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Spatio-temporal prediction of levels of an environmental exposure is an
important problem in environmental epidemiology. Our work is motivated
by multiple studies on the spatio-temporal distribution of mobile source, or
traffic related, particles in the greater Boston area. When multiple sources
of exposure information are available, a joint model that pools information
across sources maximizes data coverage over both space and time, thereby
reducing the prediction error.

We consider a Bayesian hierarchical framework in which a joint model
consists of a set of submodels, one for each data source, and a model for the
latent process that serves to relate the submodels to one another. If a submodel
depends on the latent process nonlinearly, inference using standard MCMC
techniques can be computationally prohibitive. The implications are partic-
ularly severe when the data for each submodel are aggregated at different
temporal scales.

To make such problems tractable, we linearize the nonlinear components
with respect to the latent process and induce sparsity in the covariance matrix
of the latent process using compactly supported covariance functions. We
propose an efficient MCMC scheme that takes advantage of these approxi-
mations. We use our model to address a temporal change of support problem
whereby interest focuses on pooling daily and multiday black carbon readings
in order to maximize the spatial coverage of the study region.

1. Introduction and background. An important scientific goal in environ-
mental health research is the identification of sources of air pollution responsible
for the well-documented health effects of air pollution. A pollution source of great
interest is motor vehicle (i.e., traffic) emissions. Because traffic pollution is in-
herently higher near busy roads and major highways and falls off to background
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levels relatively quickly in space, concentrations of traffic-related pollutants ex-
hibit large amounts of spatial heterogeneity within an urban area. Therefore, epi-
demiologic studies of the health effects of traffic pollution that use a centrally
sited ambient monitor suffer from large amounts of exposure measurement error
[Zeger et al. (2000)]. However, because it is not always feasible to obtain expo-
sure recordings at each study subject’s residence at a given time (a special case
of spatio-temporal misalignment), it is now common practice in air pollution epi-
demiology for researchers to collect data from monitoring networks on the intra-
urban spatio-temporal variability in traffic pollution levels. These data are used to
make predictions of the exposure process, which are then used as a surrogate for
true exposures in health effects models [Adar et al. (2010); Berhane et al. (2004);
Wannemuehler et al. (2009)]. Note that this creates a measurement error problem
[Gryparis et al. (2009)].

In this article we consider statistical models for prediction of spatio-temporal
concentrations of black carbon (BC), thought to be a surrogate for traffic-related
air particle levels [Janssen et al. (2011)], in the greater Boston-area. One com-
plicating factor in the development of such models in our Boston-area analysis,
however, is that the logistical and financial demands of maintaining a dedicated
monitoring network are prohibitive. Accordingly, rather than set up a single net-
work with a standardized monitoring protocol, our collaborators have augmented
existing ambient monitoring data with targeted residence-specific indoor pollution
monitoring aimed at increasing both the spatial and temporal coverage of the study
region and period, respectively. Early work by our group [Gryparis et al. (2007)]
focused on latent variable models for the integration of spatio-temporal data from
multiple sources when all data were measured at the same temporal (in this case,
daily) scale. The resulting number of monitors producing daily BC data was mod-
est (under 90), limiting our ability to fully explore the spatio-temporal structure in
the data. Specifically, such data sparsity motivated us to fit relatively simple spatial
models separately for warm and cold seasons, as opposed to fitting more complex
and likely more realistic spatio-temporal correlation structures across the entire
study period.

Since this initial work, data at additional spatial locations have been collected.
In this work, we consider data from 93 additional indoor monitors and explore how
incorporation of these data improves our ability to explore the spatio-temporal pat-
terns in the resulting monitoring data and ultimately the predictive performance of
the resulting exposure models. One factor complicating the integration of these
new data is the fact that this more recent monitoring campaign yielded concen-
tration data at temporal scales different than the original BC data. Whereas the
original data were collected on a daily time scale, the more recent monitoring
campaign yielded multiday integrated readings. Therefore, our scientific interest
focuses on the integration of data from these disparate sources into a unified expo-
sure prediction framework, while rigorously accounting for changes in temporal
support and the fact that different monitors operate irregularly in time. Given a
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modeling strategy that satisfies these goals, we assess the improvement in predic-
tive performance of the models that incorporate all the data versus simpler models
that only use the original daily data. While there has been a wide body of statistical
work on spatio-temporal modeling of air pollution, most of these efforts have fo-
cused on data without substantial temporal misalignment and with a single type of
pollution measurement. Although there is a considerable literature on the change
of spatial and spatio-temporal support [Gelfand, Zhu and Carlin (2001)] and the
use of aggregated data in spatial statistics [Gotway and Young (2002, 2007);
Fuentes and Raftery (2005)], these proposed methods largely rely on the linear
change-of-support and data assimilation. For example, Calder (2007, 2008) de-
velops dynamic process convolution models—effectively, multivariate time series
models—for multivariate spatio-temporal air quality data that allow one to solve
the linear change-of-support problem. We are not aware of references that focus
on the nonlinear change of temporal support in spatio-temporal statistics.

We now outline the structure of the available BC data in more detail. The three
data types that we use in our model and describe below are (i) daily average out-
door BC concentrations (abbreviated as BCO), (ii) daily average indoor BC con-
centrations (BCI) and (iii) multiday aggregated indoor BC concentrations (BCA),
in μg/m3. Figure 1 and Figure 4 of the online supplements [Bliznyuk et al. (2014)]

FIG. 1. Spatial coverage of monitors. The HSPH (Countway) monitor is at the center of the circle
in Downtown Boston.
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display the spatial and temporal coverage of the study region and periods, distin-
guishing the different data types.

Daily outdoor data (BCO). A sizeable fraction of the BCO readings that we
use come from Gryparis et al. (2007). These data, generated from two different
exposure assessment studies, were collected by outdoor monitors at 48 spatial lo-
cations in Boston and its suburbs over the period from mid October 1999 to the end
of September 2004. The length of time each monitor operated ranged from 2 weeks
to hundreds of days. These monitoring efforts resulted in 4219 daily BC readings.
Our analyses supplement these data with additional daily BC data collected as part
of a recent NIH Program Project Grant (PPG), which added 2696 daily readings
from 52 distinct sites taken between mid March 2006, and early November 2008.
The observations from the two studies do not occur at the same spatial locations,
thus, we have 100 distinct sites, with over 6900 daily BCO readings.

