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Lung tumor tracking for radiotherapy requires real-time, multiple-step
ahead forecasting of a quasi-periodic time series recording instantaneous
tumor locations. We introduce a location-mixture autoregressive (LMAR)
process that admits multimodal conditional distributions, fast approximate in-
ference using the EM algorithm and accurate multiple-step ahead predictive
distributions. LMAR outperforms several commonly used methods in terms
of out-of-sample prediction accuracy using clinical data from lung tumor pa-
tients. With its superior predictive performance and real-time computation,
the LMAR model could be effectively implemented for use in current tumor
tracking systems.

1. Introduction. Real-time tumor tracking is a promising recent development
in External Beam Radiotherapy (XRT) for the treatment of lung tumors. In XRT,
a compact linear accelerator is used to deliver photon radiation to the tumor loca-
tions in a narrow beam, minimizing exposure to nearby healthy tissue. As the loca-
tion of the lung tumor is in constant motion due to respiration, some patients who
undergo this treatment are implanted with a small metal marker (known as a fidu-
cial) at the location of a tumor. During XRT, X-ray imaging reveals the location of
the fiducial, thus providing the desired target of the radiation beam. Tumor track-
ing is an advanced technology that minimizes normal tissue exposure by moving
the radiation beam to follow the tumor position [D’Souza, Naqvi and Yu (2005),
Rottmann, Keall and Berbeco (2013), Schweikard et al. (2000)]. However, there
is a system latency of 0.1–1.0 seconds (depending on the equipment used) that
causes the aperture of the radiation beam to lag behind the real-time location of
the tumor. This latency is estimated empirically by comparing the motion history
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of the fiducial and radiation beam aperture. For tumor tracking XRT to be success-
ful, hardware and software system latencies must be overcome by the Introduction
of a predictive algorithm.

As accurate radiotherapy is essential for both minimizing radiation exposure to
healthy tissue and ensuring the tumor itself is sufficiently irradiated, the subject of
predicting tumor motion to overcome the system latency has received a good deal
of attention in the medical community. Any possible forecasting approach must
provide k-step ahead predictive distributions in real time, where k is approximately
equal to the system latency multiplied by the sampling frequency of the tumor
tracking imagery. Real-time forecasting requires that a (k-step ahead) prediction
be made before any further data on the tumor’s motion has been recorded.

Statistical methods for tumor prediction in the literature include penalized lin-
ear models [e.g., Sharp et al. (2004) and many others], the Kalman filter [Murphy,
Isaakson and Jalden (2002)], state–space models [Kalet et al. (2010)] and wavelets
[Ernst, Schlaefer and Schweikard (2007)]; machine learning methods include ker-
nel density estimation [Ruan and Keall (2010)], support vector regression [Ernst
and Schweikard (2009), Riaz et al. (2009)] and neural networks [Murphy and Di-
eterich (2006), Murphy, Isaakson and Jalden (2002)]. All of these examples in-
clude simulations of out-of-sample prediction using real patient data in order to
assess forecasting accuracy. Because predictive performance varies considerably
from patient to patient and across different equipment configurations, of particular
importance to the literature are comparisons of different prediction methods for
the same set of patients with the same conditions for data preprocessing [Ernst
et al. (2013), Krauss, Nill and Oelfke (2011), Sharp et al. (2004)]. While standard
“off-the-shelf” time series forecasting models can be applied to lung tumor track-
ing, better predictive performance can be achieved with a model that explicitly
incorporates the dynamics of respiratory motion.

We propose a novel time series model which we call a location-mixture autore-
gressive process (LMAR). A future observation (Yn) given the observed history of
the time series is assumed to follow a Gaussian mixture,

Yn|Yn−1, Yn−2, . . . ∼
dn∑

j=1

αn,j N
(
μn,j , σ

2)
,(1.1)

where
∑dn

j=1 αn,j = 1 and μn,j is of the form

μn,j = μ̃n,j +
p∑

l=1

γlYn−l .(1.2)

We refer to this as a location-mixture autoregressive model because the autore-
gressive part of the component means,

∑p
l=1 γlYn−l , is the same for all j , and

only the location parameter, μ̃n,j , changes across the components in (1.1). Our
model differs from other time series models that yield mixture-normal conditional
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distributions (e.g., the class of threshold autoregressive models [Tong and Lim
(1980)], including Markov-switching autoregressive models [Hamilton (1989)]
and the mixture autoregressive models of Wong and Li (2000)) in that μ̃n,j in (1.2)
depends on an unknown subseries of the time series, at least p observations in the
past. The mixture weights, {αn,j }, also depend on the entire history of the observed
time series, and the number of mixture components in our model, dn, increases
with n.

Another noteworthy characteristic of our model is that all parameters in (1.1)
are obtained from a single, unknown (p + 1) × (p + 1) positive definite matrix.
This parsimonious parameterization is motivated in part by the need for real-time
parameter estimation and forecasting. Compared with other mixture autoregressive
models, LMAR is simpler to fit and admits accurate closed-form expressions for
k-step ahead predictive distributions. While the data application we consider shows
the promise and appeal of the LMAR model, we believe a thorough treatment of
its theoretical properties (a future endeavor) is necessary before the LMAR model
is a viable “off-the-shelf” method for diverse data sets.

We motivate our model in the context of time series motifs, which offer a ge-
ometric interpretation of the components in our model. In general terms, motifs
catalog recurring patterns in time series and are commonly used in data mining
tasks for which a symbolic representation of a time series is useful, such as event
detection and time series clustering or classification [Fu (2011), Lin et al. (2002),
Tanaka, Iwamoto and Uehara (2005), Ye and Keogh (2009)]. For the purposes of
forecasting, predictive state representations [Boots and Gordon (2011), Littman,
Sutton and Singh (2002), Shalizi (2003)] categorize time series motifs not as sub-
series of the observed data, but as equivalence classes of conditional predictive
distributions.

Section 2 of this paper discusses the important features of the data we use and
graphically motivates our model. Section 3 formally introduces the LMAR model
and describes parameter estimation and forecasting using principled methods that
are feasible in real time. Section 4 describes the procedure for comparing out-of-
sample prediction error under our model with competing forecasting methods for
tumor tracking, including the selection of tuning parameters. The results of this
comparison are discussed in Section 5, and Section 6 summarizes and points out
future directions.

2. Tumor tracking data. We have data on 11 patients treated at the Radiation
Oncology Clinic at the Nippon Telegraph and Telephone Corporation Hospital in
Sapporo, Japan. A detailed discussion of the conditions and instruments involved
in the data acquisition is available in Berbeco et al. (2005). The data is derived
from observations of the position of gold fiducial markers implanted into the tu-
mors of lung cancer patients. The marker position is determined via stereoscopic
X-ray imaging conducted at 30 Hz. In each of the two stereoscopic images, the
marker position is automatically detected using thresholding and edge detection.
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The position of the marker in these two images is used to triangulate its position
in 3D space relative to the radiation beam. Data consists of tumor positions mea-
sured over one or multiple days of radiotherapy treatment delivery (range 1–12),
and for multiple sequences on each day, denoted beams. In our data set, there are
a total of 171 such distinct sequences, with lengths varying from 637 observations
(about 21 seconds at 30 observations per second) to 8935 observations (about 5
minutes).

Note that this paper focuses on within-beam forecasting—that is, each beam
is treated independently and there is no information sharing between patients or
within different beams from the same patient. Developing methodology for com-
bining prediction models from distinct time series (both within and across patients)
is an important area for further research.

2.1. Features of the data. Each observation in each sequence is a point in R
3,

representing the real-time 3D location of the lung tumor. The X axis is the lateral–
medial (left–right) direction, the Y axis is superior–inferior, and the Z axis is
anterior–posterior, with all measurements in millimeters.4 Figure 1 shows the mo-
tion in each dimension during the first 100 seconds of a particular observation

FIG. 1. Sample time series of 3D locations of lung tumor. The X axis is the lateral–medial
(left–right) direction, Y axis superior–inferior, and Z axis anterior–posterior.

