks may be classified as follows: (1) un-
known; (2) a combination of networks each developed by an unknown approach
[Zidek, Sun and Le (2000)]; (3) unknown in detail but subject to guidelines; (4)
design-based (multi-stage surveys) [EPA (2009)]; (5) model-based [Schumacher
and Zidek (1993)]; (6) model-based redesign of networks designed by unknown
approaches Ainslie, Reuten and Steyn (2009). The approaches are diverse or un-
known, but statistical models can be created to model the results and explore the
bias in the outcomes.

Throughout the section, we consider a response, Y , and a set of covariates or
explanatory variables, X, which in a spatial setting would be indexed by their spa-
tial locations uj . Often interest is in estimating the association between Y and X,
represented by β where f (Y) ∼ (β0 + βX).

Response-biased regression modeling. Here we consider the possibility for
bias in estimating relationships between a response Y and a set of covariates or
explanatory variables, X, when the sample of data may be subject to preferential
sampling. This is referred to as modeling “with response-biased samples” by Scott
and Wild (2011) (hereafter S11), who extend the work of Lawless, Kalbfleisch
and Wild (1999). This has origins in case–control observational studies where the
response Y is a “case” or a “control” with X being observed (and thus available
for analysis) for a sample from the population of cases and controls. Models here
assume a finite population of possible sample items.

Two approaches for inference are suggested in S11 and we refer to them as
follows:

HT: the Horvitz–Thompson (HT) approach [Horvitz and Thompson (1952)]:
− uses estimating equations designed to construct design-unbiased esti-

mators when finite population elements have unequal probabilities of
being selected in a design-based analysis.
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CML: the conditional maximum likelihood (CML) approach:
− based on the profile likelihood found by maximizing the joint distribu-

tion over all possible marginal distributions.

We now describe each of these methods in turn, starting with the HT, and consider
how they might adapt to be used in a spatial setting.

Define R as the sampled site indicator such that Ru is 1 or 0 according to whether
site u is selected into the sample or not. Let

πu = π(yu, xu) = P {Ru = 1|yu,xu},
the selection probability for site u. Here we consider the case of spatial regression
where interest will focus on inference on β , the coefficient associated with the
explanatory variables in the mean function. Its estimate is found by using the HT
approach and solving the estimating equations

∑
u

Ru

πu

∂ log [yu|xu, β]
∂β

= 0,(2.1)

assuming πu > 0, u ∈ D are known at the sampled sites. When working under
the asymptotic paradigm, the selection probabilities are required to be consistently
estimable rather than the requirement that they be known.

The second, CML, approach is based on the profile likelihood found by max-
imizing the joint distribution over all possible marginal distributions [X] for X.
Maximizing the resulting profile yields the estimating equation that characterizes
the CML-approach:

∑
u

Ru
∂ log [yu|xu, β,Ru = 1]

∂β
= 0,(2.2)

which depends on the {πu}, each being the (conditional) probability that Ru = 1.
In their current form both the HT and CML approaches have limitations in

the setting which we consider here. First, the assumption that the responses Y
on which the πu depend are known seems implausible unlike in case-controlled
studies. Their estimation would require a combination of the design- and model-
based approaches. Second, the failure to incorporate spatial correlation is likely to
be a serious limitation. Consistency of the solutions to estimating equations (2.1)
and (2.2) means covariances can be estimated by the “sandwich estimator” [Rao,
Scott and Skinner (1998)] and if samples are sufficiently large, this means the
assumption of spatial independence may be avoided. However, this may be of lim-
ited use since many applications such as spatial prediction rely on the estimated
covariance and estimates of its parameters.

Cicchitelli and Montanari (2012) propose a design-based approach which
specifically addresses the issue of spatial dependence. This is based on the
premise that spatial dependence is a result of unmeasured or unrecognized co-
variates, a view articulated in D10’s discussion section. Sites in close proxim-
ity to one another will be influenced by local environmental factors that reflect
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a spatial pattern and, if not included in a model, these factors will induce a
spatial pattern. The (measured) covariate matrix, X, is augmented with a ma-
trix of quasi-covariates, Z. For each location, uj , the quasi-covariate values in Z,
zuj

= (z1uj
, . . . , zKuj

), are modeled using thin-plate splines with zuj
= z̃uj

�−1/2,
z̃kuj

= (‖uj −κk‖)2 log (‖uj − κk‖), k = 1, . . . ,K , where the {κk} represent repre-
sentative sets of spatial locations (knots) such that � is nonsingular. The response
is then modeled as a combination of the measured and unmeasured covariates,

Eξ(Yuj
) = β0 + β1x1uj

+ · · · + γ1z1uj
+ · · · + γKzKuj

,

where Eξ denotes the expected value with respect to the model ξ (in terms of the
material introduced in Section 3, this is the superpopulation model’s distribution
for Y from which the finite population is drawn). They then invoke the design-
based approach and use HT estimators to fit a regression model for Y on (X,Z). In
line with the HT approach, they do not explicitly model spatial structure in their
model-assisted, design-based approach, arguing that spatial pattern is provided by
the mean function with the augmented covariates. Their position is supported by
the well-known duality between first order and second order features of geostatis-
tical models; misspecification of the first order mean function will always lead to
bias in the second order variogram.

Spatial prediction. We now consider the model-based approach as used in
[D10: Diggle, Menezes and Su (2010b), Gelfand, Sahu and Holland (2012), Pati,
Reich and Dunson (2011)], all of which specifically consider spatial modelling.
D10, which includes a bibliography of earlier work on preferential sampling
unrelated to this paper, characterizes the effect of preferential sampling within
a model-based geostatistical framework in which site locations are informative
for inference. D10 assumes a latent, unobservable Gaussian field S over a geo-
graphical continuum (domain) D. The sites u are selected at random in accor-
dance with an inhomogeneous Poisson spatial process with intensity function
λu = exp {α + βSu}, u ∈ D. The measurable response Y is also modeled as depen-
dent on S. Both the response measurements, yobs, and selected sites U yield infor-
mation about the underlying model parameters, including both those in the spatial
mean as well as the spatial covariance matrix for S. A marginal likelihood function
is obtained by marginalizing out S although S, U and Y are correlated in their joint
spatial distribution. A key to the success of the model in D10 is knowledge of pro-
cess and data, both present and future, in order to characterize the sampling selec-
tion process, an assumption questioned by Dawid (2010). Given that knowledge,
the effects of preferential sampling on variogram estimates, spatial predictions and
associated biases can be assessed. Pati, Reich and Dunson (2011) extend that ap-
proach, again relying on latent variables in a point process approach. Gelfand,
Sahu and Holland (2012) suggest an alternative approach based on knowledge of
the underlying process being monitored and the factors that drive that process.
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The temporal dimension. The approaches described above do not include
changes to networks due to preferential sampling over time, a key feature of spatial
sampling addressed in this paper. Examples of this include the redesign of Van-
couver’s air quality monitoring network [Ainslie, Reuten and Steyn (2009)] and
the case study in Section 6 which considers changes in a long-term air pollution
monitoring network in the UK. Le and Zidek (2006) demonstrate the use of such
adaption as the network for monitoring ground level ozone concentrations that has
been steadily augmented over the last few decades as the adverse health effects of
ozone have been recognized. In this example, it seems plausible that the addition
of sites has been performed preferentially to ensure high levels of ozone are de-
tected. The case study in this paper considers the monitoring of black smoke (BS)
for which the number of monitoring sites declined from ca. 1000 in the early 1960s
to ca. 100 at the turn of the last century as levels of BS declined due to improve-
ments in the management of air quality. Shaddick and Zidek (2014) demonstrate
that the reduction in the network was done preferentially by removing sampling
sites with generally lower concentrations relative to the decline in overall levels of
BS, leading to overestimates of BS concentrations (as can be seen in Section 6).
We propose that by considering the stochastic process of selection over time, it is
possible to model the extent of preferential sampling and estimate its deleterious
effects on published estimates of environmental fields and the effects on items of
inferential interest. This emphasis leads us to build on the HT approach and the
use of estimating equations following the celebrated work in this area by David
Binder [Binder (1983)].