Daily indoor data (BCI). These data consist of 318 daily indoor concentrations
of BC from 45 distinct households, recorded between mid November 1999 and
early December 2003. Of these 45 sites, 30 overlap spatially and temporally with
the BCO data. Further details are in Gryparis et al. (2007).

Multiday aggregated indoor data (BCA). Multiday measurements of indoor
BC were collected as part of the Normative Aging Study (NAS). There are 93
observations, one per household, each of which is a measurement of concentra-
tion aggregated over multiple days; the corresponding daily concentrations are not
available. The lengths of measurement, which range from 3 to 14 days, and start-
ing dates of the monitoring periods are different across the households. The data
correspond to the period from mid July 2006 through late March 2008. The spatial
locations of the multiday data are distinct from those of the daily data.

To achieve the scientific goals outlined above, we develop a Bayesian hierarchi-
cal framework for inference and prediction where a joint model for all exposure
measurements depends on a set of submodels, one for each data source, and a
model for the latent process that relates the submodels to one another. In partic-
ular, we focus on the case in which the submodels depend on the latent process
nonlinearly, which frequently occurs when the different data sources yield data on
different surrogates of pollution or at varying temporal or spatial scales.

Inference for nonlinear hierarchical models with latent Gaussian structure is
computationally challenging. When the likelihood is not Gaussian, likelihood-
based and Bayesian inference involve high-dimensional integration with re-
spect to the random effects that cannot be expressed in closed form. While
MCMC is a standard approach for such models in a Bayesian framework, conver-
gence and mixing are often troublesome [Christensen and Waagepetersen (2002),
Christensen, Roberts and Sköld (2006)] because of the high-dimensionality of the
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random effects and the dependence between random effects (particularly in spatio-
temporal specifications) and cross-level dependence between random effects and
their hyperparameters [Rue and Held (2005), Rue, Martino and Chopin (2009)].

Our main methodological contribution is development of an efficient, yet
straightforward, MCMC algorithm for Bayesian inference on model parameters
and prediction of arbitrary functions of the latent process. Within our hierarchi-
cal model, it is based on the approximation of nonlinear regression functions by
“linearizing” them with respect to the latent process values over the region of their
high posterior probability.

The paper is organized as follows: in Section 2 we describe the overall hierar-
chical modeling strategy, proposing a nonlinear statistical model in Section 2.1 that
is approximated through “linearization.” In Section 3 we present a computational
strategy to reduce the cost of Bayesian inference and prediction and discuss the
relative merits of our approach and existing approximation methods. Section 4 is
devoted to model selection and validation for pollutants in the greater Boston data,
assessment of the adequacy of linearization and the results of Bayesian inference
and prediction. Discussion and concluding remarks are in Section 5. Technical de-
tails and supplementary figures and tables are in the online supplements [Bliznyuk
et al. (2014)].

2. Statistical model. This section defines the joint model for the observed
data. The individual models for the observations of each type are linked through
the latent process. The nonlinear model for the multiday data is subsequently “lin-
earized” for the sake of computational tractability.

2.1. Nonlinear observation model. Following Gryparis et al. (2007), the latent
spatio-temporal process, η, is a proxy for the logarithm of the true daily average
concentration of outdoor black carbon (BC). The model for η will be specified in
the next subsection. For notational simplicity, we will often abbreviate the space–
time indices using subscripts, for example, η(si, tj ) as ηij for the value of the latent
process at site si on date tj . The logarithms of the observed outdoor and indoor
daily average BC concentrations, YO

ij and Y I
ij , are related to the latent process as

YO
ij = ηij + εO

ij ,(1)

Y I
ij = α0i + α1I ηij + εI

ij ,(2)

where {α0i} are household-specific fixed effects and εO
ij , εI

ij are instrument errors.
The household-specific effects are introduced as in Gryparis et al. (2007) in order
to account for that differences in penetration efficiencies of particles that depend
on properties of the building. In the absence of instrument error, setting the slope
α1I = 1 corresponds to the indoor BC being proportional to the outdoor BC on the
original scale, with the proportionality constant exp(α0i ). The values of the slope
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α1I less than one—such as those observed with our data—allow one to account for
the slower than linear increase in the indoor BC as the outdoor BC grows, relative
to the proportional concentration model.

The model for the observed average multiday concentration of indoor black
carbon at a site si is defined as

YA
i = α0i + gi

(�ηA
i

) + εA
i ,(3)

where �ηA
i is the vector of (daily) latent process values upon which the aggregate

average reading at si depends and εA
i is the instrument error. We assume that the

instrument error processes {εO
ij }, {εI

ij } and {εA
i } are mutually independent Gaussian

white noise with zero mean and variances σ 2
O , σ 2

I and σ 2
A, respectively.

Without loss of detail, let YA
i be the logarithm of the sum (as opposed to an

average) of consecutive daily average concentrations of indoor black carbon at
site si . The nonlinear regression model for the multiday data is

gi

(�ηA
i

) = log
∑
j

exp(α1I · ηij ).(4)

The nonlinearity arises because the multiday readings are aggregated on the origi-
nal rather than on the logarithmic scale. For instance, without the instrument error,
that is, if εI

ij = εA
i = 0, YA

i would be the logarithm of
∑

j exp(Y I
ij ), the sum of

consecutive daily readings of (daily) average indoor black carbon concentrations
at site si . Trivially, equation (2) is a special case of equation (3).

Note that there is only a single reading YA
i for each household, so the home-

specific intercepts α0i are not identifiable in the model of equation (3). We there-
fore absorbed them into εA

i , but introduced the parameter α00 to capture the
population intercept. Exploratory analysis revealed that the slope parameter αI

can be significantly different for the models for Y I and YA. Consequently, the
model (3) was changed to

YA
i = α00 + log

∑
j

exp(α1A · ηij ) + εA
i .(5)

The coefficient α1A is allowed to be different from α1I in the model for Y I , in
order to account for (i) data aggregation and rounding errors, since the monitors
from the NAS study do not run for an integer number of days, and (ii) demographic
differences in households since the multiday data come from a study (targeting
elderly people) different from the study providing the daily indoor data.

