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HIERARCHICAL ARRAY PRIORS FOR ANOVA
DECOMPOSITIONS OF CROSS-CLASSIFIED DATA1

BY ALEXANDER VOLFOVSKY AND PETER D. HOFF

Harvard University and University of Washington

ANOVA decompositions are a standard method for describing and esti-
mating heterogeneity among the means of a response variable across levels
of multiple categorical factors. In such a decomposition, the complete set of
main effects and interaction terms can be viewed as a collection of vectors,
matrices and arrays that share various index sets defined by the factor levels.
For many types of categorical factors, it is plausible that an ANOVA decom-
position exhibits some consistency across orders of effects, in that the levels
of a factor that have similar main-effect coefficients may also have similar
coefficients in higher-order interaction terms. In such a case, estimation of
the higher-order interactions should be improved by borrowing information
from the main effects and lower-order interactions. To take advantage of such
patterns, this article introduces a class of hierarchical prior distributions for
collections of interaction arrays that can adapt to the presence of such inter-
actions. These prior distributions are based on a type of array-variate normal
distribution, for which a covariance matrix for each factor is estimated. This
prior is able to adapt to potential similarities among the levels of a factor,
and incorporate any such information into the estimation of the effects in
which the factor appears. In the presence of such similarities, this prior is
able to borrow information from well-estimated main effects and lower-order
interactions to assist in the estimation of higher-order terms for which data
information is limited.

1. Introduction. Cross-classified data are prevalent in many disciplines, in-
cluding the social and health sciences. For example, a survey or observational
study may record health behaviors of its participants, along with a variety of de-
mographic variables, such as age, ethnicity and education level, by which the par-
ticipants can be classified. A common data analysis goal in such settings is the
estimation of the health behavior means for each combination of levels of the de-
mographic factors. In a three-way layout, for example, the goal is to estimate the
three-way table of population cell means, where each cell corresponds to a partic-
ular combination of factor levels. A standard estimator of the table is provided by
the table of sample means, which can alternatively be represented by its ANOVA
decomposition into additive effects and two- and three-way interaction terms.
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TABLE 1
Cross-tabulation of the sample sizes for the demographic variables. “Hispanic” is coded as

“Hispanic, not Mexican.” The categories of education are as follows: P-Primary, S-Secondary,
HD-High school degree, AD-Associate’s degree, BD-Bachelor’s degree

Mexican Hispanic White Black

Age P S HD AD BD P S HD AD BD P S HD AD BD P S HD AD BD

31–40 21 24 23 17 13 12 8 10 11 1 3 37 56 55 56 1 13 31 35 16
41–50 26 10 19 14 6 11 9 10 9 3 10 25 56 57 50 2 25 21 25 17
51–60 29 11 10 14 10 17 6 12 13 11 10 24 46 57 57 23 23 24 14
61–70 31 7 5 11 5 19 4 11 6 7 15 23 56 46 54 16 34 20 33 14
71–80 27 2 3 1 3 10 8 5 2 7 61 37 93 72 68 16 10 11 7 12

The cell sample means provide an unbiased estimator of the population means,
as long as there are observations available for each cell. However, if the cell-
specific sample sizes are small, then it may be desirable to share information across
the cells to reduce the variance of the estimator. Perhaps the simplest and most
common method of information sharing is to assume that certain mean contrasts
among levels of one set of factors are equivalent across levels of another set of fac-
tors or, equivalently, that certain interaction terms in the ANOVA decomposition of
population cell means are exactly zero. This is a fairly large modeling assumption,
and can often be rejected via plots or standard F -tests. If such assumptions are
rejected, it still may be desirable to share information across cell means, although
perhaps in a way that does not posit exact relationships among them.

As a concrete example, consider estimating mean macronutrient intake across
levels of age (binned in 10 year increments), ethnicity and education from the
National Health and Nutrition Examination Survey (NHANES). Table 1 summa-
rizes the cell-specific sample sizes for intake of overall carbohydrates as well
as two subcategories (sugar and fiber) by age, ethnicity and education levels for
male respondents (more details on these data are provided in Section 4). Stud-
ies of carbohydrate intake have been motivated by a frequently cited relation-
ship between carbohydrate intake and health outcomes [Chandalia et al. (2000),
Moerman, De Mesquita and Runia (1993)]. Studies of obesity in the US have
shown an overall increase in caloric intake primarily due to an increase in car-
bohydrate intake from 44 to 48.7 percent of total calories from 1971 to 2006
[Austin, Ogden and Hill (2011)]. Recently, the types of carbohydrates that are
being consumed have become of primary interest. For example, in the study of
cardiovascular disease, simple sugars are associated with raising triglycerides and
overall cholesterol while dietary fiber has been associated with lowering triglyc-
erides [Albrink and Ullrich (1986), Yang et al. (2003)]. Total carbohydrates and
the types of carbohydrates have also been targeted in recent studies of effective
weight loss [e.g., sugar consumption in the form of HFCS in drinks, Nielsen and
Popkin (2004)].



ARRAY PRIORS FOR ANOVA 21

TABLE 2
MANOVA testing of interaction terms via Pillai’s trace statistic

approx F num df den df p-value

Education 11.15 15 6102 <0.01
Ethnicity 18.07 9 6102 <0.01
Age 21.38 12 6102 <0.01
Education:Ethnicity 1.67 36 6102 0.01
Education:Age 1.60 48 6102 0.01
Ethnicity:Age 2.05 36 6102 <0.01
Education:Ethnicity:Age 1.44 144 6102 <0.01

However, these studies generally report on marginal means of carbohydrate in-
take across demographic variables, and do not take into account potential nonad-
ditivity, or interaction terms, between them [Basiotis et al. (1989), Johansson et al.
(2001), Montonen et al. (2003), Park et al. (2011), Verly Junior et al. (2010)]. In a
study where nonadditivity was considered, the authors only tested for the presence
of a small subset of possible interactions and did not consider any interactions
of more than two effects [Austin, Ogden and Hill (2011)]. A more detailed un-
derstanding of the relationship between mean carbohydrate intake and the demo-
graphic variables can be obtained from a MANOVA decomposition of the means
array into main-effects, two- and three-way interactions. Evidence for interactions
for multivariate data can be assessed with approximate F -tests based on the Pillai
trace statistics [Olson (1976)].

For our data, the F -tests presented in Table 2 indicate strong evidence that the
two- and three-way interactions are not zero. Based on these results, standard prac-
tice would be to retain the full model and describe the interaction patterns via var-
ious contrasts of cell sample means. Often this is done by visual examination of
interaction plots, that is, plots of cell means by various combinations of factors. For
example, Figure 1 gives the age by education interaction plots for each of the four
ethnicity groups. The three-way interaction between ethnicity, age and education
can be described as the inconsistency of the two-way interactions across levels

FIG. 1. Three-way interaction plot of fiber cell means by ethnicity, age and education level.
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of ethnicity. Visually, there is some indication that Mexican respondents have a
different age by education interaction than the other ethnicities, but it is difficult
to say anything more specific. Indeed, it is difficult to even describe the two-way
interactions, due to the high variability of the cell sample means.

