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Cryo-electron microscopy (cryo-EM) has recently emerged as a power-
ful tool for obtaining three-dimensional (3D) structures of biological macro-
molecules in native states. A minimum cryo-EM image data set for deriving a
meaningful reconstruction is comprised of thousands of randomly orientated
projections of identical particles photographed with a small number of elec-
trons. The computation of 3D structure from 2D projections requires cluster-
ing, which aims to enhance the signal to noise ratio in each view by grouping
similarly oriented images. Nevertheless, the prevailing clustering techniques
are often compromised by three characteristics of cryo-EM data: high noise
content, high dimensionality and large number of clusters. Moreover, since
clustering requires registering images of similar orientation into the same
pixel coordinates by 2D alignment, it is desired that the clustering algorithm
can label misaligned images as outliers. Herein, we introduce a clustering al-
gorithm y-SUP to model the data with a g-Gaussian mixture and adopt the
minimum y-divergence for estimation, and then use a self-updating proce-
dure to obtain the numerical solution. We apply y-SUP to the cryo-EM im-
ages of two benchmark macromolecules, RNA polymerase II and ribosome.
In the former case, simulated images were chosen to decouple clustering from
alignment to demonstrate y-SUP is more robust to misalignment outliers than
the existing clustering methods used in the cryo-EM community. In the latter
case, the clustering of real cryo-EM data by our y-SUP method eliminates
noise in many views to reveal true structure features of ribosome at the pro-
jection level.

1. Introduction and motivating example. Determining 3D atomic structure
of large biological molecules is important for elucidating the physicochemical
mechanisms underlying vital processes. In 2006, the Nobel Prize in chemistry was
awarded to structural biologist Roger D. Kornberg for his studies of the molecular
basis of eukaryotic transcription, in which he obtains for the first time an actual pic-
ture at the molecular level of the structure of RNA polymerase Il during the stage of
actively making messenger RNA. Three years later in 2009, the same prize went to
three X-ray crystallographers, Venkatraman Ramakrishnan, Thomas A. Steitz and
Ada E. Yonath, for their revelation at the atomic level of the structure and workings
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FI1G. 1. The flowchart for cryo-EM analysis.

of the ribosome, with its even larger and more complex machinery that translates
the information contained in RNA into a poly-peptide chain. Despite these suc-
cesses, most large proteins have resisted all attempts at crystallization. This has
led to the emergence of cryo-electron microscopy (cryo-EM), an alternative to
X-ray crystallography for obtaining 3D structures of macromolecules, since it can
focus electrons to form images without the need of crystals [Henderson (1995),
Saibil (2000), van Heel et al. (2000), Frank (2002, 2009, 2012, Grassucci, Taylor
and Frank (2011), Jiang et al. (2008), Liu et al. (2010)].

A flowchart for cryo-EM analysis is shown in Figure 1. In the sample prepara-
tion step, macromolecules obtained through biochemical purification in the native
condition are frozen so rapidly that the surrounding water forms a thin layer of
amorphous ice to embed the molecules [Adrian et al. (1984), Dubochet (2012),
Lepault, Booy and Dubochet (1983)]. The data obtained by cryo-EM imaging
consists of a large number of particle images representing projections from ran-
dom orientations of the macromolecule. An essential step in reconstructing the 3D
structure from these images is to determine the 3D angular relationship of the 2D
projections, which is a challenging task for the following reasons. First, the im-
ages are of poor quality, as they are heavily contaminated by shot noise induced
by the extremely low number of electrons used to prevent radiation damage. Sec-
ond, in contrast to X-ray crystallography, which restricts the conformation of the
macromolecule in the crystal, cryo-EM data retain any conformation variations
of the macromolecule that exist in their original solution state, which means the
data is a mixture of conformations on top of the viewing angles. The left panel of
Figure 1 explains how the 2D cryo-EM images are collected and the right panel
shows the commonly used strategy to improve the signal-to-noise ratio (SNR) of
those images.
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Given reasonably clear 2D projections, an ab initio approach based on the
projection-slice theorem for 3D reconstruction from 2D projections is available
[Bracewell (1956)]. This theorem states that any two nonparallel 2D projections of
the same 3D object would share a common line in Fourier space. This common-
line principle underlies the first 3D reconstruction of a spherical virus with icosa-
hedral symmetry from electron microscope micrographs [Crowther et al. (1970)].
The same principle was further applied to the problem of angular reconstruction of
the asymmetric particle [van Heel (1987)]. In practice, a satisfactory solution de-
pends on the quality of the images and becomes increasingly unreachable for raw
cryo-EM images as the SNR gets too low. It is therefore necessary to enhance the
SNR of each view by averaging many well aligned cryo-EM images coming from a
similar viewing angle. Clustering is thus aimed at grouping together the cryo-EM
images with nearly the same viewing angle. This step requires pre-aligning the
images because incorrect in-plane rotations and shiftings would prevent success-
ful clustering. Failure to cluster images into homogeneous groups would, in turn,
render the determination of the 3D structure unsatisfactory. Currently, most ap-
proaches for clustering cryo-EM images are rooted in the k-means method, which
has been found to be unsatisfactory [Yang et al. (2012)].