2.2. Latent process model. The latent process at site si on day tj is modeled as

η(si, tj ) = x(si, tj )
Twx + ζ(si, tj ) + u(si, tj ),(6)

where x(si, tj ) is a vector of observable predictors and ζ(si, tj ) + u(si, tj ) ac-
counts for unobservable spatio-temporal variability. In order to ensure identifia-
bility, we let ζ capture the temporally long-range spatio-temporal variability and
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u capture the temporally short-range variability. Equivalently, for a fixed value s0
of s, u(s0, ·) is a stationary temporal process with rapidly decaying dependence,
and ζ(s0, ·) is a long-range temporal process, possibly with nondecaying depen-
dence.

For our case study, components of the vector of observable covariates x(s, t) in
equation (6) are provided in Table 1. They include (i) spatially-varying variables—
population density, traffic density and land use; (ii) temporally-varying variables—
readings from the Harvard School of Public Health (HSPH) central site monitor,
meteorological variables (wind speed and planetary boundary layer); and (iii) in-
teraction terms. We use the logarithm of readings from the HSPH central site mon-
itor as a predictor rather than as a response in order to enable comparisons with
earlier work of Gryparis et al. (2007) that set u = 0. The implication is that much
of the temporal variability common to all sites is captured by observations from
the central site and that the temporal components of the model capture variability
above and beyond that measured at the central site.

Following Opsomer, Wang and Yang (2001), we let ζ capture the long-
range spatio-temporal variation, often referred to as the unknown smooth spatio-
temporal trend. In the spirit of Wang (1998), we use penalized splines, so that the
trend can be represented as

ζ(s, t) = z(s, t)Twz,(7)

where z(s, t) is a column vector of known basis functions evaluated at (s, t) and wz

is a column vector of the corresponding coefficients. We define the actual form of
z(s, t) and constraints on wz below. Because the spatio-temporal coverage by the
monitors is sparse (about 7300 observations from over 2700 distinct days and at
most 200 sites), unconstrained spatio-temporal smoothing would be unreliable in
parts of the domain without observations. Instead we put constraints on the spatio-
temporal smoother by requiring the smoother to be periodic, thereby borrowing
strength across years when estimating the trend. This also allows one to make
predictions outside the temporal range of the observations. The local deviations
of the latent process from the periodic term will be accounted for by the u(s, t)

process.
We decompose the long-range spatio-temporal trend as

ζ(s, t) = gS(s) + gT (t) + gST(s, t),

where gS and gT are smooth functions of spatial coordinates and of time, respec-
tively, and gST is a function representing the long-range (in time) spatio-temporal
interaction. Here, gT is the annual (cyclic) temporal trend, so that gT (t) = gT (dt ),
where dt = mod(t,365) is the day of the year if leap years are ignored. We use
a thin-plate spline with 60 knots to model gS , a cubic spline with seven equally
spaced knots to model gT , and the tensor product of spatial and temporal basis
functions to model the interaction, gST [Wood (2006)]. To ensure that the tempo-
ral trend is periodic, continuous and differentiable at t = 0, linear constraints were
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TABLE 1
Posterior summaries of the coefficients of the observed predictors under model M(U = 1,GST = 0,A = 1)

wi Predictor Mean 2.5% 50% 97.5%

w1 1, the intercept 4.580 −2.190 4.176 13.516
w2 log_pop_sqkm, log of population per square km 0.259 0.021 0.262 0.494
w3 log_adtxlth100m, log of traffic density −0.177 −0.306 −0.176 −0.049
w4 nlcd, land use index 2.65 · 10−4 1.19 · 10−4 2.63 · 10−4 4.14 · 10−4

w5 loghsph, log of HSPH monitor readings 0.767 0.742 0.767 0.793
w6 wind_sp, wind speed 0.129 0.014 0.130 0.244
w7 log_pbl, log of planetary boundary layer −0.073 −0.244 −0.074 0.095
w8 log_pop_sqkm * wind_sp −0.028 −0.053 −0.028 −0.003
w9 log_adtxlth100m * wind_sp 0.002 −0.011 0.002 0.015
w10 log_pbl * wind_sp −0.023 −0.040 −0.023 −0.006
w13 log_pop_sqkm * log_pbl * wind_sp 0.004 0.001 0.005 0.008
w14 log_adtxlth100m * log_pbl * wind_sp 0.000 −0.002 0.000 0.002
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placed on the coefficients of gT and of gST ; see online supplements [Bliznyuk et al.
(2014)], Section A.5.3. Thus, the model of equation (6) can be written as a linear
model

η(s, t) = c(s, t)Tw + u(s, t),(8)

where

c(s, t)T = {
x(s, t)T,

[
s;φ(s)

]T
,
[
t;ψ(t)

]T
,
[
s;φ(s)

]T ⊗ [
t;ψ(t)

]T}
is a row vector of “predictors” and

w = [
wT

x ,wT
S,wT

T ,wT
ST

]T

is a column vector of coefficients. Here, the ith component of φ(·) is φi(·) =
φ(·, s(i)), the spatial basis function centered at the knot s(i); similarly, ψj(·) =
ψ(·, t (j)) is the j th temporal basis function centered at the knot t (j), for exam-
ple, ψj(dt ) = |dt − t (j)|3. Following Wood (2006), we penalize the square of the
second derivative of the nonparametric smooth terms to prevent overfitting. This
approach is attractive because the penalty matrices for gS and gT can be written as
symmetric positive semidefinite quadratic forms in wS and wT . For example, the
penalty for gT is

PT =
∫ {

g′′
T (t)

}2
dt = wT

T · MT · wT(9)

for some symmetric positive semidefinite matrix MT . The spatial and temporal
marginal penalty matrices MST,S and MST,T for the smooth interaction term gST
are derived in the online supplements [Bliznyuk et al. (2014)], Section A.5.2.
These penalty matrices are subsequently used to define a precision matrix for the
multivariate normal prior on w as the Bayesian analogue of the penalized log-
likelihood criterion with penalty matrices MS , MT , MST,S and MST,T [Ruppert,
Wand and Carroll (2003)]. This prior has a zero mean and precision matrix

Qw = blkdiag
{
	 · Idim(wx),

MS

τ 2
S

,
MT

τ 2
T

,
MST,S

τ 2
ST,S

+ MST,T

τ 2
ST,T

}
,(10)

where a small multiple 	 of the identity matrix is used to ensure that the prior on
the linear coefficients wx is proper and where blkdiag is a block-diagonal matrix
with blocks listed as arguments.

