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TWO-PHASE SAMPLING EXPERIMENT FOR PROPENSITY
SCORE ESTIMATION IN SELF-SELECTED SAMPLES

BY SIXIA CHEN1 AND JAE-KWANG KIM1,2

Westat and Iowa State University

Self-selected samples are frequently obtained due to different levels of
survey participation propensity of the survey individuals. When the survey
participation is related to the survey topic of interest, propensity score weight-
ing adjustment using auxiliary information may lead to biased estimation. In
this paper, we consider a parametric model for the response probability that
includes the study variable itself in the covariates of the model and proposes
a novel application of two-phase sampling to estimate the parameters of the
propensity model. The proposed method includes an experiment in which
data are collected again from a subset of the original self-selected sample.
With this two-phase sampling experiment, we can estimate the parameters in
a propensity score model consistently. Then the propensity score adjustment
can be applied to the self-selected sample to estimate the population param-
eters. Sensitivity of the selection model assumption is investigated from two
limited simulation studies. The proposed method is applied to the 2012 Iowa
Caucus Survey.

1. Introduction. Nonresponse has become a major problem in sample sur-
veys as participation rates have declined in many surveys. When survey units are
chosen by surveyors, but these units elect not to participate, self-selection occurs.
If many units elect not to participate, the representativeness of the observed sample
can be called into question. In this self-selected sample, the participation proba-
bilities are unknown and valid analysis of the self-selected sample is extremely
difficult when survey participation is related to survey items [Baker et al. (2013)].
There exist sociological theories, such as the leverage-saliency theory [Groves,
Eleanor and Amy (2000)], that try to identify psychological factors influencing
survey participation, but it is not clear how to use those theories to analyze ob-
served data.

To reduce the bias of the estimator from self-selected samples, the propensity
score weighting method is commonly used. Rosenbaum and Rubin (1983) as well
as Rosenbaum (1987) proposed using propensity scores to estimate treatment ef-
fects in observational studies. Fuller, Loughin and Baker (1994) and Lundstöm
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and Särndal (1999) proposed nonresponse adjustment methods using regression
weighting techniques. Folsom and Singh (2000) also considered a nonlinear cali-
bration procedure to control nonresponse bias. Duncan and Stasny (2001) used the
propensity score method to control coverage bias in telephone surveys. Lee (2006)
applied the propensity score method to a volunteer panel web survey. Durrant and
Skinner (2006) used the method to address measurement error. Lee and Valliant
(2009) and Valliant and Dever (2011) considered the propensity score method for
a web-based voluntary sample. Kim and Riddles (2012) provided some theory
for the propensity score weighting estimators. All of these studies assumed an ig-
norable selection mechanism. That is, it was assumed that the sample inclusion
probability depends on one or more auxiliary variables with known or estimated
marginal distributions. In other words, the selection mechanism was assumed to
be missing at random in the sense of Rubin (1976). If that is the case, propensity
scores can be consistently estimated and the resulting analysis is valid under the
assumed propensity score model.

In self-selected samples, the ignorable selection mechanism assumption is not
always realistic because survey participation may be related to the survey topic
of interest [Groves, Presser and Dipko (2004)]. In this case, the propensity model
using only demographic auxiliary variables may lead to biased estimation. In this
paper, we consider the nonignorable selection mechanism in the propensity model
for survey participation. To estimate the parameters of the propensity model con-
sistently, we propose a novel application of the two-phase sampling experiment
in a voluntary survey with voluntary respondents contacted twice. Because the
second-phase sample is selected from those who already responded in the first
phase, the model parameters in the second-phase sampling mechanism are easy
to estimate. Furthermore, the estimated propensity for the second-phase sampling
can also provide useful information for the first-phase sampling mechanism if the
second contact is very similar to the original first contact.

Our paper is motivated by a telephone survey for the 2012 Iowa Caucus. In this
survey the individuals obtained from a probability sampling procedure were asked
about their intention to vote in the 2012 Iowa Caucus. Low participation rate (15%)
may distort the representativeness of the sample of respondents. In the beginning of
the telephone survey, the telephone interviewers identified the purpose of the study
and asked for participation in the survey. Thus, survey respondents who chose to
participate in this political survey may be systematically different from those who
refused to participate. Thus, it is reasonable to assume that selection probability
depends on the study variables (intention to vote for given candidates). In Novem-
ber 2011, the first-phase self-selected sample was obtained and then the second
self-selected sample was obtained from the first-phase sample in the next month.
Due to the similarity of the survey questions for both surveys, we treated the two
selection mechanisms identically, up to overall response rates. Then the model pa-
rameters were estimated from the two-phase sample and the final estimates for
voting intention were computed using the estimated propensity. Further details are
presented in Section 6.
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2. Basic setup. We introduce the basic setup which is very close to the 2012
Iowa Caucus Survey (ICS). As presented in Figure 2 in Section 6, the sampling
structure is a three-phase sampling, where the first-phase sample is a probability
sample but the second and the third samples are voluntary samples.

Let U be a finite population of known size N , A be a probability-based sam-
ple with known first and second-order inclusion probabilities, denoted by πi and
πij , and A1(⊂ A) be a respondent sample obtained from A. In sample A, we ob-
serve xi , where xi is the vector of auxiliary variables which often consist of de-
mographic information. In sample A1, we observe (x′

i , y1i ), and y1i is the realized
value of the study variable of interest at the time of observing elements in A1.
According to the leverage-saliency theory, the selection probability for A1 can be
modeled as a function of xi and zi , where zi is the unobservable variable that
conceptually quantifies one’s interest on the survey topics. Such an assumption is
reasonable if the survey topic is informed to the survey interviewees in the very be-
ginning of the survey, which is the case with the 2012 Iowa Caucus Survey. Thus,
we may assume that

pr(δ1i = 1|xi, y1i , zi) = exp(β0 + β ′
1xi + β2zi)

1 + exp(β0 + β ′
1xi + β2zi)

(2.1)

for some coefficient (β0, β1, β2), where δ1i is the indicator function for element i

to be in sample A1.
Now, as zi is not observable, we consider an alternative model using an observed

surrogate variable for z. Because we observe y1 instead of z, a natural alternative
model is

π1i (φ) = pr(δ1i = 1|xi, y1i ) = exp(φ0 + φ′
1xi + φ2y1i )

1 + exp(φ0 + φ′
1xi + φ2y1i )

,(2.2)

for some (φ0, φ1, φ2). More generally, we can write π1i (φ) = π(xi, y1i;φ) for
known function π(·) with unknown parameter φ = (φ0, φ1, φ2).