Here, we focus on the clustering step and assume that the image alignment
has been carried through. In the vast number of clustering algorithms developed,
two major approaches are taken. A model-based approach [Banfield and Raftery
(1993)] models the data as a mixture of parametric distributions and the mean es-
timates are taken to be the cluster centers. A distance-based approach enforces
some ‘““distance” to measure the similarity between data points, with notable ex-
amples being hierarchical clustering [Hartigan (1975)], the k-means algorithm
[Lloyd (1982), McQueen (1967)] and the SUP clustering algorithm [Chen and Shiu
(2007), Shiu and Chen (2012)]. In this paper, we combine these two approaches
to propose a clustering algorithm y-SUP. We model the data with a g-Gaussian
mixture [Amari and Ohara (2011), Eguchi, Komori and Kato (2011)] and adopt
the y-divergence [Cichocki and Amari (2010), Eguchi, Komori and Kato (2011),
Fujisawa and Eguchi (2008)] for measuring the similarity between the empirical
distribution and the model distribution, and then borrow the self-updating proce-
dure from SUP [Chen and Shiu (2007), Shiu and Chen (2012)] to obtain a numer-
ical solution. While minimizing the y-divergence leads to a soft rejection in the
sense that the estimate downweights the deviant points, the g-Gaussian mixture
helps set a rejection region when the deviation gets too large. Both of these factors
resist outliers and contribute robustness to our clustering algorithm. To execute
the self-updating procedure, we start with treating each individual data point as
the cluster representative of a singleton cluster and, in each iteration, we update
the cluster representatives through the derived estimating equations until all the
representatives converge. This self-updating procedure ensures that neither knowl-
edge of the number of clusters nor random initial centers are required.
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To investigate how y-SUP would perform when applied to cryo-EM images,
we tested two sets of cryo-EM images. The first set, consisting of noisy simulated
RNA polymerase Il images of different views projected from a defined orientation,
was chosen in order to decouple the alignment issues from clustering issues, al-
lowing for quantitative comparison between y-SUP and other clustering methods.
The second set consisted of 5000 real cryo-EM images of ribosome bound with
an elongation factor that locks it into a defined conformation. For the test on the
simulated data, both perfectly aligned cases and misaligned cases were examined.
y-SUP did well in separating different views in which the images were perfectly
aligned and was able to identify most of the deliberately misaligned images as out-
liers. For the ribosome images, y-SUP was successful in that the cluster averages
were consistent with the views projected from the known ribosome structure.

The paper is organized as follows. Section 2 reviews the concepts of y-
divergence and the g-Gaussian distribution, which are the core components of
y-SUP. In Section 3 we develop our y-SUP clustering algorithm from the perspec-
tive of the minimum y -divergence estimation of the g-Gaussian mixture model.
The performance of y-SUP is further evaluated through simulations in Section 4,
and through a set of real cryo-EM images in Section 5. The paper ends with a
conclusion in Section 6.

2. A review of y-divergence and the ¢-Gaussian distribution. In this sec-
tion we briefly review the concepts of y-divergence and the ¢-Gaussian distribu-
tion, which are the key technical tools for our y-SUP clustering algorithm.

2.1. y-divergence. The most widely used divergence of distributions is prob-
ably the Kullback-Leibler divergence (KL-divergence) due to its connection to
maximum likelihood estimation (MLE). The y-divergence, indexed by a power
parameter y > 0, is a generalization of KL-divergence. Let

M={f:0</;\/fy+1<oo,f20},

where f: X C R" — R is a nonnegative function defined on X'. For simplicity,
we assume X is either a discrete set or a connected region.

DEFINITION 1 [Cichocki and Amari (2010), Eguchi, Komori and Kato (2011),
Fujisawa and Eguchi (2008)]. For f, g € M, define the y-divergence D, (-|-)
and y-cross entropy Cy, (+]|-) as follows:

Dy (fllg) =Cy(fllg) — Cy(fIIf)
(D y
8" (x)

vy +DJ gl

with Cy, (fllg) = — fx)dx,

where || glly+1 = {/ g” "' (x) dx}/“*D is a normalizing constant.
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The y-divergence can be understood as the divergence function associated
with a specific scoring function, namely, the pseudospherical score [Gneiting and
Raftery (2007), Good (1971)]. The pseudospherical score is given by S(f, x) =
Y/ f ||;: +1- The associated divergence function between f and g can be cal-
culated from equation (7) in Gneiting and Raftery (2007) to be

d(fllg) =/S(f,X)f(X)dx —/S(g,X)f(X)dx =y + DDy (fllg)-

This implies that d(-||-) and D, (-||-) are equivalent. Moreover, D, (-||-) can also
be expressed as a functional Bregman divergence [Frigyik, Srivastava and Gupta
(2008)] by taking ®(f) = || f Il +1. The corresponding Bregman divergence is

g¥ (x)

Do(fllg)=®(f) — (g) —8®lg. [ — gl = fllys1— [ o f(x)dx
gl

=y +1DD,(flg),

where 6®[g, 1] is the Gateaux derivative of @ at g along direction 4. Note that
llgll,+1 is a normalizing constant so that the cross entropy enjoys the property
of being projective invariant, that is, Cy, (f|lcg) = Cy, (flg), Yc > 0 [Eguchi, Ko-
mori and Kato (2011)]. By Holder’s inequality, it can be shown that, for f, g €
(defined below), D) (f|lg) > 0 and equality holds if and only if g = A f for some
A > 0 [Eguchi, Komori and Kato (2011)]. Thus, by fixing a scale, for example,

Q={feM:|fly+1=1}

D,, defines a legitimate divergence on 2. There are other possible ways of fixing
a scale, for example, Q ={f e M: [ f(x)dx = 1}.

In the limiting case, lim, .o D, (fllg) = Do(fllg) =/ f(x)In{f(x)/g(x)}dx,
which gives the KL-divergence. The MLE, which corresponds to the minimization
of the KL-divergence Dg(-||-), has been shown to be optimal in parameter estima-
tion in many settings in the sense of having minimum asymptotic variance. This
optimality comes with the cost that the MLE relies on the correctness of model
specification. Therefore, the MLE or the minimization of the KL.-divergence may
not be robust against model deviation and outlying data. On the other hand, the
minimum y-divergence estimation is shown to be robust [Fujisawa and Eguchi
(2008)] against data contamination. It is this robustness property that makes y -
divergence suitable for the estimation of mixture components, where each compo-
nent is a local model [Mollah et al. (2010)].

2.2. The g-Gaussian distribution. The g-Gaussian distribution is a general-
ization of the Gaussian distribution obtained by replacing the usual exponential
function with the g-exponential

exp, () = {1+ (1 —qu}/"™”  where {x},; = max{x,0}.
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In this article, we adopt g < 1, which corresponds to g-Gaussian distributions with
compact support. We will explain this necessary condition of compact support
later.

Let S), denote the collection of all strictly positive definite p x p symmetric
matrices.