We use a Gaussian process model for u in order to account for the short-range
temporal variability and spatio-temporal interaction. Given the data sparsity, we
model the covariance function for u in a separable fashion for simplicity as

Cov
{
u(s, t), u

(
s′, t ′

)} = σ 2
u · CS

(
s, s′|θS

) · CT

(
t, t ′|θT

)
,(11)

where CS and CT are spatial and temporal correlation functions.
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To model spatial dependence, we use the Matérn family of correlation functions

CS(s, s + h) = (
2
√

νθS‖h‖2
)ν · Kν

(
2
√

νθS‖h‖2
)
/
{
2ν−1(ν)

}
,(12)

where ν, θS > 0, (·) is the gamma function and Kν(·) is the modified Bessel func-
tion of order ν [Banerjee, Carlin and Gelfand (2004)]. The smoothness parameter
ν is difficult to estimate accurately unless the spatial resolution of the data is very
fine [Gneiting, Ševčíková and Percival (2012)]. Due to the spatial sparsity of the
set of monitors, we hold ν fixed at 2, thereby representing smooth short-range
(based on the tapering described next) variation, in u(s, t). Nonsmooth variability
is accounted for by the errors ε.

Examination of the plots of autocorrelation and partial autocorrelation functions
for residuals from a monitoring station with a long series of daily measurements
suggested that temporal dependence can be explained well by an order-one au-
toregressive process with moderate lag-one correlation (of less than 0.5). Under
the plausible assumption that the rates of decay of the temporal autocorrelation
are similar across all monitoring stations, it can be seen that the components of u

that are 7 days or more apart are practically uncorrelated since the correlation is
less than 10−2. Consequently, we introduce sparsity structure into the covariance
matrix explicitly via covariance tapering [Furrer, Genton and Nychka (2006)]. As
a temporal correlation function, we use the product of the exponential and the
(compactly supported) spherical correlation functions

CT (t, t + h) = exp(−θT · h) · max
{
(1 − h/r),0

}2{
1 + h/(2r)

}
(13)

for r = 7, which behaves similarly to the exponential correlation function when h

is small, and is exactly zero when h ≥ 7. The benefits of tapering for the computa-
tional aspects of Bayesian inference will be discussed Section 3.

2.3. Linearized observation model. We will refer to the set of equations
(1)–(6) as the nonlinear model. MCMC for such models can be very inefficient, if
tractable at all. For example, if one puts a Gaussian spatio-temporal process prior
on u, one needs to sample from a nonstandard density for the vector of latent pro-
cess values (here, of dimension 712) that enters the nonlinear model for YA. The
values cannot be analytically integrated over in the joint model. In this subsection
we develop the idea of “linearization” of the nonlinear regression function of equa-
tion (4) about some “central” value ηA∗ of the latent process and briefly discuss
the practical choices for ηA∗.

2.3.1. Linearization. The linearized model is obtained by doing a Taylor se-
ries expansion of the nonlinear regression function gi in equation (4) about some
“central” value �ηA∗

i of vector �ηA
i :

YA
i = Gi(α1A) + α00 +

Ji∑
j=1

bij (α1A)ηij + εA
i ,(14)
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where Ji is the number of days in the aggregated reading at site si , Ji ∈ {3, . . . ,14}.
Here, bij and Gi are known deterministic functions of α1A:

Gi(α1A) = gi

(�ηA∗
i

) − {
bi(α1A)

}T�ηA∗
i ,(15)

bi(α1A) = [bi1, . . . , biJi
]T = ∂gi(x)

∂x

∣∣∣∣
x=�ηA∗

i

and(16)

�ηA
i = [ηi1, . . . , ηiJi

]T,(17)

∂gi(�ηA
i )

∂ηij

= α1A exp(α1Aηij )∑
j exp(α1Aηij )

.(18)

Notice that the model obtained by replacement of equation (3) by equation (14) is
a conditionally linear model given α1A.

Define v = (w; {α0i}) and let γ be the vector of all remaining parameters, which
includes α1I , α1A,σ 2

O,σ 2
I , σ 2

A, variance components controlling the smoothness
of ζ and parameters of the covariance function of u. We can then write the lin-
earized joint model for the observed data of all types in matrix form as

Y = H(α1) · (1;v) + ξ,(19)

where ξ = X(α1)u + ε and α1 = (α1I , α1A). Here, H and X are matrices that
do not depend on v, as follows from equations (2)–(6) and (14). The scalar 1 is
necessary to capture the offset due to Gi(α1A) in the linearized model for YA,
equation (14). Notice that, conditional on α1, this is a linear model with dependent
Gaussian errors, which allows a computationally efficient implementation of an
MCMC sampler, discussed in Section 3.

2.3.2. Choice of the central value of the latent process. The scheme outlined
above assumes the availability of the point ηA∗ about which the linearization is
performed. In this section we detail how this value can be obtained and justified.
We use a standard bracket notation for marginal, [·], and conditional, [·|·], densities
[Ruppert, Wand and Carroll (2003)].