Much of the heterogeneity in these plots can be attributed to the low sample
sizes in many cells and the resulting sampling variability of the cell sample means.
A cleaner picture of the three-way interactions could possibly be obtained via cell
mean estimates with lower variability. A variety of penalized least squares proce-
dures have been proposed in order to reduce estimate variability and mean squared
error (MSE), such as ridge regression and the lasso. Recent variants of these ap-
proaches allow for different penalties on ANOVA terms of different orders, includ-
ing the ASP method of Beran (2005) and grouped versions of the lasso [Friedman,
Hastie and Tibshirani (2010), Yuan and Lin (2007)]. Corresponding Bayesian ap-
proaches include Bayesian lasso procedures [Genkin, Lewis and Madigan (2007),
Park and Casella (2008), Yuan and Lin (2005)] and multilevel hierarchical priors
[Cui et al. (2010), Hodges et al. (2007), Park, Gelman and Bafumi (2006), Pittau,
Zelli and Gelman (2010)].

While these procedures attain a reduced MSE by shrinking linear model coeffi-
cient estimates toward zero, they do not generally take full advantage of the struc-
ture that is often present in cross-classified data sets. In the data analysis example
above, two of the three factors (age and education) are ordinal, with age being a
binned version of a continuous predictor. Considering factors such as these more
generally, suppose a categorical factor x is a binned version of some underlying
continuous or ordinal explanatory variable x̃ (such as income, age, number of chil-
dren or education level). If the mean of the response variable y is smoothly varying
in the underlying variable x̃, we would expect that adjacent levels of the factor x

would have similar main effects and interaction terms. Similarly, for nonordinal
factors (such as ethnic group or religion) it is possible that two levels represent
similar populations, and thus may have similar main effects and interaction terms
as well. We refer to such similarities across the orders of the effects as order con-
sistent interactions.

Returning to the NHANES data, Figure 2 summarizes the OLS estimates of the
main effects and two-way interactions for the three outcome variables (carbohy-
drates, sugar and fiber). Not surprisingly, the main effects for the ordinal factors
(age and education) are “smooth,” in that the estimated main effect for a given level
is generally similar to the effect for an adjacent level. Additionally, some similari-
ties among the ethnic groups appear consistent across the three outcome variables.
To assess consistency of such similarities between main effects and two-way inter-
actions, we computed correlations of parameter estimates for these effects between
levels of each factor. For example, there are 3 × 10 = 30 main-effect and two-way
interaction estimates involving each level of age: For each of the three outcome
variables, there is 1 main-effect estimate for each age level, 4 estimates from the
age by ethnicity interaction and 5 estimates from the age by education interaction.
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FIG. 2. Plots of main effects and interaction correlations for the three outcome variables (carbo-
hydrates, sugar and fiber). The first row of plots gives OLS estimates of the main effects for each
factor. The second row of plots gives correlations of effects between levels of each factor, with white
representing 1 and black representing −1. The interactions are calculated based on OLS estimates
of the main effects and two-way interactions of each factor.

We compute a correlation matrix for the five levels of age based on the resulting
30 × 5 matrix of parameter estimates, and similarly compute correlations among
levels of ethnicity and among levels of education. The second row of Figure 2 gives
grayscale plots of these correlation matrices. The results suggest some degree of
order consistent interactions: For the ordinal factors, the highest correlations are
among adjacent pairs. For the ethnicity factor, the results suggest that, on aver-
age, the effects for the Mexican category are more similar to the Hispanic (not
Mexican) category than to the other ethnic categories, as we might expect.

The OLS estimates of the main effects and three-way interactions presented
above, along with the fact that two of the three factors are ordinal, suggest the pos-
sibility of order consistent interactions among the array of population cell means.
More generally, order consistent interactions may be present in a variety of data
sets encountered in the social and health sciences, especially those that include
ordinal factors, or factors for which some of the levels may represent very similar
populations. In this paper, we propose a novel class of hierarchical prior distri-
butions over main effects and interaction arrays that can adapt to the presence of
order consistent interactions. The hierarchical prior distribution provides joint es-
timates of a covariance matrix for each factor, along with the factor main effects
and interactions. Roughly speaking, the covariance matrix for a given factor is
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estimated from the main effects and interactions in which the factor appears. Con-
versely, an estimate of a factor’s covariance matrix can assist in the estimation of
higher-order interactions, for which data information is limited. We make this idea
more formal in the next section, where we construct our prior distribution from a
set of related array normal distributions with separable covariance structures [Hoff
(2011)] and provide a Markov chain Monte Carlo algorithm for inference under
this prior. In Section 3 we provide a simulation study comparing estimation under
our proposed prior to some standard estimators. As expected, our approach out-
performs others when the data exhibit order consistent interactions. Additionally,
for data lacking any interactions, our approach performs comparably to the OLS
estimates obtained from the additive model (i.e., the oracle estimator). In Section 4
we extend this methodology to MANOVA models in order to analyze the multi-
variate NHANES data presented above. In addition to estimates of main effects
and interactions, our analysis provides measures of similarity between levels of
each of the factors. We conclude in Section 5 with a summary of our approach and
a discussion of possible extensions.

2. A hierarchical prior for interaction arrays. In this section we intro-
duce the hierarchical array (HA) prior and present a Markov chain Monte Carlo
(MCMC) algorithm for posterior approximation and parameter estimation. The
HA prior is constructed from several semi-conjugate priors, and so the MCMC
algorithm can be based on a straightforward Gibbs sampling scheme.

2.1. The hierarchical array prior. For notational convenience we consider the
case of three categorical factors, and note that the HA prior generalizes trivially
to accommodate a greater number of factors. Suppose the three categorical factors
have levels {1, . . . ,m1}, {1, . . . ,m2} and {1, . . . ,m3}, respectively. The standard
ANOVA model for a three-way factorial data set is

yijkl = μ + ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk + εijkl,
(1)

{εijkl} ∼ i.i.d. normal
(
0, σ 2)

.

Let a denote the m1 × 1 vector of main effects for the first factor, (ab) de-
note the m1 × m2 matrix describing the two-way interaction between the first
two factors, (abc) denote the m1 × m2 × m3 three-way interaction array, and
let b, c, (ac) and (bc) be defined similarly. Bayesian inference for this model
proceeds by specifying a prior distribution for the ANOVA decomposition θ =
{μ,a, b, c, (ab), (ac), (bc), (abc)} and the error variance σ 2.

As described in the Introduction, if two levels of a factor represent similar
populations, we would expect that coefficients of the decomposition involving
these two levels would have similar values. For example, suppose levels i1 and
i2 of the first factor correspond to similar populations. We might then expect ai1

to be close to ai2 , the vector {(ab)i1,j , j = 1, . . . ,m2} to be close to the vector
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{(ab)i2,j , j = 1, . . . ,m2}, and so on. We represent this potential similarity between
levels of the first factor with a covariance matrix �a , and consider a mean zero
prior distribution on the ANOVA decomposition such that

Cov[a] = E
[
aaT ] = �a,

E
[
(ab)(ab)T

] = kab�a,

E
[
(ac)(ac)T

] = kac�a,

E
[
(abc)(1)(abc)T(1)

] = kabc�a,

where kab, kac and kabc are scalars. Here, (abc)(1) is the matricization of the array
(abc), which converts the m1 × m2 × m3 array into an m1 × (m2m3) matrix by
adjoining the m3 matrices of dimension m1 ×m2 that form the array (abc) [Kolda
and Bader (2009)]. To accommodate similar structure for the second and third
factors, we propose the following prior covariance model for the main effects and
interaction terms:

Cov[a] = �a, Cov[b] = �b, Cov[c] = �c

Cov
[
vec(ab)

] = �b ⊗ �a/γab, Cov
[
vec(bc)

] = �c ⊗ �b/γbc,

Cov
[
vec(ac)

] = �c ⊗ �a/γac Cov
[
vec(abc)

] = �c ⊗ �b ⊗ �a/γabc,

where “⊗” is the Kronecker product. The covariance matrices �a , �b and �c rep-
resent the similarities between the levels of each of the three factors, while the
scalars γab, γac, γbc, γabc represent the relative (inverse) magnitudes of the inter-
action terms as compared to the main effects. Further specifying the priors on the
ANOVA decomposition parameters as being mean-zero and Gaussian, the prior
on a is then the multivariate normal distribution Nm1(0,�a), and the prior on
vec(ab) is Nm1m2(0,�b ⊗ �a/γab). This latter distribution is sometimes referred
to as a matrix normal distribution [Dawid (1981)]. Similarly, the prior on vec(abc)

is Nm1m2m3(0,�c ⊗�b ⊗�a/γabc), which has been referred to as an array normal
distribution [Hoff (2011)].