4The origin is set to the isocenter, which is the center of rotation for the linear accelerator axis
motions. During treatment, the patient is positioned so that this coincides with the centroid of the
region being treated. However, there is uncertainty in determining this point, so the data is best
thought of as relative tumor motion on each day.
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TABLE 1
Summary statistics for the first principal component of respiratory trace data, at the patient level

Amplitude (mm) Period(s)Total
beams

Total
time (s)Patient Mean SD Mean SD

1 4 212.27 14.57 6.98 3.66 1.16
2 2 136.87 13.74 1.84 3.89 1.06
3 2 80.93 9.84 3.16 3.97 0.56
4 38 2502.67 8.86 1.35 2.88 0.31
5 26 2769.33 7.90 1.66 3.61 0.68
6 28 2471.93 10.07 2.51 2.58 0.55
7 11 1661.37 9.66 2.41 5.05 1.09
8 8 832.80 14.38 4.02 3.15 1.18
9 15 2599.90 11.45 1.61 3.09 0.41

10 15 3497.67 14.88 3.65 3.77 0.64
11 22 3674.77 21.81 5.05 3.38 0.52

sequence. As expected with respiratory motion, the pattern is approximately peri-
odic, with inhalation closely corresponding to decreasing values in the Y direction.
However, the amplitude of each breath varies considerably (in Figure 1 the vari-
ation seems periodic, though this is not a typical feature of the data). The curves
undergo gradual baseline location shifts and, while it may not be visually dis-
cerned from Figure 1, it is common for respiratory cycles to change periodicity,
either sporadically or gradually over time. Table 1 shows the variability in period
and amplitude of the respiratory traces, both within and between patients.

Due to the extremely high correlations between series of observations from dif-
ferent dimensions, it is useful to consider a lower-dimensional representation of
the 3D process. Transforming each 3D sequence into orthogonal components us-
ing principal component analysis (PCA) loads the periodic respiratory dynamics
onto the first component, representing about 99% of the total variance in the 3D
data. The last two principal components still exhibit some periodic behavior (see
Figure 2), but the signal is weak relative to the noise.5 In addition to dimension
reduction and useful interpretability, the PCA transformation prevents any loss of
statistical efficiency if models are fit independently for each component. Ruan and

5A referee pointed out that while the first principal component gives the linear combination of
the 3D data with maximum variance, it is not necessarily the most forecastable linear combination.
Alternative linear transformations (e.g., forecastable components [Goerg (2013a)]) may load addi-
tional periodic features to the first component than we observe with PCA. In choosing an appropriate
transformation, the goal is to find an orthogonal basis in which componentwise predictions have the
smallest error when transformed back to the original basis. We do not explore this issue here; how-
ever, one advantage in using the first principal component is that the signal-to-noise ratio will be
high, allowing for forecast procedures that are not well suited for measurement error in the observed
data.
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FIG. 2. Time series of principal components. Components 2 and 3 exhibit periodic behavior, but
with much smaller magnitude.

Keall (2010) compared independent-component prediction before and after PCA
using kernel density estimation, finding smaller 3D root mean squared prediction
error when using the PCA-transformed data for prediction. When comparing sev-
eral algorithms for predicting lung tumor motion, both Ernst et al. (2013) and
Krauss, Nill and Oelfke (2011) used the principal components, then transformed
their predictions to the original linear basis of the data.

For the remainder of this study, we focus on modeling the first principal com-
ponent only, as it encodes such a large portion of the system dynamics. In clinical
implementation, we would forecast independently on each orthogonal component
and transform back to the original linear basis in order to inform the location of
the radiation treatment beam.

2.2. Time series motifs for forecasting: A graphical example. Because the data
are quasi-periodic, it is useful to look at short patterns that recur at possibly ir-
regular intervals, which we call motifs (we provide a more rigorous definition of
time series motifs in Section 3.2). Figure 3 highlights different motifs in the first
principal component at the end of the exhale (start of the inhale) for a particular
observation sequence. The highlighted areas appear to be heartbeats, which affect
the location of the tumor differently depending on the real-time location of the
tumor relative to the heart.

Observing repeated patterns within each time series in the data suggests a mod-
eling/prediction framework that leverages this structure. In general, if the recent
past of the time series resembles a motif we have observed previously in the data,
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FIG. 3. Recurring patterns (coded by color and line type) in the first principal component of pa-
tient 10, day 1, beam 3. Areas boxed by lines of the same color/line type resemble one another. The
behavior highlighted in these motifs is most likely caused by the patient’s heartbeat.

then the shape of this motif should inform our predictions of future observations;
this idea is formalized through predictive state representations [Littman, Sutton
and Singh (2002), Shalizi (2003)]. For a graphical illustration, consider predicting
0.4 s (12 steps) ahead for the first principal component of the curve displayed
in Figure 2. We have observed 100 seconds of the process, and it appears as
though we have just observed the start of the exhale; the current observation at
time t = 100 seconds, as well as the previous 12 observations, are colored orange
in Figure 4. Colored in black are segments earlier in the time series that resem-
ble the current motif (specifically, we highlighted subseries of length 13 where the
tenth point has the largest magnitude, and the 11th–13th points are decreasing).

To predict future observations, we can incorporate the points immediately suc-
ceeding the endpoints of black motifs. Figure 5 shows these trajectories (in gray),
and the actual current trajectory of the process is shown in orange, with a point
giving the value 0.4 s in the future. The gray curves provide reasonable forecasts
for the future evolution of the time series and, indeed, the actual future value is
close to where these trajectories predict.

FIG. 4. The most recent 0.43 s (13 observations) are in black. The thicker orange segments share
similar local history.
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FIG. 5. The recent history of the process (thick black line) instantiates a motif. Previous instances
of this motif, and their subsequent evolutions, are in orange and provide reasonable predictions for
future points (black dot).

Our model, formally introduced in Section 3, implements the forecasting ap-
proach sketched in this subsection using an autoregressive model for the data-
generating process.

3. Location-mixture autoregressive processes. Here, we define the LMAR
process and provide computationally efficient algorithms for parameter estimation
and k-step ahead forecasting. To establish terminology, we denote a time series
as an ordered sequence of real numbers {Yi ∈ R, i = 0,±1,±2, . . .} measured
at regular, equally spaced intervals. Also, a subseries of length p + 1 is a sub-
set of a time series {Yi, i = 0,±1, . . .} comprised of consecutive observations,
Yi, Yi+1, . . . , Yi+p . For notational ease, we will denote the subseries as Yi : (i+p)

or, equivalently, Yi+0 : p .

3.1. A model for the data-generating process. Let {Yi, i = −m, . . . , n} be a
time series. Also, assume � is a (p+1)× (p+1) symmetric, nonnegative definite
matrix, where �11 is the upper-left p × p submatrix, �22 is the single bottom-
right element, and �21 and �12 are the respective off-diagonal row and column
vectors. p is assumed to be fixed and known. For notational ease, let γ = �−1

11 �12,
σ 2 = �22 − γ ′�12, and Ji = {p + 1, . . . , i + m − p}. Last, let

Vij =

⎛
⎜⎜⎜⎜⎝

Yi−p − Yi−j−p

...

Yi−2 − Yi−j−2
Yi−1 − Yi−j−1

⎞
⎟⎟⎟⎟⎠ .
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As in (1.1), we assume that the distribution of Yi given Y−m, . . . , Yi−1 is a normal
mixture,

Yi |Y(−m) : (i−1) ∼ ∑
j∈Ji

αi,j N
(
μi,j , σ

2)
(3.1)

where αi,j = exp(−(1/2)V ′
ij�

−1
11 Vij )∑

l∈Ji
exp(−(1/2)V ′

il�
−1
11 Vil)

and μi,j = Yi−j + γ ′Vij .

The model in (3.1) defines the location-mixture autogressive process with pa-
rameter � [abbreviated LMAR(�)]. We can recognize the location-mixture form
originally given in (1.1) by writing μi,j = μ̃i,j + ∑p

l=1 γlYi−l , where

μ̃i,j = Yi−j −
p∑

l=1

γlYj−l(3.2)

and (γpγp−1 · · ·γ1)
′ = γ . Thus, the distribution for Yi |Y(−m) : (i−1) is a normal

mixture with |Ji | different mean components—each sharing a common autore-
gressive component but different location parameter—equal variance across com-
ponents (σ 2) and data-driven mixture weights (αi,j ). We assume (3.1) for all i ≥ 0,
but we do not make any distributional assumptions about Y(−m) : (−1).

