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Genome-wide association studies (GWAS) have identified many genetic
factors underlying complex human traits. However, these factors have ex-
plained only a small fraction of these traits’ genetic heritability. It is ar-
gued that many more genetic factors remain undiscovered. These genetic
factors likely are weakly associated at the population level and sparsely dis-
tributed across the genome. In this paper, we adapt the recent innovations
on Tukey’s Higher Criticism (Tukey [The Higher Criticism (1976) Prince-
ton Univ.]; Donoho and Jin [Ann. Statist. 32 (2004) 962–994]) to SNP-set
analysis of GWAS, and develop a new theoretical framework in large-scale
inference to assess the joint significance of such rare and weak effects for a
quantitative trait. In the core of our theory is the so-called detection bound-
ary, a curve in the two-dimensional phase space that quantifies the rarity and
strength of genetic effects. Above the detection boundary, the overall effects
of genetic factors are strong enough for reliable detection. Below the detec-
tion boundary, the genetic factors are simply too rare and too weak for reliable
detection. We show that the HC-type methods are optimal in that they reli-
ably yield detection once the parameters of the genetic effects fall above the
detection boundary and that many commonly used SNP-set methods are sub-
optimal. The superior performance of the HC-type approach is demonstrated
through simulations and the analysis of a GWAS data set of Crohn’s disease.

1. Introduction. Genome-wide association studies (GWAS) aim to detect as-
sociated genetic factors by scanning up to several million genetic variants over the
whole genome. Although many genetic factors have been successfully identified
for human diseases, genes discovered to date account for only a small proportion
of overall genetic contribution to many complex traits [Kraft and Hunter (2009),
McCarthy et al. (2008)]. The remaining genetic factors to be detected likely have
weak associations at the population level and are relatively rare among the huge
number of candidates in the whole genome [Goldstein (2009), Wade (2009)]. Be-
sides the efforts to increase sample size and improve disease classification, it is
desirable to develop statistical methods that more effectively detect these rare and
weak genetic signals not yet discovered.

Received May 2013; revised October 2013.
Key words and phrases. Multiple hypotheses testing, large-scale inference, detection boundary,

Higher Criticism, rare and weak effects, statistical power, genome-wide association studies, SNP-set
methods.

824

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS724
http://www.imstat.org


HIGHER CRITICISM FOR RARE AND WEAK GENETIC EFFECTS 825

Two types of statistical association methods are commonly used to analyze
GWAS data: (1) single-SNP methods that analyze the associations between a trait
and individual SNPs, and (2) SNP-set methods that study the associations between
a trait and sets of SNPs. SNP-set methods were expected to be more promising than
single-SNP methods from a biological perspective. Since multiple SNPs within
the same gene, pathway or other physical and functional genomic segment could
jointly affect disease risk, joint analysis of a set of such SNPs may better reveal
the underlying mechanisms of complex traits than individual SNPs do. In the past
years, many SNP-set methods have been proposed [Ballard, Cho and Zhao (2010),
Hoh and Ott (2003), Hoh, Wille and Ott (2001), Li et al. (2009), Luo et al. (2010),
Mukhopadhyay et al. (2010), Peng et al. (2009), Wang and Abbott (2008), Wang,
Li and Bucan (2007), Yang, Hsieh and Fann (2008)]. Despite the encouraging
progress in the literature, there lacks a statistical foundation for when and why the
SNP-set methods would outperform single-SNP methods. In fact, some SNP-set
methods are not automatically better, as we will show in this paper. At the same
time, it is critical to know the limit of any statistical association methods, as well
as the “best” of the methods, especially when genetic effects are rare and weak.

In this paper, we approach these problems from a statistical perspective. For a
set of L SNPs of n individuals, we consider an additive genetic model

Y = β0 + β1X1 + β2X2 + · · · + βLXL + ε,(1)

that is frequently used in GWAS [Kraft and Hunter (2009)]. The linear model
is likely an oversimplification but we develop our ideas for this one first. See
further comments in Section 7. Here Y = (Y1, . . . , Yn)

′ is the trait vector, and
Xj = (X1j , . . . ,Xnj )

′ is the genotype vector of the j th SNP, 1 ≤ j ≤ L. The er-
ror term ε = (ε1, . . . , εn)

′ ∼ N(0, σ 2I) is independent of the genotypes and can
be used to represent other genetic and environmental variations [Falconer, Mackay
and Frankham (1996)]. The variance parameter σ 2 is usually unknown and needs
to be estimated. The coefficient vector β = (β1, β2, . . . , βL)′ is unknown to us, but
is presumably rare in the sense that only a few of the coordinates of β are nonzero.
We call the j th coordinate of β a “signal” if βj �= 0 and otherwise a “noise.” The
term “rare signal” should not be confused with “rare genetic variation.” Signal rar-
ity is the sparsity among features, but rare genetic variation is the sparsity among
samples. In the literature, while signal rarity is well defined, signal weakness is
a much more vague notion. As we will show below, signal weakness may result
from weak genetic effect, small sample size and/or small genetic variation. Signal
weakness is one of the main challenges in analyzing big data, such as GWAS data:
The signals are generally very subtle and hard to find, and it is easy to be fooled.

Statistical literature on linear regression modeling has focused largely on the
goal of separating the signals from the noise [Ayers and Cordell (2010), Guan and
Stephens (2011), Hoggart et al. (2008), Wu et al. (2009), Xie, Cai and Li (2011)].
While this goal may provide a perfect solution, it is hard to reach due to a high
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demand for strong signals and is often not necessary in GWAS practice either.
Thus, in this paper, we are primarily interested in the problem of signal detection,
where the goal is to discover the associated SNP-sets rather than to identify the
individually associated SNPs.

To understand why signal detection is important, from a statistics point of view
it can be shown that given a rarity level of the signals there is a threshold effect
on the signal strength. That is, signals falling under such a threshold cannot be
separated from noise: for any procedure the sum of the number of signals that are
misclassified as noises and the number of noises that are misclassified as signals
cannot get substantially smaller than the number of signals. Nonetheless, in many
cases while signal rarity and signal strength prohibit us to separate the signals from
the noise, the numerous rare and weak effects can be combined and utilized in a
meaningful way to solve many challenging problems including, but not limited to,
signal detection, classification and clustering. This challenge has been successfully
met, for example, in Donoho and Jin (2004, 2008), Jin and Wang (2013). From the
genetics point of view, the signal detection problem is of major interest in the
GWAS because the primary target of GWAS is to screen and allocate the informa-
tive genome regions, such as genes, which are more natural genomic functional
units than individual SNPs. Furthermore, to validate associations, such positive re-
gions will be further studied and individual SNP effects can still be discovered by
refined and reliable experimental methods.

The signal detection problem in the model (1) can be reformulated as a joint
hypothesis testing problem where H0 is

H0 : βj = 0, 1 ≤ j ≤ L,

that is, no association exists between the trait and the SNP sets, against an alterna-
tive hypothesis H1 that the trait is associated with a small fraction of SNPs in the
sets

H1 : βj �= 0 only for a small fraction of j , 1 ≤ j ≤ L.

See Donoho and Jin (2004) for the subtlety of this problem, where the focus was on
a Stein’s normal means model, which is much simpler than the model considered
here.

Our study contains two key components: the detection boundary for signal de-
tection and the statistic of Higher Criticism. We now discuss two components sep-
arately.