In classical ANOVA decompositions, it is common to impose an identifiability
constraint on the different effects. In a Bayesian analysis it is possible to place pri-
ors over identifiable sets of parameters, but this is cumbersome and not frequently
done in practice [Gelman and Hill (2007), Kruschke (2011)]. The priors we pro-
pose for the effects in the ANOVA decomposition in this article induce a prior over
the cell means, which are identifiable. These priors have an intuitive interpretation
and do not negatively affect the convergence of MCMC chains generated by the
proposed procedure as can be seen in the Simulation and Application sections.

In most data analysis situations the similarities between the levels of a given
factor and magnitudes of the interactions relative to the main effects will not be
known in advance. We therefore consider a hierarchical prior so that �a , �b, �c

and the γ -parameters are estimated from the data. Specifically, we use independent
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inverse-Wishart prior distributions for each covariance matrix, for example, �a ∼
inverse-Wishart(ηa0, S

−1
a0 ), and gamma priors for the γ -parameters, for example,

γab ∼ gamma(νab0/2, τ 2
ab0/2), where ηa , Sa , νab0 and τ 2

ab0 are hyperparameters
to be specified (some default choices for these parameters are discussed at the end
of this section). This hierarchical prior distribution can be viewed as an adaptive
penalty, which allows for sharing of information across main effects and interac-
tion terms. For example, estimates of the three-way interaction will be stabilized
by the covariance matrix �c ⊗�b ⊗�a , which in turn is influenced by similarities
between levels of the factors that are consistent across the main effects, two-way
and three-way interactions.

2.2. Posterior approximation. Due to the semi-conjugacy of the HA prior,
posterior approximation can be obtained from a straightforward Gibbs sampling
scheme. Under this scheme, iterative simulation of parameter values from the cor-
responding full conditional distributions generates a Markov chain having a sta-
tionary distribution equal to the target posterior distribution. For computational
simplicity, we consider the case of a balanced data set in which the sample size
in each cell is equal to some common value n, in which case the data can be ex-
pressed as an m1 ×m2 ×m3 ×n four-way array Y . A modification of the algorithm
to accommodate unbalanced data is discussed in the next subsection.

Derivation of the full conditional distributions of the grand mean μ and the
error variance σ 2 are completely standard: Under a N(μ0, τ

2
0 ) prior for μ, the

corresponding full conditional distribution is N(μ1, τ
2
1 ), where τ 2

1 = (1/τ 2
0 +

nm1m2m3/σ
2)−1 and μ1 = τ 2

1 (μ0/τ
2
0 +nm1m2m3r̄/σ

2), where r̄ = ∑
ijkl(yijkl −

[ai + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ikj ])/n. Under an inverse-
gamma(ν0/2, ν0σ

2
0 /2) prior distribution, the full conditional distribution of σ 2 is

an inverse-gamma(ν1/2, ν1σ
2
1 /2) distribution, where ν1 = ν0 +nm1m2m3, ν1σ

2
1 =

ν0σ
2
0 + ∑

ijkl(yijkl − μijk)
2 and μijk = μ + ai + bj + ck + (ab)ij + (ac)ik +

(bc)jk + (abc)ikj . Derivation of the full conditional distributions of parameters
other than μ and σ 2 is straightforward, but slightly nonstandard due to the use of
matrix and array normal prior distributions for the interaction terms. In what fol-
lows, we compute the full conditional distributions for a few of these parameters.
Full conditional distributions for the remaining parameters can be derived in an
analogous fashion.

Full conditionals of a and (abc).
To identify the full conditional distribution of the vector a of main effects for

the first factor, let

rijkl = yijkl − (
μ + bj + ck + (ab)ij + (ac)ik + (bc)jk + (abc)ijk

)
= ai + εijkl,
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that is, rijkl is the “residual” obtained by subtracting all effects other than a from
the data. Since {εijkl} ∼ i.i.d. normal(0, σ 2), we have

p
(
Y |θ, σ 2) ∝a exp

{
−m2m3n

2σ 2

(
aT a − 2aT r̄

)}
,

where r̄ = (r̄1, . . . , r̄m1) with r̄i = ∑
jkl rijkl/(m2m3n), θ = {μ,a, b, c, (ab), (ac),

(bc), (abc)} and “∝a” means “proportional to as a function of a.” Combining this
with the Nm1(0,�a) prior density for a, we have

p
(
a|Y, θ−a, σ

2,�a

) ∝a exp
(
−m2m3n

2σ 2

[
aT a − 2aT r̄

] − 1

2
aT �−1

a a

)

and so the full conditional distribution of a is multivariate normal with

Var
[
a|Y, θ−a, σ

2,�a

] = (
�−1

a + Im2m3n/σ 2)−1
,

Exp
[
a|Y, θ−a, σ

2,�a

] = (
�−1

a + Im2m3n/σ 2)−1
r̄ × (

m2m3n/σ 2)
,

where I is the m1 × m1 identity matrix.
Derivation of the full conditional distributions for the interaction terms is sim-

ilar. For example, to obtain the full conditional distribution of (abc), let rijkl be
the residual obtained after subtracting all other components of θ from the data,
so that rijkl = (abc)ijk + εijkl . Let r̄ be the three-way array of cell means of
{rijkl}, so that r̄ijk = ∑

l rijkl/n. Combining the likelihood in terms of r̄ with the
Nm1m2m3(0,�c ⊗ �b ⊗ �a/γabc) prior density for vec(abc) gives

p
(
(abc)|Y,σ 2,�a,�b,�c, γabc, θ−(abc)

)
∝(abc) exp

(
−n

2

[
vec(abc)T vec(abc) − 2 vec(abc)T vec(r̄)

])

× exp
(
−1

2
vec(abc)T (�c ⊗ �b ⊗ �c/γabc)

−1 vec(abc)

)

and so vec(abc) has a multivariate normal distribution with variance and mean
given by

Var
[
vec(abc)|Y, θ−(abc), σ

2,�a,�b,�c, γabc

]
= (

(�c ⊗ �b ⊗ �a/γabc)
−1 + In/σ 2)−1

,

E
[
vec(abc)|Y, θ−(abc), σ

2,�a,�b,�c, γabc

]
= (

(�c ⊗ �b ⊗ �a/γabc)
−1 + In/σ 2)−1 vec(r̄) × n/σ 2.