As � parameterizes the entire mixture distribution, the component means
and mixture weights are linked through a common parameter which encourages
self-similarity in the data-generating process. If two subseries Y(i−p) : (i−1) and
Y(i−p−j) : (i−1−j) resemble one another in that V ′

ij�
−1
11 Vij is small, then we have a

large weight on the mixture component with mean Yi−j + γ ′Vij . This means that
the next observation of the process, Yi , is centered near a previous value of the
series Yi−j inasmuch as the subseries of observations preceding Yi and Yi−j have
a similar shape. Simply put, if Yi and Yi−j are preceded by similar values, then
the components of Vij will be close to 0. This drives up the mixture weight αi,j ,
implying the mean of Yi will be close to μi,j (which itself is close to Yi−j ).

The dimension of �, p +1, can in principle be chosen using standard model se-
lection methods (e.g., Bayes factors), though if the goal of fitting a LMAR model
is prediction, we recommend cross-validation or hold-out testing for choosing p.
For quasi-periodic time series, a reasonable choice for p might be anywhere be-
tween one-tenth and one-third of the average number of observations per period.
Larger values of p increase the computational load in estimating � while favoring
sparser component weights.

The model (3.1) specifies the role of time series motifs in the data-generating
process, which was informally discussed in Section 2.2. To illustrate this, we in-
troduce a latent variable Mi that takes values in Ji , such that for all j ∈ Ji ,

P(Mi = j |Y(−m) : (i−1)) ∝ exp
(−1

2V ′
ij�

−1
11 Vij

)
.(3.3)
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Then, given Mi = j , we induce the same distribution for Yi as in (3.1) by assuming

Yi |[Mi = j,Y(−m) : (i−1)] ∼ N
(
Yi−j + γ ′Vij , σ

2)
.(3.4)

Expression (3.4) can be used to define a motif relation: each subseries of length
(p + 1) is a motif, and Y(i−p) : i is an instance of motif Y(i−p−j) : (i−j) if Mi = j

[thus yielding (3.4)]. We denote this by writing

(motif) Y(i−p−j) : (i−j) → Y(i−p) : i (instance).

Note that our indexing set Ji is defined in such a way that instances of a particular
motif cannot overlap (share a common component Yj ) with the motif itself.

Our definition of motifs is atypical of the literature for data mining tasks
[Lin et al. (2002)] and predictive state representations of time series [Littman,
Sutton and Singh (2002)]. For instance, the relationship that instantiates motifs
(notated →) is not symmetric and is not an equivalence relation; for this reason
we have defined a motif instance distinctly from a motif. Also, we define motifs
as observed subseries of the data and motif instances as latent states (we do not
observe Mi ). For most data mining tasks, time series motifs represent an equiva-
lence class of observed subseries of the data (possibly transformed) [Fu (2011)],
whereas predictive state representations of time series treat motifs as latent equiv-
alence classes of predictive distributions [Shalizi (2003)].

However, our definition of motifs preserves the interpretation of geometric
similarity we sketched in Section 2.2. From (3.3), we have Mi = j (meaning
Y(i−p−j) : (i−j) → Y(i−p) : i) with high probability if Vij is small with respect to the

�−1
11 inner product norm. Our model thus expects a subseries that is an instance

of a particular motif to be close to the motif, and � parameterizes this distance
metric.

3.2. Comparison with other mixture autoregressive processes. We may com-
pare the LMAR(�) to a general form of regime-switching autoregressive models,
for which we can write the distribution function of Yi conditional on all available
history of the process Y(−m) : (i−1) as

F(y|Y(−m) : (i−1)) =
d∑

j=1

αi,j�

(
y − (β0,j + ∑p

l=1 βl,jYi−l)

σj

)
,(3.5)

where
∑d

j=1 αi,j = 1 for all i and � denotes the standard normal CDF. Models
satisfying (3.5) can be represented in the framework of threshold autoregressive
models [Tong (1978), Tong and Lim (1980); see Tong (1990) for a book-length
treatment], which represent (3.5) using an indicator series {Mi} taking values on
{1, . . . , d}, such that

Yi = β0,Mi
+

p∑
l=1

βl,Mi
Yi−l + σMi

εi,(3.6)
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where {εi} are i.i.d. standard normals. Generally, M is not observed, although there
are notable exceptions such as the self-exciting threshold AR model of Tong and
Lim (1980).

A canonical model of this form is the mixture autoregressive model of Le, Mar-
tin and Raftery (1996) and Wong and Li (2000), which assumes {Mi} are i.i.d. and
independent of Y . Another special case of (3.6) is when M is a Markov chain,
such as in the Markov-switching autoregressive models of Hamilton (1989) and
McCulloch and Tsay (1994). More general stochastic structure for M is consid-
ered by Lau and So (2008), as well as in mixture-of-experts models in the machine
learning literature [Carvalho and Tanner (2005)]. These models seem favorable
over the mixture autoregressive models of Wong and Li (2000) when the data is
seasonal or quasi-periodic, as is the case with the time series we consider.

The LMAR(�) process differs from (3.5) in that the mixture means, following
(3.1)–(3.2), are given by

μi,j = μ̃i,j +
p∑

l=1

γlYi−l = Yi−j +
p∑

l=1

γlYi−l −
p∑

l=1

γlYj−l ,

instead of μi,j = β0,j +∑p
l=1 βl,jYi−l as in (3.5). Thus, for LMAR(�), the autore-

gressive coefficients (γ ) are fixed, and the normal-mixture form of the conditional
distribution is induced by a location shift that is a function of a random subseries of
past observations, μ̃i,j . The normal-mixture form of (3.5), however, is induced by a
mixture distribution for autoregressive coefficients of the same lagged values of the
time series. The mixture weights of the LMAR(�) process are also strongly data
driven, depending on the entire history of the process. Unlike many forms of mix-
ture autoregressive models, there is no prior distribution or conditional dependence
structure assumed for M ; the distribution of M is supplied entirely by the data.

Another key difference is that LMAR(�) does not assume a fixed number of
mixture components, as is clear from (3.1). But because the same autoregressive
coefficient vector (γ ) parameterizes all mean components μi,j , we actually have
a much smaller parameter space than all the instances of (3.5) cited above, which
include the parameters for the mixture components (d vectors of length p + 1
for the means) as well as for the distribution of M . A small parameter space is
advantageous in the context of our data application, as it facilitates rapid updating.
Also, time constraints will not allow for any goodness-of-fit or model selection
procedures for choosing structural parameters such as d or p in (3.5), or structural
parameters for M . The only structural parameter in the LMAR(�) model is p, and
in our analysis of this data set we found that predictive distributions were quite
stable for different choices of p.

The most important distinction of the LMAR(�) model is the existence of good
approximations for k-step ahead predictive distributions, for k ≤ p, which are
given in Section 3.4. Closed-form predictive distributions for k > 1 are not avail-
able for many models of the form (3.5) [the exception is the Markov-switching
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autoregressive models of Hamilton (1989); for a discussion see Krolzig (2000)].
Wong and Li (2000) recommended Monte Carlo estimates of k-step ahead pre-
dictive distributions, although Boshnakov (2009) found for them a closed-form
representation as a normal mixture. Calculating the mixture component param-
eters for moderate k, however, is quite laborious. For the general model (3.5),
De Gooijer and Kumar (1992) discussed the difficulty in k-step ahead forecasting
and questioned whether predictive performance is improved over classes of lin-
ear time series models [also see Tong and Moeanaddin (1988) for a discussion of
the robustness of medium-to-long range forecasts using threshold autoregressive
models].