The detection boundary can be viewed as a way to address the fundamental
capability and limit of SNP-set methods. In the two-dimensional phase space cali-
brating the signal rarity and signal strength, the detection boundary is a curve that
separates the region of impossibility from the region of possibility. In the region of
impossibility, the signals are so rare and weak that it is impossible to separate H1
from H0. That is, even for the most powerful method available, the signals are so
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rare and weak that it would have the sum of types I and II error rates to be almost 1.
In the region of possibility, it is possible to separate H1 from H0, and there exists
a procedure whose sum of types I and II error rates is approximately 0.

The study of the detection boundary has two merits. First, the detection bound-
ary is provided as a function of the rarity and strength of genetic effects, the SNP-
set size, the sample size, the error variance and the allele frequency, and thus si-
multaneously reveals the roles of these factors in gene-hunting. The result is ap-
plicable to genetic association studies of both common and rare genetic variants,
the latter are the main target of finding the missing genetic factors using deep se-
quencing technologies [Ansorge (2009), Mardis (2008), Metzker (2010)]. Second,
the detection boundary can serve as a benchmark for evaluating different SNP-set
methods. In particular, note that any procedure will partition the aforementioned
phase spaces into two regions: a region of possibility and a region of impossi-
bility. We say a method achieves the optimal phase diagram if it partitions the
two-dimensional phase space in exactly the same way as the optimal procedure
does. As a result, for any procedure we can assess its optimality by investigating
whether it achieves the optimal phase diagram.

Higher Criticism (HC) is a notion that goes back to Tukey (1976), and it was
shown in Arias-Castro, Candès and Plan (2011), Donoho and Jin (2004), Hall and
Jin (2008, 2010), Ingster, Tsybakov and Verzelen (2010) that HC is useful in de-
tecting very rare and weak effects. However, these works deal with models dif-
ferent from the genetic model (1), and it is unclear whether the HC continues to
behave well for the setting considered here. The genetic model is new in several
aspects. First, the covariates are genotype data, rather than standardized or Gaus-
sian variables. Second, the conditions for correlations among covariates, that is, the
linkage disequilibrium structure, are better placed on the population correlations,
rather than on the empirical correlations. Third, the error variance is realistically
considered as unknown and needs to be estimated, rather than being assumed as
known.

In this paper we adapt the HC to detect rare and weak genetic effects in a
SNP-set analysis context. With substantial efforts, we work out the exact detec-
tion boundary associated with the genetic model (1). We propose a realistic HC
procedure for analyzing real GWAS data and show that it achieves the optimal
phase diagram in a rather broad context. We provide theoretical comparisons be-
tween HC and the several most commonly used SNP-set methods. Somewhat sur-
prisingly, these well-known SNP-set methods do not achieve the optimal phase
diagram for rare and weak signals. We further demonstrate the superiority of the
HC-type methods with simulated data and real data.

The paper is organized as follows. In Section 2 we set up the genetic model
and provide the detection boundary for rare and weak genetic effects. In Section 3
an HC procedure is proposed to reach the optimal detection boundary for rare
and weak genetic signals. In Section 4 we discuss the connections of HC to False
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Discovery Rate (FDR) controlling methods. We show in Section 5 that some com-
monly used SNP-set based methods cannot reach the best detection boundary, and
thus are not optimal. In Section 6 we compare various methods through numerical
simulations and the analysis of a GWAS data of Crohn’s disease. In Section 7 we
discuss relevant theoretical and practical issues. The proofs of the main theoretical
results, the fundamental lemmas and their proofs, as well as the supplementary fig-
ures and tables, are given in the online supplementary material [Wu et al. (2014)].

2. Genetic model and detection boundary. In this section we characterize
the detection boundary by introducing a theoretical framework.

We write in model (1)

Xj = (X1j ,X2j , . . . ,Xnj )
′,

so that Xkj is the genotype of the j th SNP for the kth individual, where 1 ≤ j ≤ L,
1 ≤ k ≤ n. Let the minor allele Aj of the j th SNP have a minor allele frequency
(MAF) of qj . We assume qj > q > 0, 1 ≤ j ≤ L, for some constant q . We use the
copy number of minor alleles to code the SNP genotype, which follows a bino-
mial distribution under the Hardy–Weinberg equilibrium (HWE) [Mendel (1866),
Pearson (1904), Yulh (1902)]

Xkj ∼ Binomial(2, qj ).(2)

In some genetic association studies, the individuals are assumed to be independent,
that is, Xk1j and Xk2l are independent for any k1 �= k2. However, the dependency
among SNPs, called linkage disequilibrium (LD), is a critical feature in GWAS
data. We characterize the LD structure by the correlation matrix � = �L×L among
Xk1, . . . ,XkL. For γ > 0 and � > 0, let

SL(γ,�) = {� : each row of � has no more than
(3)

� elements exceeding γ in magnitude}.
With an appropriately small γ and a moderately large �, a matrix � in SL(γ,�)

can be interpreted as sparse, in the sense that each row of � has relatively small co-
ordinates. This setup has been studied in the theoretical statistics literature [Arias-
Castro, Candès and Plan (2011)], and is relatively general and flexible for GWAS
because the large correlations are allowed between SNPs far from each other. In
Section 5 we will also consider another setup for �, where the correlation decays
polynomially as the SNP distance increases.

We develop a theoretical framework where we use L as the driving asymptotic
parameter, and other parameters are tied to L through fixed parameters. In partic-
ular, we model the sample size n by

n = nL = La for some constant a > 0.(4)
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As L grows to ∞, nL grows to ∞ as well. nL can be either larger than or smaller
than L; both cases are common in recent GWAS.

Next, fixing 1/2 < α < 1 which we call the rarity parameter, we model the
number of associated SNPs by

K = KL = L1−α,(5)

so that the fraction of signals tends to 0 as L → ∞. In our calibrations, KL 	√
L and the signals are very rare. Seemingly, this is a very subtle situation. In

contrast, the case 0 < α < 1/2 is both easier to analyze and less relevant to the
major challenge of the genetic association study, so we omit the discussion on that.
See, for example, Arias-Castro, Candès and Plan (2011), Donoho and Jin (2004).

At the same time, let M∗ ≡ {j1, . . . , jK} be the support of β (or, equivalently,
the set of SNPs associated with Y ), and let bj be the sign of βj :

bj = bj (β) = sgn(βj ), 1 ≤ j ≤ L,

where sgn(x) = 0,1,−1 if x = 0, x > 0, and x < 0, respectively. From a practical
view, the locations and the directions of the genetic effects are usually unknown, so
we assume the “worst-case” scenario and model bj and M∗ as completely random.
In other words, for any fixed indices i1 < i2 < · · · < iK , we assume

P
(
M∗ = (i1, i2, . . . , iK)

) =
[(

L

K

)]−1
,(6)

and that given j ∈ M∗,

bj = ±1 with equal probabilities,(7)

and bj = 0 if j /∈ M∗.
Moreover, let τj be the normalized strength of genetic effect at index j by

τj = |βj |
√

2nqj (1 − qj )/σ,(8)

where we note
√

2nqj (1 − qj ) is approximately equal to the L2-norm of Xj , 1 ≤
j ≤ p. Together with the following results, the detection boundary illustrates how
sample size n, group size L, error deviation σ , genetic effects βj and MAF qj

simultaneously determine the detectability of the genetic signals through a specific
function. For example, for rare variants with reduced qj , the magnitude of their

genetic effects βj need to increase in the same order of
√

qj (1 − qj ) to keep the
same level of detectability. This result is valuable for providing a guideline for
gene detection in practice.