DEFINITION 2 [Modified from Amari and Ohara (2011), Eguchi, Komori and
Kato (2011)]. Forafixedg <1+ %, define the p-variate g-Gaussian distribution
G4 (e, X) with parameters 6 = (i, ) € R” x S, to have the probability density
function (p.d.f.),

c
) fo(x:0) = —=L—exp, {u(x;0)},  xeR?,

! NZ N
where u(x;0) = —%(x — ,u,)TE_l(x — ) and ¢, 4 is a constant so that [ f, (x;
0)dx =1.

The constant ¢, 4 is given below [cf. Eguchi, Komori and Kato (2011)]:

(1—q@)?”T A+ p/2+1/(1—q))
F(+1/(1-q))
3) cpg=11 forg — 1,
(g —DPP’rd/(g-1)
I'(1/(g—1) —p/2)

The class of the g-Gaussian distributions covers some well-known distributions.
In the limit as g approaches 1, the g-Gaussian distribution reduces to the Gaussian
distribution. For 1 <g <1+ %, the g-Gaussian distribution becomes the multi-
variate ¢-distribution. This can be seen by setting v =2/(¢ — 1) — p > 0. Then,
fq(x;0) in (2) is proportional to

-1 —(p4v)2
@ {1+1(x—u>T(”—+”z) (x—m} e
v v

which is exactly the p.d.f. of a p-variate ¢-distribution (up to a constant term) with

location and scale parameters (i, 2 :}rv %)) and degrees of freedom v. Depending

on the choice of g, the support of G, (u, X) also differs. For 1 + % >qg>1C(@a.e.,
for the Gaussian distribution and 7-distribution), the support of G4 (i, X) is the
entire R”. For ¢ < 1, however, the support of G, (i, ) is compact and depends
on ¢ in the form

, for —oco<g <1,

2
, forl<g<1+—.
p

Tw—1 2
) {x:(x—u) > (x—u)<—}-
l—g¢g
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Thus, choosing g < 1 leads to zero mutual influence between clusters in our clus-
tering algorithm. Note that if X ~ G, (u, X) withg <1+ ! then E(X) =

and Cov(X) 3.

+2 ’
= 2+<p_+2><1—q>

2.3. Minimum y-divergence for estimating a q-Gaussian. The y-divergence
is a discrepancy measure for two functions in M. Its minimum can then be used as
a criterion to approximate an underlying p.d.f. f from a certain model class Mg
parameterized by & € ® C R™. It has been deduced that minimizing D,, (f | g) over
g is equivalent to minimizing the y-loss function [Fujisawa and Eguchi (2008)]

1 ln{/gVH(x) dx}.

@) f*=argmin D, (f|lg) =argminL, f(g).
geMep geMe

(6) Ly (g = L ln{ng(X)f(x)dx} +
14

Thus, at the population level, f is estimated by

At this moment, we consider Mg to be the family of ¢g-Gaussian distributions
G4(u, X) with @ = (u, X). Then, for any given values of y and ¢, the loss function
L, r(g) evaluated at g(x) = f,(x; 6) € Mg becomes

exp, (u(x; )7+ }”(y“)dx]
Jtexpy (u(v; 6))7+1 dv

1 y/(r+D
———ln[/f(x){f(y+q)/(y+1)(x A >} dx]

Direct calculation then gives that minimizing L, ¢{ f,(x; 0)} over possible values
of 6 is equivalent to maximizing

(8) [ F@IEI IR D e, fux; )] d

For high-dimensional data, however, it is impractical to estimate the covariance
matrix % and its inverse. Since our main interest is to find cluster centers, we
employ ¥ = o2/ p as our working model. By taking the derivative of (8) with
respect to 1, we get the stationary equation for the maximizer u* for any fixed o 2:

o Jxflexpyfulx; n*, o)~ gx
B J fo)lexp, fu(x; p*, o)}~ dx

Lyl fyx:0)) = —%m[ [ s

©) .
[xw(x; u*, 07)dF(x)
~ Jw(spr 0 dF(x) ]
IFor qg<1+ it ensures the existence of the vth moment of X.

P+V
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where w(x; u*, 02) = [exp, {u(x; w*, 02317 ~1-9 is the weight function and
F(x) is the cumulative distribution function corresponding to f(x).

Given the observed data {x;}?_,, the sample analogue of u* can be obtained
naturally by replacing F (x) in (9) with the empirical distribution function F (x) of
{x;}i_,. This gives the stationarity condition for 1* at the sample level:

Y xiwx; ¥, o?)

i wixi uto?)
One can see that the weight function w assigns the contribution of x; to u*. Thus,
a robust estimator should encourage the property that smaller weight is given to
those x; farther away from p* and zero weight to extreme outliers. These can be

achieved by choosing proper values of (y, ¢) in w. In particular, when ¢ < 1, we
have from (5) that

(10) o=

l1—gq 2\ Y —U=a)/(=q)
(1_ 207 X~ 2) ’
2 2
(1) w(x; p*,0%) = for |x — %% < ﬁ
202
for x — u*[3 .
0, or |x ,l,Lszl_q

. . . 2 .
That is, data points outside the range u* £+ %_Lq do not have any influence on p*.

Note also that when y = 1 — ¢, then w(x; u*, 02) = 1 and, thus, «* in (10) be-
comes the sample mean n-! "1 Xi, which is not robust to outliers. This fact
suggests that we should use a y value that is greater than 1 — g.

3. y-SUP. In this section we introduce our clustering method, y-SUP, which
is derived from minimizing y -divergence under a g-Gaussian mixture model.

3.1. Model specification and estimation. Suppose we have collected data
{x;}i_, with empirical probability mass f (x) and empirical c.d.f. F(x) =
rl—l Z’}':l I(x; < x), where “<” is understood componentwise. The goal is to group
them into K clusters, where K is unknown and should be determined from the
data. Assume that f is a mixture of K components with p.d.f.

K
(12) F@) =" mi fy(x: 60),
k=1

where each component is modeled by a g-Gaussian distribution indexed by 6; =
(k. o02). Most model-based clustering approaches (e.g., those assuming a Gaus-
sian mixture model) aim to learn the whole model f by minimizing a divergence
(e.g., KL-divergence) between f and the empirical probability mass f . They there-
fore suffer the problem of having to specify the number of components K before
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implementation. To overcome this difficulty, instead of minimizing D, ( f Il f) to
learn f directly, we consider learning each component f,(-; 6;) of f separately
through the minimization problem

(13) IgnDﬂfm@men.