3.3. Parameter estimation. In order to be able to adjust radiotherapy treat-
ments in real time to the patient’s breathing pattern, we seek estimation procedures
that are fast enough to run online (in less than a few seconds). As a general rule,
this favors approximate closed-form solutions to estimating equations over exact
numerical or Monte Carlo methods. To estimate �, which is the only unknown
parameter of this model, we take a conditional likelihood approach based on the
conditional distribution Y0 : n|Y(−m) : (−1). We assume the full-data likelihood can
be written as

L(ψ,�) = L1(ψ,�)L2(�),

where L1(ψ,�) ∝ P(Y(−m) : (−1);ψ,�) and L2(�) ∝ P(Y0 : n|Y(−m) : (−1);�).
The distribution of the first m observations, and thus L1, is left unspecified, and
all information for � comes from L2. If L1 depends on �, there will be some loss
of efficiency when using only L2 for inference versus the complete-data likeli-
hood, though under mild conditions the maximum conditional likelihood estimate
is consistent and asymptotically efficient [Kalbfleisch and Sprott (1970)].

The conditional likelihood, L2(�), can be written as

L2(�) =
n∏

i=0

1

σ

[ ∑
j∈Ji

exp
(
− 1

2σ 2

(
Yi − Yi−j − γ ′Vij

)2
)

(3.7)

×
( exp(−V ′

ij�
−1
11 Vij /2)∑

l∈Ji
exp(−V ′

il�
−1
11 Vil/2)

)]
.

To maximize (3.7), we augment the data to {Y0 : n,M0 : n}, with Mi as in (3.3). This
invites the use of the Expectation–Maximization (EM) algorithm [Dempster, Laird
and Rubin (1977)] to estimate �. The augmented-data (complete-data) conditional
likelihood is

L2,com(�) =
n∏

i=0

1

σ

∏
j∈Ji

[
exp

(
− 1

2σ 2

(
Yi − Yi−j − γ ′Vij

)2
)

×
( exp(−V ′

ij�
−1
11 Vij /2)∑

l∈Ji
exp(−V ′

il�
−1
11 Vil/2)

)]1[Mi=j ]
.
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This can be simplified further. Let W ′
ij = (V ′

ij Yi −Yi−j ), and recalling the notation
for σ and γ , we have

L2,com(�) =
n∏

i=0

exp(−(1/2)
∑

j∈Ji
1[Mi = j ]W ′

ij�
−1Wij )

σ
∑

l∈Ji
exp(−V ′

il�
−1
11 Vil/2)

.(3.8)

The term
∑

l∈Ji
exp(−V ′

il�
−1
11 Vil/2) can be viewed as an approximation of a

Gaussian integral; if we assume that, for all i, {Vil, l ∈ Ji} resemble |Ji | i.i.d.
draws from some distribution V ∼ N(0,
), then we have∑

l∈Ji

exp
(−V ′

il�
−1
11 Vil/2

)

≈ |Ji |
∫

exp
(−V ′�−1

11 V/2
)exp(−V ′
−1V/2)

(2π)p/2|
|1/2 dV

(3.9)

= |Ji |
( |(�−1

11 + 
−1)−1|
|
|

)1/2

= |Ji |
( |�11|

|�11 + 
|
)1/2

.

Noting that σ |�11|1/2 = |�|1/2, and ignoring multiplicative constants, we arrive
at an approximate augmented-data conditional likelihood:

L2,com(�) ≈
( |�11 + 
|

|�|
)(n+1)/2

exp

(
−1

2

n∑
i=0

∑
j∈Ji

1[Mi = j ]W ′
ij�

−1Wij

)
.

Typically �11 � 
, meaning

∂
(
log

(|�11 + 
|) − log
(|�|)) = Tr

(
(�11 + 
)−1 ∂�11

) − Tr
(
�−1 ∂�

)
≈ −Tr

(
�−1 ∂�

)
as ∂ log(|�|) dominates ∂ log(|�11 + 
|). This justifies the approximation
log(|�11 + 
|) − log(|�|) ≈ − log(|�|) in the augmented-data conditional log-
likelihood, as it will admit nearly the same maximizer. Thus, we have

log
(
L2,com(�)

) ≈ −n + 1

2
log

(|�|)
(3.10)

− 1

2

n∑
i=0

∑
j∈Ji

1[Mi = j ]W ′
ij�

−1Wij .

While (3.10) is much easier to work with than the logarithm of the exact con-
ditional likelihood (3.8), the assumptions of this approximation are somewhat
tenuous. Under this model (3.1), both conditional and marginal distributions of
observations at each time point follow a normal mixture, meaning for l randomly
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chosen from Ji , we have a difference of normal mixtures (itself a normal mix-
ture) for Vil , instead of i.i.d. normals as (3.9) suggests. We nevertheless proceed
with approximation (3.10) in place of (3.8), noting that convergence of the EM
algorithm needs to be more carefully monitored in this instance.

At each iteration of the EM algorithm, we maximize the so-called Q function:

Q(t)(�) = E�(t)

[
log

(
L2,com(�)

)|Y ]
(3.11)

≈ −n + 1

2
log

(|�|) − 1

2

n∑
i=0

∑
j∈Ji

ωijW
′
ij�

−1Wij ,

with �(t) = argmax(Q(t−1)(�)) and ωij = E�(t)[1[Mi = j ]|Y ]. Clearly,

ωij = exp(−W ′
ij [�(t)]−1Wij/2)∑

l∈Ji
exp(−W ′

lj [�(t)]−1Wlj/2)
.

The maximizer of (3.11) can be found in closed form as a weighted sample covari-
ance matrix,

�(t+1) = 1

n + 1

n∑
i=0

∑
j∈Ji

ωijWijW
′
ij .(3.12)

Again, due to several different approximations used in maximizing the original
conditional likelihood (3.7), it is necessary to monitor the convergence to a suitable
(if slightly suboptimal) solution, as the log-likelihood is not guaranteed to increase
at each iteration.

3.4. A prediction model for fast implementation. Exact closed-form expres-
sions for k-step ahead predictive distributions are not available for the model (3.1).
Because of the need for real-time forecasting of many steps ahead, we explore ap-
proximations to k-step ahead predictive distributions that are available in closed
form. An immediate approach to doing so is to explore whether the approximate
complete-data conditional log-likelihood used for inference (3.10) corresponds to
a probabilistic model (perhaps misspecified) that admits closed-form predictive
distributions. In other words, if the previous section derives an approximate log-
likelihood (3.10) from an exact model (3.1), here we treat (3.10) as exact and
explore corresponding approximate models.

Let Zi = (Yi−p · · ·Yi−1Yi)
′ for 0 ≤ i ≤ n. Since Wij = Zi − Zj , we may arrive

at the likelihood expression (3.10) by assuming Zi ∼ N(Zi−Mi
,�) independently.

This is obviously a misspecification, since for any k ≤ p, Zi and Zi+k contain
duplicate entries and thus cannot be independent. But assuming the {Zi} indepen-
dent, and further assuming P(Mi = j) = 1/|Ji | independently for all i, we can
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write the (conditional) likelihood for an independent multivariate normal mixture
model, denoted La to distinguish from L2,com:

La(�) =
n∏

i=0

∏
j∈Ji

[
|�|−1/2 exp

(
−1

2
W ′

ij�
−1Wij

)]1[Mi=j ]
.(3.13)

Indeed, we see that La(�) is equal to the approximation of L2,com(�) given
in (3.10). Thus, the misspecified independent mixture model for Zi yields the same
likelihood (La) as the approximation to L2, the exact (conditional) likelihood cor-
responding to the data-generating process. Also, recall that Mi = j denotes Zi as
an instance of motif Zj . The implied relation in (3.13) is that

Zj → Zi if Zi |Zj ∼ N(Zj ,�)(3.14)

and, indeed, this relation is closely connected to the one defined in (3.4). They
appear equivalent, as (3.4) is recovered by assuming Zi |Zj ∼ N(Zj ,�), and then
considering the conditional distribution Yi |Y(−m) : (i−1). However, for (3.14) to hold
for all i requires the impossible assumption of Zi being independent of Zi−1, while
the relation in (3.4) does not.

The corresponding Q function for this complete-data conditional likelihood
(3.13) is

Q(t)
a (�) =

n∑
i=0

−1

2
log

(|�|) − 1

2

∑
j∈Ji

E�(t)

[
1[Mi = j ]|Z]

W ′
ij�

−1Wij .