Unlike the earlier methods previously described, this approach incorporates
time in the model. We draw on the previous methods and specifically those based
on the H-T estimator, and assume that the sampling probabilities are uncertain and
model the selection process as stochastic, depending sequentially on the responses
over time. The result is an approach that is a combination of the design- and model-
based approaches. The {π} are then learned over time as the results of monitoring
accumulate.

Populations of potential sampling sites can often be taken, as in this paper, to
be a finite set of possible locations. In that sense, this approach diverges from D10
and its successors in the model-based category by assuming a finite population
of N sampling (i.e., monitoring) sites, uj , j = 1, . . . ,N. Note that uj could rep-
resent just the label j or, more commonly, the geographic coordinates of the site,
depending on the context. This is not to say that the assumption of a continuous
domain for site selection is unreasonable in all cases, but practical and adminis-
trative considerations will often restrict S to be a finite-dimensional vector-valued
process over a discrete domain D. In D10 S is also discretized, but this is in order
to approximate the marginal likelihood and is done by replacing the continuous D
by a fairly dense lattice. Sampling points then have to be mapped onto their nearest
lattice point neighbors.
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As with the successors to D10 cited above, we allow covariates to be incorpo-
rated. Site selection may well depend on them, for example, the distance of a site
from a major roadway or an “urban-rural” classification (as used in the case study
in Section 6). In addition, interest may well lie in the significance of the effects of
such covariates or design variables on the measured responses.

3. A general framework. Section 2 presents a number of paradigms in which
to study the issue of preferential spatial sampling within the design- or model-
based frameworks. The latter includes the Bayesian approach although it was not
explicitly mentioned. The concept of a superpopulation [Särndal, Swensson and
Wretman (2003)] provides a framework for unifying paradigms for inference and
it is within this framework that we develop the proposed approach. We combine
design- and model-based approaches, allowing us to estimate the unknown selec-
tion probabilities needed for the HT estimator which are used to compensate for
the selection bias introduced in sampling from the finite population of interest.

We suppose a discrete geographical domain D contains point referenced sites
uj , j = 1, . . . ,N. Let T denote the present time and although the spatial locations
do not have a natural ordering, it is convenient to use the vector notation Yt : 1 × N
to represent the sequence of responses at those sites at times t = 1, . . . ,T . These
sites, which need not be on a lattice, represent a finite population of potential lo-
cations at which to site monitors that repeatedly measure at regular times, a ran-
dom space–time field. Further, let Y denote the T × N matrix comprised of those
row response vectors. Similarly at time t , let Xt denote a matrix of covariates or
explanatory factors, hereafter referred to as “covariates” for simplicity. Then X
denotes the corresponding three-dimensional covariate array.

We now propose a framework which contains three major components in the
process of using data from monitoring networks, which for simplicity in subse-
quent descriptions we characterize as (i) Nature, (ii) the Preferential Sampler and
(iii) the Statistician:

(i) Nature governs the process-model, a joint distribution for X and Y that
generates realizations x and y over the time period ending at the present time, T .
These are regarded as drawn from an infinite population of possibilities called the
Superpopulation that is indexed by the sites in D. In some contexts this would
be the relevant population and the parameters of the process-model the objects of
inferential interest. However, here we consider the case, commonly encountered in
official statistics, where there is a finite population of possible site locations and
thus values of x and y which we refer to as the Population.

(ii) The Preferential Sampler runs the measurement-model, the process that
chooses sites in D at which the associated elements of x and y are observed. The
sampling design, that is, the selection probabilities for sites to be included in the
sample at each time t = 1, . . . , T may depend on the elements of x and/or y for pre-
vious times. The resulting sample can be interpreted as from either the Population
or Superpopulation depending on the goal of the monitoring program.
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(iii) The Statistician, working within a design-based framework and using only
the sample and knowledge of the sites at which the sample was collected, infers
the uncertain selection probabilities used by the Preferential Sampler and through
this adjusts inferences about the Population (or Superpopulation as appropriate) to
compensate for the bias induced by preferential sampling.

The mechanisms of the preferential sampling process and associated selection
probabilities can be complex and are often not well understood or may be un-
known. They may be nonanthropogenic or anthropogenic. Examples of the former
might include a natural event, such as a forest fire, making some locations inacces-
sible (and thus their selection probabilities zero). Although responses continue to
be generated, they could not be sampled. For the latter, there may be new guide-
lines on where sites may be located or new developments or changes of land own-
ership may mean sites can no longer be located at the same places. These uncer-
tain mechanisms that lead to the sample make the selection probabilities uncertain
as well meaning that they need to be inferred. The Superpopulation–Population-
Sample paradigm provides a framework where that becomes feasible.

We now formalize the ideas above in a general theory for response genera-
tion (Y) and site selection (R from Section 2), one that allows flexibility in the
choice of modeling, inferential and selection paradigms. We first develop a theory
based on the conditional distribution of Y given X = x and model parameters θ .
These model parameters would include all those that characterize the joint distri-
bution and could include, depending on the context, regression coefficients β [as
seen in equation (2.1)] and autocorrelation and spatial covariance parameters. Us-
ing the notation from D10, we denote the conditional distribution of Y, which may
be characterized by its probability density or cumulative distribution function, by

[y|x, θ ].(3.1)

If within a specified time period, all responses and covariates were observed for
every spatial site in the Population, we could proceed in the usual way to make in-
ferences about θ . In particular, given Y = y and X = x, the conditional likelihood
function would be given by equation (3.1). The Superpopulation’s maximum like-
lihood estimator (MLE) of θ , denoted by θ̂ = θ(y,x), would estimate θ , including
temporal as well as spatial correlation model parameters together with coefficients
in the regression model relating Y and X. Alternatively, if only a random sample of
sites were selected from the finite population of sites and their associated response-

covariate pairs recorded, an estimate ˆ̂
θ of θ̂ could be computed and considered to

be an estimate of θ .
In contexts where official statistics are collected and published or regulatory

policy is administered, estimates for specific times are commonly required. In such
cases the Population at the present time T consists of just the responses YT = yT

generated by the marginal distribution

[YT |XT = xT , θT ],(3.2)
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where we have assumed YT depends only on the covariates at time T . Hereafter
for simplicity “Population” will refer generically to this time dependent popula-
tion. Following a standard approach in survey sampling theory [Särndal, Swensson
and Wretman (2003)], we would define θ̂T to be the matrix of parameters of the
Population, obtained by maximimizing the marginal likelihood in equation (3.2),
and take it to be the object of inference, although it may also be viewed as rep-
resenting θT . [For a discussion of this issue see Pfeffermann (1993).] Therefore,
two legitimate objects of inferential inference present themselves, θT and θ̂T . In
either case, as in D10, we are concerned with the effects of preferential sampling
on the estimates derived from the sample of θ̂T and, in turn, θT , depending on the
inferential objective.