The validity of (13) to learning all components of f relies on the locality of y-
divergence, as shown in Lemma 3.1 of Fujisawa and Eguchi (2008). The authors
have proven that, at the population level, D, { f || f;(-; 6)} is approximately propor-
tional to Dy, { f, (-; Ox) |l f4(-; 0)}, provided that the model f, (x; ) and the remain-
ing components {f,(x; 0¢): £ # k} are well separated. We also refer the readers
to Mollah et al. (2010) for a comprehensive discussion about the locality of y-
divergence. Consequently, we are motivated to find all local minimizers of (13),
each of which corresponds to an estimate of one component of f. Moreover, the
number of local minimizers provides an estimate of K. A detailed implementation
algorithm that finds all local minimizers and estimates K is introduced in the next
subsection.

3.2. Implementation: Algorithm and tuning parameters. We have shown in
Section 2.3 that, for any given o2, solving (13) is equivalent to finding the cluster
center u* that satisfies the stationary equation (10). Starting with a set of initial

cluster centers { ,llgo)} indexed by i, we consider the following fixed-point algorithm
to solve (10):

~ (L A
vy Jxws 19, 0% dE (x)
/"l’l - A(Z) 2 ~ )
Jwx; i, 02)dF(x)

Multiple initial centers are necessary to find multiple solutions of (10). To avoid
the problem of random initial centers, in this paper we consider the natural choice

(15) (" =x)!_,.

Other choices are possible, but (15) gives a straightforward updating path

(14) ¢=0,1,2,....

{ 111@) :£=0,1,2,...} for each observation x;. At convergence, the distinct values

of {,&goo)}?:l provide estimates of the cluster centers {uk}f: | and the number of
clusters. Moreover, cases whose updating paths converge to the same cluster center
are clustered together. Though derived from a minimum y -divergence perspective,
we note that (14) combined with (15) has the same form as the mean-shift cluster-
ing [Fukunaga and Hostetler (1975)] for mode seeking. It turns out that clustering
through (14)—(15) shares the same properties as mean-shift clustering. Our y-SUP
framework provides the mean-shift algorithm an information theoretic justifica-
tion, namely, it minimizes the y-divergence under a g-Gaussian mixture model.
We call (14)—(15) the “nonblurring y-estimator,” to distinguish it from our main
proposal introduced in the next paragraph.
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While the nonblurring mean-shift updates the cluster centers with the original
data points being fixed [which corresponds to a fixed F in (14) over iterations],
the blurring mean-shift [Cheng (1995)] is a variant of the nonblurring mean-shift
algorithm, which updates the cluster centers and moves (i.e., blurs) the data points
simultaneously. Shiu and Chen (2012) proposed self-updating process (SUP) as
a clustering algorithm. The blurring mean-shift can be viewed as an SUP with
a homogeneous updating rule (SUP allows nonhomogeneous updating). It has
been reported [Shiu and Chen (2012)] that SUP possesses many advantages, es-
pecially in the presence of outliers. Thus, we are motivated to implement the min-
imum y-divergence estimation via an SUP-like algorithm and call it y-SUP. In
particular, the y-SUP algorithm is constructed by replacing F(x) in (14) with
F© (x) = %Z iy (,u(e) < x), to reflect its nature in updating blurred data as
model representatives over iterations. That is, after one iteration, we believe that
the blurred data is more representative of the population than the previous one
and, thus, the blurred data is treated as the new sample to be entered into the next
iteration. This gives the self-updating process of y-SUP:

[xwx i), 02 dFO(x)

A (D
(16) i - , £=0,1,2,....
Jwies 27,02 dFO(x)
The update (16) can be expressed as, fori =1, ...,n,
n (0) ~(0) n (1) A (D)

(17) "(1) Z =1 wl./ M] — "(2) Z =1 w’] 'LL/ N ~ (00)

Hi 0 Hi " wd B

j=1W;j =1

where

(18)

~ (£ ~(£) 12
=expl_s( r” 5->n2)

with the scale parameter T and the model parameter s being

2 1—gq
(19) T=0,/——— and s=———>0.
Vy—>10—-9q) y—{0—-¢q)

Here s > 0 is a consequence of choosing ¢ < 1 and ¥ > 1 — g as mentioned in
the end of Section 2.3. Thus, y-SUP involves only (s, ) as the tuning parameters.
It has been found in our numerical studies that y-SUP is quite insensitive to the
choice of s and that 7 plays the decisive role in the performance of y-SUP. We
thus suggest a choice of a small positive value of s, say, 0.025, in practical imple-
mentation. A phase transition plot (Figure 5) will be introduced to determine t in
Section 4.
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TABLE 1
y-SUP clustering algorithm

Inputs: Data matrix X € R"*P, n instances with p variables;
Tuning parameters (s, 7).

Outputs: Number of clusters K and cluster centers { /lk},f:] ;
Cluster membership assignment {c;}?_, for each of {x;}__,.

begin
Iter <0
start with: fi; < x;/t,i=1,...,n
repeat
fori=1:n
wij < expi_g(— i — i1, j=1.....n
i <Y s — [l
J=1 3 wik J
end
ﬂi <—zi,i:l,...,n
lter < lter + 1
until convergence
output distinct cluster centers {tfi;, 1 <i <n} and cluster membership
end

Note: The parameter 7 is linearly proportional to the influence region radius that defines the similarity
inside a cluster.

