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The primary goal of randomized trials is to compare the effects of dif-
ferent interventions on some outcome of interest. In addition to the treatment
assignment and outcome, data on baseline covariates, such as demographic
characteristics or biomarker measurements, are typically collected. Incorpo-
rating such auxiliary covariates in the analysis of randomized trials can in-
crease power, but questions remain about how to preserve type I error when
incorporating such covariates in a flexible way, particularly when the num-
ber of randomized units is small. Using the Young Citizens study, a cluster-
randomized trial of an educational intervention to promote HIV awareness,
we compare several methods to evaluate intervention effects when baseline
covariates are incorporated adaptively. To ascertain the validity of the meth-
ods shown in small samples, extensive simulation studies were conducted. We
demonstrate that randomization inference preserves type I error under model
selection while tests based on asymptotic theory may yield invalid results. We
also demonstrate that covariate adjustment generally increases power, except
at extremely small sample sizes using liberal selection procedures. Although
shown within the context of HIV prevention research, our conclusions have
important implications for maximizing efficiency and robustness in random-
ized trials with small samples across disciplines.

1. Introduction. The Young Citizens study was a cluster-randomized trial de-
signed to evaluate the impact of involving adolescents in a role-play interven-
tion on HIV awareness and education. In addition to the primary outcome of
child efficacy, a score reflecting the degree to which community members be-
lieve adolescents can effectively educate their families and peers, the study col-
lected extensive demographic data that described the clusters (actual communities
in Tanzania) and the individuals within each community who participated in the
study. To protect type I error when evaluating the effect of the randomized in-
tervention, current practice requires prespecification of the methods for including
baseline community-level and individual-level covariates in analyses, whether as
stratification factors or as control covariates in a regression model. Recently devel-
oped methods allow for more flexible model selection characterizing the outcome-
baseline covariate relationship without loss of protection of type I error, at least
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asymptotically. Several studies have demonstrated the value of new methods in
permitting flexible use of baseline correlates of the outcome to improve power and
efficiency in treatment effect estimation [Tsiatis et al. (2008), Zhang, Tsiatis and
Davidian (2008), Stephens, Tchetgen Tchetgen and De Gruttola (2012)]. These
methods, however, rely on asymptotic arguments that may not apply to studies like
Young Citizens that have a small number of randomized units. For such studies,
additional variability introduced by flexible model selection may result not only in
failure to preserve type I error but also loss of power and efficiency as compared
to unadjusted analyses. Motivated by Young Citizens, which had only 15 clus-
ters per arm, we evaluate several flexible covariate adjustment methods for studies
with small numbers of randomized units and large numbers of potential adjustment
variables. We apply each method to Young Citizens data and report on simulation
studies conducted to compare power and the degree of protection of type I error
among tests.

In a randomized trial like Young Citizens, researchers typically measure data on
outcomes, baseline covariates and the treatment assignment. Although abundant
baseline covariate data are often available, the primary analysis is often a compar-
ison of outcomes among subjects assigned to different levels of treatment without
consideration of covariates. For scalar outcomes, tests comparing some feature
of the outcome distribution under treatment versus control are used to assess
the statistical significance of observed differences in outcomes across treatment
groups. When outcomes are multivariate, as in Young Citizens, modified versions
of these tests are available to adjust standard errors for correlation among multiple
measurements within the same randomized unit [Klar and Donner (2000)]. Any
collection of baseline covariates potentially explains variability in outcomes, and
incorporating them in analyses may therefore increase efficiency.