To formalize these ideas, we express the Superpopulation log-likelihood esti-
mating equation for the MLE θ̂T as

∇θT
log [yT |xT , θT ] = 0.(3.3)

The measurement-model is more complex since the process for selecting the
sites at time T , on which inference is to be based at that time, may depend on
responses at previous times. To model the selection process, we use notation intro-
duced in Section 2. Thus, we let R denote the T × N matrix of indicator random
variables whose t th row Rt consists entirely of zeros except for ones in the columns
corresponding to the sites selected for inclusion at time t .

Let yr and xr denote the observed values of Y and X at the design points selected
adaptively over time. In other words, if r = (rtj ), then

yr = {ytutj
: t, j for which rtj = 1}

and so on. We model the distribution of Rt as stochastically dependent only on
Y1:(t−1) and X1:(t−1), where we use the general notation ar:s = (ar , . . . , as) for r ≤
s and the null vector if r > s for any object a. That dependence could reflect the ef-
fect of a latent process as in D10. Then πtu = P(Rtu = 1|y1:(t−1),x1:(t−1), η), t =
1, . . . , T , where η denotes the matrix of parameters for the measurement-model.
Our assumptions imply that the conditional preferential sampling distribution of R
is given by

[r|y,x, η] =
T∏

t=1

[rt |yr1:(t−1)
,xr1:(t−1)

, r1:(t−1), η].(3.4)

Combining equations (3.2) and (3.4) yields for inference at time T the joint
conditional likelihood

L(η, θT )
.= [yT |xT , θT ]

T∏
t=1

[rt |yr1:(t−1)
,xr1:(t−1)

, r1:(t−1), η].(3.5)

We assume that η does not contain elements of θT and so the population parame-
ter matrix remains as that defined in equation (3.3). The likelihood here suggests
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an approach for fitting the site selection probabilities once the sample is obtained:
impute the nonsampled values and estimate η from the likelihood inferred from
the resulting combination of actual and imputed data. This is the approach used
in later sections with a logistic regression approach. Note that while the prefer-
ential sampling scheme represented in equation (3.5) is ancillary for the purpose
of estimation of θT , within the design-based framework below for inferring the
population parameter θ , it is very relevant and in fact it lies at the heart of the HT
approach used there.

Our general framework can be extended to include a Bayesian approach by
incorporating a prior joint distribution for η and θ . This topic is left for future
work.

General implementation strategies. We now describe general strategies for im-
plementing our general framework using the HT approach in Section 2, leaving
Section 4 for specific techniques. We demonstrate how the general framework
might work and provide a link to what follows in the next section where the HT
approach is developed. More specifically, we show that the framework can be used
even when we cannot obtain estimating equations resembling those in (2.1) when
inter-site dependence is present.

The population parameter matrix associated with that of the superpopulation
process, θ = (θ1, . . . , θT )′, commonly has the form

θ̂t = H
{
N−1

∑
j

(
h1[ytuj

,xtuj
], . . . ,hq[ytuj

,xtuj
])

}
(3.6)

for known functions H and h1, . . . ,hq .
Then if the {πtuj

} are known or estimated, θ̂ can be estimated by

ˆ̂
θ t = H

{∑
u

rtu

Nπtu

(
h1[ytu,xtu], . . . ,hq[ytu,xtu])

}
.(3.7)

Justification for this choice comes from the unbiasedness of
∑

u(rtu/Nπtu) ×
hl[ytu,xtu], l = 1, . . . , q as estimates of their corresponding population averages.

We illustrate this approach in two specific cases: (1) a regression model where
the interest is in the association between Y and X, a relationship that may evolve
over time; (2) the estimation of population means in the presence of spatial depen-
dence.

Case 1. Regression of Y on X: Here

H(a,b) =
⎛
⎜⎝

a1/b1
...

aT /bT

⎞
⎟⎠

for T dimensional vectors a and b with h1[ytu, xtu] = ytuxtu and h2[ytu, xtu] =
x2
tu.
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Case 2. Spatially dependent Gaussian fields: Conditional on the mean and co-
variance structure, the Superpopulation model is given by a matric-Normal distri-
bution. That is,

Y ∼ NT ×N(μ,
 ⊗ �),

where 
T ×T as well as �N×N are positive definite matrices, E(Ytu) ≡ νt , t =
1, . . . , T for all u, and μ = ν ⊗ 1 with ν = (ν1, . . . , νT )′, 11×N = (1, . . . ,1). As-
suming 
−1 = ττ ′ is known, the population parameters {ν̂t } are easily found to
be

ν̂t = ∑
j

yt τ
j τ j ′1′∑

j (1τ j )2 = yt

−11′

1
−11′ ,(3.8)

where τ = (τ 1, . . . , τN). This population parameter has the form given in equa-
tion (3.6) and so can be adjusted using the HT approach. Note that the profile like-
lihood for the covariances 
 and � involves a quadratic form in y, and it yields
estimating equations for the population level MLEs which can be used to estimate
them.

This case is more general than it may seem at first glance. The Gaussian likeli-
hood in this example can be treated as a quasi-likelihood leading to the GEE ap-
proach [Liang and Zeger (1986)] when Y is not Gaussian. The so-called working
covariance between columns can be taken as independent in that case with asymp-
totic justification providing that the assumption of equal means across sites holds.
Alternatively, we can model spatial patterns via the covariates, X, and then assume
no spatial structure in the covariance as in Cicchitelli and Montanari (2012) (see
Section 2).

Another approach to implementing the general framework is also available
when considering regression where an estimating equation is of the form seen
in (2.1). For this case we suppose θt = (βt ,�), where βt is the vector of regression
parameters. This plays the same role as it did in equation (2.1), that of parametriz-
ing first order effects embraced by the process mean function, while � represents
the parameters of the spatial dependence model, that is, the covariance in the case
of a Gaussian field. We denote �known

0 as the case when there is spatial indepen-
dence, a diagonal matrix in the case of the Gaussian field. Note that Section 2
provides a discussion of the assumption of independence.

From equation (3.3), we now get the superpopulation maximum likelihood es-
timating equation for inference about the population at time T :

∇βT
log [yT |xT , βT ,�0]
= ∑

u

∇βT
log [yT u|xT u,βT ,�0](3.9)

= 0.

In this way the population parameters are defined.
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Following S11, we now have two approaches for finding the sample-based
MLE. The first is provided by the HT approach in equation (2.1), which yields
the following estimating equation:

∑
u

rT u

πtu

∇β log [yT u|xT u,βT ,�0] = 0.(3.10)

The CML-approach for estimating β would rely on the following estimating
equation from equation (2.2), where∑

u

∇βT
log [yT u|xT u,βT ,�0,Rtu = 1] = 0.(3.11)

If responses can be assumed to the temporally independent, then this simplifies
to be of the same form as (3.10).