It can be seen from (17) that, in updating ;ll@ in the £th iteration, y-SUP takes
a weighted average over the candidate model representatives {[Lge)};?:l according

to the weights {wi(f)}’}:l. Due to the weights in (18) being nonnegative and de-

creasing with respect to the distance ||[L§£) — ;25.6) l> and the compact support of
the ¢g-Gaussian distribution, the convergence of y-SUP is assured [Chen (2013)].
We can express the weights (18) as

(20) wl.(f) =exp;_, (-2 — ﬁi@ 1) with i = 40/,

As a result, y-SUP starts with n (scaled) cluster centers {[Lfo) =x;/t}7_,, which
avoids the problem of random initial centers. Eventually, y-SUP converges to cer-
tain K clusters, where K depends on the tuning parameters (s, 7), but otherwise

is data-driven. Moreover, we have the cluster representatives {/jLZ(OO)}l(l:P which
contain K distinct points denoted by {/i; = t/lk},';(: 1- The corresponding cluster
membership for each data point is denoted by {c;}7_,. The detailed algorithm of
y-SUP (15)—(16) is summarized in Table 1. Note that in our proposal, we ignore
the estimation of 2. The main reason is that o2 is absorbed into the scale param-
eter T defined in (19), and a phase transition plot can be used to select t directly.
A toy example to illustrate how data points move by y-SUP is presented in

Figure 2. Two clusters with 10 data points each are sampled from the standard
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FIG. 2. How data points move by y-SUP. The process stops at the 8th iteration. Bottom row: com-
parison with the sample means of the true clusters and k-means centers under K =2, 3, 4.

normal distributions centered at (0, 0) and (2.355, 2.355), respectively. Another 20
isolated noise points are added surrounding these two clusters. The first plot (upper
left) shows the initial positions of these 40 points. Then each data point is updated
(blurred) according to the weighted average of its neighboring points. After the
8th iteration, no (blurred) data points move any more and the algorithm stops.
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Data points with the same final position are assigned to the same cluster. There are
seven clusters at the end of the self-updating process. Two cluster centers are close
to the true means of the normal mixture. The other five cluster centers are formed
by noise data. Data points sampled from the normal mixture are correctly merged
into their target clusters. Some noise points close to these two clusters move into
them, while other noise points are merged into five clusters. At the bottom row of
Figure 2, we have also provided a plot for comparison with sample means and k-
means centers. The sample means were computed with the information of the true
cluster labels and the k-means centers were computed under given K = 2,3, 4,
respectively. One can see that, in the presence of outliers, cluster centers from y -
SUP can still be close to the sample means, while this is not the case for k-means
under every K.

3.3. Characteristics of y-SUP. Similar to (17), the nonblurring y-
estimator (14)—(15) can be expressed as

n_ Oy n_ Dy
1) ﬁlgl):%—) Algz):L”(*l)Je...eﬂgoo),
D=1 Wi =1 Wi
where w:}(e) = expl_s(—%llxj — ;ll@H%). Comparing (17) and (21), the con-

structed cluster centers from y-SUP and the nonblurring y-estimator are both

weighted averages with the weights wi((.z) and wl* ge)’ respectively. The principle
of downweighting is important for robust model fitting [Basu et al. (1998), Field
and Smith (1994), Windham (1995)]. We emphasize that the downweighting by
© 0
Wij i
average of {ﬂg

in (17) is with respect to models, since each cluster center [1;  is a weighted
E)}n

i=1"

On the other hand, downweighting by w;kj(e) in (21) is with

respect to data, since each cluster center [Ll@ is a weighted average of the original

data {x;}7_,. The same concept can also be observed in the difference between
the nonblurring mean-shift and the blurring mean-shift. It has been shown that
the blurring mean-shift has a faster rate of convergence [Carreira-Perpifian (2006),
Chen (2013)]. To our knowledge, however, there is very little statistical evaluation
for these two downweighting schemes in the literature. As will be demonstrated
in Section 4, from a statistical perspective, downweighting with respect to models
is more efficient than with respect to data in estimating the mixture model, which

further supports the usage of y-SUP in practice.
4. Numerical study.
4.1. Synthetic data. We show by simulation that y-SUP is more efficient in

model parameter estimation than both the nonblurring y-estimator and the k-
means estimator. Random samples of size 100 are generated from a 4-component
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F1G. 3. Simulation results for the mixture model in (22) with (c, mg) = (2,0.8) (the left panel)
and (c, my) = (4,0.8) (the right panel). Results are reported for y-SUP (the first column) and the
nonblurring y -estimator (the second column) at s = 0.025 and various t values, and k-means (the
third column) at various K values. (a), (d), (g): MSE of [1g; (b), (e), (h): means of 7gy, where the
vertical bars represent standard deviations; (c), (f): means of K+; (1): means of pg . The horizontal
dashed line represents the target value.

normal mixture model with p.d.f.

1—mo

3
(22) o0 f (x5 10, ) + ) J (s s, 2,
k=1

where = = I, o= (0,0)7, i = (¢, o), pr = (¢, =2¢)T, and u3 = (—c, 0)7
for some c. We set mg = 0.8 and treat f(x; io, X) as the relevant component of
interest, while { f (x; ux, X):k =1, 2, 3} are noise components. We apply y-SUP
and the nonblurring y-estimator (both with s = 0.025) and k-means to estimate
(o, o) by using the largest cluster center and cluster size fraction as /1o and 7o,
respectively. The simulation results with 100 replicates under different ¢ values are
placed in Figure 3, which includes the MSE of ji¢ and the mean of 77y plus/minus
one standard deviation. To evaluate the sensitivity of each method to the selection
of T or K, we report K; (the average selected number of components under 7) for
y-SUP and the nonblurring y -estimator, and report pg, the probability of selecting
K components by the gap-statistic [Tibshirani, Walther and Hastie (2001)], for k-
means.

For the case of closely spaced components, where ¢ = 2, although y-SUP and
the nonblurring y-estimator perform similarly, y-SUP produces smaller MSE in
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FI1G. 4. Simulation results for the mixture model in (22) with (c, 7o) = (2,0.8) (the left panel)
and (c, y) = (4,0.8) (the right panel). Results are reported for y-SUP (the first column) and the
nonblurring vy -estimator (the second column) at T = 0.6 and s € [0.005,0.1]. (a), (d): MSE of [i¢;
(b), (e): means of 7, where the vertical bars represent standard deviations; (c), (f): mean selected
number of components K at s. The horizontal dashed line represents the target value.

a wider range of t values. Moreover, the mean of 77y from y-SUP is closer to the
target value 0.8. On the other hand, k-means provides unsatisfactory results for
K > 1, indicating that k-means is sensitive to the selection of K when compo-
nents are not well separated. The superiority of y-SUP again has been found in
the case of a moderate distance, ¢ = 4, among the components. In this situation,
y-SUP still provides good estimates of (g, 7o) over a wide range of T € [0.6, 1],
while the selection of v becomes more critical for the nonblurring y -estimator.
The minimum MSE of the nonblurring y -estimator happens only around 7 = 0.5.
Since t should be determined from the data, this fact supports the applicability
of y-SUP in practical implementation. The k-means algorithm can produce sat-
isfactory results at the true number of components K = 4, although its MSE is
still the largest among the three methods. However, the gap-statistic does not sup-
port the choice of K =4, which increases the difficulty of using a k-means with
gap-statistic approach for clustering unbalanced-sized components.