Full conditional distributions for the remaining effects can be derived analogously.
Full conditional of �a . The parameters in the ANOVA decomposition whose

priors depend on �a are a, (ab), (ac) and (abc). For example, the prior density of
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(ab) given �a , �b and γab can be written as

p
(
(ab)|�a,�b, γab

) = |2π�b ⊗ �a/γab|−1/2

× exp
(−vec(ab)T [�b ⊗ �a/γab]−1 vec(ab)/2

)
∝�a |�a|−m2/2 etr

(−�−1
a γab(ab)T �−1

b (ab)/2
)

= |�a|−m2/2 etr
(−�−1

a Sab/2
)
,

where Sab = γab(ab)T �−1
b (ab) and etr(A) = exp{trace(A)} for a square matrix

A. Similarly, the priors for a, (ac) and (abc) are proportional to |�a|−di/2 ×
etr(−�−1

a Si/2) (as a function of �a) for i ∈ {a, ac, abc} where

Sa = aaT ,

Sac = γac(ac)T �−1
c (ac),

Sabc = γabc(abc)(1)(�c ⊗ �b)
−1(abc)(1),

and da = 1, dac = m3 and dabc = m2m3. The inverse-Wishart(ηa0, S
−1
a0 ) prior

density for �a can also be written in a similar fashion: it is proportional to
|�a|−(ηa0+m1+1)/2 etr(−�−1

a Sa0/2). Multiplying together the prior densities for
a, (ab), (ac), (abc) and �a and simplifying by the additivity of exponents and the
linearity of the trace gives

p(�a|θ,�b,�c, γ ) ∝ |�a|−(1+m1+ηa0+1+m2+m3+m2m3)/2

× etr
(−�−1

a (Sa0 + Sa + Sab + Sac + Sabc)/2
)
.

It follows that the full conditional distribution of �a is inverse-Wishart(ηa1, S
−1
a1 ),

where ηa1 = ηa0 + (1+m2 +m3 +m2m3) and Sa1 = Sa0 +Sa +Sab +Sac +Sabc.
The full conditional expectation of �a is therefore Sa1/(ηa1 − m1 − 1), which
combines several estimates of the similarities among the levels of the first factor,
based on the main effects and the interactions.

Full conditional of γabc. The full conditional distribution of γabc depends only
on the (abc) interaction term. The normal prior for (abc) can be written as

p
(
(abc)|�a,�b,�c, γabc

)
∝γabc

γ
m1m2m3/2
abc exp

{−γabc vec(abc)T [�c ⊗ �b ⊗ �a]−1 vec(abc)T /2
}
.

Combining this density with a gamma(νabc0/2, τ 2
abc0/2) prior density yields a full

conditional for γabc that is gamma(νabc1/2, τ 2
abc1/2), where

νabc1 = νabc0 + m1m2m3,

τ 2
abc1 = τ 2

abc0 + vec(abc)T [�c ⊗ �b ⊗ �a]−1 vec(abc).
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2.3. Balancing unbalanced designs. For most survey data we expect the sam-
ple sizes {nijk} to vary across combinations of factors. As a result, the full con-
ditional distributions of the ANOVA decomposition parameters are more diffi-
cult to compute. For example, the conditional variance of the three-way inter-
action vec(abc) changes from (γabc(�c ⊗ �b ⊗ �a)

−1 + In/σ 2)−1 in the bal-
anced case to (γabc(�c ⊗ �b ⊗ �a)

−1 + D/σ 2)−1 in the general case, where
D is a diagonal matrix with diagonal elements vec({nijk}). Even for moderate
numbers of levels of the factors, the matrix inversions required to calculate the
full conditional distributions in the unbalanced case can slow down the Markov
chain considerably. As an alternative, we propose the following data augmenta-
tion procedure to “balance” an unbalanced design. Let Ȳ o be the three-way ar-
ray of cell means based on the observed data, that is, ȳo

ijk = ∑
yijkl/nijk . Letting

n = max({nijk}), for each cell ijk with sample size nijk < n and at each step
of the Gibbs sampler, we impute a cell mean based on the “missing” n − nijk

observations as ȳm
ijk ∼ normal(μijk, σ

2/[nmax − nijk]), where μijk is the popula-
tion mean for cell ijk based on the current values of the ANOVA decomposition
parameters. We then combine ȳo

ijk and ȳm
ijk to form the “full sample” cell mean

ȳ
f
ijk = (nijkȳ

o
ijk + (n − nijk)ȳ

m
ijk)/n. This array of cell means provides the suffi-

cient statistics for a balanced data set, for which the full conditional distributions
derived above can be used.

2.4. Setting hyperparameters. In the absence of detailed prior information
about the parameters, we suggest using a modified empirical Bayes approach to
hyperparameter selection based on the maximum likelihood estimates (MLEs) of
the error variance and mean parameters. Priors for μ and σ 2 can be set as unit
information priors [Kass and Wasserman (1995)], whereby hyperparameters are
chosen so that the prior means are near the MLEs but the prior variances are set
to correspond roughly to only one observation’s worth of information. For the co-
variance matrices �a , �b and �c, recall that the prior for the main effect a of the
first factor is Nm1(0,�a). Based on this, we choose the prior for �a to be inverse-
Wishart(νa0, S

−1
a0 ) with νa0 = m1 +2 and Sa0 = ‖â‖2Im1/m1, where â is the MLE

of a and ‖â‖ is the L2 norm of â. Under this prior, E[tr(�a)] = ‖â‖2, and so
the scale of the prior matches the empirical estimates. Finally, the γ -parameters
can be set analogously, using diffuse gamma priors but centered around values
to match the magnitude of the OLS estimates of the interaction terms they cor-
respond to, relative to the magnitude of the main effects. For example, in the
next section we use a gamma(νab0/2, τ 2

ab0/2) prior for γab in which νab0 = 1 and
τ 2
ab0 = ‖â‖2‖b̂‖2/‖ ˆ(ab)‖2, where â, b̂ and ˆ(ab) are the OLS estimates.

The above procedure can be modified to accommodate an incomplete design,
where not all the OLS estimates are available for a complete model. For example,
in a two-way example, if exactly one cell is empty, then the OLS estimates are
available for all effect levels except for the two-way interaction for the missing
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cell. Abusing notation a bit, let ‖(âb)‖ be the L2 norm of available OLS estimates
for the two-way interaction. There are m1m2 − 1 of these. Note that this will likely
underestimate ‖(ab)‖, as it is missing the component contributed by the missing
cell. To correct for this underestimate, we propose the following modification for
setting the hyperparameters: ‖(ãb)‖2 = ‖(âb)‖(m1m2)/(m1m2 − 1). The choice
of τ 2

ab0 above becomes ‖â‖2‖b̂‖2/‖(ãb)‖2.

3. Simulation study. This section presents the results of four simulation stud-
ies comparing the HA prior to several competing approaches. The first simulation
study uses data generated from a means array that exhibits order consistent interac-
tions. Estimates based on the HA prior outperform standard OLS estimates as well
as estimates from a standard Bayesian (SB) approach as in Gelman (2005), and is
also related to a grouped version of the lasso procedure [Yuan and Lin (2006)]. The
second simulation study uses data from a means array that exhibits “order inconsis-
tent” interactions, that is, interactions without consistent similarities in parameter
values between levels of a factor. In this case the HA prior still outperforms the
OLS and standard Bayes approaches, although not by as much as in the presence
of order consistent interactions. In the third simulation we study the Bayes risk
of the HA procedure when data is generated directly from the SB prior. Unlike
the second simulation study, where interactions were “order inconsistent” but had
potential similarities, in this case all effects were completely independent and so
the oracle SB approach that imposes independence on the interaction effects out-
performs HA, though not by much. The fourth simulation study uses data from a
means array that has an exact additive decomposition, that is, there are no inter-
actions. The HA prior procedure again outperforms the standard Bayes and OLS
approaches, although it does not do as well as OLS and Bayes oracle estimators
that assume the correct additive model.