Working E�(t)[1[Mi = j ]|Z] = ωij , we see that Q
(t)
a is identical to Q(t) given

in (3.11), confirming that the “same” � parametrizes both the original data-
generating process assumed in (3.1) and its degenerate approximation that we will
use to make predictions in (3.13). We may also think of maximizing Q as inferring
motif instances given by the relation (3.14), that is, minimizing a distance metric.

The independent multivariate mixture distribution of {Zi} considered here very
easily provides k-step predictive distributions for k ≤ p. If we have observed the
process up to Yn and wish to predict Yn+k , this is equivalent to having observed Z

up to Zn and wishing to predict the last component of Zn+k . Having observed Zn

completely, we have observed the first p − k + 1 components of Zn+k , and thus
by the (misspecfied) independence assumed for {Zi}, the predictive distribution for
Yn+k depends only on these p−k+1 values. To write this, we denote Z̃k

n as the first
p − k + 1 components of Zn+k (or the last p − k + 1 components of Zn); also, let
W̃ k

nj = Z̃k
n − Z̃k

j and partition � into �k
11 as the upper-left (p−k+1)× (p−k+1)

submatrix, �k
22 as the single bottom-right element (thus identical to �22), and

�k
12,�

k
21 accordingly. Then we have

Yn+k|Y(−m) : n ∼ ∑
j∈Jn+k

αk
j N

(
μk

j , σ
2
k

)
,(3.15)



1356 D. CERVONE ET AL.

where:

• αk
j = P(Mn+k = j |Z̃k

n) ∝ exp(−(W̃ k
nj )

′[�k
11]−1W̃ k

nj /2),

• μk
j = Yn+k−j + �k

21[�k
11]−1W̃ k

nj ,

• σ 2
k = �k

22 − �k
21[�k

11]−1�k
12.

In terms of motifs, these predictive distributions result from considering the
most recent subseries of the data of length p − k + 1 as a partially observed motif
instance, Zn+k , which includes the future observation we wish to predict, Yn+k .
Using the implied motif relation in (3.14), we infer both the motif for which Zn+k

is an instance and derive predictive distributions using simple multivariate normal
properties (3.15).

Of course, we use �̂, the solution to (3.12), in place of � in the above expres-
sions, acknowledging that the resulting predictive distributions fail to account for
the uncertainty in our estimate of �.

3.5. Interpreting �̂. Figure 6 shows estimates �̂ from two of the time se-
ries in our data. Interpreting these as covariance matrices, we see relatively high
correlations across components, favoring instantiating motifs where the difference
between the motif instance and the original motif is roughly linear with a slope
near 0. Also, the diagonal terms are decreasing from top to bottom, implying that
more weight is given to the most recent components of the observed time series
when inferring the latent motif instance and making predictions.

4. Evaluating out-of-sample prediction error with competing methods.
We compare out-of-sample prediction performance for tumor tracking using the
LMAR(�) model with three methods that are straightforward to implement and

(A) �̂ for patient 10, day 1, beam 1 (B) �̂ for patient 9, day 1, beam 2

FIG. 6. Illustration of �̂ for two of the time series in our data, using p = 22. Note that the color
scale differs slightly for each figure.
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provide real-time forecasts. Neural networks (4.1) and ridge regression (4.2) both
compare favorably to alternative methods with regards to prediction accuracy
[Krauss, Nill and Oelfke (2011), Sharp et al. (2004)]. LICORS (4.3) is a non-
parametric and nonregression forecasting method based on predictive state repre-
sentations of the time series [Goerg and Shalizi (2012, 2013)]. For each method,
Sections 4.4–4.6 discuss data preprocessing and computational considerations rel-
evant for real-time tumor tracking.

4.1. Feedforward neural networks. Multilayer feedforward neural networks
with at least one hidden layer have been used to forecast lung tumor motion by
Murphy, Isaakson and Jalden (2002) and Murphy and Dieterich (2006), as well as
in simultaneous comparisons of several methods [Ernst et al. (2013), Krauss, Nill
and Oelfke (2011), Sharp et al. (2004)]. Using p × h × 1 neural networks, we can
predict Yi+k as a function of Y(−m) : i . Let Xi = Y(i−p)+1 : p , then

Ŷi+k = β0 + β ′G(Xi),(4.1)

where G(Xi) = (g(w01 + w′
1Xi)g(w02 + w′

2Xi) · · ·g(w0h + w′
hXi))

′ with acti-
vation function g; here we assume g(x) = 1/(1 + exp(−x)). Hyperparameters p

and h are set by the user (as is the form of the activation function). Unknown
parameters β0, β,w01, . . . ,w0h,w1, . . . ,wh are estimated by minimizing the sum
of squares using the R package nnet [Venables and Ripley (2002)]. Because the
number of unknown parameters is large (w1, . . . ,wh are p-vectors), to prevent
overfitting, a regularization term is often used in the sum of squares minimization.
Then, the model is fit by minimizing

C(Y, θ) =
n−k∑
i=0

(Ŷi+k − Yi+k)
2 + λθ ′θ,(4.2)

where θ represents a vector of all unknown parameters stacked together and λ is a
penalty hyperparameter that is supplied by the user, with higher values providing
more shrinkage.

4.2. Ridge regression. The second competing method considered is a linear
predictor of the form

Ŷi+k = β0 + β ′Xi,(4.3)

with Xi = Y(i−p)+1 : p and where β0, β are found by minimizing

C(Y,β0, β) =
n−k∑
i=0

(Ŷi+k − Yi+k)
2 + λ

(
β2

0 + β ′β
)
.(4.4)

Nearly all studies involving forecasting lung tumor motion consider predictors of
this form, usually referred to as ridge regression. However, since ridge regression
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assumes {Yi} to be independent [Hoerl and Kennard (1970)], the model implied by
(4.3)–(4.4) is better described as fitting an autoregressive model of order p + k − 1
(the first k − 1 coefficients being 0) using conditional least squares, with an L2
penalty on the vector of autoregressive coefficients (yet we shall refer to this pre-
diction method as ridge regression). Linear models lack many features that seem
appropriate for this forecasting example, such as multimodal and/or heteroskedas-
tic conditional distributions, yet still perform reasonably well and are commonly
used as a baseline for comparing tumor prediction methods.

4.3. Light cone reconstruction of states (LICORS). Mixed LICORS [Goerg
and Shalizi (2013)] is a recent nonparametric forecasting method based on pre-
dictive state representations of spatiotemporal fields [Goerg and Shalizi (2012),
Shalizi (2003)]. In the context of our forecasting example, mixed LICORS mod-
els Yi+k|Y(−m) : i as depending only on the past light cone (with horizon p)
Xi = Y(i−p)+1 : p; furthermore, ε(Xi) is a minimal sufficient statistic for the pre-
dictive distribution of Yi+k , so that

Yi+k|Y(−m) : i ∼ Yi+k|Xi ∼ Yi+k|ε(Xi),(4.5)

and if ε(Xi) = ε(Xj ), then Yi+k|ε(Xi) ∼ Yj+k|ε(Xj ). Without loss of generality,
we may assume ε takes values in S = {s1, . . . , sK}, and for simpler notation let
Si = ε(Xi) and denote Pj (Yi+k) = P(Yi+k|Si = sj ). The unknown parameters of
this model are the mapping ε, the number of predictive states K and the predictive
distributions of the predictive states {Pj ,1 ≤ j ≤ K}. For fixed K , the remaining
parameters are estimated by maximizing

C(Y, ε,P1, . . . ,PK) =
n−k∏
i=0

K∑
j=1

Pj (Yi+k)P(Si = j |Xi),(4.6)

which acts as a likelihood, except for Pj being unknown. Goerg and Shalizi (2013)
maximized (4.6) with a nonparametric variant of the EM algorithm using weighted
kernel density estimators to approximate the unknown densities of the predic-
tive distributions {Pj ,1 ≤ j ≤ K}; they also advocated data-driven procedures for
choosing the number of predictive states K .