We now evaluate the influence of (s, t) to y-SUP. The same simulation studies
with 7 = 0.6 and s € [0.005, 1] are conducted. One can see from Figure 4 that
the performance of y-SUP and the nonblurring y-estimator is quite insensitive to
the value of s and that y-SUP is even a bit better, which confirms that the crit-
ical tuning parameter is the scale parameter 7. As to the selection of t, one can
find an elbow-pattern (or phase transition) of K; in Figures 3(c) and (f). This phe-
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nomenon suggests the necessity of choosing a 7 value of which the number of
constructed components becomes stable. It can be seen from Figure 3(a)—(b) and
(d)—(e) that the suggested rule corresponds to reasonable performance for y-SUP
and the nonblurring y -estimator, where the best result is still from y-SUP. We will
further examine this selection criterion in the next study using simulated cryo-EM
images. Moreover, as discussed in Section 3.3, y-SUP has a faster rate of conver-
gence. Therefore, the computational time of y-SUP is shorter than the nonblurring
y-estimator. In summary, y-SUP performs better under different settings and is
less sensitive to s-selection.

4.2. Simulated cryo-EM images. We use simulated cryo-EM images to
demonstrate the superiority of y-SUP in clustering homogeneous images while
isolating misaligned images. A total of 128 distinct 2D images with 100 x 100
pixels were generated by projecting the X-ray crystal structure of RNA poly-
merase 1I filtered to 20 Angstroms in equally spaced (angle-wise) orientations.”
Each image was then convoluted with the electron microscopy contrast transfer
function (defocus 2 pm). Finally, 6400 images were randomly sampled with re-
placement from these 128 projections with i.i.d. Gaussian noise N (0, 052) added,
where o, = 40, 50, 60, so that the corresponding SNRs are 0.19, 0.12, 0.08, which
reflect the low SNR nature of cryo-EM images. This procedure of simulating cryo-
EM images is commonly used in the cryo-EM community [Chang et al. (2010),
Hall, Nogales and Glaeser (2011), Singer et al. (2010), Sorzano et al. (2010)]. To
reflect the nature of the experiment, we consider two scenarios:

1. All the images are perfectly aligned.
2. A portion of the images are misaligned.

The misaligned images are treated as outliers and should be identified individually
without clustering with other correctly aligned images. Before entering the cluster-
ing algorithm, we conducted dimension reduction on this image data set. Instead of
using principal component analysis (PCA), we applied multilinear principal com-
ponent analysis [MPCA, Hung et al. (2012), Lu, Plataniotis and Venetsanopoulos
(2008)] to reduce the dimension from 100 x 100 to 10 x 10, as MPCA has been
shown to be more efficient in dimension reduction for array data such as image
sets [Hung et al. (2012)]. The extracted low-dimensional MPCA factor loadings
then enter the clustering analysis.

We have tested y-SUP, k-means, clustering 2D (CL2D) [Sorzano et al. (2010)]
and k-means™, a variant of the latter two, for comparison. Given a prespecified
number of clusters K, unlike k-means which separates the data into K clusters
directly, CL2D bisects the clusters iteratively until K clusters are constructed.

2Data source: The X-ray model of RNA polymerase II is from the Protein Data Bank (PDB:
1WCM).
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During the clustering process, CL2D dismisses the clusters whose size is below
a certain number (30 in our case) and splits the largest cluster into two clusters
once a dismiss is executed. Another difference is that CL2D adopts the correntropy
[a kernel-based entropy measure, Sorzano et al. (2010)] as the measure of distance,
while k-means uses the usual Euclidean norm. We thus consider k-means™, which
is modified from CL2D by using the Euclidean norm instead. Note that CL2D, k-
means™ and k-means require the prespecification of K and initial assignments for
the cluster centers. CL2D further needs a tuning parameter for the kernel width.
We have tried a few kernel widths and picked the best one for CL2D. We present
the best results out of 10 runs for CL2D, k-means and k-means™. In contrast to
this, ¥-SUP is deterministic as long as its parameters s and t are fixed. As has
been demonstrated in the previous numerical studies that y-SUP is insensitive to
the s-selection, we fix s = 0.025. We will supply a phase transition diagram in
Section 4.2.1 to choose .

To evaluate the performance of each method, we report the impurity and
c-impurity numbers as defined below. Let {c;} be sets of true clusters, {w;} be
sets of constructed clusters, and | - | be the cardinality of the set. For each output
cluster wj, its purity number is defined by max; |c; N w;|. The overall purity num-
ber [Manning, Raghavan and Schtze (2008)] is the sum over all output clusters:

urity = max|c; Nw;il.
purity Xj: axe; N o]

The impurity number is defined to be
impurity = n — purity.