To estimate the parameters in (2.2), we subject the respondents of the first-
phase sampling to similar survey questions and obtain a second respondent sample
A2 from A1. That is, we perform a two-phase sampling under the same response
mechanism. The response model for A2 is

π2i

(
φ∗) = pr(δ2i = 1|xi, y2i , δ1i = 1) = exp(φ∗

0 + φ′
1xi + φ2y2i )

1 + exp(φ∗
0 + φ′

1xi + φ2y2i )
,(2.3)

where δ2i is the indicator function for element i to be in sample A2, y2i is the
measurement of Y at the time of selecting A2, and (φ′

1, φ2) is defined in (2.2).
Here, we allow the study item Y to be time-dependent; in other words, the value
of Y can change over time. Thus, we assume that the conditional odds for the
first-respondent selection and for the second-respondent selection are the same.
Obtaining the second-respondent sample A2 from A1 is an experiment that we
perform to understand the response mechanism of A1 from A by asking the same
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questions to the same people whose y-values are available. We may perform the
experiment in the random subsample of A1 in order to reduce the cost, but the
subsampling does not make any difference in the resulting analysis. From the two-
respondent sample, we are interested in estimating θ1 = E(Y1) and θ2 = E(Y2).

We now discuss parameter estimation for the propensity models. Note that we
observe (x′

i , y1i , y2i ) in A2. Thus, we can construct the following estimating equa-
tion to estimate the parameters in (2.3):∑

i∈A1

ωi

{
δ2i

π2i (φ∗)
− 1

}
h1i = 0,(2.4)

where ωi = π−1
i , h1i = (1, x′

i , y1i )
′. Once φ̂∗ = (φ̂∗

0 , φ̂′
1, φ̂2)

′ is computed, we can
use ∑

i∈A1

ωi

π1i (φ0, φ̂1, φ̂2)
= N

to estimate φ0. Equation (2.4) is a calibration equation in the second-phase respon-
dent sample using h1i as the control variable. Use of calibration for propensity
score adjustment has been considered by Fuller, Loughin and Baker (1994), Kott
(2006) and Kott and Chang (2010).

Once the parameters in (2.2) and (2.3) are estimated, we can use the following
propensity-score-adjusted estimator:

θ̂1 = 1

N

∑
i∈A1

ωiπ̂
−1
1i y1i(2.5)

to estimate θ1 = E(Y1). Also, we can use

θ̂2 = 1

N

∑
i∈A2

ωiπ̂
−1
1i π̂−1

2i y2i(2.6)

to estimate θ2 = E(Y2). In addition, we may use the population-level information
of x to improve the efficiency of the propensity-score-adjusted estimators, which
will be presented in Section 4.

3. Main results. In this section we discuss some asymptotic properties of the
proposed propensity-score-adjusted estimators. To discuss asymptotic properties
of θ̂1 in (2.5), we first define � = (φ∗

0 , φ′
1, φ2, φ0)

′,

U1(�) ≡ ∑
i∈A1

ωi

{
δ2i

π2i (φ
∗
0 , φ1, φ2)

− 1
}(

1, x′
i , y1i

)′ = (0,0,0)′(3.1)

and

U2(�) ≡ ∑
i∈A1

ωi

π1i (φ0, φ1, φ2)
− N = 0.(3.2)

Thus, equations (3.1) and (3.2) are a system of nonlinear equations that can be
solved for �. We can write Uc(�)′ = [U1(�)′,U2(�)′], and (θ̂1, �̂

′)′ can be ob-
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tained as the solution to

Up(θ1,�) = 0, Uc(�) = 0,

where Up(θ1,�) = N−1 ∑
i∈A1

ωi{π1i (φ0, φ1, φ2)}−1y1i − θ1. Because

E
{
Up

(
θ∗

1 ,�∗)} = 0 and E
{
Uc

(
θ∗

1 ,�∗)} = 0,

where (θ∗
1 ,�∗′

)′ is the true parameter value, the solution (θ̂1, �̂
′)′ is consistent and

has asymptotic variance

var
(

θ̂1

�̂

)
∼=

{−1 E(∂Up/∂�)

0 E(∂Uc/∂�)

}−1 {
var(Up) cov(Up,Uc)

cov(Uc,Up) var(Uc)

}
(3.3)

×
[{−1 E(∂Up/∂�)

0 E(∂Uc/∂�)

}′]−1

.

Using [−1 E(∂Up/∂�)

0 E(∂Uc/∂�)

]−1

=
[−1 E(∂Up/∂�)

{
E(∂Uc/∂�)

}−1

0
{
E(∂Uc/∂�)

}−1

]
,

then the asymptotic variance of θ̂1 can be written, using the definition of
Up and Uc, as

var(θ̂1) ∼= var
{
Up − E

(
∂Up

∂�

){
E

(
∂Uc

∂�

)}−1

Uc

}

= var

{
θ̂1(�) − E

{
∂

∂�
θ̂1(�)

}[
E

{
∂U1(�)/∂�

}
E

{
∂U2(�)/∂�

} ]−1

Uc

}
,

where θ̂1(�) = N−1 ∑
i∈A1

ωiy1i{1+exp(−φ0 −φ′
1xi −φ2y1i )}. Thus, the asymp-

totic variance can be written as

var(θ̂1) ∼= 1

N2 V

[
N∑

i=1

ωiδi

δ1i

π1i

y1i − B1,y

{
N∑

i=1

ωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

}
(3.4)

− B2,y

N∑
i=1

(
ωiδi

δ1i

π1i

− 1
)]

,

and

(B1,y,B2,y) = N × E

{
∂

∂�
θ̂1(�)

}[
E

{
∂U1(�)/∂�

}
E

{
∂U2(�)/∂�

} ]−1

=
N∑

i=1

(1 − π1i )y1i

(
0, x′

i , y1i ,1
)
⎛⎜⎜⎜⎜⎜⎝

N∑
i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

,
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where h2i = (1, x′
i , y2i)

′ and 0r×1 is the vector of zeros with dimension r × 1,
with r = 2 + p, and p is the dimension of xi . Note that the variance (3.4) can be
written as

var(θ̂1) = var

{
1

N

N∑
i=1

ωiδi

δ1i

π1i

(y1i − B2,y)

}
(3.5)

+ var

{
1

N

N∑
i=1

B1,yωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

}
.

Roughly speaking, the first term in (3.5) is the asymptotic variance of the
propensity-score-adjusted estimator when (φ′

1, φ2) is known and the second term
is the additional variance due to the fact that (φ′

1, φ2) is estimated from the second-
phase sample. Variance estimation is straightforward from (3.4), as we can replace
the unknown parameters with their estimators.