A third approach to implementing our framework involves generalizing the
maximum likelihood estimating equation to a general estimating equation as de-
scribed in Godambe and Thompson (1986). In the case of temporally independent
fields, for the superpopulation case, this becomes∑

u

φT u(yT u, xT u,βT ) = 0(3.12)

for some known functions {φT u}. Note that under regularity conditions this gradi-
ent has a conditional expectation, given the superpopulation parameters, equal to
zero, a property referred to an “unbiasedness.” In fact, equation (3.12) can be used
to define an estimator for any choice of kernel φ provided it is unbiased. In this
way, Binder and Patak (1994) formulated a general approach for complex sample
surveys based on estimating equations.

4. Implementing the HT approach. This paper proposes the HT, or “inverse
probability weighting,” approach to compensate for the bias introduced by prefer-
ential sampling. The approach can be implemented in a variety of ways depend-
ing on the context and inferential paradigm [Kloog et al. (2012)]. A question that
arises in all cases is the role of spatial dependence and whether or not it needs
to be explicitly acknowledged in the chosen model. The approaches described in
Section 2 suggest the answer to this question is not clear cut and the answer will
depend on various factors, including data that are available and the inferential ob-
jectives. Even where spatial dependence should be incorporated in the superpop-
ulation model, the specific application may prohibit it. In the example of case 2
(under the assumption that the model is correct), then the unequally weighted pop-
ulation mean in equation (3.8) which incorporates spatial correlation should ide-
ally be estimated. In practice, however, the equally weighted average is commonly
used (and is the one that is available for the case study presented in Section 6). In
such cases, the HT approach must be applied to the available estimate rather than
an idealized one. This section suggests an approach that covers all situations that
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fall within the general framework of Section 3, whereas Sections 5 and 6 focus on
the equally weighted average in order to provide a solution to the problem most
likely found in practice.

In practice, the process which selects the monitoring sites is nonrandom and
generally not known. The selection probabilities cannot therefore be characterized
as they are in multi-stage survey sampling, for example. However, having a time
series of samples of sites from the finite population of N sites enables us to model
the selection process and estimate those probabilities which, in order to account
for their uncertainty, are treated as random. We now describe a general logistic
regression approach for that purpose.

Assume that at time t , the sample of sites St among the population of N sites
is selected by a PPS (probability proportional to size) sample survey design u ∈ St

being included with probability πtu. That probability is assumed to depend on all
responses, both observed and those unmeasured over the time period 1 : (t −1) (the
latter being treated as latent variables, analogous to the S’s in D10). Thus, in terms
of the measured and unmeasured responses Y and the vector of binary indicators of
selected/rejected sites R, the conditional distribution of the probability of selection
is

logit[πtu] = logit
[
P(Rtu = 1|y1:(t−1), r1:(t−1))

]
(4.1)

= G(y1:(t−1), r1:(t−1))

for some function 0 ≤ G ≤ 1. That function is our analogue of the preferential
sampling intensity in Assumption 2 in D10.

Under the assumption of the superpopulation model there will be a predictive
probability distribution for the unmeasured responses. Values for these might be
obtained using, for example, geostatistical methods, which under repeated impu-
tation will allow k = 1, . . . ,K∗ replicate data sets. Each replicate enables us to
fit G through logistic regression to get Ĝk, k = 1, . . . ,K∗ and in turn π̂ k

tu, k =
1, . . . ,K∗. This approach is analogous to equation (9) in D10, with R playing the
role of X.

From these replicates, multiple values of the HT estimator can be obtained,
which allows an adjusted point estimate of the population average to be found
together with error bands around the point estimate to reflect the associated uncer-
tainty.

The exact way in which these are computed would depend on the scheme by
which the network was adapted as illustrated in Section 5. We now discuss the case
of a network that expands monotonically over time, referred to as an ascending
staircase design. This forms the basis of one of the simulation studies in Section 5
together with one based on a shrinking network.
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4.1. Expanding networks. Consider the case of an ascending staircase design
so that the network expands monotonically over time [Le and Zidek (2006)], that
is, S(t−1) ⊆ St , t = 1, . . . , T , where S0 is the null set and ST ⊆ D. After a site, u,
has entered the network it remains. Using an ∗ to denote unconditional probabili-
ties, we assume that initially sites in S1 ⊂ D are selected without replacement so
that the selection probabilities are π∗

1u = π1u = |S1|/N , where in general |A| is the
number of elements in a set A. The HT estimator for the population mean can now
be calculated as

μ̂1 = ∑
u∈S1

y1u

Nπ∗
1u

.(4.2)

At time 2, additional sites S2 \ S1 must be selected from D \ S1 and this is
assumed to be done with probabilities proportional to size at time 1, that is, based
on the {y1u} for these sites. At time 2, the HT approach sees a single sample of
sites S2. Inclusion in S2 means a site was either selected at time 1, in which case
it is certain to be in S2, or it was selected at time t = 2 for the first time. Hence,
overall for all sites in u ∈ S2,

π∗
2u = π∗

1u + (
1 − π∗

1u

)
π2u.(4.3)

However, at time 2, the π ’s are unknown unlike those at time 1 due to the unknown
responses at time 1 on which the preferential sampling was based and the unknown
monotone function of these responses implicitly used by the Preferential Sampler.
The unknown responses can be multiply imputed by standard geostatistical (or
other) methods to get {ŷk

1u,D \ S1} on replicate k = 1, . . . ,K so that, in effect, we
have a complete set of responses over D.

Logistic regression can then be used to estimate the probabilities of selection by
fitting

logit
(
π̂ k

2u

) = α2 + β2
[
ŷk

1u − ¯̂yk
1·

]
,(4.4)

to the N binary select-reject indicators for the set of potentially new sites,
u ∈ D \ S1 where ŷ represents either observed or imputed values at time 1 as ap-
propriate. In addition to sites in D \ S1, this model can be used to predict for sites
in S1, allowing the selection probabilities to be estimated for all u ∈ D as required.
Replicate HT estimators at time 2 are obtained by multiply imputing the unknown
responses and generating multiple HT estimates:

μ̂k
2 = ∑

u∈S2

y2u

Nπ̂∗k
2u

.(4.5)

Their average yields the adjusted point estimator at time 2 and their empirical
quantiles provide a means of estimating (95%) error bands for the true population
mean.

We can proceed in a similar fashion at time 3. Here the required imputation of
the unobserved y2u is more complicated due to the preferential sampling effect.
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To do this, we adapt a key idea in Pati, Reich and Dunson (2011) and use logit
transformations of the estimated selection probabilities as covariates that represent
the preferential selection effect. These can then be incorporated in the spatial trend
(mean field) model for a Gaussian random field superpopulation model. Since at
time 1 we assume no preferential selection, we let the required covariates be z1u =
logit(π1u), u ∈ D \ S1. Then at time t = 2 we get

z2u = logit
(
π̄ ·

2u

)
, u ∈D(4.6)

by averaging the replicate values in equation (4.4). Note that the z’s correspond to
what Pati, Reich and Dunson (2011) call “plug-in” estimates.

We assume a Gaussian random field superpopulation model with a Matérn co-
variance matrix and spatial mean field

E[Y2u] = μ2u + ϑz2u, u ∈ D,(4.7)

where ϑ is an unknown regression parameter. This model is fit, including any
unspecified parameters in μ2u, using, for example, geostatistical methods and by
multiply imputing the unobserved values of the unobserved {y2u}. Proceeding re-
cursively in this way leads to a K × t matrix of replicates π̂∗k

tu for each u at time t .
That in turn yields replicates of the HT estimates for the population mean at time t .