In the literature [Arias-Castro, Candès and Plan (2011), Donoho and Jin (2004),
Ingster (2002)], it is understood that the most delicate case is for all j ∈ M∗,

τj = O
(√

2 log(L)
)
.
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In fact, if τj  √
2 log(L) for all j ∈ M∗, then the detection problem is easy and

many crude methods can give successful detection. On the other hand, if τj 	√
2 log(L) for all such j , then it is impossible to separate H1 from H0 and all

methods must fail. In light of this, we recalibrate τj through a so-called strength
parameter rj by

τj =
√

2rj log(L),(9)

where rj = O(1) if j ∈ M∗ and rj = 0 otherwise. Write r = (r1, r2, . . . , rL)′. We
have the following definition.

DEFINITION. We call (4)–(9) the Asymptotic Rare and Weak model
ARW(a,α, r).

The following notation is frequently used in this paper.

DEFINITION. A test statistic is said to have asymptotically full power if the
sum of its type I and type II error rates converges to 0 for some critical value.
A test statistic is said to be asymptotically powerless if the sum of its type I and
type II error rates converges to 1 for any critical value.

We are now ready to spell out the precise expression of the detection boundary.
The detectability of genetic association between a set of SNPs and a trait depends
on both the proportion of associated SNPs and the strength of the genetic effects.
The sharp detection boundary (i.e., with the exact constant) relates the rarity and
the strength of the genetic effects by the curve

r = r∗(α)

in the phase space, where

r∗(α) =
{

α − 1/2, 1/2 < α < 3/4,

(1 − √
1 − α)2, 3/4 ≤ α < 1.

(10)

The first main conclusion of this paper is that for any fixed α ∈ (1/2,1), if

rj < r∗(α) for all j ∈ M∗,
then the genetic effects are merely so rare and weak that it is impossible to separate
H1 from H0 asymptotically: all statistical tests are asymptotically powerless!

Later in Section 3, we show that if there are at least L−α proportion of genetic
effects having rj > r∗(α), there exist statistical methods, such as the HC approach
to be discussed, that can reliably detect the genetic signal with asymptotically full
power.

To rigorously describe our theoretical results, the technique conditions for
asymptotic analysis are summarized as follows. These assumptions indicate that
the SNP correlation matrix � is sparse and guarantee that �̂ has the same property
as �:
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(A1) The number of large correlations in each row of � is assumed to be � =
O(Lε) for all ε > 0.

(A2) The correlation γ in (3) and the L–n relative value γ ′ =
√

logL
n

satisfy some
of the following conditions in different theorems for required levels of spar-
sity of �:
(A2.1) (γ + γ ′)L1−α(logL)4 → 0.
(A2.2) (γ 2 + γ ′2)L1−α(logL)3 → 0.
(A2.3) (γ + γ ′)L1−α → 0.
(A2.4) γ 3 + γ ′3 = O(L5α−4+ε) for all ε > 0.
(A2.5) γ + γ ′ = O(L−1/2+ε) for all ε > 0.

THEOREM 1. Consider the genetic model setup in (1)–(9). Under assump-
tions (A1) and (A2.1), all tests are asymptotically powerless if rj < r∗(α), j ∈ M∗.

By equations (5) and (8)–(9), for a given proportion of true SNPs L−α , the
detection boundary in (10) implies the boundaries of detectability for the genetic
effects βj , as well as for the genetic heritability of the trait—the proportion of total
trait variation due to genetic variation:

Heritability =
∑L

j=1 β2
j 2qj (1 − qj )∑L

j=1 β2
j 2qj (1 − qj ) + σ 2

.(11)

For easy visualization of these boundaries, consider a special case where |βj | = β

for j ∈ M∗ and qj = 0.3 for all j . The solid lines in Figure 1 illustrate the detection
boundary regarding the genetic effect β (left panel) and the detection boundary

FIG. 1. Left: Detection boundary on the plane of the proportion of associated SNPs and the ge-
netic effect. Right: Detection boundary on the plane of the proportion of associated SNPs and the
heritability. Solid line: the optimal boundary (reached by HC procedure); Dashed line: the boundary
of the minimal p-value method. Here L = 10,000, n = 1000, σ = 1 and qj = 0.3 for all j .



832 Z. WU ET AL.

regarding the heritability (right penal) over a range of the proportion of associated
SNPs corresponding to αfrom 0.999 to 0.499.

3. Higher Criticism procedures for gene detection. The Higher Criticism
(HC) procedure has been studied for the Gaussian mean model and regression
model with Gaussian design matrix and known error variance [Arias-Castro, Can-
dès and Plan (2011), Donoho and Jin (2004), Hall and Jin (2010), Ingster, Tsy-
bakov and Verzelen (2010)]. Under the genetic model setup in (1)–(9), we adopt
this procedure for gene detection based on the marginal associations between the
trait and each SNP. We show that the HC procedure has asymptotically full power
upon the rare and weak genetic effects exceeding the detection boundary.

Let p(1) ≤ · · · ≤ p(L) be the increasingly ordered p-values of L individual
SNPs. The HC test statistic is

HCL = max
1≤j≤L

HCL,j where HCL,j = √
L

(j/L) − p(j)√
p(j)(1 − p(j))

.(12)

In contrast to considering the minimal p-value in a group of SNPs, the HC
considers the maximum of the normalized differences between the empirical p-
values j/L and the observed p-values p(j).

Denote the survival function of N(0,1) as 	̄(·). If marginal test statistics Sj ∼
N(0,1), j = 1, . . . ,L, and the p-values are two-tailed, the HC statistic can be
written as [Arias-Castro, Candès and Plan (2011), Donoho and Jin (2004)]

HCL = max
t

HCL(t) where HCL(t) = |{j : |Sj | > t}| − 2L	̄(t)√
2L	̄(t)(1 − 2	̄(t))

.(13)

To study the theoretical properties of the HC procedure, for technical simplifi-
cation to obtain the upper bound, we follow Arias-Castro, Candès and Plan (2011)
to search for the maximum on a discrete grid and define an HC∗ procedure with
statistic

HC∗
L(s) = max

{
HCL(t) : t ∈ [s,

√
5 logL] ∩N

}
.(14)

In practice, we recommend to still use the straight HC in (12).
To simplify discussion, we first consider the case where σ 2 is known. For the

genetic model in (1), let Ȳ = (Ȳ , . . . , Ȳ )′ and X̄j = (X̄j , . . . , X̄j )
′, where Ȳ =

1
n

∑n
k=1 Yk and X̄j = 1

n

∑n
k=1 Xkj . The test statistic Sj for the association between

the trait and SNP j is defined as the marginal correlation:

Rσ
j = (Xj − X̄j )

′Y
σ‖Xj − X̄j‖

,(15)

where ‖x‖ is the L2-norm of a vector x. When SNP j is not associated, we have
Rσ

j �N(0,1).
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Proposition 1 states that the HC∗ procedure reaches the optimal detection
boundary. That is, for some well-controlled type I error rate converging to 0 slowly
enough, the statistical power of the HC∗ procedure converges to 1 for detecting the
genetic effects that fall above the detection boundary.