We now discuss the asymptotic properties of θ̂2 in (2.6), that is, the direct
propensity-score-adjusted estimator of θ2. Using the argument similar to (3.4), we
can obtain

var(θ̂2) ∼= 1

N2 V

[
N∑

i=1

ωiδi

δ1iδ2i

π1iπ2i

y2i − D1,y

{
N∑

i=1

ωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

}
(3.6)

− D2,y

N∑
i=1

(
ωiδi

δ1i

π1i

− 1
)]

,

where

(D1,y,D2,y) = N × E

{
∂

∂�
θ̂2(�)

}[
E

{
∂U1(�)/∂�

}
E

{
∂U2(�)/∂�

} ]−1

=
N∑

i=1

y2i

{
(1 − π1i )

(
0, x′

i , y1i ,1
) + (1 − π2i )

(
1, x′

i , y2i ,0
)}

×

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

and we used

θ̂2(�) = 1

N

∑
i∈A2

ωiy2i

{
1 + exp

(−φ0 − φ′
1xi − φ2y1i

)}
× {

1 + exp
(−φ∗

0 − φ′
1xi − φ2y2i

)}
.
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Writing

δ1iδ2i

π1iπ2i

y2i = δ1i

π1i

y2i + δ1i

π1i

(
δ2i

π2i

− 1
)
y2i ,

the asymptotic variance in (3.6) can be written as

var(θ̂2) ∼= 1

N2 var

[
N∑

i=1

ωiδi

δ1i

π1i

(y2i − D2,y)

]
(3.7)

+ 1

N2 var

{
N∑

i=1

ωiδi

δ1i

π1i

(
δ2i

π2i

− 1
)
(y2i − D1,yπ1ih1i )

}
.

Thus, comparing (3.7) with (3.6), we note that θ̂2 based on the A2 sample does
not necessarily have a larger variance than θ̂1 that is computed from the first-phase
sample A1. In fact, if y2i is well approximated by h1i , then the second term of the
asymptotic variance in (3.7) is small and θ̂2 is more efficient than θ̂1.

Instead of using the direct estimator θ̂2 in (2.6), we can use a two-phase
regression estimator to improve efficiency. The estimator is efficient in that it
incorporates auxiliary information obtained from the first-phase sampling. See
Hidiroglou and Särndal (1998), Legg and Fuller (2009) and Kim and Yu (2011) for
more details about two-phase regression estimators. In our setup, the data vector
h1i = (1, x′

i , y1i)
′ is available for both A1 and A2. Thus, the two natural estima-

tors for the population mean h̄1N = N−1 ∑N
i=1 h1i , ĥ1,1 = N−1 ∑

i∈A1
ωiπ̂

−1
1i h1i

and ĥ2,1 = N−1 ∑
i∈A2

ωiπ̂
−1
1i π̂−1

2i h1i can be computed from A1 and A2, respec-

tively, and they are both approximately unbiased for h̄1N . Using ĥ1,1 and ĥ2,1, the
two-phase regression estimator can be constructed by

θ̂2,Reg = θ̂2 − Ĉh1(ĥ2,1 − ĥ1,1),(3.8)

where

Ĉh1 = ∑
i∈A2

ωiπ̂
−1
1i π̂−1

2i y2ih
′
1i

{ ∑
i∈A2

ωiπ̂
−1
1i π̂−1

2i h1ih
′
1i

}−1

.(3.9)

Because E(ĥ2,1 − ĥ1,1) ∼= 0, the regression estimator in (3.8) is approximately
unbiased, regardless of the choice of Ĉh1 . By applying the linearization method to
each term of (3.8), we can get

θ̂2,Reg ∼= 1

N

N∑
i=1

{
ωiδi

δ1iδ2i

π1iπ2i

y2i − D1i,Regωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

− D2,Reg

(
ωiδi

δ1i

π1i

− 1
)}

,
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where D1i,Reg = D1,y + C∗
h1

π−1
1i − C∗

h1
(D1,h1 − B1,h1) and D2,Reg = D2,y −

C∗
h1

(D2,h1 − B2,h1) with

(B1,h1,B2,h1) =
N∑

i=1

(1 − π1i )h1i

(
0, x′

i , y1i ,1
)

×

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

,

C∗
h1

= p lim Ĉh1 ,

(D1,h1,D2,h1) =
N∑

i=1

h1i

{
(1 − π1i )

(
0, x′

i , y1i ,1
) + (1 − π2i )

(
1, x′

i , y2i ,0
)}

×

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

.

Thus, the asymptotic variance is

var(θ̂2,Reg) ∼= 1

N2 var

[
N∑

i=1

ωiδi

δ1iδ2i

π1iπ2i

y2i −
{

N∑
i=1

ωiδiD1i,Regδ1i

(
δ2i

π2i

− 1
)
h1i

}

− D2,Reg

N∑
i=1

(
ωiδi

δ1i

π1i

− 1
)]

= 1

N2 var

[
N∑

i=1

ωiδi

δ1i

π1i

(y2i − D2,Reg)

]

+ 1

N2 var

[
N∑

i=1

ωiδi

δ1i

π1i

(
δ2i

π2i

− 1
)
(y2i − D1i,Regπ1ih1i )

]
.

REMARK 3.1. Instead of Ĉh1 in (3.9), the optimal choice of Ĉh1 that mini-
mizes the variance among the class of regression estimators with a form specified
by (3.8) is

Ĉh1,opt = ĉov(θ̂2, ĥ2,1 − ĥ1,1)
{
v̂ar(ĥ2,1 − ĥ1,1)

}−1
,(3.10)
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where

ĉov(θ̂2, ĥ2,1 − ĥ1,1) ∼= 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

(
y2i

π̂1i

− D̂1,yh1i

)
η̂′

i

− 1

N2

∑
i∈A2

ωi

1 − π̂1i

π̂2
1i

(
y2i

π̂2i

− D̂2,y

π̂2i

)
τ̂ ′

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ3i

πi

ẑ′
4j

πj

,

v̂ar(ĥ2,1 − ĥ1,1) ∼= 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

η̂⊗2
i

+ 1

N2

∑
i∈A1

ωi

1 − π̂1i

π̂2
1i

τ̂⊗2

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ4i

πi

ẑ′
4j

πj

,

where M⊗2 = MM ′,

ẑ3i = δ1i

π̂1i

{
δ2i

π̂2i

y2i −
(

δ2i

π̂2i

− 1
)
π̂1iD̂1,yh1i − D̂2,y

}
,

ẑ4i = δ1i

π̂1i

{(
δ2i

π̂2i

− 1
)(

π̂−1
1i − D̂1,h1 + B̂1,h1

)
π̂1ih1i − (D̂2,h1 − B̂2,h1)