The Markov chain Monte Carlo algorithms were implemented using the R sta-
tistical programming language on a computer with a 2.5 GHz processor. The addi-
tive Bayes approach is significantly faster than the other two Bayesian procedures
since it contains the fewest parameters. The other two procedures are comparable,
but with SB being somewhat faster than HA on average. Specifically, for the sim-
ulations conducted below, SB ran an estimated 17% faster than HA, which had a
run time on the order of 16 minutes per data set (depending on sample size). The
overall runtime improves by almost 50% if the data set is balanced.

3.1. Data with order consistent interactions. The data in this simulation
study is generated from a model where the means array exhibits order con-
sistent interactions. The dimensions of the means array M were chosen to be
m1 × m2 × m3 = 15 × 7 × 3, which could represent, for example, the num-
ber of categories we might have for age, education level and political affil-
iation in a cross-classified survey data set. The means array was generated
from a cubic function of three variables that was then binned. Figure 3 plots
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FIG. 3. The means array M across levels of the third factor.

the mean array across the third factor, demonstrating the nonadditivity present
in M . By decomposing M into the main, two-way and three-way effects in
the same manner as described in Section 2, we can summarize the nonad-
ditivity of M through the magnitudes of the different sums of squares. The
magnitudes of the main effects, given by the squared L2 norm of the effects,
‖a‖2/m1,‖b‖2/m2 and‖c‖2/m3, are 5.267,0.012,0.004, respectively. Those
of the two-way interactions ‖ab‖2/(m1m2),‖ac‖2/(m1m3) and‖bc‖2/(m2m3)

are 1.365,1.312 and 0.384, and the magnitude of the three-way interaction
‖abc‖2/(m1m2m3) is 0.474. For each sample size {400,1000,5000,10,000}, we
simulated 50 data sets using the mean array M and independent standard normal
errors. In order to make a comparison to OLS possible, we first allocated one
observation to each cell of the means array. We then distributed the remaining ob-
servations uniformly at random (with replacement) among the cells of the means
array. This leads to a complete but potentially unbalanced design. The average
number of observations per cell under the sample sizes {400,1000,5000,10,000}
was {1.3,3.2,15.9,31.7}.

For each simulated data set we obtained estimates under the HA prior (using the
hyperparameter specifications described in Section 2.4), as well as ordinary least
squares estimates (OLS) and posterior estimates under a standard Bayesian prior
(SB). The SB approach is essentially a simplified version of the HA prior in which
the parameter values are conditionally independent given the hyperparameters:
{ai} ∼ i.i.d. N(0, σ 2

a ), {(ab)ij } ∼ i.i.d. N(0, σ 2
ab) and {(abc)ijk} ∼ i.i.d.(0, σ 2

abc),
and similarly for all other main effects and interactions. To facilitate comparison
to the HA prior, the hyperpriors for these σ 2-parameters are the same as the hy-
perpriors for the inverses of the γ -parameters in the HA approach. As a result, this
standard Bayes prior can be seen as the limit of a sequence of HA priors where the
inverse-Wishart prior distributions for the �-matrices converge to point masses on
the identity matrices of the appropriate dimension.

For each simulated data set, the Gibbs sampler described in Section 2 was run
for 11,000 iterations, the first 1000 of which were dropped to allow for conver-
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FIG. 4. Comparison of ASE for different estimation methods when the true means array exhibits
order consistent interactions.

gence to the stationary distribution. Parameter values were saved every 10th scan,
resulting in 1000 Monte Carlo samples per simulation. Starting values for all the
mean effects were set to zero and all variances set to identity matrices of the proper
dimensions. We examined the convergence and autocorrelation of the marginal
samples of the parameters in each procedure. Since the number of parameters is
large, we present the results of Geweke’s z-test and estimates of the effective sam-
ple size for the error variance σ 2, as it provides a parsimonious summary of the
convergence results. The minimum effective sample size across all simulations
was 233 out of the 1000 recorded scans, and the average effective sample size was
895. Geweke’s z-statistic was less than 2 in absolute value in 93, 93, 97 and 95
percent of the Markov chains for the four sample sizes (with the percentages be-
ing identical for both Bayesian methods). While the cases in which |z| > 2 were
not extensively examined, it is assumed that running the chain longer would have
yielded improved estimation.

For each simulated data set, the posterior mean estimates M̂HA and M̂SB
were obtained by averaging their values across the 1000 saved iterations of the
Gibbs sampler. The average squared error (ASE) of estimation was calculated as
ASE(M̂) = ‖M̂ −M‖2/(m1m2m3), where M is the means array that generated the
data. These values were then compared across the three approaches. The left panel
of Figure 4 demonstrates that the SB estimator provided a reduction in ASE when
compared to the OLS estimator for all data sets with sample sizes 400 and 1000,
96% of the data sets with sample size 5000 and 90% of data sets with sample size
10,000. The second panel demonstrates that the HA estimator provides a substan-
tial further reduction in ASE for all data sets. As we would expect, the reduction in
ASE is dependent on the sample size and decreases as the sample size increases.

These results are not surprising: By estimating the variances σ 2
a , σ 2

ab, etc. from
the data, the SB approach provides adaptive shrinkage and so we expect these
SB estimates to outperform the OLS estimates in terms of ASE. However, the SB
approach does not use information on the similarity among the levels of an effect,
and so its estimation of higher order interactions relies on the limited information
available directly in the corresponding sufficient statistics. As such, we expect the



ARRAY PRIORS FOR ANOVA 33

FIG. 5. ASE comparisons for the main effect, a two-way interaction and a three-way interaction
that involve a are in the three columns, respectively. The first row compares ASE between SB and
OLS and the second row compares ASE between HA and SB.

SB estimates to perform less well than the HA estimates, which are able to borrow
information from well-estimated main effects and low-order interactions to assist
in the estimation of higher-order terms for which data information is limited.

This behavior is further illustrated in Figure 5 that provides an ASE comparison
for the effects in the decomposition of the means array. To produce these plots, we
decomposed each estimated means array and considered the ASE for each effect
when compared to the decomposition of the true means array.It is immediate that
the gains in ASE are primarily from improved estimation of the higher order inter-
action terms. The top row of Figure 5 demonstrates that the SB estimator performs
at least as well as the OLS estimator in terms of ASE for the main effect a, and
provides a detectable reduction in ASE for two- and three-way interactions. The
reduction in ASE for the higher order terms is due to the shrinkage provided by
SB. The second row of Figure 5 demonstrates that the HA estimator provides a
moderate reduction in ASE for the main effect a and a substantial further reduc-
tion in ASE for the higher order terms. This is exactly the behavior we expect, as
the HA procedure is able to borrow information from lower order terms in order
to further shrink higher order interactions. We have also evaluated the width and
coverage of nominal 95% confidence intervals for the cell means. The results for
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TABLE 3
Actual coverage and interval widths of 95% nominal confidence

intervals for the cell means as estimated by HA and SB when order
consistent interactions are present

Coverage Width

OBS HA SB HA SB

400 0.94 0.93 1.55 3.18
1000 0.93 0.95 1.04 2.32
5000 0.94 0.94 0.49 1.00
10,000 0.95 0.95 0.36 0.70

HA and SB are presented in Table 3. The confidence intervals for the entries in the
means array were smaller for the HA procedure than for SB, while the coverage
was approximately 95% for both.