Refinements of this approach would be possible, including the addition of a
term in equation (4.6) to incorporate spatial structure. This would be appropri-
ate if it were known that designers took spatial considerations into account, in
coming to their new-site admission decisions and in calculating their summary
statistics. Model selection presents another challenge for equation (4.1). Selecting
appropriate predictors from the class of all possible metrics that could be com-
puted from previous exposure data will be challenging. Formal model selection
approaches will generally be impractical, necessitating reliance on some context
specific knowledge to help reduce the class of possibilities.

4.2. Reducing networks. The case in which a network is monotonically de-
creasing is somewhat simpler, as the need for imputation of unmeasured responses
is eliminated. Starting from a set of N sites, S1 at time 1, then at each time t , the
set of sites that remain in the network will be St ⊂ St−1. At each time point, the
selection probabilities are obtained from logistic regression and the HT estimates
then constructed based on equation (3.7).

The efficacy of the cases of decreasing and expanding networks are explored
using simulation in Section 5, with the former also being the basis of the case
study presented in Section 6.

5. Simulation study. This section describes simulation studies that explore
the approaches described in Section 4. Using the terminology introduced in Sec-
tion 3, we generate data for the underlying environmental field (Nature) follow-
ing the structure used in Gelfand, Sahu and Holland (2012). Given this field, we
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simulate the role of the Preferential Sampler who at each time t selects sites for
inclusion at time t + 1 with selection probabilities proportional to the magnitude
of the measurements (PPS). The Statistician, having only the measurements at the
selected monitoring sites at time t , adopts a superpopulation model for all unmea-
sured responses and, knowing of the use of PPS, fits a logistic regression model to
the binary site selection process for time t + 1 to estimate the site selection prob-
abilities. The HT estimator is then used to adjust the annual average estimates for
time t + 1 for the effects of preferential sampling.

The underlying environmental field: Nature. To generate emissions over space
and time, we consider two cases from Gelfand, Sahu and Holland (2012). The first
of these considers emissions arising from a point source (of pollution), while the
second considers pollution from three cities. Central to the approach advocated
in Gelfand, Sahu and Holland (2012) is that measured concentrations are based
on emissions, which in the case of the three cities are represented by population
densities. We generate data over 25 years for a finite population of 1000 sites.

For the point source example, emissions are represented by a kernel xu given by

xu = exp
(−1.8‖u − q‖)

, u ∈ D(5.1)

with q = (0.25,0.75). The maximum and minimum values of x are 1 and 0.16,
respectively. The second scenario involves three cities with centers located at
c1 = (0.75,0.75), c2 = (0.25,0.25), c3 = (0.75,0.25) and their population den-
sities given by

pu = exp
(
−5 min

i
‖u − ci‖

)
, u ∈ D.(5.2)

The maximum and minimum values of p are 1 and 0.019, respectively.
The following adapts this approach to the cases considered here by incorporat-

ing time. At each time t , we assume a linear relationship for the mean concentra-
tions and emissions. For the two cases (point source, M1, and multi-city, M2),

M1: μ1tu = φ1xtu,
M2: μ2tu = φ2ptu.

The emission levels are assumed to decline over time, t = 1, . . . , T ,u ∈ D:

xtu = xu − γ1u(t − 1),(5.3)

ptu = pu − γ2u(t − 1),(5.4)

where decay parameters, γiu, are site specific; γiu = [aiμiu + bi]μiu for the two
models Mi [a1 = 0.009391, b1 = 0.001216, a2 = 0.008156, b2 = 0.003686—
these values were chosen to ensure that after simulated Gaussian residuals are
added to the spatial mean, the simulated responses will be nonnegative (with high
probability) over all sites and times]. Using this approach, the large mean values
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TABLE 1
Spatial parameters used in the simulation studies

Model Nugget Sill Range Smoothness

M1 0 0.0079 0.5 0.5
M2 0 0.00013 0.5 0.5

are greatly reduced (50% for the largest mean), unlike the small ones (10% for the
smallest mean). In the following simulations, the relationship between emissions
and concentrations is set to φ = 2.

We select an irregular grid of 1000 points from a regular grid of 10,000 points to
represent the population of possible sampling sites. For each time t , the pollution
field is simulated as a Gaussian field with means μjt as described above and a
fixed Matérn spatial correlation structure whose sill parameter differs for the two
mean models (again to ensure a high probability of nonnegative simulated values).

The correlation between the process responses for sites separated by a distance
d is given by

ρθ(d) = 2

2κ�(κ)

(
d
√

2κ

ω

)κ

Kκ

(
d
√

2κ

ω

)

for both models Mi, i = 1,2. Here κ is the smoothness parameter, which in this
case is 1/2 to yield the exponential spatial correlation function. The ω determines
the range of the model. The correlation would be multiplied by the sill to get the
spatial covariance function. The values of these parameters are specified in Table 1.
Thus, at each time point a random vector of responses Y 1×1000

t ∼ N1000(μt ,�) is
generated, where � is determined by the member of the Matérn family. The result:
a matrix of simulated emission levels of dimension 1000×25 which constitute the
finite population to be studied in this section.

Selection procedures: The preferential sampler. We consider both of the cases
described in the previous section: (i) descending (network reducing in size) stair-
case and (ii) ascending (network increasing) staircase of adaptive network design.

(i) Shrinking adaptive network design:
1. For time t = 1, let S1 = D be the entire population of N sites.
2. For each successive time t = 2, . . . , T , draw a sample St ⊂ St−1 of size

mt = |St | = 25 with sampling probabilities proportional to size, α +
βytu, u ∈ St−1. For each of the two emission scenarios, two cases are con-
sidered, the first being that sampling is mildly preferential and the second
strongly preferential. The respective selection parameters are given in Ta-
ble 2.

3. Repeat step 2 1000 times to generate point estimates and 95% error bars
for the annual estimates the selections produce.
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TABLE 2
Parameters used to characterize mild and strong preferential sampling for each of the two emission

scenarios considered in this simulation study

Mildly preferential Strongly preferential

Scenario α β α β

Point source 0.32 0.10 0.32 2
Multi-city 0.038 0.010 0.038 0.5

(ii) Expanding adaptive network design:
1. Time 1: Draw a simple random sample of m1 = 50 sites S1 without re-

placement from D of N = 1000 sites. Lack of knowledge at that stage
makes this selection model plausible.

2. Time t = 2, . . . ,25: Draw a sample St ⊃ St−1 by adding an additional mt =
10 sites selected (from the remaining unselected sites from the original set
of 1000 sites) with probability proportional to size, again α + βytu, u /∈
St−1.

3. Repeat step 2 1000 times.

Correcting for preferential sampling: The statistician. This is done assuming
a Gaussian random field (GRF) superpopulation random response, that sampling
probabilities are proportional to size and the multivariate response vectors not au-
tocorrelated. For clarity of exposition, we drop the subscript j denoting scenario
model Mj . The following are the steps needed for the two cases:

(i) Shrinking adaptive network design:
1. Time 1: S1 = D.
2. Time t = 2, . . . , T : Use logistic regression as in equation (4.4), using the

sites in S1 instead of D\S1 from the expanding case, to estimate coefficients
of the selection model (α and β) and hence get an estimate of the conditional
selection probability π̂tu for that time. All relevant data are available so no
prediction is needed.