It is possible to embed the LMAR model in a parametric (Gaussian) mixed
LICORS framework, treating {Vij , j ∈ Ji} as the past light cone �−

i and {Vij where
Mi = j} as the predictive state Si = ε(�i). While this choice of ε does provide a
minimal sufficient statistic for the predictive distribution of Yi (or L+

i ) under the
LMAR model, it will not provide any dimension reduction or parsimony since
ε(�i) will almost surely be unique for each i under our model assumptions.

Fitting the mixed LICORS model to the time series in our data and using it
for forecasting was accomplished using the R package LICORS [Goerg (2013b)].
Note that point forecasts using the inferred model (4.5) will be a weighted average
of the means of the predictive states si ∈ S .
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4.4. Data preprocessing. Similar to Krauss, Nill and Oelfke (2011), we use a
total of 80 seconds of data (2400 observations) from each time series, 40 seconds
for model fitting and 40 seconds for out-of-sample prediction given the model fit
to the first 40 seconds of data. This necessitates removing time series for which
we have fewer than 2400 + k observations, where k is the forecast window. This
eliminates 61 of the 171 time series in our data base, unfortunately including all
time series from patients 1, 2 and 3. An additional 15 time series were eliminated
because there were several gaps in the observation sequence. This leaves us with
95 total time series; patient 8 has only one time series and patient 6 has the next
fewest series with 9. Patient 11 has the most time series with 21. While each time
series is three dimensional, we predict using only the first principal component (the
principal component transformation is estimated from the initial 40 s of training
data) as discussed in Section 2.1.

4.5. Tuning hyperparameters. Because of the need for real-time model fit-
ting and prediction, all tuning and hyperparameters for the methods we consider
must be specified prior to the administration of radiotherapy—before any data is
observed. This suggests finding specifications for each model that perform reason-
ably well for all patients, though perhaps sub-optimally for each patient individu-
ally. Indeed, this is the approach usually taken in the literature [Ernst et al. (2013),
Krauss, Nill and Oelfke (2011), Sharp et al. (2004)]. Because patients are typi-
cally given several or many instances of radiotherapy during different sessions,
there seems to be potential for more patient-specific tuning of hyperparameters,
though this is left as a separate problem for now.

Table 2 lists the hyperparameters and/or tuning parameters for each of the pre-
diction methods we consider. As described in Section 4.4, since the first 40 sec-
onds of each time series will not be used to evaluate out-of-sample prediction,
we may use these subseries to find sensible, patient-independent values for all hy-
perparameters. Each 40 second subseries is further divided, where for a given set
of hyperparameters each prediction method is fit to the first 30 seconds of data

TABLE 2
List of global, patient-independent hyperparameters to be tuned for each prediction method

Method Hyperparameter Description

LMAR p Motif length (3.14)

Neural networks p Length of input vector Xi (4.1)
h Number of neurons in hidden layer (4.1)
λ Shrinkage; L2 penalty (4.2)

Ridge regression p Length of input vector Xi (4.3)
λ Shrinkage; L2 penalty (4.4)

Mixed LICORS p Length of input vector Xi (4.5)
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(900 observations), and then the remaining 10 seconds are used to generate out-of-
sample predictions, for which we store the vector of errors.

Using a course grid search over the parameter space given in Table 2, predic-
tive error [both root mean squared error (RMSE) as well as median absolute error
(MAE), which is more robust to heavy-tailed error distributions] is averaged across
patients, allowing us to choose the best set of patient-independent hyperparameter
values [Krauss, Nill and Oelfke (2011)]. Note that different hyperparameter values
are chosen for different forecast windows.

4.6. Computational considerations. In addition to providing real-time fore-
casts, tumor tracking models require parameters that can be estimated very quickly
so that accurate (forecast-assisted) radiotherapy can begin as soon as possible after
observing a short window of training data.

Ridge regression yields almost instantaneous estimates of parameters necessary
for prediction [β in (4.3)], since (4.4) can be minimized in closed form. Fitting
neural networks (4.1), however, requires numerical optimization of (4.2). This was
carried out using the nnet package in R, which implements the BFGS algorithm
[Venables and Ripley (2002)]. Because (4.2) is not convex, we recommend several
random starting points for initiating the optimization, insomuch as time allows; the
dimension of the parameter space and the convergence criteria for the numerical
optimization are both extremely important considerations in addition to the length
of the time series being fit. For example, on a Lenovo X220 laptop with an Intel
Core i5-2520 M 2.50 GHz processor, a 45 × 6 × 1 neural network required about
10 seconds to fit on 1200 observations when using nnet’s default convergence
criteria, with 10 randomly initialized starting points.

The computation time in fitting the LMAR(�) depends critically on both
the convergence criteria for the EM algorithm as well as the initial value of
� used. Typically, the likelihood (3.7) or log-likelihood is used, however, the
EM updates given in (3.12) are only approximate, meaning the likelihood is
not guaranteed to increase at every iteration. We found that using the approxi-
mate log-likelihood (3.10) to check convergence yielded convergence in the exact
log-likelihood. This being the case, other metrics could possibly be used to check
convergence that are quicker to calculate than (3.10), such as the Frobenius norm
of differences in the updates of �̂. To obtain good starting values, the algorithm
can be run before having observed the entire training sequence using a simple
starting value of a diagonal matrix. Using a relative tolerance of 0.0001 for the
approximate log-likelihood, we were able to compute �̂ in no more than four sec-
onds for each of the time series considered. R code for fitting the LMAR model is
included in this paper’s supplementary materials [Cervone et al. (2014)].

The value of m for the LMAR model may also trade off estimation speed and
accuracy; we used m = 400, though found essentially identical results for m = 200
and m = 300 (higher values of m favor faster, but less precise, estimation of �).
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Parameter estimation for mixed LICORS took several minutes on our machine.
However, much of this computational cost is accrued in inferring K , the number of
predictive states. The procedure described in Goerg and Shalizi (2013) and imple-
mented in the LICORS R package is to start at an upper bound for the number of
predictive states, optimize the likelihood approximation (4.6) and then merge the
two states whose predictive distributions are closest (measured by some distance
or a hypothesis test). The optimizing and merging steps are repeated until we either
have 1 state remaining or, alternatively, all pairwise tests for equality among pre-
dictive distributions are rejected. Then, cross-validation is used to choose among
these candidate models indexed by different values of K .

While there may be some loss in prediction accuracy, estimation speed can be
improved by fixing K (perhaps tuning it as in Section 4.5). Furthermore, initial-
izing the nonparametric EM algorithm with informative starting values (learned
from previously observed respiratory trace curves) and relaxing the convergence
criteria may substantially increase estimation speed with little loss in predictive
performance.

5. Prediction results for tumor tracking data. The results of out-of-sample
predictions using the LMAR model, as well as the methods discussed in Section 4,
are provided in this section. Point forecasts are discussed in Sections 5.1–5.3 and
interval/distributional forecasts in Section 5.4.

5.1. Results for point forecasts. The measures of predictive performance we
consider are root mean squared error (RMSE) and median absolute error (MAE),
as well as the fraction of time each forecasting method obtains the minimum pre-
diction error among the methods compared. We report these quantities for each of
the 8 patients, at forecast windows of 0.2 s (6 observations), 0.4 s (12 observations)
and 0.8 s (18 observations) in Table 3.

We stress that RMSE may not be the most useful summary of predictive per-
formance since the error distributions are heavy tailed, and in the application of
radiotherapy, we are more concerned with whether or not the treatment beam was
localized to the tumor than with the squared distance of the treatment beam to the
tumor.6 For this reason, we feel that the median (more generally, quantiles of the
distribution function for absolute errors) is the best summary of predictive perfor-
mance for this data context. Ultimately, the dosimetric effects of these errors are
of most interest, but their determination is complicated and beyond the scope of
this work.