PROPOSITION 1. Consider the genetic model setup in (1)–(9). Let the
marginal test statistic Sj in (13) be Rσ

j . Under assumptions (A1), (A2.2) and

(A2.4), HC∗
L(

√
2δ logL) with δ = min(1,4r∗(α)) has asymptotically full power if

rj > r∗(α), j ∈ M∗. Furthermore, under assumptions (A1) and (A2.5), HC∗
L(1)

has asymptotically full power if rj > r∗(α), j ∈ M∗.

Now we turn to a more realistic case where σ is unknown and cannot be used
in genetic association tests. We propose the following tests that incorporate σ esti-
mation. Specifically, the marginal association between the trait and SNP j can be
measured by either of the following two test statistics:

Rj = √
n − 1ρj and Tj = √

n − 2ρj/
√

1 − ρj ,(16)

where ρj is the Pearson correlation coefficient between the observed trait val-
ues and the genotypes of the j th SNP. Tj is the standard T -test statistic when
we regress the trait on the j th SNP. When SNP j is not associated, both Rj and
Tj � N(0,1). Note that Rj and Tj are asymptotically equivalent because ρj → 0
under the ASW(a,α, r) model for both the null and the alternative hypotheses. The
numerical results in Section 6 also show that their performances are very similar
in simulations and real GWAS data analysis.

When σ is unknown, we need a slightly stronger condition than that in Proposi-
tion 1 to guarantee the proper behavior of the σ estimation. The following theorem
shows that the HC∗ procedure based on Rj still reaches the detection boundary.

THEOREM 2. Consider the genetic model setup in (1)–(9). Let the marginal
test statistic Sj in (13) be Rj . Under assumptions (A1), (A2.3) and (A2.4),
HC∗

L(
√

2δ logL) with δ = min(1,4r∗(α)) has asymptotically full power if rj >

r∗(α), j ∈ M∗. Furthermore, under assumptions (A1) and (A2.5), HC∗
L(1) has

asymptotically full power if rj > r∗(α), j ∈ M∗.

Figure 1 illustrates that the detection boundary for the HC∗ procedure is the
same as the optimal detection boundary.

4. Connections to FDR-controlling methods. Tukey’s Higher Criticism
(HC) is closely related to methods of controlling the False Discovery Rate (FDR)
[e.g., Benjamini and Hochberg (1995), Efron et al. (2001)], but is also different
in important ways. While there is a long line of works on FDR controlling meth-
ods, for reasons of space, we focus our discussion on Benjamini and Hochberg’s
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FDR-controlling method (BH), proposed in Benjamini and Hochberg (1995). The
connection and difference between HC and BH can be briefly summarized as fol-
lows:

• Both BH and HC are p-value driven methods, the use of which needs only the
p-values associated with all SNPs.

• BH focuses on the regime where the signals are rare but relatively strong, and
the goal is signal identification.

• HC focuses on the regime where the signals are so rare and weak that signal
identification is frequently impossible, but valid signal detection or screening is
still possible and could be substantially helpful.

Let p(1) ≤ p(2) ≤ · · · ≤ p(L) be the sorted p-values associated with L SNPs. The
formulas of HC and BH are intimately connected. In detail, fix the FDR-control
parameter α ∈ (0,1) (say, α = 5%). The goal of BH is usually to control the ex-
pected fraction of false discovered SNPs out of all discovered SNPs (i.e., the FDR)
so that it does not exceed α. The procedure selects the SNPs whose p-values are
among the kFDR

α -smallest as discoveries, where kFDR
α is the largest integer k such

that

Qk ≤ α where Qk = p(k)

k/L
.

When min1≤k≤L{Qk} > α, BH reports an empty set of discoveries. Qk is a quan-
tity that has been extensively studied in empirical processes. See, for example,
Wellner (1978).

Following the same argument on page 975 of Donoho and Jin (2004), it can
be shown that for any testing critical value

√
2q log(L) with any 0 < q < 1, the

ratio between the expected number of recoveries under the alternative [with signal
slightly above the detection boundary in (10)] and the expected number of recov-
eries under the null is about 1. So the problem of BH for the rare and weak signal
(which may be interesting targets in GWAS) is that

min
1≤k≤L

{Qk} ≈ 1.(17)

As a result, for any α that is bounded away from 1 (say, α ≤ 90%), the BH method
reports an empty set of discoveries. The BH method could produce a nonempty set
of discoveries if we let α get even closer to 1, but the FDR is so high that the set
of discoveries is no longer informative for signal identification.

We will never know what was in Tukey’s mind when he proposed the Higher
Criticism in 1976 [Tukey (1976)], but there is an interesting connection between
HC and BH (which was proposed about 20 years later) as follows. Suppose we
apply Qk to the HC statistic in (12). Heuristically, if k 	 L and (17) holds,

HCL,k ≈ √
k(1 − Qk).
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As before, think of the signal detection problem as testing a null hypothesis H0

versus an alternative hypothesis H
(L)
1 . In the null case where all p-values are i.i.d.

from U(0,1) and so that data contains no signal at all, then HCL,k ≈ N(0,1) for
all k, and HCL,k are uniformly bounded from above by a relatively small number,
say, 3. In the alternative case where the p-values come from rare and weak signals,
even when Qk ≈ 1 for all k, it is still possible that for some k,

HCL,k ≈ √
k(1 − Qk)  1.

This fact says that even when signals are so rare and weak that signal identification
(say, by BH) is impossible, there could still be ample space for valid inference (e.g.,
screening or signal detection), and HC is such a tool. Partially, we guess, this is the
reason why Tukey interprets HC as the second-level significance testing.

Denote the maximizing index k for HCL,k by

kHC = arg max
1≤k≤L

{HCL,k}.

Such an index is very different from kFDR
α . The index suggests a very interest-

ing phenomenon that is frequently found for rare and weak signals (however, the
phenomenon is not that frequently found when signals are rare and strong). Specif-
ically, it is not always the case that kHC = 1; it could happen that the index is larger
than 1, say, kHC = 50. When this phenomenon happens, the interpretation is that
the strongest evidence against the null is not necessarily the smallest p-value, but
is the collection of moderately smallest p-values; see Donoho and Jin (2004) for
discussion on moderate significances. When moderate significances contain more
information for inference than does the smallest p-value, the HC type methodol-
ogy is frequently more appropriate than BH, where the goal is shifted from signal
identification to detection, to accommodate the presence of weak signals.

5. Some other gene detection procedures. With the genetic detection
boundary we can show that many well-known SNP-set methods are not optimal for
the rare and weak genetic effects. First, we consider the minimal p-value method
that treats the smallest p-value in a SNP-set as the measurement for the association
between the trait and the SNPs in the set. The following proposition considers the
minimal p-value method under cases where σ is either known or unknown.

PROPOSITION 2. Consider the genetic model setup in (1)–(9). Under the as-
sumptions (A1) and (A2.2), the minimal p-value procedure based on Rσ

j has

asymptotically full power if rj > rMP(α), j ∈ M∗, and is asymptotically powerless
if rj < rMP(α), j ∈ M∗, where

rMP(α) ≡ (1 − √
1 − α)2, α ∈ (1/2,1).