Recall that the parameters in the mean array M were generated by binning a
third-degree polynomial, and were not generated from array normal distributions,
that is, the HA prior is “incorrect” as a model for M . Even so, the HA prior is able
to capture the similarities between adjacent factor levels, resulting in improved es-
timation. However, we note that not all of the improvement in ASE achieved by
the HA prior should be attributed to the identification of order-consistent interac-
tions. The simulation study that follows suggests some of the performance of the
HA prior is due to additional parameter shrinkage provided by the inverse-Wishart
distributions on the �-matrices.

3.2. Data with order inconsistent interactions. In this subsection we evaluate
the HA approach for populations which exhibit interactions that are order inconsis-
tent. The means array M is constructed by taking the means array from Section 3.1,
decomposing it into main effects, two- and three-way interactions, permuting the
levels of each factor within each effect, and reconstructing a means array. That is,
if {ai : i = 1, . . . ,m1} is the collection of parameters for the first main effect and
{(ab)ij : i = 1, . . . ,m1, j = 1, . . . ,m2} is the collection of parameters for the two-
way interaction between the first and second factors in Section 3.1, then {aπ1(i)}
and {(ab)π2(i)π3(j)} are the main effect and two-way interaction parameters for the
means array in this section, where π1, π2 and π3 are independent permutations.
The remaining effects were permuted analogously. Due to this construction, the
magnitudes of the main effects, two- and three-way interactions remain the same,
but the process becomes less “smooth,” as can be seen in Figure 6.

Again, 50 data sets were generated for each sample size, and estimates M̂HA,
M̂SB and M̂OLS were obtained for each data set, where the Bayesian estimates were
obtained using the same MCMC approximation procedure as in the previous sub-
section. Figure 7 compares ASE across the different approaches. The left panel of
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FIG. 6. The means array M for the second simulation study, across levels of the third factor.

Figure 7, as with the left panel of Figure 4, demonstrates that the SB estimator pro-
vides a reduction in ASE when compared to the OLS estimator. As expected, since
neither of these approaches take advantage of the structure of the order consistent
interactions, this plot is nearly identical to the corresponding plot in Figure 4.

The second panel demonstrates that the HA estimator provides a further reduc-
tion in ASE for all data sets, although this reduction is less substantial than in
the presence of order consistent interactions. The lower ASE of the HA estimates
may be initially surprising, as there are no order consistent interactions for the HA
prior to take advantage of. We conjecture that the lower ASE is due to the addi-
tional shrinkage on the parameter estimates that the inverse-Wishart priors on the
�-parameters provide. For example, under both the SB and HA priors we have
Cov[vec(ab)] = �b ⊗ �a/γab, but under the former the covariance matrices are
set to the identity, whereas under the latter they have inverse-Wishart distributions.

As with the previous simulation, we evaluated the width and coverage of nom-
inal 95% confidence intervals for the cell means. The results for HA and SB are
presented in Table 4. As in the previous simulation, the coverage for both proce-
dures is approximately 95%. The confidence intervals are wider for SB than for

FIG. 7. Comparison of ASE for different estimation methods when the true means array exhibits
order inconsistent interactions that have the same magnitude as the order consistent interactions of
Section 3.1.
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TABLE 4
Actual coverage and interval widths of 95% nominal confidence

intervals for the cell means as estimated by HA and SB when order
inconsistent interactions are present

Coverage Width

OBS HA SB HA SB

400 0.95 0.94 2.26 2.98
1000 0.95 0.95 1.56 2.15
5000 0.96 0.95 0.73 0.98
10,000 0.96 0.94 0.53 0.69

HA, but the differences between the two procedures are much smaller in this sim-
ulation as compared to the previous one.

3.3. Data with order inconsistent interactions: Bayes risk. The surprising out-
come of the previous section requires further study of the behavior of the HA ap-
proach when order inconsistent interactions are present. To get a more complete
picture of this behavior, we evaluate the Bayes risk of the procedure when data is
generated directly from the SB prior. We construct 200 means arrays M1, . . . ,M200
of the same dimensions as in the previous subsections using the following proce-
dure:

1. Generate γa, γb, γc, γab, γac, γbc, γabc
i.i.d.∼ gamma(ν/2, τ 2/2) with shape

paramter ν = 4 and rate parameter τ 2 = 2. These are the precision components
for the 3 main effects, 3 two-way interactions and 1 three-way interaction, respec-
tively.

2. Generate effect levels as follows: {a1, . . . , a15} ∼ N(0, I/γa), {ab1,1, . . . ,

ab15,7} ∼ N(0, I/γab), and similarly for the remaining 5 effects.
3. Combine the effects from (2) into a means array Mi according to equa-

tion (1).

For each sample size {400,1000,5000,10,000} we generated 50 data sets, each
using a unique means array Mi , in the same manner as in the previous two sim-
ulation studies. We obtained estimates M̂iHA, M̂iSB and M̂iOLS for each data set,
where the Bayesian estimates were obtained using the same MCMC procedure as
in the previous two subsections.

ASE represents the posterior quadratic loss of an estimation procedure for a
particular data set, and so by varying the true means array Mi between simulated
data sets, we can estimate the Bayes risk of an estimation procedure by taking the
average of ASE across simulated data sets. The Bayes risk for the SB procedure
is guaranteed to be smaller than that for OLS and HA for all sample sizes and so
we report the results of the simulation study as ratios of estimated Bayes risk for
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TABLE 5
Ratio of estimated Bayes risk for SB to OLS and HA by sample size

Sample size 400 1000 5000 10,000

OLS 0.59 0.69 0.93 0.97
HA 0.78 0.91 0.97 0.98

SB to the estimated Bayes risk of the other procedures in Table 5. For example,
the first entry in the top row of Table 5 states that the Bayes risk for SB is 41%
lower than the Bayes risk for the OLS procedure for a sample size of 400. As is
expected, the difference in Bayes risk shrinks with increasing sample size for both
OLS and HA. The results of this simulation study suggest that even for moderately
sized data sets, the relative risk of using the HA procedure when compared to SB
is rather small even when all effects are completely independent. Additionally, the
posterior estimates of all of the effects in the decomposition of the means array had
similar variances under both SB and HA priors. This suggests that using the HA
procedure is not detrimental even when the “order consistency” of the interactions
cannot be verified.

3.4. Data without interactions. In this subsection we evaluate the HA ap-
proach for populations in which interactions are not present. The data in this simu-
lation is generated from a model where the means array M is exactly additive and
was constructed by binning a linear function of three variables. As in the previous
simulations, M is of dimension m1 ×m2 ×m3 = 15×7×3. The magnitudes of the
three main effects are ‖a‖2/m1 = 3.0, ‖b‖2/m2 = 1.3 and ‖c‖2/m3 = 0.3, while
all interactions are exactly zero. In addition to the SB and OLS estimators, we com-
pare the HA approach to two “oracle” estimators: the additive model least squares
estimator (AOLS) and the Bayes estimator under the additive model (ASB). The
prior used by the ASB approach is the same as the SB prior, but does not include
terms other than main effects in the model.