}
and η̂i = h′

1i π̂
−1
1i − (D̂1,h1 − B̂1,h1)h

′
1i , τ̂ = D̂2,h1 − B̂2,h1 with

(B̂1,h1, B̂2,h1) = ∑
i∈A1

ωi

1 − π̂1i

π̂1i

h1i

(
0, x′

i , y1i ,1
)

×

⎛⎜⎜⎝
∑
i∈A2

ωiπ̂
−1
2i (1 − π̂2i )h1ih

′
2i ,0r×1∑

i∈A1

ωiπ̂
−1
1i (1 − π̂1i )

(
0, x′

i , y1i ,1
)
⎞⎟⎟⎠

−1

,

(D̂1,h1, D̂2,h1) = ∑
i∈A2

ωi

h1i

π̂1i π̂2i

{
(1 − π̂1i )

(
0, x′

i , y1i ,1
) + (1 − π̂2i )

(
1, x′

i , y2i ,0
)}

×

⎛⎜⎜⎝
∑
i∈A2

ωiπ̂
−1
2i (1 − π̂2i )h1ih

′
2i ,0r×1∑

i∈A1

ωiπ̂
−1
1i (1 − π̂1i )

(
0, x′

i , y1i ,1
)
⎞⎟⎟⎠

−1



TWO-PHASE SAMPLING EXPERIMENT 1501

and

(D̂1,y, D̂2,y) = ∑
i∈A2

ωi

y2i

π̂1i π̂2i

{
(1 − π̂1i )

(
0, x′

i , y1i ,1
) + (1 − π̂2i )

(
1, x′

i , y2i ,0
)}

×

⎛⎜⎜⎝
∑
i∈A2

ωiπ̂
−1
2i (1 − π̂2i )h1ih

′
2i ,0r×1∑

i∈A1

ωiπ̂
−1
1i (1 − π̂1i )

(
0, x′

i , y1i ,1
)
⎞⎟⎟⎠

−1

.

Such an estimator can be called a design-optimal regression estimator, as termed
by Rao (1994).

REMARK 3.2. Model (2.1) can be viewed as a measurement error model
in the sense that the true covariate zi is not observed, but surrogate variables
y1i = zi + u1i and y2i = zi + u2i are observed instead of zi , where u1i and u2i

are measurement errors associated with y1i and y2i , respectively. Assuming that
the measurement errors follow a normal distribution, we can apply the propen-
sity weighting method with error-prone covariates, using the recent approach of
McCaffrey, Lockwood and Setodji (2013), to our two-phase sampling experiment.

Specifically, the measurement error model for obtaining the A1 sample is given
by (2.1) with y1i ∼ N(zi, σ

2
u1) and the measurement error model for obtaining

the A2 sample from A1 sample is given by

pr(δ2i = 1|xi, y2i , zi, δ1i = 1) = exp(β∗
0 + β ′

1xi + β2zi)

1 + exp(β∗
0 + β ′

1xi + β2zi)
,

with y2i ∼ N(zi, σ
2
u2). It turns out that our proposed method is equivalent to

the propensity weighting method under this measurement error model using the
method of McCaffrey, Lockwood and Setodji (2013). More details can be found
in Section B of the supplemental article [Chen and Kim (2014a, 2014b)].

4. Use of population auxiliary information. In this section we assume that
population information 	XN = ∑

i∈U xi is available. In this case, we can apply the
calibration techniques [Deville and Särndal (1992); Fuller (2002)] to provide exter-
nal consistency of the resulting propensity-score-adjusted estimator to the known
population mean 	XN . To incorporate both population and sample-level informa-
tion, similar to Section 3, the regression estimator θ̂1,Reg of θ1 can be written as

θ̂1,Reg = θ̂1 − B̂Reg(θ̂x,1 − 	XN)
(4.1) ∼= θ̂1 − BReg(θ̂x,1 − 	XN),

where θ̂1 is defined in (2.5),

θ̂x,1 = N−1
∑
i∈A1

ωiπ̂
−1
1i xi, B̂Reg = ∑

i∈A1

ωiπ̂
−1
1i y1ix

′
i

( ∑
i∈A1

ωiπ̂
−1
1i xix

′
i

)−1
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and BReg = p lim B̂Reg. After ignoring the higher-order terms, it can be shown that

θ̂1,Reg = 1

N

N∑
i=1

{
ωiδi

δ1i

π1i

(y1i − BRegxi) − B1,Regωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

− B2,Reg

(
ωiδi

δ1i

π1i

− 1
)

+ BReg	XN

}
,

where B1,Reg = B1,y − BRegB1,x , B2,Reg = B2,y − BRegB2,x ,

(B1,x,B2,x) =
N∑

i=1

(1 − π1i )xi

(
0, x′

i , y1i ,1
)
⎛⎜⎜⎜⎜⎜⎝

N∑
i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

.

Therefore, the asymptotic variance can be estimated as follows:

v̂ar(θ̂1,Reg) = 1

N2

∑
i∈A1

ωi

1 − π̂1i

π̂2
1i

(y1i − B̂Regxi − B̂2,Reg)
2

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ5i

πi

ẑ5j

πj

(4.2)

+ 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

(B̂1,Regh1i )
2

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ6i

πi

ẑ6j

πj

,

where ẑ5i = δ1i π̂
−1
1i (y1i − B̂Regxi − B̂2,Reg), ẑ6i = δ1i (δ2i π̂

−1
2i − 1)B̂1,Regh1i ,

B̂1,Reg = B̂1,y − B̂RegB̂1,x , B̂2,Reg = B̂2,y − B̂RegB̂2,x ,

(B̂1,x, B̂2,x) = ∑
i∈A1

ωiπ̂
−1
1i (1 − π̂1i )xi

(
0, x′

i , y1i ,1
)

×

⎛⎜⎜⎝
∑
i∈A2

ωiπ̂
−1
2i (1 − π̂2i )h1ih

′
2i ,0r×1∑

i∈A1

ωiπ̂
−1
1i (1 − π̂1i )

(
0, x′

i , y1i ,1
)
⎞⎟⎟⎠

−1

.