Two further points of emphasis regarding the accuracy summaries are that while
we eliminated time series with unevenly spaced observations from consideration,

6However, the loss function implied in the model fitting and point prediction is squared error loss,
which is the simplest for many computation reasons.
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TABLE 3
Summary of errors in point forecasts for all four methods and all three forecast windows

considered. RMSE is root mean squared error, MAE is median absolute error, and Best refers to the
proportion of time for which the absolute prediction error is smallest among the methods
considered. For each metric, the most desirable value among the four methods for each

patient/forecast window combination is in bold

0.2 s forecast 0.4 s forecast 0.6 s forecast

Patient Method RMSE MAE Best RMSE MAE Best RMSE MAE Best

4 LMAR 0.52 0.24 0.27 0.99 0.39 0.27 1.18 0.44 0.31
NNs 0.46 0.22 0.28 0.90 0.39 0.28 1.20 0.48 0.27

Ridge 0.53 0.31 0.20 1.08 0.62 0.17 1.50 0.86 0.18
LICORS 0.58 0.25 0.25 1.05 0.37 0.28 1.43 0.52 0.24

5 LMAR 0.56 0.25 0.30 0.96 0.42 0.29 1.15 0.51 0.30
NNs 0.55 0.27 0.27 0.89 0.40 0.30 1.15 0.51 0.30

Ridge 0.58 0.31 0.25 1.01 0.56 0.23 1.39 0.78 0.23
LICORS 0.79 0.35 0.19 1.33 0.63 0.18 1.79 0.89 0.17

6 LMAR 0.77 0.40 0.29 1.54 0.82 0.30 2.00 1.06 0.34
NNs 1.01 0.46 0.24 1.74 0.93 0.24 2.43 1.38 0.22

Ridge 0.83 0.42 0.28 1.59 0.88 0.28 2.14 1.28 0.28
LICORS 1.37 0.57 0.19 2.17 1.19 0.18 2.92 1.75 0.15

7 LMAR 0.40 0.15 0.35 0.85 0.27 0.37 1.23 0.41 0.36
NNs 0.43 0.19 0.26 0.88 0.36 0.25 1.35 0.51 0.25

Ridge 0.44 0.26 0.20 1.00 0.59 0.16 1.56 0.96 0.17
LICORS 0.62 0.25 0.20 1.05 0.41 0.21 1.56 0.56 0.23

8 LMAR 1.27 0.62 0.27 2.63 1.46 0.26 3.57 2.00 0.24
NNs 1.26 0.68 0.27 2.71 1.27 0.28 3.46 1.76 0.29

Ridge 1.44 0.69 0.20 2.86 1.54 0.19 4.11 2.26 0.19
LICORS 1.50 0.64 0.26 2.89 1.33 0.28 3.70 1.76 0.28

9 LMAR 0.58 0.22 0.39 1.29 0.52 0.35 2.03 0.90 0.30
NNs 0.73 0.32 0.24 1.69 0.64 0.26 2.45 0.92 0.24

Ridge 0.81 0.34 0.22 1.68 0.73 0.22 2.42 0.98 0.25
LICORS 1.35 0.53 0.15 2.20 0.98 0.17 2.64 1.19 0.20

10 LMAR 0.88 0.36 0.34 1.73 0.77 0.33 2.55 1.19 0.30
NNs 1.09 0.44 0.25 2.16 0.93 0.24 2.98 1.35 0.24

Ridge 0.95 0.45 0.24 1.84 0.94 0.24 2.67 1.41 0.26
LICORS 1.62 0.61 0.17 2.20 1.10 0.19 3.25 1.56 0.20

11 LMAR 1.13 0.44 0.32 2.59 1.06 0.29 3.70 1.49 0.31
NNs 1.24 0.50 0.25 2.95 1.19 0.24 3.99 1.70 0.23

Ridge 1.19 0.63 0.22 2.69 1.51 0.21 3.99 2.40 0.21
LICORS 1.64 0.57 0.21 3.04 1.09 0.26 4.21 1.65 0.25

we still have quite a few time series with unusual motion in our data base. With-
out actually observing the patient, we are not sure whether observed deviations
from normal breathing are caused by exogenous factors or are instances of rel-
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evant components of the data-generating process, such as coughs, yawns, deep
breaths, etc. The other point is that there is a lot of disparity in the measures of
predictive performance within the literature on this subject; in addition to working
with different data sets, obtained from differing equipment, some authors account
for the between-patient variation in respiratory dynamics by scaling or normal-
izing all curves or by comparing errors from a prediction method against errors
from making no prediction and just using the lagged value of the series. When
using evaluation procedures of Krauss, Nill and Oelfke (2011) and Murphy and
Dieterich (2006), we produced very similar results with ridge regression and lin-
ear models. However, the error summaries we present here, in comparison with the
LMAR model, are not directly comparable to these results.

5.2. Quantitative summaries of point forecasts. Summarizing Table 3, we see
that ridge regression is actually suboptimal in all accuracy measures for all patients
and forecast windows. The LMAR model strongly outperforms the other three
methods for all forecast windows for patients 6, 7, 9, 10 and 11; neither neural
networks nor LICORS appear to be optimal for any patient across all forecast
windows, although neural networks perform well for patients 4, 5 and 8, while
LICORS predicts well for patients 4, 8 and 11. Between-patient differences prevent
any particular forecasting method from dominating other methods across patients,
but the LMAR model seems to offer the most accurate overall point forecasts given
these results.

5.3. Qualitative summaries of point forecasts. When looking at the predicted
time series for each method used, the general pattern we observe is that LMAR
outperforms the other three methods when the data undergo changes in shape,
period or amplitude—or, more generally, when the test data do not resemble the
training data. Figure 7 shows one (atypically dramatic) instance of such behavior.
The top curve is the first 40 seconds of the time series, on which all prediction
methods were trained. The next four curves give the predicted time series at a
window of 0.2 s for LMAR (red), NN (blue), ridge regression (green) and LICORS
(purple). It is clear from the figure that the end of the training period for this time
series coincided with a dramatic change in the patient’s respiration.

Both neural networks and LICORS suffer from the range of the curve being
larger (dropping below −5 mm and exceeding 10 mm) after the training period;
for both methods, the training data bounds the range of point forecasts, regardless
of the input vector for future test cases. For LICORS, when the test data is below
the minimum of the training data (−5 mm), the single predictive state associated
with the minimal values of the training data will dominate, leading to brief periods
of static forecasts. With this time series, this particular predictive state represents
an abrupt transition between sharp exhale and sharp inhale. Thus, the forecasts for
the test data are dramatic overestimates throughout the “U” shaped motifs starting
around t = 47, where the patient does not actually fully inhale.
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FIG. 7. Predictions for patient 9, day 3, beam 6 with a forecast window of 0.2 s. Location (mm) is
the y axis and time (s) the x axis. The 40 s training sequence is top, with predictions for the next 40 s
from LMAR in red, NN in blue, ridge regression in green and LICORS in purple.

Ridge regression seems to accurately predict the magnitudes of increases and
decreases, yet the predictions are off by a nearly constant factor for t ∈ (48,68).
In the context of the ridge regression model (4.3), this suggests that β is correctly
specified, but perhaps β0 is time varying. The LMAR model includes an autore-
gressive term for the most recent p observations in its forecast, and thus, like ridge
regression, accurately predicts rates of change in the time series. Moreover, the
stochastic location-mixture component in the LMAR prediction adjusts predic-
tions for gradual magnitude shifts in the data.

Another reason why the LMAR model works relatively well when the test data
differ from the training data is that the form of the dependence of forecasts on the
most recent p observations evolves, whereas it remains static for the other three
methods. While the parameters of the model are not re-estimated during real-time
prediction, LMAR uses the entire history of the time series in making forecasts, not
just the first 40 seconds alongside the most recent p observations, as is the case
with the other three methods. With appropriate parallel computating resources,
all methods could theoretically update parameters continuously (or periodically)
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FIG. 8. Predictions for patient 4, day 6, beam 1 with a forecast window of 0.2 s. Location (mm) is
the y axis and time (s) the x axis. The 40 s training sequence is top, with predictions for the next 40 s
from LMAR in red, NN in blue, ridge regression in green and LICORS in purple.

throughout treatment. Murphy and Dieterich (2006) continuously retrained neural
networks using the updated history of the respiratory trace. While they did not
compare this to the alternative of not actively updating the forecast model, Krauss,
Nill and Oelfke (2011) did so and found a small improvement in RMSE of about
1–3%.