3. Time t = 1, . . . , T : Compute the unconditional site selection probabili-
ties π̂∗

tu and the HT estimate of the annual mean. Note u ∈ St implies
u ∈ St ′, t ′ ≤ t so under the assumption of no autocorrelation

π̂∗
tu =

t∏
t=1

π̂tu.

4. Repeat steps 2 and 3 to compute point estimates with 95% error bands for
the estimates.

Figure 1 depicts the results for four different cases. The top two panels are for
the case of a single emission source and the differing levels of preferential sam-



1658 J. V. ZIDEK, G. SHADDICK AND C. G. TAYLOR

FIG. 1. Results from the simulation study of a network that is reduced in size over time. Lines repre-
sent the population average over all sites under the superpopulation models (black), the unadjusted
estimates (red) of that mean and the Horvitz–Thompson adjusted estimates (green). Dotted lines
show 95% error bands based on 1000 simulated data sets. Upper and lower panels show results for
single and multiple point emission scenarios, respectively. Note that for most of the times the black
line is not visible, as it is overlaid by the green line due to the closeness of the adjusted estimates to
the true values.

pling. The bottom two show the corresponding results for the multi-city scenario.
In each case, the black lines show the (true) average at each time t over the fi-
nite population of 1000 sites. The red lines give the (biased) summaries for each
time point together with an indication of the variability over the multiple data set
through the 95% error bars (red dotted lines). Green lines show the HT adjusted
summaries at each time point (with dotted lines signifying the associated varia-
tion). The adjusted values are extremely close to the true values, a fact reflected in
the green lines overlaying the black (which are not visible) in the upper panels.

The overall pattern in all cases is that levels decline over time, reflecting a fea-
ture of the superpopulation distribution, and error bands increase in width, reflect-
ing smaller samples. When preferential sampling is weak (the two left-hand pan-
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els), the red curve is relatively close to the black curve, although significantly
higher. The difference in the right-hand panels, when preferential sampling is
strong, is much more marked. The HT adjustment improves the estimators of the
annual mean in all cases and that improvement is dramatic with strong preferential
sampling.

To provide a comparison with the estimates arising from applying the method
proposed here, we briefly consider the effects of two much simpler approaches.
Given the set of sites that were present at the beginning of the period of interest,
when a specific site ceased to be part of the network, then the resulting miss-
ing data from that time point might be imputed. A regression line might be fit to
the available measurements from that site and used to predict measurements from
that time. The average for each year would then be calculated using a mixture of
observed and predicted measurements for all sites at each year. An even simpler
approach might be to fill in missing data for each site using the last recorded mea-
surement, that is, filling in the missing data with the most recent measurement
available for that site. The first approach would require a reasonable amount of
data points for each site (here chosen to be five) and would likely result in negative
predictions over the latter time years where the initial decline observed at a site
was strong. In such cases, predictions here are truncated at zero. In both cases,
applying these two simple approaches resulted in the estimates of the yearly aver-
ages being overestimated in all four of the cases presented in Figure 1. Filling in
the missing values using the last value proved to be consistently higher than the
true values, with the error increasing over time as might be expected. In the exam-
ples shown in the panels of Figure 1, the overestimates in the last (25th) year were
16%, 14%, 8% and 11% for the mild/strong point source and mild/strong multi-
city cases, respectively. The regression approach also consistently overestimated
the yearly averages, with the corresponding overestimates in the last year being
34%, 18%, 1% and 7%. In the third case (of mild preferential sampling from mul-
tiple cities) the regression approach seems to do well, as the downward slope of
concentrations is close to linear, however, this is not repeated when there is strong
preferential sampling and, as might be expected, applying these simple approaches
would result in summaries being overestimated, as would be seen when just using
the available data (black lines in Figure 1).

When the site selection probabilities are proportional to size, the HT estimator
has another desirable feature, that the {ytu/πtu} ratios will be nearer constant than
if the {πtu} are all equal, as is the case with the unadjusted estimates [Stehman
and Overton (1994)]. This will lead to a decrease in the variability associated with
the adjusted estimates compared to that for the unadjusted ones, resulting in nar-
rower 95% error bars. In practice, this will additionally be affected by factors such
as the strength of preferential sampling, it’s cumulative effect over time and the
underlying variability of the population parameters. This can be seen in Figure 1
with the narrow error bars for the adjusted estimates (compared to their unadjusted
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counterparts) increasing in width over time and with the extent of the variability in
the underlying field.

For the second mode of sampling the overall setting is the same as the first, but
now the unobserved responses need to be imputed. A GRF superpopulation model
is assumed with Model M1 being Yjtu = νjtu + εjtu, where νjtu = ξ1xjtu + ξ2ztu.
The structure of Model M2 is the same with the x replaced by p [as in equa-
tions (5.3) and (5.4)]. The preferential sampling covariates {ztu} are specified be-
low. After fitting the {ξi, i = 1,2} and the parameters of the covariance models,
unobserved yjtu can be imputed by standard geostatistical (or other) methods.
Analysis proceeds as follows for each of the two models:

(ii) Expanding adaptive network design:
1. Time 1: Compute the HT estimate of the population mean μ̂1 using equa-

tion (4.2). Impute the unobserved responses ŷ1u, u ∈ D \ S1.
2. Time 2: Use the imputed responses at time 1 and logistic regression as in

equation (4.4) to estimate the conditional selection probabilities π̂2u, u ∈
S2. Then estimate their unconditional probabilities of selection π̂∗

2u using
equation (4.3). Thus, at time 2, for all u ∈ S2, π̂∗

2u = π̂∗
1u + (1 − π̂∗

1u)π̂2u.
Compute the HT estimate for each of the two scenario models (Mj, j =
1,2):

μ̂2 = ∑
u∈S2

y2u

Nπ̂∗
2u

.

3. Time 3: Compute z2u using equation (4.6). Impute the unobserved ŷ2u, u ∈
D \ S2 as described above. Estimate the conditional selection probabilities
π̂3u for sites in S3 and then their unconditional selection probabilities π̂∗

3u.
Compute the HT estimate for each of the two scenario models (Mj, j =
1,2):

μ̂2 = ∑
u∈S3

y3u

Nπ̂∗
3u

.

4. Time t = 4, . . . , T : Repeat step 3 after recursively updating it.
5. Repeat the previous steps for each of the 1000 replicate data sets, at each

time calculating the HT population average estimates along with their 95%
error bands.