A variety of methods are available to incorporate baseline covariates in trial
analyses. Regression analysis is one approach that may be used to estimate and test
for treatment effects and, in some cases, to permit covariate adjustment that guar-
antees efficiency improvement over unadjusted analyses. We first discuss mod-
els that ignore baseline covariates, and then compare them to models that adjust
for baseline covariates. Ignoring baseline covariates, the effect of a binary treat-
ment on the marginal mean outcome may be assessed from a generalized linear
model with treatment as a predictor; such a model is commonly referred to as the
marginal treatment model. Model parameters can be estimated using semiparamet-
ric estimating equations or fully parametric maximum likelihood inference. The
weak null hypothesis of equal mean outcomes for the intervention groups, also
known as Neyman’s null hypothesis, is tested using the estimated treatment coef-
ficients. Under randomization, this test is equivalent to a test of no average causal
effect of treatment. Estimation strategies are available to accommodate multivari-
ate, dependent outcomes. Baseline covariates are often incorporated by assuming
a conditional mean model (CMM) to obtain inferences on the conditional effect
of treatment. For models with an identity link function, such as linear models,



2108 A. J. STEPHENS, E. J. TCHETGEN TCHETGEN AND V. DE GRUTTOLA

when the true model does not contain any treatment–covariate interactions, inde-
pendence of intervention and covariates (which follows from randomization) guar-
antees that the adjusted estimator is consistent for the marginal treatment effect and
has lower variance than does the unadjusted estimator, even under misspecification
of the model’s covariate functions [Tsiatis et al. (2008)]. For other link functions,
the addition of baseline covariates to the assumed mean model does not guarantee
variance reduction.

Zhang, Tsiatis and Davidian (2008) introduced covariate adjustment with
asymptotically guaranteed efficiency improvement for general link functions in a
class of augmented estimators. Augmented estimators are derived from semipara-
metric theory through augmenting standard estimating functions by the subtraction
of their Hilbert space projection onto the span of the scores of the treatment
mechanism. Semiparametric theory provides theoretical justification for the ef-
ficiency improvement of augmented estimators in large samples under the as-
sumed marginal model, irrespective of the link function. Stephens, Tchetgen Tch-
etgen and De Gruttola (2012) demonstrated the use of such estimators applied to
clustered or longitudinal data by augmenting Generalized Estimating Equations
(GEE). The same authors also presented the locally efficient augmented estimator
under the marginal treatment model [Stephens, Tchetgen Tchetgen and De Grut-
tola (2013a)]. Augmented inference relies on asymptotic theory; for large samples,
model selection variability for baseline covariates is small when the number of
covariates is small as well. When the number of randomized units is small, how-
ever, flexible covariate selection induces additional variability that may lead to
efficiency loss and underestimation of standard errors. To evaluate the intervention
effect in Young Citizens, we therefore require analytical strategies that are valid in
small samples.

To avoid reliance on asymptotic theory, Rosenbaum (2002) extended the ran-
domization theory of Fisher (1935) to propose an exact covariate-adjusted test that
does not assume a particular distribution for outcomes or that the observed data are
a random sample from some unobserved population of independent units. Ran-
domization inference considers a subject’s potential outcomes under each treat-
ment level. Under the so-called consistency assumption in the potential outcomes
framework, a subject’s observed outcome is equal to his or her potential out-
come under the treatment that he or she actually received. Consistency requires
(1) that there is a single version of the intervention in view, so that it is well
defined, and (2) that there is no interference between individuals, so that a per-
son’s exposure can only affect his or her outcome. Potential outcomes under the
treatment not received are unobserved. Randomization tests condition on base-
line covariates and outcomes and test the strong null hypothesis of no treatment
effect on any individual’s outcome, often referred to as Fisher’s null hypothesis,
which amounts to equality of a subject’s potential outcomes under all possible
treatments. Rosenbaum (2002) discussed the potential outcomes framework in de-
tail. The null distribution of the test statistic is obtained through permutation of
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the treatment among randomized subjects. The test proposed by Gail, Tan and
Piantadosi (1988) approximates the exact test by standardizing the observed test
statistic by its randomization-based variance. Post model-selection inference based
on the Gail et al. and Rosenbaum approaches has not been investigated; below, we
consider model selection to determine covariates that explain variability in child
efficacy. Such adaptive selection of baseline covariates may be particularly useful
when the set of baseline covariates is high-dimensional or prior knowledge is not
available to inform covariate adjustment. Further improvement in small-sample
inference may be possible from higher-order approximations of the distribution
of a class of randomization test statistics [Bickel and van Zwet (1978)], but this
theory has not yet been evaluated in practice.