Furthermore, under assumptions (A1) and (A2.3), the minimal p-value procedure
based on Rj has asymptotically full power if rj > rMP(α), j ∈ M∗, and is asymp-
totically powerless if rj < rMP(α), j ∈ M∗.
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Proposition 2 shows that the minimal p-value method is not optimal because
rMP(α) > r∗(α) for α ∈ (1/2,3/4). Figure 1 illustrates the comparison between
the minimal p-value method (dashed curve) and the HC procedure (solid curve)
regarding the genetic effect (βj = β for all j ∈ M∗) and the heritability. When the
associated SNPs are extremely rare with α ∈ (3/4,1), the two methods have the
same detection boundary. However, in a wide range of the proportion of associated
SNPs corresponding to α ∈ (1/2,3/4), the HC procedure can detect significantly
weaker genetic effects and heritability than the minimal p-value method does. This
regime is more important in combating the detection of the undiscovered common
and rare genetic variants that could number in the hundreds [Goldstein (2009),
Hall, Jin and Miller (2009), Kraft and Hunter (2009), Wade (2009)].

We further consider three commonly used SNP-set methods in the GWAS liter-
ature [Luo et al. (2010)] and show that they are not as good as the minimal p-value
method under our model setup. Let S = (S1, . . . , SL)′ be a vector of marginal test
statistics and �̂ be the Pearson correlation coefficients among the SNP genotypes,

that is, �̂(i, j) = (Xi−X̄i )
′(Xj−X̄j )

‖Xi−X̄i‖‖Xj−X̄j‖ . First, the linear combination test (LCT) statistic

is defined as

T L = e′S/

√
e′�̂e,(18)

where e is the vector of 1s. Second, when �̂
−1

exists, the quadratic test (QT)
statistic is defined as

T Q = S′�̂−1
S.(19)

Third, the decorrelation test (DT) statistic is the Fisher’s combination test after the
decorrelation generating independent p-values:

T D = −2
L∑

j=1

logpj ,(20)

where the p-values pj = 2	̄(|Wj |) and Wj is the j th element of W = D−1S,
where D is a triangular matrix of Cholesky decomposition such that �̂ = DD′. The
following theorem says that LCT, QT and DT are not optimal for rare and weak
effects when SNPs are independent or have a polynomially decaying correlation
along the distance between the SNPs. Specifically, for the true correlation matrix
among the SNPs �, we denote the operation norm as ‖�‖ = sup{a : ‖a‖2=1} ‖�a‖2.
� has a polynomial off-diagnal decay if for positive constants M , λ and C, the
magnitude of the (j, k)th element is upper bounded by a polynomial function

∣∣�(j, k)
∣∣ ≤ M

(
1 + |j − k|)−λ and ‖�‖ ≥ C > 0.(21)

THEOREM 3. Consider the genetic model setup in (1)–(2), (4)–(9) and (21).
The three tests in (18)–(20) correspond to S = (R1, . . . ,RL)′, where Rj is defined
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in (16). Let γ ′ =
√

logL
n

. For any λ ≥ 3, M ≥ 1 and γ ′L = o(1), LCT does not have

asymptotically full power when rj < 1, j ∈ M∗. For any λ > 1 and γ ′Ld = o(1)

for some d > 1, both QT and DT do not have asymptotically full power when
rj < 1, j ∈ M∗.

Because the detection boundary rMP(α) of the minimal p-value method is al-
ways less than 1 for each α ∈ (1/2,1), the SNP-set methods LCT, QT and DT have
poorer performance than the minimal p-value method. In particular, this theorem
indicates that Fisher’s combination test (such as DT) is not a good choice for the
rare and weak genetic effects considered here.

6. Simulations and Crohn’s disease study. Simulations and real GWAS
analysis are conducted to evaluate the performance of HC-type methods and other
traditional and newly proposed gene-based SNP-set methods, in which SNP geno-
types in genes form sets of covariates. Instead of finding individual causative SNPs,
the goal of signal detection here is to test which genes may contain these causative
SNPs. Although the above theoretical results focus on model (1), in order to guide
practical applications, we study both quantitative and binary traits in the following
analysis of three types of data sets (Table 1): both simulated genotypes and phe-
notypes, real genotypes and simulated phenotypes, and both real genotypes and
phenotypes for Crohn’s disease study. The following summarizes the implementa-
tion of the methods to be compared:

1. Higher Criticism method. The test statistic is given in (12) for each gene. For
quantitative traits, the p-values are calculated based on either Tj (method denoted
HC) or Rj (denoted HCm) in (16). For binary traits, we adopt a Z-statistic by Zuo,
Zou and Zhao (2006) (denoted HC):

Dj = √
n

p̂case − p̂control√
2p̂all(1 − p̂all)

,(22)

where p̂case, p̂control and p̂all are the estimated MAF in cases, controls and the
combined group, respectively. When the j th SNP is not associated, Dj �N(0,1),
the two-tailed p-values pj = 2	̄(|Dj |) are applied to (12) to get the HC statistic.

2. Minimal p-value method (denoted MinP). The association of a SNP set in a
gene is determined by the smallest p-value p(1). This is the most commonly used
method in GWAS practice. The p-values are obtained either based on Tj in (16)
for quantitative traits or Dj in (22) for binary traits.

3. Principal Component Analysis (PCA) [Ballard, Cho and Zhao (2010), Wang
and Abbott (2008)]. To measure the significance of a gene, a p-value is obtained
by fitting a multiple regression for quantitative traits (or a logistic regression for
binary traits) by using the least principal components that count over 85% varia-
tion.
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4. Ridge regression (denoted Ridge) [He and Wu (2011)]. SNP covariates in
a gene are fitted with traits by ridge regression at the tuning parameter that min-
imizes the prediction error based on cross-validation (R function lm.ridge). The
residual sum of squares describes the goodness of fit of the model, and thus is
treated as the score for the SNP set. The same procedure is applied to both quanti-
tative and binary traits for simplicity.

5. Linear combination test (LCT), quadratic test (QT) and decorrelation test
(DT) [Luo et al. (2010)]. To calculate the statistics in (18)–(20), we apply S =
(T1, . . . , TL)′ with Tj in (16) for quantitative traits and S = (D1, . . . ,DL)′ with
Dj in (22) for binary traits.

6. Kernel-machine test [Wu et al. (2010)]. This is a SNP-set method that ap-
plies the generalized semiparametric models [Liu, Lin and Ghosh (2007), Wu
et al. (2010)] to detect the association of genes. For the additive genetic model
defined in (1), the linear kernel function is recommended by the authors [Wu et al.
(2010)]. So the semiparametric model is simplified to either a multiple regression
model for quantitative traits (denoted KMT) or logistic regression for binary traits
(denoted LKMT). The genetic association is measured by a variance-component
score statistic [Zhang and Lin (2003)]. We apply the R functions implemented by
the authors of this method.