Figure 2 shows the corresponding results to those seen in Figure 1 for the ex-
panding network case. As with the deceasing network case, clear differences can
be seen between the true finite population means at each time point and those esti-
mated from the data arising from the preferential samples, with the differences be-
ing greater in the case of strong preferential sampling. This bias is again markedly
reduced when using the HT adjusted estimates. The width of the error bands for
both estimates are initially large due to the small sample sizes and they decline
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FIG. 2. Results from the simulation study of a network that is increasing in size over time. Lines
represent the population average over all sites under the superpopulation models (black), the un-
adjusted estimates (red) of that mean and the Horvitz–Thompson adjusted estimates (green). Dotted
lines show 95% error bands based on 1000 simulated data sets. Upper and lower panels show results
for single and multiple point emission scenarios, respectively. Note that the black line is often not
visible, as it is overlaid by the green line due to the closeness of the adjusted estimates to the true
values.

in width as time goes on due to the increasing sample sizes. In all cases those for
the HT estimator are the narrower of the two for the reasons given above. Perhaps
surprisingly, this reduction is observed in all four cases over all time, despite the
need in this case to impute unobserved responses in the case of the HT estimator.
Imputation does add uncertainty, however, as we see in comparison to the widths
seen in the decreasing network example, as would be expected given that these
bands reflect both variation due to the preferential resampling and that associated
with the imputation of unobserved responses.
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6. Case study: Black Smoke in the United Kingdom. In this case study
we aim to address one of the paper’s primary aims, that of adjusting population
level estimates of BS levels in the UK over an extended period to make them
unbiased. Shaddick and Zidek (2014) provide evidence of preferential sampling in
the reduction in the network over time, and here we use the methods developed in
Sections 3 and 4 and demonstrated in the simulation studies (Section 5) to adjust
estimates of overall average annual concentration levels as well as the number of
sites out of compliance.

We begin with a summary of the monitoring program for BS in Great Britain.
Although air pollution has been a concern for many centuries, it became a global
health issue in the early parts of the last century after a number of high pollution
episodes were linked to increased health risks [Firket (1936); Ciocco and Thomp-
son (1961); Ministry of Public Health 1954]. As a result, attempts were made to
measure air pollution concentrations in a regular and systematic way.

Daily average BS has been shown to be a reasonable predictor of PM10. In gen-
eral, PM10 concentrations are usually higher than BS except during high episodes
and, hence, if BS exceeds the PM10 limit, it is likely that PM10 will also be out
of compliance [Muir and Laxen (1995)]. Black smoke (BS) is one of a number
of measures of particulate matter; other examples include the coefficient of haze
(CoH) and total suspended particulates (TSP), as well as direct measurements of
PM10 and PM2.5. Each of these has been associated with adverse health outcomes
[for PM10, Samet et al. (2000); for PM2.5, Goldberg et al. (2001); for TSP, Lee
and Hirose (2010); for BS, Verhoeff et al. (1996); for CoH, Gwynn, Burnett and
Thurston (2000)]. Attempts have been made to standardize the measures of pollu-
tion by converting the measurements into “equivalent” amounts of PM10, for ex-
ample, PM10 ≈ 0.55 TSP, PM10 ≈ CoH/0.55, PM10 ≈ BS and PM10 ≈ PM2.5/0.6
[Dockery and Pope CA III (1994)].

In 1961 the world’s first coordinated national air pollution monitoring network
was established in the UK using BS and sulphur dioxide monitoring sites at around
1200 sites. As levels of BS pollution have declined, the network has been progres-
sively rationalized, reduced, moved, replaced and by the mid-nineties it comprised
of ca. 200 sites.

The data on annual concentrations of BS (μgm−3) used in this case study were
obtained from the UK National Air Quality Information Archive. We use data from
1970–1996 and restrict to the case where sites were withdrawn from the network
over time. A small number of sites were added during this period, but they are al-
most exclusively ones which reported even higher concentrations, suggesting they
were added preferentially. For clarity, we consider only the reduction in the net-
work. We use the 624 sites that were operational in 1970 and which had at least
5 measurements in the following 25 years, and these sites define the finite popu-
lation, that is, the concentrations measured at these sites as characterizing the BS
field over the UK. For each year, t , data are available from nt sites, t = 1, . . . ,26.
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Measurements, Zit , are the log of the annual means of the 24 hour mean concentra-
tions of BS divided by a normalization constant to make them unitless (to be able
to apply logarithms). Over the study period, the number of sites was reduced from
n1 = 624 to n26 = 193 with the yearly means over all sites,

∑ni

i=1 Zit/ni , falling
from 60.5 to 9.3 μmg−3 over the same period. However, the preferential selection
used to reduce the network, and demonstrated in Shaddick and Zidek (2014), sug-
gests the latter number (the sample average of the values of the surviving sites) is
too high. That calls for an adjustment of the form now described.

Extensive analysis of these data suggests a log-Gaussian random field super-
population model [Shaddick and Zidek (2014)] for BS, because, in addition to the
desirable properties of right-skew and nonnegativity, there is justification in terms
of the physical explanation of atmospheric chemistry [Ott (1990)]. We therefore
take the logarithms of BS concentrations after normalizing to eliminate their units
of measurement [Monk and Munro (2010)], Yit = log(Zit/78), where 78 μgm−3

represents roughly the average level of BS at the beginning of the time at which
the network was operational.

Working on the log-scale described above, we applied the methods described
in Section 5 for (i) decreasing networks to adjust the annual arithmetic averages
for the effects of preferential sampling. Two characteristics associated with the re-
sponses seem of natural interest. The first we consider is the set of annual averages
across these 624 sites, as these could be published to show the effect of regulatory
policy over time. The left-hand panel of Figure 3 shows the estimated geometric
annual mean levels over time (dotted black line) together with the HT adjusted
ones (solid grey line). It clearly shows the adjustment reduces the estimates of the
average levels. Since the standard unit for calculating relative risks of particulates
in health effects analysis is 10 μgm−3, the difference seems important, being more
than one of these standard units over much of the period. This is because, on the
log-scale, responses with low values get high weights in the HT adjusted arith-
metic average, since their chances of making the cut in every successive year, say,
to 1985, for example, is very small. As in Section 5, we also briefly consider the
effects of two very simple approaches to “filling in” the missing data after a site
has been excluded from the network: (i) using the last recorded value throughout
the following years and (ii) using prediction from linear regression. Further details
can be found in Section 5. As might be expected, using the first approach here
results in much higher estimates of the annual averages, for example, in 1996 the
estimate was 19.1 μgm−3 compared to 9.8 μgm−3 obtained from the available
data and 1.1 μgm−3 using the HT approach. The corresponding estimate using the
linear regression approach was 2.4 μgm−3. While this appears a not unreasonable
estimate, the simplistic nature of the correction means that in the early years of
the analysis it produces estimates which are much higher than that obtained from
the available data and the HT estimates. In 1972, for example the estimated annual
average would be 60.5 μgm−3 using linear regression compared to 50.6 μgm−3

using the available data and 48 μgm−3 using the HT approach, respectively.
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FIG. 3. Changes in the levels of black smoke within the UK from 1970–1996 and the effects of
adjusting estimates of annual indices. The left-hand panel shows the annual means over all sites
(dotted black line) together with adjusted values (solid grey line). The right-hand panel shows the
number of sites exceeding the EU guide value of 34 μgm−3 (dotted black line) together with the
corrected values (solid grey line).