Upon defining Y OI = (YO,Y I ) and changing the order of conditioning as[
Y OI, YA|ηA,w,γ

][
ηA,w,γ

]
= [

YA|ηA,w,γ,Y OI][ηA|w,γ,Y OI][w,γ |Y OI][Y OI],
it is seen that the posterior [ηA,w,γ |Y OI] for the daily data, YO and Y I , im-
plicitly acts as an informative prior for the parameters and the latent process
in the multiday model likelihood [YA|ηA,w,γ,Y OI]. (Since {α0i} can be in-
tegrated out analytically, v is replaced by w here.) Because [ηA,w,γ |Y OI] =
[ηA|w,γ,Y OI][w,γ |Y OI], the mass of the density of the latent process vector ηA

is concentrated around the best linear unbiased predictor (BLUP) E(ηA|Y OI,w =
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ŵ, γ = γ̂ ), where ŵ and γ̂ are some “central” values of w and γ . This sug-
gests the use of ηA∗ = E(ηA|Y OI,w = ŵ, γ = γ̂ ) in the linearization. In fact,
as the daily data become dense in space, infill asymptotics suggest that the BLUP
E(ηA|Y OI,w = ŵ, γ = γ̂ ) converges to the true unobserved value of ηA. Conse-
quently, (14) provides a likelihood for YA that results in Bayesian inferences and
predictions that are asymptotically equivalent to those under the true nonlinear
model. Of course, the validity of this large-sample argument may be questionable
in some applications. For our case study, we justify use of the linearized model
for BCA empirically using a cross-validation study in Section 4.2. In Section 4.3
we assess the accuracy of inferences under the linearized model against those un-
der the nonlinear model in the simplest case when neither long- nor short-range
dependence is included in the model.

Taylor expansion about ηA∗ = E(ηA|Y OI,w = ŵ, γ = γ̂ ) is computation-
ally tractable because the marginal posterior [γ |Y OI] or the profile posterior
supw[γ,w|Y OI] can be obtained analytically (up to a constant of proportionality)
and hence maximized efficiently to get γ̂ ; the corresponding value of w is avail-
able analytically. In contrast, a possible alternative of expanding about the mode
of [ηA,w,γ |Y OIA] would require a costly numerical optimization run.

Notice that the naïve solution to the temporal change of support problem, that is,

YA
i = β0 + β1

Ji∑
j=1

ηij + εA
i ,(20)

arises as a special case of our linearized model when �ηA∗
i is set to zero. In this

case, Gi(α1A) = logJi and bij (α1A) = α1A/Ji , where Ji is the observation period
length at the site si . The linearized model becomes

YA
i = logJi + α00 + α1A

Ji

Ji∑
j=1

ηij + εA
i ,

which is equivalent to the above “naive” model when the observation period
lengths Ji are all equal. However, this is hardly appropriate in our case study since
the observation periods lengths vary from 3 to 14 days, which implies that α00 and
α1A cannot be identified from β0 and β1. More importantly, the naïve lineariza-
tion about 0 is inferior from the methodological standpoint since, unlike the lin-
earization about E(ηA|Y OI,w = ŵ, γ = γ̂ ), the approximation error in the Taylor
expansion does not go to zero as the spatial design becomes dense.

3. Computational considerations for Bayesian inference by MCMC. In
this section we develop three strategies that lower the computational burden of
model fitting and prediction: (i) covariance tapering, (ii) strategies for sampling
from the posterior density of the model parameters, and (iii) sampling strategies
for latent process prediction.
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Without tapering, the covariance matrix of the vector ξ in equation (19), �Y ,
is numerically dense. It can take on the order of several seconds on a modern
computer to form and factorize this matrix, making a long MCMC sample compu-
tationally expensive. Tapering reduces the proportion of nonzero entries (the fill)
of �Y to less than 2%. In addition, we reorder the observed data YO lexicograph-
ically with respect to the temporal index, which makes unnecessary the formal
element reordering approaches [Furrer, Genton and Nychka (2006)]. This makes
�Y a banded (block) arrowhead matrix (see Figure 5 in the online supplements
[Bliznyuk et al. (2014)] for a visualization), which yields a very efficient sparse
Cholesky factorization [Golub and Van Loan (1996)]. As a result, the cost to eval-
uate the likelihood drops by at least an order of magnitude. For a general nonlinear
model in which the joint posterior density of (v, γ ) is computationally expensive
to evaluate and tapering is not appealing, our linearization strategy can be supple-
mented by the dimension reduction scheme of Bliznyuk, Ruppert and Shoemaker
(2011) for efficient approximation of high-dimensional densities.

We now discuss a strategy for sampling from the posterior density of model pa-
rameters. Recall from Section 2.3.1 that α = {α0i}, v = (w;α0) and γ is the vector
of all other parameters. We analytically integrate v from the model as [v|γ,Y ] is
multivariate normal. Consequently, we draw from [v, γ |Y ] using composition sam-
pling, that is, by sampling γ (i) from [γ |Y ], and then by exactly sampling v from
[v|Y,γ = γ (i)], which is in the spirit of the partially collapsed Gibbs samplers
work of van Dyk and Park (2008). In order to sample from [γ |Y ], we use an adap-
tive random walk Metropolis–Hastings (RWMH) sampling scheme, in the spirit of
Haario, Saksman and Tamminen (2001), that calibrates the covariance matrix of
the proposal distribution based on the past trajectory of the Markov chain. The lag-
1 autocorrelation in the components of γ in the actual sampling was below 0.95,
while mixing for the components of v was considerably better; see Section 4.3 for
details. The actual expressions for [γ |Y ] and [v|γ,Y ] are provided in the online
supplements [Bliznyuk et al. (2014)], Section A.1.