We consider four covariate-adjusted methods to test for an effect of the role-
play intervention on child efficacy in Young Citizens: (I) conditional mean mod-
els (CMM), (II) marginal model with augmentation, (III) approximate exact, and
(IV) exact (permutation), with details discussed in Section 3. Although the Young
Citizens outcomes are correlated within communities, we also present inference
for independent outcomes. These independent outcome methods are relevant for
studies involving rare diseases such as lymphomas or leukemia, which typically
have relatively few subjects, or in analysis of clustered data based on average
outcomes for each cluster. In Section 5 the small sample properties of covariate-
adjusted tests are evaluated through simulation. Section 6 provides a summary of
our results and recommendations for practical use.

2. The Young Citizens study. Young Citizens was a cluster-randomized trial
designed to evaluate the effectiveness of an educational role-play intervention in
training adolescents to be peer educators about HIV transmission dynamics. Thirty
communities were randomized to intervention or control, resulting in 15 commu-
nities per arm. In communities randomized to intervention, adolescents age 10–14
were selected to participate in learning and performing a skit in which each par-
ticipant assumed the role of an agent involved in HIV transmission and genetic
evolution. Residents in intervention and control communities were surveyed and
asked to report the degree to which they believed adolescents could effectively
communicate to their families and peers about HIV. The number of residents sur-
veyed (cluster sizes) varied between 16 and 80 according to the size of the com-
munity’s population. Data collected included the child efficacy outcome—a child
empowerment score derived from individuals’ responses to multiple survey items,
the cluster-level intervention assignment indicator, and various demographic and
household characteristics. Among the cluster-level covariates were population den-
sity and designation of the community as urban or rural. Covariates measured at
the level of the individual included household wealth, the number of adults in the
house, the number of children in the house, years spent in the current residence,
age and gender of the head of the household, and several wealth indicators such
as whether the house had a flushing toilet, electricity or if the family in residence
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owned their own transportation. These variables were summed to create a wealth
score, which was then averaged to calculate a community’s mean wealth. Only
one subject was surveyed per household. Demographic characteristics such as re-
ligion and employment status were also collected; indicators for home ownership,
knowledge of the local leader and number of relatives in the neighborhood served
as measures of the degree to which household members were rooted in the com-
munity. The number of relatives in the neighborhood further conveyed this infor-
mation. A total of 1100 individuals were surveyed across all thirty communities,
and data on over 20 covariates were available for covariate adjustment.

3. Methods. We consider four methods of covariate-adjusted hypothesis test-
ing to determine the impact of the HIV/AIDS education intervention on child ef-
ficacy in Young Citizens: (I) Wald test of β∗

1 in the conditional treatment model,
(II) Wald test of β1 in the marginal treatment model, in which estimating equations
are augmented to include baseline covariates, (III) approximate exact test, and
(IV) exact test. This list is not comprehensive, but does include widely-recognized
classical and modern methods. We first present each test for independent outcomes
and then describe generalizations for dependent outcomes that allow correlation
among individuals within communities. Methods for independent outcomes may
be used with dependent outcome data under an analysis strategy that averages in-
dividual level child efficacy scores and baseline covariates within communities
into a single community-level score for each variable. In the third subsection, we
present model selection methods to identify the characteristics of communities and
households that correlate with child efficacy in order to enhance power in testing
of intervention effects.

In defining each method, we consider n independent and identically distributed
units Oi = (Yi ,Ai,Xi) chosen from a population. For Young Citizens, the vector
Yi represents the set of perceived child efficacy scores calculated from the surveys
of individuals within a community; more generally, Yi is the set of responses of
trial participants within the same randomized group, and Yij is the response of the
j th person from the ith community. Similarly, in a longitudinal study, Yi would
denote a set of repeated measurements on a single randomized subject, whereas Yij

would reflect the ith person’s outcome at the j th time point. We consider settings
where outcomes are vectors and the treatment assignment is a scalar shared by
responses within the same cluster or subject. When presenting the simpler case of
a single scalar outcome for each randomized unit, Yi denotes the ith community’s
average outcome. Young Citizens evaluates a binary role-play intervention Ai ,
but, more generally, Ai = 1, . . . ,K may represent allocation to 1 of K possible
treatment. Finally, Xi is the set of baseline covariates, containing community-level
characteristics and individual-level measures. Individual-level baseline covariates
Xij are also averaged within community into a single community score Xi in anal-
yses using methods for independent data.
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3.1. Independent outcomes.