6.1. Simulated genotypes and phenotypes. We simulated both genotype and
phenotype data to fully control the data structure and genetic effect pattern. Data
sets 1 and 2 in Table 1 were obtained in the following. First, to simulate the geno-
type data, it was assumed that one gene unit contains L = 100 SNPs, whose geno-
types follow HWE in (2) with MAF q = 0.4. To demonstrate how typical LD
structures may affect these methods, six Toeplitz correlation matrices (TCM) were
studied: (I) Independent SNPs, that is, the correlation matrix � is the identity ma-
trix. (II) SNPs in the first order neighborhoods are correlated, that is, � has 1 in
the main diagonal, 0.3 (or 0.25, or 0.2) in the first off-diagonals and 0 elsewhere.
(III) SNPs are correlated with the nearest two neighbors, that is, � has 1 in the
main diagonal, 0.25 in the first off-diagonal, 0.3 (or 0.2) in the second off-diagonal
and 0 elsewhere. The R package mvtBinaryEP [By and Qaqish (2011), Emrich and
Piedmonte (1991)] was used to generate the correlated genotype data.

Second, to simulate the phenotype data, we considered the cases of rare and
weak genetic effects based on the above theoretical results. Specifically, the rar-
ity parameter was assumed α = 0.76, so K = L1−α ≈ 3 randomly picked SNPs
were made causative. Quantitative traits were generated by model (1) with error
variance σ 2 = 1. The sample size was n = 1000. We examined a series of strength
parameters rj = r in (9) from 0.4 to 0.9, which correspond to the genetic effects
βj in (8) equals b1 ranging from 0.088 to 0.131, and the heritability of trait ranging
in (11) from 0.011 to 0.024. On the other hand, binary traits were generated by a
logistic model

logit
(

P(Y = 1|X)

P (Y = 0|X)

)
= β0 + β1X1 + β2X2 + · · · + βLXL.(23)
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TABLE 1
List of the data used for analysis. Genotypes are either simulated based on six Toeplitz correlation
matrices (TCM) or from the true GWAS data of NIDDK–IBDGC. The number of SNPs per gene is

either 100 or according to the true data. Phenotypes are either simulated based on the additive
model (σ 2 = 1) or logistic regression model (β0 = −2) or the true Crohn’s disease status. The
locations of nonzero coefficients are always random and the values are either fixed or random,

where b1 ranges from 0.088 to 0.131 and b2 ranges from 0.1 to 0.24

Data Genotype Sample SNPs/gene LD MAF Phenotype Nonzero coefficients

1 Simulation 1000 100 6 TCM 0.4 Additive 3, b1
2 Simulation 2000 100 6 TCM 0.4 Logit 3, b2
3 Simulation 1000 100 6 TCM 0.4 Additive 3, +/−b1 equal chance
4 Simulation 1000 100 6 TCM 0.4 Additive 3, Unif[b1,1.2b1]
5 Simulation 1000 100 6 TCM 0.4 Additive 3, Unif[0.9b1,1.1b1]
6 BCHE 851 Jew 100 real real Additive 3, b1
7 BCHE 851 Jew 100 real real Logit 3, b2
8 EXT1 851 Jew 106 real real Additive 3, b1
9 EXT1 851 Jew 106 real real Logit 3, b2

10 FSHR 851 Jew 117 real real Additive 3, b1
11 FSHR 851 Jew 117 real real Logit 3, b2
12 15,860 genes 851 Jew vary real real Additive α = 0.8, r = 0.9
13 15,860 genes 1145 non-Jewish vary real real Additive α = 0.8, r = 0.9
14 15,860 genes 851 Jew vary real real CD status –
15 15,860 genes 1145 non-Jewish vary real real CD status –

Conditional on the genotype data, many diseased (Y = 1) and nondiseased out-
comes (Y = 0) were generated according to the genetic risk. Then the retrospec-
tive case–control data were collected by randomly sampling 1000 cases and 1000
controls. We considered the coefficient β0 = −2 and a sequence of nonzero coef-
ficients βj = b2 ranging from 0.10 to 0.24, which correspond to the disease allele
odds ratio ranging from 1.11 to 1.27.

The empirical power was compared based on a well-controlled empirical type I
error rate. Specifically, we ran 1000 simulations, each with newly generated geno-
types, and then the phenotypes according to a specific genetic model with random
locations of causative SNPs. For each simulation, we also permuted the phenotype
responses and calculated the test statistics for the null hypothesis of no associa-
tion. Over all simulations, the 95th percentile of the null statistics was used as the
cutoffs to control the type I error rate at a level 0.05. The empirical power, that is,
the true positive rate of tests, is the proportion of simulations where the test statis-
tics exceeded the corresponding cutoff. Figures 2 and 3 show the comparisons of
empirical power for data sets 1 and 2, respectively. In all the setups, the HC-type
methods had the highest power. The comparisons were not significantly affected
by these LD structures.

In reality, causative SNPs may not have homogenous contribution to the traits.
We simulated data sets 3–5 described in Table 1 for three scenarios of random ge-
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FIG. 2. For quantitative traits under the fixed value of nonzero coefficients, HC and HCm have the
highest power. X-axis: the strength parameter r in equation (9), which corresponds to the nonzero
coefficients βj = b1 in (8). The six panels correspond to six correlation matrices of SNPs: (1) identity
matrix, (2) the 1st off-diagonals equal 0.3, (3) the 1st off-diagonals equal 0.25, (4) the 1st off-diag-
onals equal 0.2, (5) the 1st off-diagonals equal 0.25 and the 2nd off-diagonals equal 0.3, (6) the 1st
off-diagonals equal 0.25 and the 2nd off-diagonals equal 0.2.

netic effects. First, the nonzero coefficients have the same magnitude b1, but with
random +/− signs of equal probabilities. Second, the nonzero coefficients are uni-
formly distributed in [b1,1.2b1]. Third, the nonzero coefficients are uniformly dis-

FIG. 3. For binary traits from the fixed value of nonzero coefficients, HC has the highest power.
X-axis: the nonzero coefficients βj = b2 in equation (23). The six panels correspond to the same six
correlation matrices of SNPs as those in Figure 2.
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FIG. 4. For quantitative traits from random nonzero coefficients ±b1 with equal probabilities, HC
and HCm have the highest power. X-axis: the strength parameter r in equation (9), which corresponds
to the nonzero coefficients βj = b1 in (8). The six panels correspond to the same six correlation
matrices of SNPs as those in Figure 2.

tributed in [0.9b1,1.1b1]. Figure 4 shows the comparisons of the methods under
random nonzero coefficients ±b1 with equal probabilities. HC methods were still
the best among these methods assessed. Since the genetic effects have two direc-
tions, the linear combination test (LCT) causes the signals to cancel out and has
low power. The results for the other two scenarios of random genetic effects (data
sets 4–5 in Table 1) are given in supplementary Figures 1 and 2 [Wu et al. (2014)].

Our theoretical results in Sections 3–5 are about reliable detection, that is, to
get asymptotically full power of detecting true genes containing a small number of
weak causative SNPs. In reality, the sample size may not be large enough to allow
the power approaching to 1, and there is a chance of obtaining false discoveries.
Here we assessed the False Discovery Rate (FDR) of these methods over a variety
of type I error rate cutoffs. Figure 5 illustrates the FDR of HC methods for quan-
titative traits (Data 1 in Table 1), with the strength parameter r = 0.4–0.9. It can
be seen that the FDR is well controlled, with an expected decreasing trend for in-
creasing signal strength r . The HC method was also compared with other methods
in terms of the FDR in supplementary Figures 3–8 [Wu et al. (2014)]. The FDR of
the HC method is similar to or lower than those of the other methods.