Note that the purity is usually defined to be the ratio of the purity number and the
total number of images. Here we do not normalize it by the total number for better
presentation of the simulation results. The impurity number is O for the perfect
clustering result, but a zero impurity number does not guarantee a perfect clus-
tering. This number cannot recognize mistakes made by splitting one class into
two or more clusters. We thus define c-impurity, which is analogous to the impu-
rity number but exchanges the roles of the true clusters and the output clusters to
derive its measure of impurity. That is, define

c-impurity =n — Zmax lci Nwjl,
—

1

which is able to pick up the mistakes by splitting a cluster into two or more clusters.
In summary, small values of the impurity and c-impurity numbers indicate better
performance of a clustering method.
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TABLE 2
Clustering result with perfect alignment images

y-SUP y-SUPt CL2D k-meanst k-means

0¢ =40 (SNR =0.19)

impurity 0 0 0 0 1206

c-impurity 0 0 0 0 425
0g =50 (SNR =0.12)

impurity 44 0 0 34 1175

c-impurity 0 0 0 33 462
0 =60 (SNR = 0.08)

impurity 150 0 4 0 1106

c-impurity 0 0 4 0 465

4.2.1. Clustering with perfectly-aligned images. Simulation results with
perfectly-aligned images are placed in Table 2. For the small noise level of o, = 40,
y-SUP, CL2D and k-means™ give perfect clustering. For larger o, values, their
clustering accuracies slowly decay as expected, and have comparable perfor-
mances. CL2D confuses images at an impurity level of (4,4) (which stands for
impurity = 4 and c-impurity = 4) when o, = 60. Quite unexpectedly, k-means™
confuses images at an impurity level of (34, 33) when o, = 50 but performs flaw-
lessly when o, = 60. This is due to the 10 random initial centers mentioned above.
The performance of k-means is poor for all o, values, even when we correctly
specify K = 128. This reflects the shortcomings of k-means when the noise level
is high and when the number of clusters is large.

One can see that -SUP has a larger impurity number when o, = 60, and we
found that the errors made by y-SUP always involve mistakenly combining two
clusters as a single one. In real applications, practitioners are very likely to have
prior knowledge about the expected cluster size when analyzing cryo-EM images,
and it is common to further bisect an unevenly large cluster. To mimic this situa-
tion, we consider y-SUP™, which modifies the result of y-SUP by further using
k-means to separate those clusters whose size is greater than 70. This threshold
should be adjusted according to the ratio of the total number of images to the
number of clusters expected. The results of y-SUP™ are also provided in Table 2,
where a perfect clustering is achieved for every o,. This indicates the applicability
of our proposal, as an error made by y-SUP can be easily fixed. We remind the
readers that the true number of components in this simulation is K = 128 = 27.
This makes CL2D (and k-means™) beneficial in clustering, since the main idea of
CL2D is to bisect data until a prespecified number of clusters is reached. We thus
believe using y-SUPT is a fair comparison for our method. We will further see the
superiority of y-SUP in the presence of outliers (see Section 4.2.2), in which the
true number of components largely exceeds 128, resulting in CL2D becoming less
accurate at clustering.



y-SUP 277

130 T T T T T T T T 7000
KKK KoKk Kk Kk * % ok ok ok K Kk ok %
o 6000 -
1251 * kK K ¥
*
4 F e xx o 5000
2 2
17} L 17}
3 120 & 4000t
— * % ¥ -
[s} o
) * ® 3000}
-g 1151 * -E
=1 =}
z < 2000}
1101
1000 +
105 . . . . . . . ol 0 . * oK K K K K K Kk ¥
80 90 100 110 120 130 140 150 160 170 82 82.5 83 83.5 84
Scale Parameter Scale Parameters

FIG. 5. The number of clusters created by y-SUP under various values of T. A phase transition
occurs when the scale parameter t is 83.

We demonstrate the effect of T and provide guidance on its selection. Figure 5
gives the numbers of clusters from y-SUP under various values of ¢ when o, =40,
wherein we observe a phase transition in the number of clusters: y-SUP outputs
6400 clusters when 7 < 83, outputs 128 clusters (a perfect result) when 7 = 83,
and there exists no intermediate result between 128 and 6400. Moreover, the clus-
ter number remains at 128 for quite a wide range of t € [83, 105]. Recall that the
scale parameter t is proportional to the support region of the weight (18) and,
hence, y-SUP’s updating procedure ignores the influence of data outside a certain
range determined by r. When t is small enough that there is no influence between
any two images, y-SUP leads to 6400 clusters (i.e., each individual cryo-EM im-
age forms one cluster). When 7 reaches a critical value, the images in the same
cluster can start attracting each other and will finally merge. This explains why a
phase transition occurs. We observe similar phase transition phenomena for vari-
ous noise structures, of which some may not happen at the perfect cluster result,
but never happen far from it. Thus, the value at which the phase transition occurs
can be treated as a starting value for selecting a reasonable range of 7.

4.2.2. Clustering with misaligned images. 1t is well possible that a set of cryo-
EM images cannot be well aligned due to their low SNR. A good cluster method
should be robust in the presence of misaligned images (outliers). We thus conduct
simulations to evaluate the performances of clustering methods, where 10% and
20% of the images are randomly chosen to be rotated by 7.2, 14.4, 21.6, 28.8, 36
or 43.2 angular degrees (°) clockwise. The effect of this is that each rotated image
no longer shares the same signal pattern with the images in its original cluster, nor
does it share a signal pattern with the other misaligned ones. An ideal outcome in
this scenario would be for the clustering algorithm to treat each of these misaligned
images as a singleton cluster. Including these singleton clusters, the total cluster
number would become 771 for 10% misalignment and 1410 for 20%, while the
meaningful cluster number would remain at 128.
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TABLE 3
Clustering result with 10% misalignment images

y-SUP y-SUPt CL2D k-meanst k-means

0¢ =40 (SNR =0.19)

impurity 0 0 643 789 407

c-impurity 0 0 0 0 3452
0g =50 (SNR =0.12)

impurity 83 0 644 788 410

c-impurity 0 0 1 4 3482
0 =60 (SNR = 0.08)

impurity 190 7 644 779 423

c-impurity 0 0 1 2 3541

Simulation results are presented in Table 3 for the 10% misalignment scenario
and Table 4 for the 20% misalignment scenario. It can be seen that y-SUP per-
forms best in comparison with CL2D, k-means™ and k-means for all o, values.
Moreover, combined with the prior knowledge about expected cluster size, the re-
sult from y-SUP can be further improved by y-SUP™. These outcomes support
the applicability of -SUP in the presence of outliers. As shown in Table 3 for the
very low SNR case with o, = 60, y-SUP™ has only 7 misaligned images which
have been wrongly assigned to true clusters, while the other misaligned images
were correctly separated out as outliers. On the other hand, k-meanst and CL2D
can do nothing about the misaligned images which are 643 (=771 — 128) in the
10% misalignment case, such that their default mistakes are 643 in the impurity
category. The main reason is that CL2D will still allocate outliers into certain clus-
ters and, hence, the resulting cluster centers will still be subject to the influence of
outliers. In contrast, y-SUP allows for singleton clusters as indicated in Table 3,
and the resulting cluster means are, therefore, more robust.