3.1.1. Method Ia: Wald test of β∗
1 in the conditional treatment model. Perhaps

the most widely used method of covariate adjustment assumes a conditional mean
model specifying how mean values of Yi vary with baseline covariates Xi and
intervention Ai up to an unknown parameter β . Applying this method to cluster-
averaged Young Citizens data, we test the effect of the role-play on average com-
munity mean child efficacy, conditional on covariates, by evaluating H0 :β∗

1 = 0

and calculating the test statistic Tc = β̂∗
1

ŜE(β̂∗
1)

. This approach is standard in all sta-
tistical software packages.

3.1.2. Method IIa: Wald test of β1 in the marginal model with augmented es-
timating equations [Tsiatis et al. (2008), Zhang, Tsiatis and Davidian (2008),
van der Laan and Robins (2003)]. Unlike inference based on the CMM, the
augmentation method assumes the less restrictive marginal model. Household and
community covariate information are captured by incorporating predicted values
from a conditional working mean model E[Yi |Xi ,Ai = a] = d(Xi;ηa) in estimat-
ing equations for β . Consistent estimates of the marginal intervention effect β1
are obtained even if the working mean model is misspecified, following from the
double robustness property and the fact that the treatment distribution is known
[van der Laan and Robins (2003)].

The null hypothesis of no effect of intervention on the average community
mean response (H0 :β1 = 0) marginalizing over covariates is tested by the statistic

Ta = β̂1

ŜE(β̂1)
, where β̂1 is the solution of the augmented estimating equations

n∑
i=1

ψa(Oi;β)

=
n∑

i=1

[
h(Ai;β)

{
Yi − g(Ai;β)

}

−
K∑

a=1

{
I (Ai = a) − πa

}{
h(a;β)

(
E[Yi |Xi ,Ai = a] − g(a;β)

)}] = 0

for any conformable function of treatment h(Ai;β) and πa the probability of
assignment to treatment a. As implied by the subscript a, the regression for
augmented estimators conditions on the intervention assignment. To enhance ob-
jectivity, working conditional models may be estimated separately in each treat-
ment arm, resulting in K regression models that do not contain indicators for
treatment. The variance of β̂1 is estimated by the sandwich variance estimator

V̂ar(β̂1) = C

[(
n∑

i=1

dh(Ai;β)

dβT Di

)−1T
n∑

i=1

[
ψa(Oi;β)⊗2]( n∑

i=1

dh(Ai;β)

dβT Di

)−1]
,
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where

Di = dg(Ai;β)

dβT , U⊗2 = UUT

and

C = {
(n0 − p0 − 1)−1 + (n1 − p1 − 1)−1}

/
{
(n0 − 1)−1 + (n1 − 1)−1}

is incorporated to account for finite-sample variability attributable to augmenting
[Tsiatis et al. (2008)]. In C, na is the sample size in treatment arm a, and pa is the
dimension of ηa for the working covariate-adjustment model.

3.1.3. Method IIIa: Approximation of the exact test [Gail, Tan and Piantadosi
(1988)]. The approximate exact test considers the null hypothesis H0 :ya = y∗
for all a, interpreted as no effect of intervention on any Young Citizens com-
munity’s mean response. This hypothesis is stronger than the mean null assump-
tion of no effect of intervention on average community mean responses tested in
Ia and IIa. To test H0, we construct the statistic

Ts = S√
Var(S|Y,X)