As before, 50 data sets were generated for each sample size, and estimates
M̂HA, M̂SB, M̂OLS, M̂ASB and M̂AOLS were obtained for each data set, where the
Bayesian estimates were obtained using the same MCMC approximation proce-
dure as in the previous two subsections. Some results are shown in Figure 8, which
compares ASE across the different approaches. In the top row of Figure 8 we see
that the performance of the HA estimates is comparable to but not as good as the
oracle least squares and Bayesian estimates in terms of ASE. Specifically, the ASE
for the HA estimates is 24.2, 18.6, 20.1 and 17.4 percent higher than for the AOLS
estimates for data sets with sample sizes 400, 1000, 5000 and 10,000, respectively.
Similarly, the ASE for the HA estimates is 25, 19.7, 20.3 and 17.8 percent higher
than for the ASB estimates for data sets with sample sizes 400, 1000, 5000 and
10,000, respectively. However, the bottom row of Figure 8 shows that the HA prior
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FIG. 8. Comparison of ASE for different estimation methods when the true means array is additive.

is superior to the other nonoracle OLS and SB approaches that attempt to estimate
the interaction terms.

These results, together with those of the last two subsections, suggest that the
HA approach provides a competitive method for fitting means arrays in the pres-
ence or absence of interactions. When order consistent interactions are present,
the HA approach is able to make use of the similarities across levels of the factors,
thereby outperforming approaches that cannot adapt to such patterns. Additionally,
the HA approach does not appear to suffer when interactions are not order consis-
tent. Finally, in the absence of interactions altogether, the HA approach adapts
well, providing estimates similar to those that assume the correct additive model.

4. Analysis of carbohydrate intake. In this section we estimate average car-
bohydrate, sugar and fiber intake by education, ethnicity and age using the HA
procedure described in Section 2. Our estimates are based on data from 2134 males
from the US population, obtained from the 2007–2008 NHANES survey. Nutrient
intake is self reported on two nonconsecutive days. Each day’s data concerns food
and beverage intake from the preceding 24 hour period only, and is calculated
using the USDA’s Food and Nutrient Database for Dietary Studies 4.1 [USDA
(2010)]. All intake was measured in grams, and we average the intake over the
two days to yield a single measurement per individual. When intake information is
only available for one day, we treat that as the observation (we do not perform any
reweighing to account for this partial information). We are interested in relating
the intake data to the following demographic variables:
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FIG. 9. Two-way plots of the transformed data.

• Age: (31–40), (41–50), (51–60), (61–70), (71–80).
• Education: Primary (P), Secondary (S), High School diploma (HD), Associates

degree (AD), Bachelors degree (BD).
• Ethnicity: Mexican (Hispanic), other Hispanic, white (not Hispanic) and black

(not Hispanic).

Sample sizes for age-education-ethnicity combination were presented in Table 1
in Section 1. Of the 2234 male respondents within the above demographic groups,
100 were missing their nutrient intake information for both days, with similar rates
of missingness across the demographic variables, and were excluded from the anal-
ysis. For the 2134 individuals included in the analysis, 291 were missing nutrient
intake information one of the two days. For those individuals, the available day’s
information was used as their nutrient intake, while for the remaining 1843 indi-
viduals an average over the two days was used.

The data on the original scale are somewhat skewed and show heteroscedasticity
across the demographic variables. Since different variances across groups can lead
to bias in the sums of squares, making F -tests for interactions anti-conservative
[Miller and Brown (1997)], stabilizing the variance is desirable. Figure 9 provides
two-way scatterplots of the response variables after applying a quarter power trans-
formation to each variable, which we found stabilized the variances across the
groups better than either a log or square-root transformation. Additionally, fol-
lowing the quarter power transformation, we centered and scaled each response
variable to have mean zero and variance one.

4.1. MANOVA model and parameter estimation. As presented in Table 2 of
Section 1, F -tests indicate evidence for the presence of interactions in the array
of population cell means. However, 12% of all age-education-ethnicity categories
have sample sizes less than 5, and so we are concerned with overfitting of the OLS
estimates. As an alternative, we extend the HA methodology described in Section 2
to accommodate a MANOVA model. Our MANOVA model has the same form as
the ANOVA model given by equation (1), except that each effect listed there is a
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three-dimensional vector corresponding to the separate effects for each of the three
response variables. Additionally, the error terms now have a multivariate normal
distribution with zero-mean and unknown covariance matrix �y .

We extend the hierarchical array prior discussed above to accommodate the p-
variate MANOVA model as follows: Our prior for the m1 × p matrix a of main
effects for the first factor is vec(a) ∼ Nm1p(0, I ⊗ �a), where �a is as before.
Our prior for the m1 × m2 × p array (ab) of two-way interaction terms is given
by vec(ab) ∼ Nm1m2p(0,�−1

ab ⊗ �b ⊗ �a). Here, �ab is a p × p diagonal matrix
whose terms determine the scale of the two-way interactions for each of the p

response variables. If we consider only the first response, then (�ab)11 is exactly
the γab scalar described in the ANOVA setup. Similarly, our prior for the four-
way array (abc) of three-way interaction terms is vec(abc) ∼ Nm1m2m3p(0,�−1

abc ⊗
�c ⊗ �b ⊗ �a). Priors for other main effects and interaction terms are defined
similarly. The hyperpriors for each diagonal entry of � are independent gamma
distributions, chosen as in Section 2.4 so that the prior magnitude of the effects for
each response is centered around the sum of squares of the effect from the OLS
decomposition.

An alternative prior would be to include a covariance matrix representing sim-
ilarities of effects across the three variables. This would be achieved by replacing
I ⊗ �a in the prior for a with �p ⊗ �a , �−1

ab with �p�−1
ab in the prior for ab, and

so on. Such a covariance term might be appropriate for data in which marginal cor-
relations between the p response variables were driven by similarities in the cell
means, rather than by within-cell correlations. In such a case we would expect, for
example, that if a1, the main effects for variable 1, were positively correlated with
a2, the main effects for variable 2, then b1 and b2 would be positively correlated,
as would c1 and c2, as well as any other pair of effects in the decompositions of
variables 1 and 2. However, such consistency does not appear in our NHANES
data: For example, considering correlations between the ANOVA decomposition
parameters for sugar and carbohydrates, we observe positive correlations for the
main effects of age and education and negative correlations for the interaction
terms age×ethnicity and age×ethnicity×education. These observations support
the choice of �p = I in the prior for the analysis of these data, although estimat-
ing �p might be warranted for other data sets.

A Gibbs sampling scheme similar to the one outlined in Section 2 was iterated
200,000 times with parameter values saved every 10 scans, resulting in 20,000 sim-
ulated values of the means array M and the covariance matrices {�eth,�age,�edu}
for posterior analysis. Mixing of the Markov chain for M was good: Figure 10
shows MCMC samples of 4 out of 300 entries of M (chosen so that their trace plots
were visually distinct). The autocorrelation across the saved scans was low, with
the lag-10 autocorrelation for the thinned chain less than 0.14 in absolute value for
each element of M (97.3% of entries have lag-10 autocorrelation less than 0.07 in
absolute value) and effective sample sizes between 1929 and 13,520. The mixing
for the elements of the covariance matrices �eth,�age,�edu is not as good as that
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FIG. 10. MCMC samples of 4 out of 300 entries of the means array M .

of the means array M : The maximum absolute value of lag-10 autocorrelation of
the saved scans for the three rescaled covariance matrices is 0.18, 0.12 and 0.19,
respectively. The effective sample sizes for the elements of the covariance matrices
are at least 1684.