In addition, we can consider a design-optimal regression estimator, as discussed
in Remark 3.1, that incorporates all information in an optimal way. Specifically, the
optimal regression estimator of θ1 can be written as

θ̂1,opt = θ̂1 − B̂opt(θ̂x,1 − 	XN),(4.3)
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where B̂opt = ĉov(θ̂1, θ̂x,1)v̂ar−1(θ̂x,1), with

ĉov(θ̂1, θ̂x,1) = 1

N2

∑
i∈A1

ωi

1 − π̂1i

π̂2
1i

η̂∗
i + 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

B̂1,yh1i (B̂1,xh1i )
′

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ7i

πi

ẑ′
8j

πj

,

v̂ar(θ̂x,1) = 1

N2

∑
i∈A1

ωi

1 − π̂1i

π̂2
1i

(xi − B̂2,x)
⊗2

+ 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

(B̂1,xh1i )
⊗2

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ8i

πi

ẑ′
8j

πj

,

and

ẑ7i = δ1i π̂
−1
1i

{
y1i − (

δ2i π̂
−1
2i − 1

)
π̂1i B̂1,yh1i − B̂2,y

}
,

ẑ8i = δ1i π̂
−1
1i

{
xi − (

δ2i π̂
−1
2i − 1

)
π̂1i B̂1,xh1i − B̂2,x

}
,

η̂∗
i = x′

iy1i − y1i B̂
′
2,x − B̂2,yx

′
i + B̂2,yB̂

′
2,x . B̂1,x , B̂1,y , B̂2,x and B̂2,y are defined

in Section 3.
Now, the regression estimator of θ2 can be written as

θ̂2,Reg = θ̂2 − B̂∗
1,Reg(ĥ2,1 − ĥ1,1) − B̂∗

2,Reg(θ̂x,2 − 	XN)

= θ̂2 − B∗
1,Reg(ĥ2,1 − ĥ1,1) − B∗

2,Reg(θ̂x,2 − 	XN),

where θ̂x,2 = N−1 ∑
i∈A2

ωiπ̂
−1
1i π̂−1

2i xi . (B̂∗
1,Reg, B̂

∗
2,Reg) is the regression coeffi-

cient. It can be shown that

θ̂2,Reg = 1

N

N∑
i=1

{
ωiδi

δ1iδ2i

π1iπ2i

(
y2i − B∗

2,Regxi

) − D∗
1i,Regωiδiδ1i

(
δ2i

π2i

− 1
)
h1i

(4.4)

− D∗
2,Reg

(
ωiδi

δ1i

π1i

− 1
)

+ B∗
2,Reg

	XN

}
,

where

D∗
1i,Reg = {

D1,y + B∗
1,Reg

(
π−1

1i − D1,h1 + B1,h1

) − B∗
2,RegD1,x

}
,

D∗
2,Reg = {

D2,y − B∗
1,Reg(D2,h1 − B2,h1) − B∗

2,RegD2,x

}
,
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and

(D1,x,D2,x) =
N∑

i=1

xi

{
(1 − π1i )

(
0, x′

i , y1i ,1
) + (1 − π2i )

(
1, x′

i , y2i ,0
)}

×

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

π1i (1 − π2i )h1ih
′
2i ,0r×1

N∑
i=1

(1 − π1i )
(
0, x′

i , y1i ,1
)

⎞⎟⎟⎟⎟⎟⎠
−1

.

Also, similarly to (4.3), the optimal regression estimator of θ2 can be written as

θ̂2,opt = θ̂2 − B̂∗
1,opt(ĥ2,1 − ĥ1,1) − B̂∗

2,opt(θ̂x,2 − 	XN),(4.5)

where(
B̂∗

1,opt, B̂
∗
2,opt

) = ĉov
{
θ̂2, (ĥ2,1 − ĥ1,1, θ̂x,2)

}[
v̂ar

{
(ĥ2,1 − ĥ1,1, θ̂x,2)

}]−1
.

ĉov(θ̂2, ĥ2,1 − ĥ1,1), v̂ar(ĥ2,1 − ĥ1,1) are defined in (3.10),

ĉov(ĥ2,1 − ĥ1,1, θ̂x,2) ∼= 1

N2

∑
i∈A2

ωi

1 − π̂2i

π̂2
2i

(
xi

π̂1i

− D̂1,xh1i

)
η̂′

i

− 1

N2

∑
i∈A1

ωi

1 − π̂1i

π̂2
1i

(x2i − D̂2,x)τ̂
′

+ 1

N2

∑
i∈A

∑
j∈A

�̃ij

ẑ9i

πi

ẑ′
4j

πj

,

where

ẑ9i = δ1i

π̂1i

{
δ2i

π̂2i

xi −
(

δ2i

π̂2i

− 1
)
π̂1iD̂1,xh1i − D̂2,x

}
,

ĉov(θ̂2, θ̂x,2) and v̂ar(θ̂x,2) can be derived similarly.

5. Simulation study.

5.1. Simulation one. In simulation one, we performed a limited simulation
study to test the performance of our proposed estimator and to perform a sen-
sitivity analysis of the model assumptions. In the simulation study, we gener-
ated a finite population of size N = 10,000. In the population, we generated
(x1i , x2i , y1i , y2i , zi), where

Zi = 0.5 + 0.5X1i + 0.5X2i + ei,

Y1i = Zi + U1i , Y2i = Zi + U2i ,
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X1i ,X2i ,U1i ,U2i and ei are independently and identically distributed with
N(1,1), N(0,1), N(0, σ 2

1 ), N(0, σ 2
2 ) with σ1 = σ2 = 0.59 and exp(1) − 1, re-

spectively. From the finite population, we repeatedly generated two-phase samples
with approximate sample sizes n1 = 500 and n2 = 300 for the phase one and phase
two samples, respectively. We consider the following response mechanisms for the
first phase and second phase sampling indicators δ1i and δ2i :

(M1) Linear Ignorable

π1i = exp(φ0 + φ1Xi)

1 + exp(φ0 + φ1Xi)
, π2i = exp(φ∗

0 + φ1Xi)

1 + exp(φ∗
0 + φ1Xi)

,

where (φ0, φ1, φ
∗
0) = (−3.2,0.3,0.2).

(M2) Linear Nonignorable Nonmeasurement error

π1i = exp(φ0 + φ1Xi + φ2Y1i )

1 + exp(φ0 + φ1Xi + φ2Y1i )
,

π2i = exp(φ∗
0 + φ1Xi + φ2Y2i )

1 + exp(φ∗
0 + φ1Xi + φ2Y2i )

,

where (φ0, φ1, φ2, φ
∗
0) = (−3.4,0.3,0.1,0.5).

(M3) Complementary log–log Nonignorable Nonmeasurement error

π1i = 1 − exp
{− exp(φ0 + φ1Xi + φ2Y1i )

}
,

π2i = 1 − exp
{− exp

(
φ∗

0 + φ1Xi + φ2Y2i

)}
,

where (φ0, φ1, φ2, φ
∗
0) = (−3,0.1,−0.1,−0.1).

(M4) Probit Nonignorable Nonmeasurement error

π1i = �(φ0 + φ1Xi + φ2Y1i ), π2i = �
(
φ∗

0 + φ1Xi + φ2Y2i

)
,

where (φ0, φ1, φ2, φ
∗
0) = (−2,0.2,0.2,0.1).