, where S =
n∑

i=1

(Ai − π)wi,

π is the probability of assignment to the intervention (Ai = 1) arm, and
Var(S|Y,X) is shown in (3.1). Baseline covariates are incorporated by setting
Wi = ε̂i = Yi − d(Xi; η̂), the residual from the working mean model E[Yi |Xi] =
d(Xi;η) for a known function d(·) and estimated parameter η. We omit the sub-
script a on the regression function as a reminder that under the strong null, Yi can-
not depend on treatment. The intervention is therefore excluded from the working
model. For unadjusted analysis, Wi = Yi . In the following definition, we use low-
ercase wi to reflect conditional inference based on yi and xi , the observed values
of Yi and Xi , respectively. The variance of S is calculated by

Var(S|Y,X) = π(1 − π)

n∑
i=1

w2
i +

Q︷ ︸︸ ︷(
π

n/2 − 1

n − 1
− π2

) ∑
i �=i′

wiwi′(3.1)

and significance is determined by comparing |Ta| to the standard normal distribu-
tion.

Term Q in Var(S|Y,X) is nonzero when the total number of subjects as-
signed to each intervention is fixed. A fixed randomization scheme was used in
Young Citizens and is customary in trials with small samples, where matching
and blocked randomization strategies are employed to prevent imbalances in treat-
ment allocation. The vector A = (A1,A2, . . . ,An) then follows a hypergeometric
distribution, where the probability of being assigned to treatment for a particular
randomized unit is affected by other units’ treatment assignments. Independence
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of εi and E[εi |Xi] = 0 result in Q ≈ 0 when Wi is a residual. If considering the
unadjusted outcomes Yi in small samples, failure to include Q may result in gross
variance overestimation and conservative testing. In large samples, Q ≈ 0 for ei-
ther definition of Wi .

For the class of statistics defined by T = ∑n
i=1 Aici , where ci is a score, Bickel

and van Zwet (1978) determined a higher-order approximation for the permutation
conditional distribution of the standardized statistic T ∗, given by

P
(
T ∗ < t

) = �(t) − φ(t)

π(1 − π)

[
C1H1(t) + C2H2(t) + C3H3(t) + C5H5(t)

]
,

where H1(t) − H5(t) and C1(t) − C5(t) are defined in the supplementary material
[Stephens, Tchetgen Tchetgen and De Gruttola (2013b)]. The expansion suggests
that a higher-order accurate quantile of the distribution of the test statistic may be
found by solving for Z∗

α such that P(T < Z∗
α) = 1−α/2 for two-sided tests. A sig-

nificance test may therefore be completed by comparing Ts to the corresponding
percentile of the standard normal distribution or to the reference value determined
by Bickel and van Zwet. We refer to the former as the Approximate Exact Test and
the latter as Approximate Exact Test (BZ).

3.1.4. Method IVa: Exact test. The exact test also applies to the strong null hy-
pothesis of no intervention effect on any community’s mean response (H0 :ya = y∗
for all a); the null distribution of Tp = S is calculated by permuting the in-
tervention assignment Ai among subjects. For each permutation, the test statis-
tic Tp is calculated under the permuted intervention assignment Ab, creating
the distribution of statistics Tp(Ab). The exact null distribution is often esti-
mated by conducting B permutations for large B , and a p-value is obtained by
pB = 1

B

∑B
b=1 I (|Tp(Ab)| > |Tp|). For a level α test, we reject the strong null of

no intervention effect when pB < α. Exact tests are also available in standard sta-
tistical software packages.

3.2. Dependent outcomes. Averaging individual-level outcomes into a com-
munity-level statistic may result in loss of information. More efficient tests of the
Young Citizens intervention effect take into account the possibility of correlation
among individual-level responses of community members. Below, we consider
modifications of the univariate tests that accommodate such correlation.