4.2. Posterior inference on M and �s. We obtain a Monte Carlo approxima-
tion to M̂ = E[M|Y ] by averaging over the saved scans of the Gibbs sampler. Fig-
ure 11 provides information on the shrinkage and regularization of the estimates
due to the HA procedure, as compared to OLS. The first panel plots the difference
between the OLS and Bayes estimates of the cell means versus cell-specific sample
sizes. For small sample sizes, the Bayes estimate for a given cell is affected by the
data from related cells, and can generally be quite different from the OLS estimate
(the cell sample mean). For cells with large sample sizes the difference between
the two estimates is generally small. The second panel of the figure plots the OLS
estimates of the cell means for carbohydrate intake of black survey participants
across age and education levels. Note that there appears to be a general trend of

FIG. 11. Shrinkage and regularization plots. The first panel plots the difference between the OLS
and HA estimates of a cell mean against the cell-specific sample sizes. The second a third panels plot
estimated cell means of carbohydrate intake for black survey participants across age and education
levels, where lighter shades represent higher levels of education.
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decreasing intake with increasing age and education level, although the OLS esti-
mates themselves are not consistently ordered in this way. In contrast, these trends
are much more apparent in the Bayes estimates plotted in the third panel. The HA
prior allows the parameter estimates to be close to additive, while not enforcing
strict additivity in this situation where we have evidence of nonadditivity via the
F -tests. The smoothing provided by the HA prior is attributed to its ability to share
information across levels of an effect and across interactions. When more levels are
present for a particular effect, the smoothing of the HA prior closely resembles the
behavior one would expect from an unbinned continuous effect. On the other hand,
OLS will continue to model each cell-specific mean separately, ignoring the sim-
ilarities among levels and failing to recognize the continuous nature of the effect.
The third panel of the figure was also more consistently ordered than a similar
analysis performed with the SB prior, suggesting that the added shrinkage due to
the inverse-Wishart priors and the ability to share information across effect levels
leads to more realistic behavior of the estimates.

The range of cell means for the centered and scaled effects is −0.58 to 0.4
for carbohydrates, −0.38 to 0.38 for sugar and −1 to 0.51 for fiber. The aver-
age standard errors for the cell means for the three responses are 0.08, 0.09 and
0.13, respectively. When fitting the data with the SB prior (analysis not included
here), the average standard errors for the cell means were substantially larger: 0.12,
0.13 and 0.15 for the three responses, respectively. The first row of Figure 12
provides the estimates of the main effects from the HA procedure. The second
row of Figure 12 summarizes covariance matrices {�eth,�age,�edu} via the poste-
rior mean estimates of the correlation matrices {Cd,ij } = {�d,ij /

√
�d,ii�d,jj } for

d ∈ {eth, age, edu}. In this figure, the diagonal elements are all 1, and darker colors
represent a greater departure from one. The range of the estimated correlations was
−0.34 to 0.42 for age categories, −0.30 to 0.35 for ethnic groups, and −0.17 to
0.38 for educational categories. For the two ordered categorical variables, age and
education, we see that closer categories are generally more positively correlated
than ones that are further apart. While the ethnicity variable is not ordered, its cor-
relation matrix informs us of which categories are more similar in terms of these
response variables. The middle panel of the second row of Figure 12 confirms the
order-consistent interactions we observed in Figure 2: Mexican survey participants
are more similar to Hispanic participants in terms of carbohydrate intake patterns
than to white or black participants.

For fiber intake, the top row of Figure 13 gives age by education interaction
plots for each level of ethnicity, using cell mean estimates obtained from the HA
procedure. Comparing these plots to the analogous plots for the OLS estimates
presented in Figure 1, we see that the smoother HA estimates allow for a more
interpretable description of the three-way interaction. Recall that a three-way in-
teraction can be described as the variability of a two-way interaction across levels
of a third factor. Based on the plots, the two-way age by education interactions
for the Mexican and Black groups seem quite small. In contrast, the White and
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FIG. 12. Plots of main effects and interaction correlations for the three outcome variables (car-
bohydrates, sugar and fiber). The first row of plots gives HA estimates of the main effects for each
factor. The second row of plots gives correlations of effects between levels of each factor, with white
representing 1 and darker colors representing a greater departure from one.

Other Hispanic groups appear to have interactions that can be described as het-
erogeneity in the education effect across levels of age. For both of these groups,
this heterogeneity is ordered by age: For the Other Hispanic group, the education
effects seem similar for the three youngest age groups. For the White group, the
education effects seem similar for the two youngest age groups.

This similarity in education effects for similar levels of age is more apparent
in these HA estimates than in the corresponding parameter estimates from the SB
procedure, presented in the second row of Figure 13, particularly for the White
ethnicity. In contrast to the SB approach, the HA procedure was able to recognize
the similarity of parameters corresponding to adjacent age levels and to use this
information to assist with estimation. Our expectations that age effects are likely
to be smooth, as well as the good performance of the HA procedure in the simu-
lation study of the previous section, give us confidence that the HA procedure is
providing more realistic and interpretable cell mean estimates than either the OLS
or SB approaches.

5. Discussion. This article has presented a novel hierarchical Bayes method
for parameter estimation of cross-classified data under ANOVA and MANOVA
models. Unlike least-squares estimation, a Bayesian approach provides for reg-
ularized estimates of the potentially large number of parameters in a MANOVA
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FIG. 13. HA and SB interaction plots of estimated mean fiber intake by ethnicity, age and education
level. HA and SB estimates are in the top and bottom rows, respectively.

model. Unlike the nonhierarchical Bayesian approach, the hierarchical approach
provides a data-driven method of regularization, and unlike the standard hierarchi-
cal Bayes, the hierarchical array prior can identify similarities among categories
and share this information across interaction effects to assist in the estimation of
higher-order terms for which data information is limited. In a simulation study
the HA approach was able to detect interactions when they were present, and to
estimate the means array better than a full least squares or standard Bayesian ap-
proaches (in terms of mean squared error). When the true means array was com-
pletely additive, the HA prior was able to adapt to this smaller model better than
the other full model estimation approaches under consideration.

An immediate extension to our approach modifies the priors on the covariance
matrices to incorporate known structure. For example, in the case of observations
for different time periods, an autoregressive covariance model might be desirable.
In the simplest case of an AR(1) model, Berger and Yang (1994) suggest the use
of a reference prior πR(ρ) for the single parameter ρ. We also note that due to
the scale nonidentifiability of the Kronecker product we can assume that the vari-
ance parameter is equal to 1. The posterior approximation follows the outline of
Section 2.2: the full conditionals for the effects and the full conditionals for the
covariance matrices that do not exhibit a specific structure remain the same. The
only difference is in the posterior approximation procedure for the structured co-
variance matrix, where a posterior sample of ρ can be obtained by importance
sampling. The HA procedure can easily accommodate other structured covariances
as well, with the only changes to the posterior approximation steps reflecting this
additional prior information for the covariance matrix.
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Generalizations of the HA prior are applicable to any model whose parame-
ters consist of vectors, matrices and arrays for which some of the index sets are
shared. This includes generalized linear models with categorical factors, as well
as ANCOVA models that involve interactions between continuous and categorical
explanatory variables. As an example of the latter case, suppose we are interested
in estimating the linear relationship between an outcome and a set of explanatory
variables for every combination of three categorical factors. The regression pa-
rameters then consist of an m1 × m2 × m3 × p array, where m1,m2,m3 are the
numbers of factor levels and p is the number of continuous regressors. The usual
ANCOVA decomposition can be used to parametrize this array in terms of main
effects and interactions arrays, for which a hierarchical array prior may be used.

Computer code and data for the results in Sections 3 and 4 are available in the
supplementary material [Volfovsky and Hoff (2013)].

SUPPLEMENTARY MATERIAL

Data and code for simulations and analysis (DOI: 10.1214/13-AOAS685
SUPP; .zip). A bundle containing data sets and code files to perform the simu-
lations and data analysis.
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