6.2. Real genotypes and simulated phenotypes. By using real genotype data,
we studied how the real allelic distributions and LD structures, which are more
complicated than the above simulations, may influence the results. For this pur-
pose, we used the observed SNP genotypes from the data of NIDDK–IBDGC (Na-
tional Institute of Diabetes, Digestive and Kidney Diseases–Inflammatory Bowel
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FIG. 5. False Discovery Rates of the HC method for quantitative traits. X-axis: the empirical type
I error rate cutoff. The six panels correspond to the same six correlation matrices of SNPs as those
in Figure 2.

Disease Genetics Consortium) [Duerr et al. (2006)]. The data contain 851 indepen-
dent subjects from the Jewish population (417 cases and 434 controls) and 1145
independent subjects from the non-Jewish population (572 cases and 573 con-
trols). SNPs were grouped into 15,860 genes on chromosomes 1–22 according to
physical locations of genes and SNPs (NCBI Human Genome Build 35). For data
quality control, SNPs were excluded if they have HWE p-values less than 0.01 or
MAF less than 0.01. SNPs were also removed if their genotypes are redundant or
have a missing rate over 10%. The final data set contains 307,964 SNPs. The gene
length (number of SNPs) ranges from 1 to 844 and is highly skewed to the right:
the lower, median and upper quartiles are 3, 7 and 19, respectively. The missing
genotypes were imputed as the average over subjects.

Quantitative and binary traits were simulated under similar setups of rare and
weak genetic effects as those in Section 6.1. Data sets 6–11 in Table 1 list the
parameters and setups based on three genes: BCHE (butyrylcholinesterase) is a
gene with 100 SNPs located at 3q26.1-q26.2; EXT1 (exostosin 1) is a gene with
106 SNPs located at 8q24.11; FSHR (follicle stimulating hormone receptor) is a
gene with 117 SNPs located at 2p21-p16. At the empirical type I error rate 0.05
from 1000 simulations, Figure 6 shows the empirical power of testing these genes
through quantitative (row 1) and binary traits (row 2). It is clear that HC procedures
performed similarly to or better than the other SNP-set methods.

We further studied the performance of these gene-detection methods when
causative SNPs are simultaneously located within multiple risk genes. Specifically,
we took 10 genes found to be associated with Crohn’s disease (CD) in the litera-
ture [Franke et al. (2010)] and made each of these contain L1−α

g causative SNPs
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FIG. 6. Power comparison based on genotype data of genes BCHE (left), EXT1 (middle) and FSHR
(right), respectively. Row 1 X-axis: the strength parameter r for the genetic effect in equation (9) for
the quantitative trait model; row 2 X-axis: the genetic effect β in equation (23) for the binary trait
model.

(rounded to integer), where Lg is the number of SNPs in the gth risk gene. The
locations of these associated SNPs in each risk gene were randomly chosen. The
quantitative traits were then generated by an additive model (1) that contains all
the causative SNPs from the 10 risk genes, where each causative SNP has a genetic
effect βj defined in (8)–(9) with the rarity parameter α = 0.8 and the strength pa-
rameter rj = 0.9. After generating the quantitative trait, we carried out the GWA
study by using the whole genotypes data of all 15,860 genes. Data sets 12 and 13
in Table 1 summarize the information on the parameters and setups.

To accommodate the fact that genes have distinct numbers of SNPs and LD
structures, we again adapted the permutation test by randomly shuffling the re-
sponse traits for obtaining the gene-by-gene empirical p-values. For the 10 risk
genes, Tables 2 and 3 show their empirical p-values from 10,000 permutations as
well as the corresponding ranks (ties are averaged) among all 15,860 genes based
on Jewish and non-Jewish data, respectively. Only HC methods reliably had the
smallest average p-values and ranks for both data sets.

6.3. Real GWAS of Crohn’s disease. Crohn’s disease primarily causes ulcera-
tions of the small and large intestines, which affects between 400,000 and 600,000
people in North America alone [Baumgart and Sandborn (2007), Loftus, Schoen-
feld and Sandborn (2002)]. To detect novel risk genes of Crohn’s disease, we ap-
plied the above gene-based SNP-set methods to the NIDDK–IBDGC data that
contain both real genotypes and Crohn’s disease status as the phenotype (see data
sets 14 and 15 in Table 1).
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TABLE 2
Based on the NIDDK–IBDGC Jewish genotype data and the additive genetic model that contains 10 risk genes for Crohn’s disease, all 15,860 genes
were tested by gene-based SNP-set method, and were ranked based on their empirical p-values. The ranks and p-values of the 10 risk genes for each

method are listed, and their averages are shown in the last row

MinP LCT QT KMT HC HCm

Genes SNPs/gene Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value

IL23R 23 490 0.0314 1772 0.1138 2337.5 0.1577 23 0.0007 109.5 0.0071 104.5 0.0069
PTGER4 72 3984.5 0.2496 14,246 0.901 2885 0.1931 490 0.0309 470.5 0.0313 455 0.0298
IL12B 41 2.5 0 15,574.5 0.9831 11.5 0.0006 3 0 2.5 0 2.5 0
CDKAL1 160 2245.5 0.1423 4481 0.2859 6418.5 0.4155 150 0.0084 534.5 0.0352 506.5 0.0335
PRDM1 71 4801.5 0.3029 2908 0.1858 5735.5 0.3733 8203 0.5243 8290 0.5243 8327 0.5275
ZNF365 54 2.5 0 1809.5 0.1159 22 0.0013 8 0.0002 2.5 0 2.5 0
PLCL1 64 1708.5 0.1092 8957 0.564 7353.5 0.4751 338 0.0194 807.5 0.0505 768.5 0.049
BACH2 83 2.5 0 9747.5 0.6118 384 0.0274 3 0 2.5 0 2.5 0
GALC 120 919 0.0578 15,391 0.972 7146.5 0.4612 1392 0.0948 936 0.0589 924.5 0.0581
SMAD3 52 5806.5 0.3642 4193 0.268 3079 0.2041 5456 0.359 4985.5 0.3135 5024 0.316

Average 74 1996.3 0.1257 7907.95 0.5001 3537.3 0.2309 1606.6 0.1038 1614.1 0.1021 1611.9 0.1021
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TABLE 3
Same analysis as that for Table 2, except by using the NIDDK–IBDGC non-Jewish genotype data

MinP LCT QT KMT HC HCm

Genes SNPs/gene Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value Rank p-value

IL23R 23 7184 0.4638 13,952.5 0.8833 3800.5 0.2603 4979 0.3379 5626 0.3584 5635 0.3587
PTGER4 72 4627.5 0.2965 3859 0.2509 2983 0.2048 2080 0.1396 2327.5 0.1449 2318.5 0.1446
IL12B 41 35 0.0016 48 0.0026 2552.5 0.1751 167 0.0075 29 0.0014 29.5 0.0013
CDKAL1 160 3 0.0001 393 0.0246 3.5 0.0001 38 0.0011 4.5 0.0002 5.5 0.0002
PRDM1 71 878 0.0529 9258.5 0.5888 8300.5 0.5427 41 0.0012 543 0.0322 517.5 0.0304
ZNF365 54 6080.5 0.3912 4873 0.313 4021 0.2741 7593 0.4941 6857 0.4398 6837 0.4379
PLCL1 64 1071 0.0656 404.5 0.0253 9475 0.6181 1048 0.0665 768 0.0479 777 0.048
BACH2 83 2357.5 0.1469 11,721.5 0.7461 1055.5 0.069 2382 0.1591 1711 0.1065 1648.5 0.1032
GALC 120 379.5 0.0232 14,902 0.9419 299.5 0.0209 45 0.0014 57.5 0.0033 58.5 0.0033
SMAD3 52 119 0.0069 13,274.5 0.8428 952 0.0632 2378 0.1588 98 0.0052 96 0.0051