For health effects studies and for fine visualization of the spatio-temporal vari-
ability of the latent process, one often needs to predict the values of the latent
process, ηP , at a large set of spatio-temporal indices, say, at a regular grid with
Ns spatial sites over the course of Nt days. In order to simulate from [ηP |Y ]
under the linearized model, one needs to (i) sample from [γ, v|Y ] as in Sec-
tion 3 and (ii) for each state in the (γ, v)-chain, sample exactly from [ηP |γ, v,Y ],
which is a multivariate normal density. If (γ ∗, v∗) is a given value of (γ, v) and
Cov(uP ,Y |v∗, γ ∗) = �uP ,Y (γ ∗) and Var(Y |v∗, γ ∗) = �Y,Y (γ ∗), one generally
needs to efficiently compute

E
(
ηP |Y, v = v∗, γ = γ ∗)

= E
(
ηP |v = v∗, γ = γ ∗)

+ �uP ,Y

(
γ ∗) · �−1

Y,Y

(
γ ∗) · {

Y − E
(
Y |v = v∗, γ = γ ∗)}

.
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For example, if one estimates E(ηP |Y) by Monte Carlo via “Rao–Blackwelliza-
tion” [e.g., Robert and Casella (1999)], then E(ηP |Y) ≈ M−1 ∑M

i=1 E(ηP |Y, v =
v(i), γ = γ (i)). “Poor man’s” approximations of the form E(ηP |Y, v = v∗, γ =
γ ∗), where (v∗, γ ∗) is the posterior mode or the posterior mean, are also possible.
Section A.2 of the online supplements [Bliznyuk et al. (2014)] provides computa-
tional details of evaluation of E(ηP |Y, v, γ ) and of sampling from [ηP |v, γ,Y ].

4. Analysis and results for the greater Boston data.

4.1. Candidate models. Here we consider whether simpler models, such as
the model of Gryparis et al. (2007), achieve comparable predictive accuracy to
the full model presented in Section 2. We examine eight candidate models, each
determined by a combination of following 3 indicator variables: U—whether the
model includes a Gaussian process model for the short-range dependence term, u,
or assumes that u = 0; GST—whether an extra term gST for the smooth long-
range spatio-temporal interaction is included; and A—whether the aggregated
multiday data, YA, are used (so as to assess their importance in improving pre-
dictions). We use this labeling scheme to abbreviate the models, for example,
M(U = 0,GST = 0,A = 1). We assess the models through cross-validation with
spatially nonoverlapping subsets.

4.2. Assessment of predictive performance on validation data. We allocated
a total of 1593 daily outdoor black carbon readings from 48 distinct sites into
four disjoint groups of 12 sites, with each group having roughly 400 data val-
ues. To achieve this, we generated random partitions of the 48 sites into 4 groups
many times and chose the partition that maximized the minimum pairwise dis-
tance between sites and achieved roughly the same number of observations in
each group. We held out each of the four validation subsets in turn, training the
model with the remaining observations and obtaining predictions to compare with
the held-out subset. Although the training and validation subsets of data are spa-
tially nonoverlapping, they are not temporally disjoint. To expedite model fitting,
we used optimization to find the mode γ̂ of [γ | train] and then analytically ob-
tained the corresponding value v̂(γ̂ ) that maximizes [v|γ = γ̂ , train], after which
we use the (empirical) BLUP E(YV | train, v = v̂, γ = γ̂ ) to obtain predictions.
Here, train is the “training” data, which is {Y OI \ YV } or {Y OIA \ YV }, depend-
ing on the model. This can be viewed as an analogue of the frequentist procedure
that estimates the variance components and smoothing parameters by REML (re-
stricted maximum likelihood) and then solves the quadratic minimization problem
to fit the penalized spline. Of course, rather than estimating the mode, the more
time-consuming alternative of estimating the posterior mean via MCMC could be
used. Treating v and γ as known (set to their estimated values) allows us to derive
the predictive distribution of the validation data and prediction errors used for the
prediction interval and probability scores below [Gneiting and Raftery (2007)].
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TABLE 2
Comparisons of cross-validation performance for the 8 candidate models using averaged (over four

subsets) criteria. Columns: B—MSPE; C—correlation; D—empirical coverage of the prediction
interval; E—average width of the prediction interval; F—negatively oriented interval score,

equation (43) of Gneiting and Raftery (2007); G—negatively oriented CRPS, equations
(20) and (21) of Gneiting and Raftery (2007); H—plug-in maximum likelihood prequential score,

equation (54) of Gneiting and Raftery (2007)

U : is GST: is A: is
u used? gST used? YA used? B C D E F G H

0 0 0 0.264 0.674 0.878 1.359 3.336 0.955 −0.083
0 0 1 0.161 0.777 0.907 1.360 2.165 0.527 −0.034
0 1 0 0.580 0.610 0.840 1.338 6.184 2.376 −0.175
0 1 1 0.167 0.768 0.896 1.336 2.265 0.562 −0.045
1 0 0 0.143 0.802 0.937 1.402 1.975 0.435 −0.004
1 0 1 0.132 0.816 0.938 1.394 1.918 0.396 0.007
1 1 0 0.172 0.759 0.906 1.383 2.267 0.543 −0.035
1 1 1 0.141 0.803 0.931 1.381 1.984 0.430 −0.005

Once the predictions are available, we measure the predictive accuracy using
the mean squared prediction error (MSPE) and correlation between the predicted
and observed validation values (columns B and C in Table 2). We also considered
criteria based on 95% prediction intervals, particularly the observed proportion
of coverage (column D), average width (column E) and the negatively oriented
interval score of Gneiting and Raftery (2007) defined as

Sint
α (l, u;x) = (u − l) + 2

α
(l − x)I(l − x) + 2

α
(x − u)I(x > u),

where α = 0.05, l and u are the lower and upper bounds of the size (1 −α) central
prediction interval, and I(·) is the indicator function (column F). Given compa-
rable empirical coverages, lower values in columns E and F correspond to better
fitting models. Column G summarizes the negatively oriented continuously ranked
probability scores defined as

CRPS(F, x) =
∫ ∞
−∞

{
F(y) − I(y ≥ x)

}2
dy,

where F(y) is the predictive distribution of interest, which has recently drawn the
attention of the atmospheric sciences community [see Gneiting and Raftery (2007)
and the references therein]. In column H we include summaries based on the equiv-
alent of the plug-in maximum likelihood prequential score

∑
j∈Vi

log[Y (j)| train,

v = v̂, γ = γ̂ ], where Y (j) is the j th observation in Vi . Higher values in columns
G and H correspond to better fitting models. The criteria reported in the table
are averaged over the four subsets of data, for example, the average MSPE is∑4

i=1 ‖YVi − Ŷ Vi‖2
2/ni , where YVi is the ith subset of validation data, Ŷ Vi is the

corresponding vector of predictions, and ni is the size of the validation subset.
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The cross-validation results in Table 2 suggest that, for every model (and, ac-
tually, for every validation subset; see representative results in Tables 4 and 5
in Section A.3 of the online supplements [Bliznyuk et al. (2014)]) inclusion
of the multiday data through the linearized model—in order to increase spatial
coverage—always improves the predictive performance relative to the correspond-
ing model without multiday data. In particular, it can be seen from Figures 8–11 in
the online supplements [Bliznyuk et al. (2014)] that models with long-range inter-
action term gST (GST = 1) do not perform well near the boundaries of the study
region if the model for YA is excluded (A = 0).