(M5) Linear Nonignorable Measurement error

π1i = exp(φ0 + φ1Xi + φ2Zi)

1 + exp(φ0 + φ1Xi + φ2Zi)
,

π2i = exp(φ∗
0 + φ1Xi + φ2Zi)

1 + exp(φ∗
0 + φ1Xi + φ2Zi)

,

where (φ0, φ1, φ2, φ
∗
0) = (−3.4,0.3,0.1,0.5).

(M6) Complementary log–log Nonignorable Measurement error

π1i = 1 − exp
{− exp(φ0 + φ1Xi + φ2Zi)

}
,

π2i = 1 − exp
{− exp

(
φ∗

0 + φ1Xi + φ2Zi

)}
,

where (φ0, φ1, φ2, φ
∗
0) = (−3,0.1,−0.1,−0.1).
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(M7) Probit Nonignorable Measurement error

π1i = �(φ0 + φ1Xi + φ2Zi), π2i = �
(
φ∗

0 + φ1Xi + φ2Zi

)
,

where (φ0, φ1, φ2, φ
∗
0) = (−2,0.2,0.2,0.1).

We used B = 2000 Monte Carlo sample size. The “working” model for the propen-
sity score estimation is the Linear Nonignorable model (M2). From each sample,
we computed the following four estimators for θ1 = E(Y1):

(1) Naive: Calibration estimator which assumes ignorable missing mechanism;
(2) PS: Proposed propensity score estimator, as defined in (2.5);
(3) REG: Proposed regression estimator, as defined in (4.1); and
(4) OPT: Proposed optimal estimator, as defined in (4.3).

We also computed the following five estimators for θ2 = E(Y2):

(1) Naive: Calibration estimator which assumes ignorable missing mechanism;
(2) PS: Proposed propensity score estimator, as defined in (2.6);
(3) REG: Proposed regression estimator by incorporating first-phase sample

information, as defined in (3.8);
(4) OPT1: Proposed optimal estimator by incorporating first-phase sample in-

formation, as defined in Remark 3.1; and
(5) OPT2: Proposed optimal estimator by incorporating both first-phase sample

and population information, as defined in (4.5).

The simulation results for point and variance estimations are given in Tables 1
for models (M1)–(M4) and 2 for models (M5)–(M7). Specifically, we calculated
the Biases, Standard Errors (SE), Root Mean Squared Errors (RMSE) of the point
estimators and Relative Bias (RB) of the proposed variance estimators. Under
models (M1) and (M2), the proposed estimators show negligible biases, which
confirms our theory. Furthermore, the proposed estimators show modest biases
even under models (M3)–(M7) where the assumed response model is not equal
to the true response model. To investigate the effect of using incorrect response
models, we made plots of 1/π̂i on 1/πi under four different response models
(M1)–(M4), where π̂i are the fitted values of the response probabilities under the
working model and πi are the true response probabilities. In Figure 1, the plot
under model (M3) shows that most of the sample observations are located above
the line of y = x, which suggests that many observations are assigned to bigger
propensity weights (1/π̂i) than necessary. Thus, the resulting PS estimator can
be positively biased, as confirmed in Table 1. On the other hand, the plot under
model (M4) shows the opposite phenomenon and the resulting estimator is neg-
atively biased. According to the plots, we find that the fitted values are highly
correlated with the true values even under the wrong models. Thus, the bias of the
PS estimators is also modest under (M3)–(M4). Similar results have been found for
(M5)–(M7). The regression estimator and the optimal estimator are more efficient
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TABLE 1
Simulation results of the point estimators and variance estimators under models (M1)–(M4) for

simulation one

Model Parameter Method Bias SE RMSE RB

(M1) θ1 Naive −0.0029 0.0751 0.0751 N/A
PS 0.0071 0.1647 0.1648 0.0363

REG 0.0108 0.1622 0.1625 0.0160
OPT 0.0077 0.1556 0.1557 0.0543

θ2 Naive −0.0034 0.0907 0.0908 N/A
PS 0.0069 0.1559 0.1560 0.0342

REG 0.0072 0.1584 0.1586 0.0123
OPT1 0.0074 0.1582 0.1584 −0.0153
OPT2 0.0082 0.1496 0.1498 −0.0182

(M2) θ1 Naive 0.1662 0.0838 0.1861 N/A
PS −0.0026 0.1786 0.1786 −0.0093

REG −0.0013 0.1708 0.1709 0.0034
OPT −0.0001 0.1670 0.1670 0.0118

θ2 Naive 0.1857 0.0954 0.2088 N/A
PS 0.0007 0.1645 0.1644 −0.0217

REG 0.0002 0.1656 0.1656 −0.0160
OPT1 0.0022 0.1633 0.1633 −0.0294
OPT2 0.0030 0.1524 0.1524 −0.0238

(M3) θ1 Naive −0.1578 0.0721 0.1735 N/A
PS 0.0712 0.1957 0.2083 −0.0077

REG 0.0910 0.1963 0.2164 −0.0316
OPT 0.0777 0.1846 0.2003 0.0283

θ2 Naive −0.2137 0.0843 0.2297 N/A
PS 0.0490 0.1795 0.1860 0.0215

REG 0.0546 0.1889 0.1966 −0.0849
OPT1 0.0420 0.1833 0.1880 −0.0506
OPT2 0.0523 0.1759 0.1835 −0.0506

(M4) θ1 Naive −0.2593 0.0671 0.2678 N/A
PS −0.0325 0.1822 0.1850 0.0036

REG −0.0830 0.1714 0.1904 0.0833
OPT −0.0707 0.1701 0.1842 0.0266

θ2 Naive −0.2689 0.0765 0.2795 N/A
PS −0.0244 0.1544 0.1563 0.0823

REG −0.0180 0.1678 0.1688 −0.0914
OPT1 −0.0242 0.1630 0.1648 −0.0549
OPT2 −0.0607 0.1583 0.1695 −0.0945

than the PS estimator, and the optimal estimator has the smallest variance, which
is consistent with the theory. The PS estimator of θ2 is more efficient than that of
θ1 since y2i is well approximated by y1i , which is a part of h1i when computing
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TABLE 2
Simulation results of the point estimators and variance estimators under models (M5)–(M7) for