When the time series are more well behaved, all four methods perform quite
well; in fact, neural networks tend to have the lowest errors when all four curves
are accurate. Figure 8 shows the training and prediction test series for a strongly
periodic respiratory trace. We should expect the performance of neural networks
to be superior when the dynamics of the tumor motion are stable, as the parameter
space for neural networks is far larger; in theory, feedforward neural networks with
at least one hidden layer can approximate any continuous function arbitrarily well
[Hornik, Stinchcombe and White (1989)], including time series prediction.

5.4. Interval and distributional forecasts. Unlike commonly used time series
models in the tumor-tracking literature, the LMAR model provides multimodal,
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heteroskedastic predictive distributions, which are theoretically appropriate for
forecasting respiratory motion. Despite this, our analysis of predictive performance
has focused exclusively on the accuracy of point forecasts because in current im-
plementations of tumor-tracking systems, there is no clinical value in obtaining
interval or distributional forecasts. The treatment beam has a fixed width and is
always on, meaning an interval or distributional forecast does not alter the optimal
course of action of a tumor-tracking system already supplied with a point forecast.
However, interval/distributional forecasts would prove valuable if we could, for
instance, suspend the treatment beam instantaneously if the predicted probability
of the tumor location being enclosed by the treatment beam fell below a certain
threshold.

Table 4 gives a summary of the performance of out-of-sample interval and dis-
tributional forecasts to complement the summaries of point forecasts. The LMAR
model, by specifying a data-generating process, naturally provides full predictive
distributions as a by-product of point prediction. The same is true for ridge re-
gression (assuming the typical homoskedastic Gaussian structure for the residuals)
and LICORS. Neural networks do not naturally provide predictive distributions;
following Tibshirani (1996), we obtain them by bootstrapping, while assuming
prediction errors are (heteroskedastic) independent Gaussians, with mean 0 and
variance estimated by bootstrapping.

We expect LMAR prediction intervals to undercover, since uncertainty in the
estimation of � is omitted from our forecasts. While this is indeed the case, for all
patients and forecast windows, 90% prediction intervals have between 84% and
94% coverage—a more appropriate range than any other method can claim.

The logarithmic score in Table 4 refers to the negative logarithm of the predic-
tive density evaluated at the true observation, averaged over each out-of-sample
prediction (the result in Table 4 then averages each of these scores over all beams
from the same patient). The logarithmic score is a proper scoring rule—its ex-
pected value is minimized by the oracle (or true) predictive distribution—thus,
lower values indicate a better fit between the predictive distributions and realized
values of a patient’s time series [Gneiting, Balabdaoui and Raftery (2007)].

Generalizing across patients and forecast windows, in comparison to the other
methods considered, the LMAR model seems to most accurately characterize pre-
diction uncertainty.

6. Discussion. The location-mixture autoregressive (LMAR) model intro-
duced in this paper provides accurate, real-time forecasts of lung tumor motion.
Our method achieves better performance on out-of-sample prediction for forecasts
windows of 0.2 s, 0.4 s and 0.6 s for the majority of the patients considered than
existing methods such as neural networks [which performed best in a prediction
comparison study of Krauss, Nill and Oelfke (2011)] and penalized linear models
(a common baseline for judging predictive performance). We also note that uncer-
tainty quantification is quite straightforward using our model, whereas it is hard to
do using neural networks.
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TABLE 4
Summary of interval and distributional forecasts for all four methods at all three forecast windows.
The interval coverage considered is 90% confidence intervals. Log PS refers to the log probability

score of the predictive distribution. For each metric, the most desirable value among the four
methods for each patient/forecast window combination is in bold

0.2 s forecast 0.4 s forecast 0.6 s forecast

Patient Method Coverage Log PS Coverage Log PS Coverage Log PS

4 LMAR 0.84 0.72 0.86 1.30 0.93 1.37
NNs 0.88 0.57 0.83 1.34 0.85 1.58

Ridge 0.85 0.80 0.84 1.53 0.84 1.86
LICORS 0.89 0.70 0.84 1.03 0.84 1.32

5 LMAR 0.87 0.71 0.88 1.20 0.93 1.30
NNs 0.85 0.72 0.78 1.52 0.80 1.75

Ridge 0.85 0.91 0.84 1.53 0.82 1.91
LICORS 0.84 1.04 0.82 1.46 0.79 1.78

6 LMAR 0.87 1.25 0.88 1.85 0.93 2.07
NNs 0.79 1.31 0.74 2.16 0.76 2.53

Ridge 0.87 1.22 0.85 1.91 0.83 2.26
LICORS 0.79 1.58 0.70 2.57 0.66 2.82

7 LMAR 0.85 0.30 0.85 0.87 0.89 1.09
NNs 0.88 0.48 0.84 1.35 0.84 1.82

Ridge 0.86 0.63 0.83 1.49 0.82 1.95
LICORS 0.84 0.78 0.77 1.16 0.76 1.59

8 LMAR 0.89 1.67 0.91 2.30 0.94 2.60
NNs 0.94 1.53 0.82 2.36 0.90 2.59

Ridge 0.88 1.82 0.85 2.51 0.82 2.90
LICORS 0.94 1.71 0.90 2.11 0.88 2.39

9 LMAR 0.89 0.87 0.90 1.65 0.92 2.07
NNs 0.86 1.02 0.78 2.20 0.80 2.77

Ridge 0.81 1.54 0.81 2.21 0.81 2.64
LICORS 0.86 1.62 0.81 1.98 0.79 2.31

10 LMAR 0.86 1.18 0.88 1.94 0.91 2.33
NNs 0.84 1.23 0.76 2.25 0.79 2.65

Ridge 0.83 1.35 0.84 2.03 0.84 2.44
LICORS 0.86 1.61 0.82 2.02 0.81 2.31

11 LMAR 0.85 1.38 0.87 2.13 0.91 2.36
NNs 0.87 1.50 0.80 2.70 0.83 2.91

Ridge 0.86 1.63 0.85 2.44 0.85 2.84
LICORS 0.88 1.56 0.83 1.99 0.82 2.25

The LMAR model is similar to other autoregressive models that yield mul-
timodal conditional distributions, such as the class of threshold autoregressive
models [Tong (1978)], yet the parameter space consists of just a single, low-
dimensional covariance matrix, and the model admits accurate closed-form ap-
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proximations of multiple-step ahead predictive distributions. The LMAR model
also has a useful interpretation in the context of time series motifs, which can
describe the data-generating process and the form of forecasts.

While the predictive performance of our method on this data set is very en-
couraging, the parameter inference for the LMAR model presented here is ap-
proximate, and the assumptions of both the model and its inference may not be
appropriate for some other nonlinear time series. Formalizing and generalizing the
LMAR model is thus a fruitful area for future work.

Real-time prediction of lung tumor motion presents additional challenges to
those presented in this work. It is preferable to have as short a training window
as possible, since during this time the patient may be irradiated without actually
receiving the benefit of tumor tracking. While some training is actually necessary
to estimate the system latency in some cases (we have treated it as fixed throughout
this work), the 40 seconds used for training in this paper (while typical in the
literature on the subject) could ideally be reduced.

Also, one can consider patient-specific hyperparameter values and/or tuning pa-
rameters or modify the model to borrow information across the patients. Due to the
need for real-time model fitting before we can forecast, it is most likely infeasible
to apply any model selection criteria (either within-model, such as for hyperpa-
rameters, or between-model) after having begun to observe data. More study of
between-patient and within-patient variability in model fits could help researchers
use more patient-optimal prediction methods (as well as begin prediction after a
shorter training sequence, as they would not need to rely solely on the observed
data for parameter estimation).

The parametric simplicity of the LMAR model, as well as its formalization as
a statistical model as opposed to a prediction algorithm, enable generalizations of
our procedure to include hierarchical models and other statistical structures that
address the challenges of delivering accurate external beam radiotherapy. Com-
bined with its excellent predictive performance on real data, the LMAR model
represents a promising new contribution to this area of research.
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SUPPLEMENTARY MATERIAL

Supplement: Code (DOI: 10.1214/14-AOAS744SUPP; .zip). R Code used for
fitting and forecasting with the LMAR model.

http://dx.doi.org/10.1214/14-AOAS744SUPP
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