The two best models are M(U = 1,GST = 0,A = 1) and M(U = 1, GST = 1,
A = 1). With an exception of one station where the model M(U = 1, GST = 1,
A = 1) overpredicts, predictions from the two models are very similar, suggesting
that inclusion of the long-range spatio-temporal interaction is not helpful for pre-
diction given the observations available. It is notable that, for the better models,
the empirical prediction interval coverage is close to the nominal 95%. The small
difference of 1–2% from the nominal coverage could be due to holding the values
of the parameters fixed at the estimated values. Failure to include the short-range
dependence term u appears to result in underestimation of the prediction error
variance and, consequently, narrower intervals with below-nominal coverage.

We also compared the predictive performance of our linearized models and the
corresponding “simple models” based on equation (20) proposed by a reviewer
using the MSPE and the correlation between held-out data and predictions. For
each validation subset, our linearized models outperformed the models of equa-
tion (20). Surprisingly, the naïve linearization of the “simple models” occasion-
ally caused the predictive performance to deteriorate, relative to the corresponding
models without the multiday data. Our findings are fully described in Section A.3.2
in the online supplements [Bliznyuk et al. (2014)].

Validating the model on a spatially and temporally disjoint subset of data (online
supplements [Bliznyuk et al. (2014)], Section A.3), which is indicative of the mod-
els’ out-of-sample prediction performance, yielded the same choice of best model
and the same conclusion that incorporation of the aggregated data via linearization
uniformly improves the quality of predictions.

4.3. Assessment of the adequacy of linearization. Here we assess the impact
of linearization on Bayesian inference using models that include the multiday data
based on the results of Section 4.2. We compare nonlinear and linearized versions
of model M(U = 0,GST = 0,A = 1) of Table 2 because the models with (U = 1)

and/or (GST = 1) are computationally less tractable.
Sampling from the linearized model was discussed in Section 3. To sample from

[γ |Y OIA] under the linearized model, we initialized two Markov chains in a neigh-
borhood of the mode of [γ |Y OIA], sampling as discussed in Section 3 for 75,000
iterations. The chains mixed well, with lag-one correlations in the component-wise
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chains {γ (i)
j }i and {log([γ (i)|Y OIA])}i around 0.95; lag-one correlations between

the corresponding components of v are of much smaller magnitude, typically be-
tween 0.2 and 0.3. A burn-in sample of 2500 states was discarded from each chain.

To draw samples under the nonlinear model, we first reduced the dimension
of the posterior by analytically integrating out the vector α0. We sampled from
[γ,w|Y OIA] using the adaptive RWMH sampler discussed in Section 3. Here, we
drew {w,γ } in a single step when sampling from [w,γ |Y OIA]. This Markov chain
mixes very slowly, with typical lag-one correlations in {log([γ (i),w(i)|Y OIA])}i on
the order of 0.995. We used 6 Markov chains, each of length 200,000, initialized
in the high probability region of [γ,w|Y OIA]. A burn-in sample of 25,000 states
was discarded from each chain. Based on the effective sample size calculations,
the Markov chain based on the nonlinear model is about 10 times less efficient
than the one based on the linearized model.

Estimates of the marginal posterior densities of γ and w are shown in Fig-
ure 2 and Figure 6 in the online supplements [Bliznyuk et al. (2014)]. The marginal
densities of elements of γ and w are remarkably similar between the nonlinear and
linearized models, with the exception of the densities of γ2 = α1A; these are still
close to one another. Plots of spatial predictions—obtained as means of the pos-
terior predictive distribution—for the two models (Figure 7 in the online supple-
ments [Bliznyuk et al. (2014)]) are also visually indistinguishable, which provides
further support for the use of linearization. The correlation between the spatial
predictions under the two models is 0.9999 on both the logarithmic and original
scale. We also examined the distribution and spatial variability of the pointwise

FIG. 2. Estimates of marginal densities of nonlinear parameters under nonlinear (solid) and lin-
earized (dashed) versions of the model M(U = 0,GST = 0,A = 1).
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prediction differences. The variability of the differences tends to increase with the
distance from the central site monitor (as expected due to the curse of dimension-
ality), but the predictions are still very close to each other. The relative accuracy of
predictions on the original scale, computed pointwise as the absolute value of the
differences of the predictions divided by the predicted value under the nonlinear
model, is very high. For example, the 90th, 95th, 99th and 99.5th percentiles for
the empirical distribution of the relative errors were 0.011, 0.014, 0.033 and 0.040,
respectively.

4.4. Bayesian inference and prediction. In this section we report results under
the model chosen in Section 4.2, which includes the short-range process, u, and
the multiday data but excludes the long-range gST process.

To sample from [γ |Y OIA] using the computational strategy of Section 3, we
launched four Markov chains, initialized in the region of high posterior probabil-
ity of γ . Each chain had a length of 12,500, and a burn-in sample of size 2500
was discarded from each. We examined trace plots of MCMC states and the cor-
responding posterior density estimates to determine that the chains mixed rapidly
and converged to the same posterior.