simulation one

Model Parameter Method Bias SE RMSE RB

(M5) θ1 Naive 0.1242 0.0794 0.1474 N/A
PS −0.0312 0.1788 0.1814 −0.0147

REG −0.0278 0.1707 0.1729 −0.0236
OPT −0.0270 0.1668 0.1690 −0.0055

θ2 Naive 0.1649 0.0911 0.1884 N/A
PS −0.0037 0.1620 0.1620 0.0001

REG −0.0049 0.1648 0.1648 −0.0150
OPT1 −0.0014 0.1632 0.1632 −0.0364
OPT2 0.0007 0.1525 0.1525 −0.0412

(M6) θ1 Naive −0.1269 0.0725 0.1462 N/A
PS 0.1129 0.1993 0.2290 0.0032

REG 0.1309 0.2006 0.2396 −0.0517
OPT 0.1196 0.1914 0.2256 −0.0006

θ2 Naive −0.1926 0.0838 0.2100 N/A
PS 0.0787 0.1863 0.2023 0.0008

REG 0.0831 0.1918 0.2090 −0.0624
OPT1 0.0757 0.1875 0.2023 −0.0437
OPT2 0.0843 0.1797 0.1985 −0.0464

(M7) θ1 Naive −0.1922 0.0660 0.2032 N/A
PS 0.0356 0.1705 0.1742 0.0287

REG −0.0174 0.1635 0.1644 0.0847
OPT −0.0002 0.1664 0.1664 0.0006

θ2 Naive −0.2526 0.0771 0.2641 N/A
PS 0.0005 0.1626 0.1626 0.0240

REG 0.0017 0.1626 0.1626 0.0128
OPT1 −0.0017 0.1630 0.1630 −0.0138
OPT2 −0.0375 0.1579 0.1623 −0.0399

the model parameters. Variance estimators show negligible relative biases in most
cases. The simulation study suggests that the proposed estimator is robust against
the failure of the assumed response models.

5.2. Simulation two. In this simulation study, we consider only model (M5)
Linear Nonignorable Measurement error. In order to test the sensitivity of model
misspecification of equal coefficients for two-phase response mechanisms, we per-
form simulation studies by using the following response mechanisms:

π1i = exp(φ0 + φ1x1i + φ2zi)

1 + exp(φ0 + φ1x1i + φ2zi)
, π2i = exp(φ∗

0 + φ1x1i + φ∗
2zi)

1 + exp(φ∗
0 + φ1x1i + φ∗

2zi)
,
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FIG. 1. Plots of the fitted values on the true value of the inverse response probability under mod-
els (M1)–(M4).

where (φ0, φ1, φ2, φ
∗
0 , φ∗

2) = (−3.4,0.3,0.1 + d,0.5,0.1). Specifically, we con-
sider the following three cases:

(C1) Small Difference: d = 0.01.
(C2) Medium Difference: d = 0.05.
(C3) Big Difference: d = 0.1.

Other setups of simulation two are the same as that for simulation one. The results
are presented in Table 3. According to Table 3, the biases for all the proposed
estimators increase when the discrepancy parameter d increases, but the biases are
still very modest. The variance estimators show very small relative biases, which
confirms the stability of the variance estimators. Other patterns of the results are
similar to that for simulation one.

6. Empirical study. The proposed two-phase propensity score estimator is
applied to the data obtained from the 2012 Iowa Caucus Survey (ICS). The Iowa
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TABLE 3
Simulation results of the point estimators and variance estimators under model (M5) for simulation

two

Model Parameter Method Bias SE RMSE RB

(C1) θ1 Naive 0.1426 0.0837 0.1653 N/A
PS −0.0199 0.1731 0.1742 0.0228

REG −0.0213 0.1627 0.1641 0.0279
OPT −0.0194 0.1607 0.1618 0.0281

θ2

Naive 0.1852 0.0929 0.2071 N/A
PS 0.0066 0.1607 0.1608 0.0080

REG 0.0059 0.1627 0.1628 0.0026
OPT1 0.0076 0.1605 0.1607 −0.0099
OPT2 0.0064 0.1486 0.1487 −0.0071

(C2) θ1 Naive 0.2043 0.0802 0.2194 N/A
PS 0.0384 0.1726 0.1768 −0.0213

REG 0.0239 0.1609 0.1626 0.0157
OPT 0.0295 0.1601 0.1628 −0.0048

θ2

Naive 0.2457 0.0892 0.2614 N/A
PS 0.0610 0.1597 0.1709 −0.0182

REG 0.0599 0.1611 0.1718 −0.0168
OPT1 0.0628 0.1602 0.1720 −0.0427
OPT2 0.0529 0.1480 0.1572 −0.0273

(C3) θ1 Naive 0.2992 0.0797 0.3096 N/A
PS 0.1093 0.1678 0.2002 −0.0221

REG 0.0763 0.1605 0.1777 −0.0131
OPT 0.0887 0.1597 0.1826 −0.0446

θ2 Naive 0.3533 0.0931 0.3654 N/A
PS 0.1357 0.1566 0.2072 −0.0078

REG 0.1353 0.1587 0.2085 −0.0115
OPT1 0.1374 0.1573 0.2089 −0.0355
OPT2 0.1158 0.1498 0.1893 −0.0644

political party caucuses are a significant component of the presidential candidate
selection process. In 2011, two caucus polls were conducted to be implemented
prior to the January 2012 Iowa Republican Caucus. In the first poll, approxi-
mately 1200 registered Republicans and Independents (no party) were interviewed
in November 2011. The second poll was a follow-up conducted in December 2011
with the November 2011 respondents to identify changes in their voting prefer-
ences.

The sampling frame for the November 2011 poll was constructed from the Iowa
voter registry provided by the Iowa Secretary of State. The telephone numbers on
the list were reported by voters at the time of their registration and therefore in-
cluded both landlines and cell phone numbers. A stratified systematic sampling
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design was used to select the initial sample. Five variables were used to create
strata or sorting variables to ensure spread across the range of variation in age,
voter activity, geography, gender and party affiliation. One indicator variable was
created to differentiate voters 35 years or above from younger voters, and a second
indicator variable defined whether a voter had attended one or more of the previ-
ous five primaries. Three additional variables used in designing the sample were
congressional district, registered party and gender.

Strata were defined by party affiliation, congressional district, the age indicator
and the prior primary attendance indicator. Within parties, sample size allocation
incorporated an oversampling of primary attendees to maximize the chances of
reaching likely caucus attendees. Sample allocation across the remaining strata
was defined in proportion to the number of voters in each stratum. The stratified
design was implemented using a systematic probability proportional to size se-
lection scheme. The size measure was based on the relative proportion of voters
in each stratum. For each party list, the systematic selection scheme was applied
to a list of voters sorted by congressional district, age indicator, previous primary
attendance indicator and gender.