Average 74 2273.5 0.1449 7268.7 0.4619 3344.3 0.2228 2075.1 0.1367 1802.2 0.1140 1792.3 0.1133
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The genetic architecture of Crohn’s disease remains unclear. One way to par-
tially compare the above methods for detecting remaining risk genes is to base on
risk genes that have similar properties as those undiscovered ones. In particular,
we studied a set of 41 recently reported putative genes that likely contain such
SNPs with rare and weak genetic effects to the susceptibility of Crohn’s disease
[Table 2 of Franke et al. (2010)]. The empirical p-values and the corresponding
ranks for these 41 genes are summarized in supplementary Tables 1 and 2 in the
supplementary materials [Wu et al. (2014)] for the Jewish data and the non-Jewish
data, respectively. For both data sets the HC method provided higher average ranks
for the 41 risk genes than the other methods.

For the top 96 ranked genes by HC and those by MinP methods, 87 of them
are common. Nine genes were included in the top 96 genes by HC, but not by
MinP: PFAAP5, AGTR1, CDA08, NXPH1, LCN10, OR51G1, FDXR, KIAA1904,
and EDG1. Interestingly, by the Catalogue of Somatic Mutations in Cancer (COS-
MIC), all nine genes contain one or more genetic variations associated to the tumor
site on the large intestine. Some of these genes are likely to be relevant accord-
ing to their functions. For example, PFAAP5 (human phosphonoformate immuno-
associated protein 5) on chr13 is likely related to Crohn’s disease, a disease of the
immune system. AGTR1 (Angiotensin II receptor type 1) on chr3 involves pos-
itive regulation of inflammatory response [The UniProt Consortium (2012)] and
is associated with the increase of immunoglobulin [Wallukat et al. (1999)]. As a
critical antibody in mucosal immunity, 3–5 grams of immunoglobulin is secreted
daily into the intestinal lumen [Brandtzaeg and Pabst (2004)]. For NXPH1 (neurex-
ophilin 1) on chr7, neurexophilins are signaling molecules that resemble neuropep-
tides by binding to alpha-neurexins and possibly other receptors. This gene may
be relevant because Crohn’s disease can also present with neurological complica-
tions. Gene LCN10 is potentially relevant because biopsies of the affected colon of
Crohn’s patients may show mucosal inflammation, characterized by focal infiltra-
tion of neutrophils, a type of inflammatory cell, into the epithelium [Baumgart and
Sandborn (2012)]. Gene EDG1 (endothelial differentiation gene 1) has regulatory
functions in normal physiology and disease processes, particularly involving the
immune, and influences the delivery of systemic antigens [Arnon et al. (2011)].
Furthermore, genes AGTR1, CDA08, OR51G1 and EDG1 correspond to the com-
ponents integral to membranes [Binns et al. (2009)], thus are also linked to Crohn’s
disease, which is categorized as a membrane transport protein disorder. Certainly,
further biological validations are needed to confirm how these genes are related to
Crohn’s disease.

7. Discussion. This paper makes several contributions to the literature. First,
it considers the detection boundary for rare and weak genetic effects in the GWAS
setting. Second, our approach allows for marker dependencies (LD) and unknown
error variance, which are lacking in theoretical consideration in the literature and
are better aligned with practical GWAS settings. Third, it shows that some of the
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commonly used SNP-set methods are suboptimal. Fourth, it proposes a HC-based
method to evaluate the statistical evidence of association between a set of SNPs
and a complex trait. We show that this method achieves the most power for the
specified rare and weak genetic effect setting. Application of this method to the
second wave of GWAS will likely help researchers identify more trait-associated
genes.

Because the values of R- or T -test statistics in (16) depend on the correlations
among the genotypic covariates, the HC procedure for optimal gene detection im-
plicitly incorporates the LD information into the hypotheses testing. For example,
those SNPs correlated with an associated SNP likely have larger magnitude of their
R- or T -test statistics and thus smaller marginal p-values. So the maximization
procedure in (12) can capture this information to strengthen the genetic signal.
At least in the polynomially decaying correlations defined in (21), this implicit
LD-incorporation is asymptotically more powerful than some commonly applied
procedures that explicitly calculate and incorporate the correlation matrix into con-
structing test statistics [Luo et al. (2010)], as is illustrated by Theorem 3.

This paper sheds some light on the power of genetic association studies based on
marginal association tests versus joint association tests [Genovese, Jin and Wasser-
man (2009)]. One interesting discovery of this paper is that the HC procedure
based on marginal association tests has actually reached the optimal detection
boundary for the additive genetic model in (1). That is, the merit of joint asso-
ciation analysis is probably not for the additively joint genetic effects, but rather
for gene–gene interactions [Wu and Zhao (2009, 2012)].

Although we have derived some theoretical results in this paper, and the general
setup may be a reasonable abstraction of the real model, the assumptions con-
sidered are still relatively simple and may not capture the complexity of the real
genetic architecture. For example, we did not consider potential gene–gene inter-
actions that are believed to play an important role in biological systems. However,
our work does represent advances over the simpler setup in the literature [Arias-
Castro, Candès and Plan (2011), Donoho and Jin (2004)], with the allowance of
genotype covariates and unknown environmental variance. Our theoretical results
offer insights on the relative performance of different methods, which were sup-
ported by results from simulation and practical GWAS.

Our current work can lead to several future research topics in statistical genet-
ics. The empirical null distribution may depart from N(0,1) in large scale data
due to unobserved covariates and/or correlations [Efron (2004, 2007a, 2007b)]. It
is important to address how likely this problem could arise in gene-based detection
in GWAS, and how to theoretically and practically address the issue in detecting
sparse heterogeneous mixtures. From a genetics perspective, first, it would be in-
teresting to study more complex genetic models, such as those measuring gene–
gene interactions. Second, the proposed HC procedure can be extended to broader
applications in genetic studies. We have illustrated the methods for gene detection
based on SNP-sets grouped within genes. Depending on the scientific interests,



848 Z. WU ET AL.

SNPs can also be grouped based on other genomic segments or based on pathways
containing sets of relevant genes [Luo et al. (2010), Yu et al. (2009)]. For example,
in a pathway analysis, we can directly calculate the HC statistics using all individ-
ual SNPs within the pathway. We can also construct a two-level study, in which
we calculate p-values for genes, for example, by the goodness-of-fit test [Donoho
and Jin (2004), Section 1.6] for all SNPs within those genes, then use p-values of
genes to calculate an HC type statistic for each pathway. These strategies will be
investigated in further research.
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SUPPLEMENTARY MATERIAL

Supplement to “Detection boundary and Higher Criticism approach for
rare and weak genetic effect” (DOI: 10.1214/14-AOAS724SUPP; .pdf). We pro-
vide the proofs for main theoretical results, the fundamental lemmas and their
proofs, as well as additional figures and tables that show performance of Higher
Criticism in comparing with other methods under a variety of setups.
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