Posterior means and quantiles for γ are given in Table 3. Even though parame-
ters α1I and α1A have similar interpretations, α1A is smaller in magnitude than α1I .
This suggests that multiday indoor data are less informative for daily predictions
of the outdoor exposure process than daily indoor data. This is plausible because
readings from 30 out of 45 BCI sites overlap spatially and temporally with those
from BCO sites, whereas all BCA sites are spatially and often temporally disjoint

TABLE 3
Posterior summaries of nonlinear parameters under model

M(U = 1,GST = 0,A = 1)

Parameter Mean 2.5% 50% 97.5%

α1I 0.956 0.870 0.957 1.040
α1A 0.698 0.576 0.702 0.817

σ 2
O 0.045 0.041 0.045 0.049

σ 2
I 0.129 0.101 0.125 0.161

σ 2
S 0.037 0.021 0.035 0.056

σ 2
α0 0.030 0.011 0.024 0.057

τ2
S 0.030 0.016 0.027 0.047

τ2
T 2.774 0.182 0.974 7.168

σ 2
u 0.098 0.090 0.098 0.106

θS 0.054 0.043 0.053 0.066
θT 0.120 0.073 0.120 0.169
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from the BCO sites. Consequently, the spatio-temporal mismatch causes measure-
ment error in the regressor (the latent process here), and the coefficients are shrunk
more toward zero whenever there is more error in the covariate. The temporal de-
cay parameter θT ≈ 0.12, interpreted in light of the tapering structure, corresponds
to a model with temporal correlation function that is about 0.7 at lag one but decays
faster than that of the AR(1) process with lag-one correlation of 0.7. The spatial
decay parameter θS ≈ 0.054 (on the 1 km distance scale) corresponds to spatial
correlation that decays to 0.05 by about 35 km. Consequently, when predicting
within the temporal range of measurements, the short-range process, u, “pulls” the
predictions toward the observed data, thereby capturing the nonperiodic features
of the exposure process not accounted for by ζ .

Posterior means and quantiles for the coefficients of the observable covari-
ates are reported in Table 1. Based on preliminary exploratory analysis using
only the outdoor data, the logarithm of readings from the central site monitor
(logHSPH) was the most important covariate for spatio-temporal prediction. From
the Bayesian model fit using data from all sources, this conjecture was further sup-
ported by the relative widths and quantiles of the credible intervals. The effect of
other temporally-varying covariates such as wind speed and the planetary bound-
ary layer is not easily interpretable in the presence of interactions of spatial and
temporal covariates. However, certain two- and three-way interactions have been
shown to add to the predictive ability of other prediction models in the Boston
area [Zanobetti et al. (2014)]. The spatially-varying population and land use co-
variates are positively associated with the response. The traffic density covariate is
of most interest because of the relationship between black carbon and traffic that
motivates this work. Its marginal effect—once the interactions with temporally
varying covariates have been accounted for—is positive, which can be clearly seen
in Figure 3, in which predictions follow the road network. In the early phase of
this project we considered models with fewer predictors and without interactions,
which yielded a similar relative ranking of the models and slightly less accurate
predictions.

The primary goal of our work is to predict a vector of latent process values,
ηP , in the region for any temporal period of interest for health effects analysis,
which is done using E(ηP |Y OIA). Because of the temporal covariance tapering, if
the minimum distance between the temporal indices in ηP and in Y OIA exceeds the
range of the taper function, then E(ηP |Y OIA) = E(CP w|Y OIA), where CP is the
“design matrix” for ηP . Figure 3 shows predictions for an example day (July 31,
2006) based on the MCMC estimate of E(ηP |Y OIA).

5. Discussion. In this paper we developed a unified exposure prediction
framework that aggregates air pollutant concentration data from multiple disparate
sources that are available at different levels of temporal resolution, which is of
great importance for health effects models arising in environmental science. We
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FIG. 3. Log black carbon predictions for July 31, 2006 based on the mean of the predictive dis-
tribution, E(ηP |Y OIA), under the final model M(U = 1,GST = 0,A = 1). The unit is the natural
logarithm of μg/m3.

found that incorporation of even a modest number of observations (93 or un-
der 1.5% of the overall observation count) of the multiday data from a relatively
large spatial network (roughly doubling the number of unique spatial sites) uni-
formly improves the prediction quality in a number of models that may or may not
include long-term and short-term spatio-temporal signal. To our surprise, incorpo-
ration of a periodic long-range spatio-temporal trend did not produce considerable
improvements over the models without the long-range interaction. We attribute this
to the fact that the air monitors in the networks corresponding to each study are
scattered in space and operate irregularly in time, which implies that the observed
data correspond to under 5% of the dates from all the monitors over the whole
study period. In our models, the departures from the periodic trend are being cap-
tured by the short-range process. If the temporal coverage were richer, we would
be able to identify the nonperiodic component of long-range variability better and
to rigorously test its presence.

Our linearization approach provides a computationally efficient means to build
two quadratic approximations: (i) the logarithm of [ηA|v, γ,Y OIA] and (ii) the log-
arithm of [ηA,ηP |v, γ,Y OIA], where ηP is a vector of latent process values we
want to predict. This produces a linearized model with Gaussian approximations
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for the marginal likelihood and required conditional posterior densities. An alter-
native that also results in Gaussian approximations is to approximate (i) and (ii)
using a two-term Taylor expansion about the appropriate modes, which needs to
be located by a costly optimization run. Using these approximations to integrate
out ηA is equivalent to the Laplace approximation [Tierney and Kadane (1986)].
The downside of this scheme is that the approximation needs to be built for every
value of (v, γ ) of interest, which is infeasible in practice.

While we adopt an MCMC-based approach to Bayesian inference and predic-
tion, a promising direction for future work is to consider an approximation scheme
in the spirit of Rue, Martino and Chopin (2009), the integrated nested Laplace
approximation (INLA). Methodologically, one will need to address the following
two issues that are critical to the computational performance of INLA for infer-
ence in latent process models that combine multiple data sets, both in our case
study and in general. First, one needs to be able to enforce the Markov property
of the spatio-temporal latent process. Second, increasing the number of data sets
in the joint model (that are linked by the latent process) and the complexity of
the model for the latent process adds to the dimension of the hyperparameter vec-
tor γ [θ in Rue, Martino and Chopin (2009)], which can make accurate numerical
integration computationally demanding, if feasible.
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SUPPLEMENTARY MATERIAL

Supplement to “Nonlinear predictive latent process models for integrat-
ing spatio-temporal exposure data from multiple sources” (DOI: 10.1214/14-
AOAS737SUPP; .pdf). Online supplements contain technical details and supple-
mentary figures and tables.
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