A sample of 9000 voters was selected for the November 2011 poll, consisting
of 6000 Republicans and 3000 Independents. Telephone numbers were unavail-
able for 836 of the sampled voters. The remaining 8164 sample households were
contacted. Excluding 190 noneligible numbers, 1256 registered voters were finally
interviewed from the November poll, which resulted in a 15.8 percent response
rate. The November survey of registered Republicans and Independents contained
questions related to anticipated caucus attendance, candidates of choice and opin-
ions on candidate characteristics, as well as demographic and background items.
In the December 2011 poll, 1256 respondents from the November poll were con-
tacted again for a follow-up survey and 940 interviews were completed, leading to
a 74.9 percent response rate. Figure 2 summarizes the two-phase sampling struc-
ture of the 2012 Iowa Caucus Survey.

To apply our proposed method to the ICS data, let Y be the reported value
of the “First Choice” candidate. After preliminary analysis, we decided to use
X = (Party,Age) as the auxiliary variable in the propensity model. The auxiliary
variable has a known total at the population level and is also related to the survey
participation rate. The population size is N = 1,315,981. Denote DY1 and DY2 as

FIG. 2. Sample structure of 2012 Iowa Caucus Survey.
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the dummy variables of “First Choice” based on the first sample A1 and the second
sample A2, and let DX be the dummy variable based on X. Then the parameters
of interest are

θ1 =
∑

i∈U ZiDY1i∑
i∈U Zi

and

θ2 =
∑

i∈U ZiDY2i∑
i∈U Zi

,

where Zi is the indicator of “Caucus Attendance” for unit i. That is, Zi = 1 if
“Caucus Attendance = Definitely attend” or “Caucus Attendance = Likely to at-
tend.” The outcome of the Iowa Caucus on January 3, 2012 is

θ0 = (24.5%,10.3%,21.4%,43.7%)(6.1)

for “First Choice” candidate: Romney, Perry, Paul, Others. Note that our param-
eters θ1 and θ2 are not necessarily equal to θ0, although they may be close for
certain candidates.

The propensity model used for the proposed estimator is

π1i (φ) = exp(φ0 + φ′
1DXi + φ′

2DY1i )

1 + exp(φ0 + φ′
1DXi + φ′

2DY1i )
(6.2)

and

π2i

(
φ∗) = exp(φ∗

0 + φ′
1DXi + φ′

2DY2i )

1 + exp(φ∗
0 + φ′

1DXi + φ′
2DY2i )

,(6.3)

where DXi = (DX1i ,DX2i)
′, DY1i = (DY11i ,DY12i ,DY13i ,DY14i ,DY15i)

′ and
DY2i = (DY21i ,DY22i ,DY23i ,DY24i ,DY25i)

′. Using the proposed methods in
Section 3, we obtain parameter estimates for the selection model. The estimated
parameters are given in Table 4. Table 4 shows that variables DX1, DX2 and DY11
have significant effects on the selection mechanisms, which supports our model for
nonignorable sample selection.

We consider three estimators for estimating θt for t = 1,2: (i) the naive es-
timator (Naive) based on the respondents, computed by θ̂tN = ∑

i∈At
ZiDYti/

TABLE 4
Estimated coefficients in the propensity model

Coefficient Age Party Romney Perry Paul Others

Est 0.588 0.782 0.991 0.454 0.866 1.307
SE 0.266 0.251 0.454 0.663 0.841 0.985
t-value 2.211 3.116 2.183 0.685 1.030 1.327
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TABLE 5
Estimated parameters (s.e.) for 2012 Iowa Caucus Survey results

Survey Method Romney Perry Paul Others

November Naive 0.340 0.108 0.130 0.422
Ignorable 0.316 0.103 0.146 0.435
Proposed 0.303 0.106 0.093 0.499

(0.062) (0.039) (0.107) (0.046)

December Naive 0.281 0.140 0.131 0.448
Ignorable 0.270 0.144 0.148 0.437
Proposed 0.244 0.134 0.112 0.509

(0.043) (0.026) (0.046) (0.036)

Standard errors are in parentheses.

(
∑

i∈At
Zi); (ii) the ignorable-response estimator (Ignorable), computed by θ̂tIE =∑

i∈At
ωtiZiDYti/(

∑
i∈At

ωtiZi), where ωti is the propensity score obtained by as-
suming the ignorable adjustment weight which is obtained by setting φ2 = 0 in the
sample selection model; and (iii) the proposed propensity score estimator using
nonignorable sample selection models in (6.2) and (6.3). The proposed propensity
score estimators are computed by (2.5) and (2.6).

The results for point estimation are given in Table 5. The proposed estimates
are closer to the Iowa Caucus results in (6.1) than the other estimates for Romney
and Perry. Furthermore, the proposed method enables us to compute the estimated
standard errors of the point estimates using the theory discussed in Section 3. The
estimated standard errors in the December 2011 survey estimates are smaller than
those in the November 2011 survey estimates, which is consistent with our findings
in Section 5. However, the estimates for Paul and Others are further away from the
reported true values compared to other estimators, which are not that encouraging.
It may be due to the uncontrolled time effect.

7. Concluding remarks. Estimators from self-selected samples can suffer
from selection bias. Propensity score weighting using demographic variables can
reduce selection bias, but the bias may remain important if survey participation
depends on the study variable itself. We make assumptions about the selection
mechanism that explicitly include the study variable in the selection model. To
estimate the model parameters, we propose obtaining a second survey from the
original self-selected sample. If the second survey has questions similar to the first
one, we may assume that the regression coefficients for the explanatory variables
in the propensity model are the same as for the original sample. The propensity
model is then identified and the model parameters can be estimated using a gen-
eralized method of moments. The proposed method also permits estimation of the
standard errors of the estimated parameters.
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As mentioned in Remark 3.2, our proposed approach is equivalent to the mea-
surement error model approach of McCaffrey, Lockwood and Setodji (2013) for
propensity score weighting. Also, two limited simulation studies in Section 5 sug-
gest that the proposed method is robust against the failure of the assumed response
models and individual-level heterogeneity in the propensity to respond that persists
over time. The proposed estimators have modest biases even when the equality of
coefficients for the two response mechanisms violate in a certain range.

The proposed method provides a useful tool for analyzing voluntary samples
as well as nonignorable nonresponse problems for survey data and, in particular,
web-based panel surveys. In a panel survey, the same sample can be contacted
several times and the proposed two-phase estimation approach can be extended to
multiphase estimation. This is a topic of future study.
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SUPPLEMENTARY MATERIAL

Supplement Derivations: Supplement Derivations for Sections 3 and 4
(DOI: 10.1214/14-AOAS746SUPPA; .pdf). Details of derivations for variances
and variance estimators in Sections 3 and 4.

Supplement Justifications: Supplement Justifications for Remark 3.2 (DOI:
10.1214/14-AOAS746SUPPB; .pdf). Details of justifications for Remark 3.2.
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