The second characteristic we consider is potentially of even greater operational
importance, the number of sites in nonattainment, that is, those which do not com-
ply with the air quality standards in a given year. This number is a surrogate for the
cost of mitigation for putting the BS concentrations into compliance. For example,
as part of the analysis of the impact of the various ozone standards considered by
the EPA’s CASAC Ozone Committee in 2008, the EPA Staff predicted the frac-
tion of monitored counties in the United States that would be out of compliance.
For the standards that were finally proposed by the Committee, that percent was
found to be 86%. Although the US Clean Air Act (epa.gov/oar/caa/title1.html) of
1970, under whose mandate the CASAC was created, rules out economic impact in
consideration of standards designed to protect public health, nevertheless, policy
making cannot ignore the cost of attainment which can be substantial. The right-
hand panel of Figure 3 shows the number of sites each year that exceed the 1980

http://epa.gov/oar/caa/title1.html
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TABLE 3
Estimated number of sites exceeding regulatory guide values for black smoke, with and without

adjustment for preferential sampling using Horivitz–Thompson estimators

Limit 68 μgm−3 Guide 51 μgm−3 Guide 34 μgm−3

Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

1972 129 123 236 225 402 384
1973 73 68 153 143 327 306
1974 31 28 94 84 211 189
1975 21 19 58 52 223 201
1976 19 18 50 47 201 189
1977 7 6 23 20 106 94
1978 7 7 18 17 94 87
1979 8 7 21 19 75 71
1980 0 0 6 6 22 21
1981 2 2 11 10 47 42
1982 0 0 0 0 18 9
1983 0 0 10 5 24 16
1984 0 0 0 0 10 8
1985 0 0 0 0 5 4
1986 0 0 0 0 12 6
1987 0 0 0 0 15 7
1988 0 0 0 0 12 3
1989 0 0 0 0 0 0
...

...
...

...
...

...
...

1996 0 0 0 0 0 0

EU guide value of 34 μgm−3 [European Commision (1980)]. The dotted black line
is the number of exceeding sites based on the recorded data, with the solid grey
line the numbers after adjustment for the preferential sampling. The unadjusted
numbers are the fraction in the monitoring network out of compliance multiplied
by the finite population total of N = 624. Their adjusted counterparts are found by
applying the HT weights to the 1s present in the summation used to calculate that
fraction. Table 3 shows the number of sites exceeding the EU limit of 68 μgm−3

and the guide values of 51 and 34 μgm−3, where a reduction of the number of ex-
ceedances can be seen when adjusting for the preferential sampling. For example,
in 1974, the crude estimate gives 211 of the 624 sites out of compliance with the
34 μgm−3 criterion, while its adjusted counterpart is just 189. This is a substantial
difference, given the economic cost of mitigation. Note the large number of zeros
reflect the decline over time in the levels of BS.

Overall we see quite a substantial overestimation of important finite population
parameters due to the preferential sampling in published estimates.
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7. Discussion. A number of methods have been discussed in this paper for
modeling the probability of selection in preferential sampling and we have devel-
oped a general framework using a superpopulation modeling approach. Taking a
public policy perspective, we have emphasized the HT approach to mitigating the
effects of preferential sampling in order to get unbiased estimators.

Having the space–time series of sites in Section 6 enables us to do something
that is not possible with only spatial data, namely, to study the preferential se-
lection process itself. This is performed using logistic regression to estimate the
selection probabilities (Sections 5 and 6). The results from the simulation studies
in Section 5 suggest the method proposed in this paper compensates for the effect
of preferentially sampling and reduces bias. Section 6 shows that this adjustment
can be substantial in practice.

The case study in Section 6 demonstrated the use of the method where the pa-
rameters being estimated are numerical features of the finite population of expo-
sures of air pollution. The finite population in this case were monitoring sites in
the UK that were measuring BS in 1970. From that time there was a dramatic re-
duction in the size of the monitoring network and subsequently only subsets of
those exposures were measured. In the case study we apply the methods we have
developed to adjust these estimates for the effects of preferential sampling. The
results show reductions in the estimates, illustrating how the preferential siting of
monitors where exposures are high gives an exaggerated impression of the level of
BS and the number of sites that are in noncompliance. Note that selection bias can
accumulate over time and can require increasingly greater adjustments. Although
the effect on estimates of the number of sites out of compliance appears not to
be as dramatic, it is substantial, especially considering that forcing attainment of
standards can entail large costs.

In the case study, we assumed a log-Gaussian superpopulation model for BS
and so the geometric, rather than arithmetic annual average, must be used to char-
acterize the finite population’s annual mean level. This metric is often used for
particulate air pollution; see, for example, Mueller (1994). In Section 3 (case 2) we
show that in such cases spatial-correlation-adjusted (unequal) weights ought to be
used to characterize the finite population mean levels. However, this is extremely
unlikely to be the case in reality and, as a concession to standard practice, we use
equal weights, leaving this issue for exploration in future work. Asymptotic theory
and variance approximations are available for the Horvitz–Thompson estimator,
which would enable approximate error bands to be computed for the adjusted esti-
mates. However, these would not include the additional uncertainty associated with
the estimation of the selection probabilities themselves. So we plan in future work
to develop an approach that would also involve the construction of measures of
uncertainty associated with the sampling weights and, consequently, the adjusted
annual averages and exceedances for a single data analysis (in the simulation study
95% error bars are obtained by repeated simulation). If both the modeling of the
weights and the adjustment process were combined within a Bayesian framework,
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it may be possible to propagate the uncertainty in the estimation of the weights
(including that which may arise due to spatial prediction in the case of expanding
networks) through to the adjusted values.

The HT approach will not always be the most appropriate approach. In some
cases a likelihood-based approach may be feasible provided that the preferential
sampling can be modeled. That could be the case in the context of air pollution
and health in epidemiological analyses, for, as Guttorp and Sampson (2010) point
out, the air pollution monitoring sites may be intentionally located for reasons
such as the need to measure the following: (i) background levels outside of urban
areas; (ii) levels in residential areas; and (iii) levels near pollutant sources. Then
the method in D10 may be useful. A possible alternative approach to the method
in D10 is described in Zidek and Shaddick (2012). While it resembles the point
process model, it is designed for discrete site domains as seen in this paper. More-
over, being based on intensities for paralyzable particle counters, it would allow
for preferential sampling designs with varying intensities over time.

The approach taken in the paper will work best when at least some representa-
tives of the general population of sites continue to be sampled since the selection
weights would then be able to compensate for their underrepresentation in com-
puting population statistics. In the case study, the BS network was originally set up
to try and provide monitoring for a cross-section of expected cities and pollution
levels, although in reality the original set of locations would have included some
form of preferential sampling. In the absence of such representation or good back-
ground knowledge of how the biased selection was made, there would seem to be
no alternative but to augment the network with some possibly temporary monitors.
That leads to a design problem about the optimal selection of those sites. In this
case, then we would be unbiasing the design rather than unbiasing the estimates,
and that would need a different approach than that described in this paper.

The analyses reported in this paper and its predecessors [Diggle, Menezes and
Su (2010b), Gelfand, Sahu and Holland (2012), Pati, Reich and Dunson (2011)],
coupled with the importance and widespread use of environmental monitoring net-
works, points to the need for further exploration and confirmation of the results
of these analyses. We recognize there are limitations in the preferential sampling
models used in the simulation studies in these papers. In practice, site selection is
complex, involving committees, guidelines and negotiations, and local administra-
tors in affluent areas demanding a monitor in their municipality. However, they do
convincingly demonstrate that preferential site selection does have serious adverse
consequences, something that does not appear to have been recognized by agen-
cies charged with formulating regulatory guidelines. Network data are commonly
used as if they represent a true reflection of underlying environmental fields. Of
course, there are occasions when sites must be preferentially located, for example,
to check adherence to standards around industrial sources. In such cases it may be
undesirable for the data to be used for other, possibly unintended, purposes, but if
it is so used, it should be adjusted for the possible effects of preferential sampling
using methods such as that presented in this paper.
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