The performance of CL2D and k-means™ is more seriously impacted when the
misaligned proportion is 20% (Table 4). While CL2D makes no other mistake at
o, = 40 and makes (1, 1) mistakes at o, = 50 and o, = 60 in addition to the default
643 misalignment images in the 10% case, it makes from 421 to 444 more image
merges in addition to the default 1282 (= 1410 — 128) ones for the 20% case. The
k-means™ method shows similar patterns in both the 10% and the 20% case. This
indicates that, as a large number of outliers are forced to enter the clusters, their
cluster representatives tend to be contaminated to an extent that it becomes difficult
to identify their correct cluster members. In contrast, y-SUP provides a solution
to this commonly encountered situation.

5. Real cryo-EM image clustering. Ribosome is the cellular machinery that
synthesizes proteins. The structure of ribosome has been intensively investigated
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TABLE 4
Clustering result with 20% misalignment images

y-SUP y-SUPT CL2D k-meanst k-means

oe =40 (SNR =0.19)

impurity 0 0 1703 1773 820

c-impurity 0 0 4 3 3883
oe =50 (SNR =0.12)

impurity 36 1 1743 1760 833

c-impurity 0 0 1 1 3899
o =60 (SNR = 0.08)

impurity 214 11 1726 1713 824

c-impurity 0 0 6 1 3909

by X-ray crystallography and cryo-EM. For the latter, the structure is obtained by
3D reconstruction using many cryo-EM images. Those images represent projec-
tions from different viewing angles. To test the performance of y-SUP in grouping
experimental data into similar views, a set of E. coli 70s ribosome was down-
loaded® (60 sample images are shown in Figure 6). This data set contains 5000
single-particle cryo-EM images of randomly oriented ribosome carrying an elon-

FI1G. 6. 60 images are randomly chosen from the 5000 ribosome cryo-EM image set.

3The website link is http://www.ebi.ac.uk/pdbe/emdb/data/SPIDER_FRANK _data/.


http://www.ebi.ac.uk/pdbe/emdb/data/SPIDER_FRANK_data/

280 T.-L. CHEN ET AL.

FI1G. 7. One y-SUP clustering class example contains 39 element images. Their class average is
shown on the right-bottom corner.

gation factor with it. The 5000 cryo-EM images were preprocessed using XMIPP
[Sorzano et al. (2004)] to correct the negative phase component induced by the
electron microscope transfer function. Next, the corrected images were centered
and roughly aligned using the multi-reference alignment method on the SPIDER
suite for single particle processing [Frank et al. (1996)]. The dimension of those
images was reduced from 130 x 130 to 15 x 15 via MPCA [Hung et al. (2012)].
PCA was then further applied to the correlation matrix of those MPCA loading
scores. The final dimension of each image is 20. Figure 7 shows a gallery of 39
raw cryo-EM images with a noticeably similar orientation, which were grouped
into a single cluster by y-SUP using the parameters s = 0.025 and 7 = 1, and
the average of those images at the right bottom corner, which has clearly brought
out an abundance of meaningful detail hidden in the raw images. This particular
clustering exemplifies the potential of y-SUP in processing real data. A total of
24 clusters with cluster sizes between 23 to 219 were found and their averages are
given in Figure 8. We demonstrate their consistency with the 2D projections of
known ribosome 3D structure with an example shown in Figure 9. One of the class
averages is compared with a 2D projection of a 70s ribosome 3D structure solved
by X-ray. The P-stalk [Wilsome and Cate (2012)] with its signature tail on the left
side can be clearly seen.

6. Conclusion. We have combined a model-based ¢-Gaussian mixture clus-
tering method, the y-estimator and a self-updating process, SUP, to propose y-
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F1G. 8. 24 class averages by y-SUP.

SUP, a novel hybrid designed to meet the image clustering challenges encountered
in cryo-EM analysis. Characteristically, sets of cryo-EM images have low SNR,
many of which are misaligned and should be treated as outliers, and which form
a large number of clusters due to their free orientations. Because of its capabil-
ity to identify outliers, y-SUP can separate out the misaligned images and create
the possibility for further correcting them. Thus, we have been able to present a
successful application of y-SUP on cryo-EM images.

Eliminating the need to set initial random cluster centers and cluster number,
y-SUP requires only the specification of (s, ). We have shown that y-SUP has

FI1G. 9. A single projected view of a known ribosome 3D structure compared with a single class
average obtained by y-SUP.
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robust performance over s in many scenarios. Once s is chosen, the phase transition
scheme may suggest a reasonable range for 7. This insensitivity with respect to s-
selection and the observation of the phase transition greatly reduces the difficulty
in selecting the tuning parameters. We summarize the characteristics which make
for the success of y-SUP:

e y-SUP adopts a g-Gaussian mixture model with ¢ < 1, which has compact sup-
port. Hence, it sets a finite influence range for each component and completely
rejects data outside this range. When a data point is outside a certain cluster
representative’s influence range, it contributes zero weight toward this represen-
tative.

e y-SUP estimates the model parameters by minimizing y -divergence. The min-
imum y-divergence downweights the influence for data that deviates far from
the cluster centers, which enhances the clustering robustness.

e y-SUP extracts clusters without the need of specifying the number of compo-
nents K and random initial centers. It starts with each individual data point as
a singleton cluster [i.e., with a mixture of n components, see (15)], and K is
data-driven.

e y-SUP allows singleton or extremely small-sized clusters to accommodate po-
tential outliers.

e y-SUP uses F® to shrink the fitted mixture model toward cluster centers in
each iteration. Such a shrinkage acts as if the effective temperature is iteratively
decreasing, so that it improves the efficiency of mixture estimation.

Finally, we also remind the readers that the strength of y-SUP is for cases where
the number of clusters is large, or data are contaminated with noises/outliers, or
cluster sizes are not balanced [some clusters are much bigger, or smaller, than
others]. However, there is no advantage of using y-SUP if the clustering problem
arises from normal mixtures whose components have approximately similar sizes.
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