3.2.1. Method Ib: Wald test of β∗
1 in the conditional treatment model using GEE

[Zeger and Liang (1986)]. To account for correlation in survey responses within
a community, generalized estimating equations may be constructed assuming the
CMM. For individual-level analyses, the weak null hypothesis is that the average
individual response is identical for individuals in communities assigned to inter-
vention or control, conditional on covariates. The adjusted intervention effect β∗

1 is
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estimated by solving the generalized estimating equations

n∑
i=1

DiV
−1
i

[
Yi − g(Ai,Xi;β)

] = 0,(3.2)

where Di = dg(Ai,Xi;β)

dβT and Vi = Vi(φ)1/2RVi(φ)1/2. The working covariance
Vi is determined by the mi by mi correlation matrix R and diagonal variance
matrix Vi(φ). To evaluate H0 :E[Yi |Xi ,Ai = 1] = E[Yi |Xi ,Ai = 0], the stan-
dardized coefficient Tc is calculated using the sandwich variance estimator,

V̂ar(β̂) =
(

n∑
i=1

DiV
−1
i Di

)−1

(3.3)

×
(

n∑
i=1

[
DiV

−1
i

{
Yi − g(Ai,Xi;β)

}]⊗2
)(

n∑
i=1

DiV
−1
i Di

)−1

,

which may be calculated in most standard software by requesting a robust variance
and supplying a cluster identifier.

3.2.2. Method IIb: Wald test of β1 in the marginal treatment model using aug-
mented GEE [Stephens, Tchetgen Tchetgen and De Gruttola (2012), Zhang, Tsi-
atis and Davidian (2008)]. Assuming the marginal treatment model, augmented
estimating equations are formed by

n∑
i=1

ψa(Oi;β,η)

=
n∑

i=1

{
DiV

−1
i

{
Yi − g(Ai;β)

}

−
K∑

a=1

{
I (Ai = a) − πa

}[
Di (a)V−1

i (a)
{
d(Xi;ηa) − g(a;β)

}]} = 0,

where d(Xi;ηa) models E[Yi |Ai = a,Xi]. The variance of β̂ is estimated by re-
placing the standard estimating function with the augmented estimating function
ψa in the middle term of (3.3). Using this method, we test the weak null hypothe-
sis of equal average responses of individuals randomized to intervention or control,
marginalizing over baseline covariates.

3.2.3. Method IIIb: Approximation to the exact test (multivariate). Although
child efficacy scores and baseline covariates are considered fixed for randomiza-
tion inference, the calculated covariance among responses in a common commu-
nity incorporates information on the difference in the between versus within sum
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of squares, which may increase power of tests. A working covariance Vi as for
GEE is incorporated into the test statistic given by

SD =
n∑

i=1

(Ai − π)1V−1
i wi ,(3.4)

where wi is the observed value of the residual vector Wi = (Wi1,Wi2, . . . ,Wimi
)T

determined by Wij = ε̂ij = Yij − d(Xij ; η̂), and 1 is the mi -dimensional vector
of 1s. To estimate correlation parameters, the method of moments is used, as pro-
posed in standard GEE. For vector-valued outcomes Yi , the variance of SD is

Var(SD|Yi ,Xi) = π(1 − π)

n∑
i=1

(
1V−1

i wi

)⊗2

(3.5)

+
(
π

n/2 − 1

n − 1
− π2

) Q∗︷ ︸︸ ︷∑
i �=i′

(
1V−1

i wi

)(
1V−1

i′ wi′
)T

,

where Q∗ is the small-sample correction for fixed treatment allocation. It can be
shown that under unequal cluster sizes, if cluster size is associated with interven-
tion assignment, E[SD] �= 0, even under the null hypothesis. Type I error may be
preserved under variable cluster size by mean centering outcomes. The method
of Bickel and van Zwet (1978) may be applied to dependent outcomes as well to
ensure nominal type I error levels in small samples. The null hypothesis tested by
this method is that the intervention has no effect on any individual’s response.

3.2.4. Method IVb: Exact test (multivariate). The null distribution of test
statistic (3.4) is determined by permuting the community-level intervention as-
signment Ai . Because exact inference conditions on responses and covariates,
the residuals ε̂ij = Yij − d(xij ; η̂) and working covariance Vi do not depend on
the permuted intervention assignment under H0. Working covariance parameters
therefore only need to be estimated once, and Vi is equal for all permutations.
Testing is conducted as in Section 3.1.

3.3. Model selection for baseline covariates. When the dimension of the set
of baseline covariates is high relative to sample size, adjusting for all available
covariates may be inefficient. Prior knowledge may suggest the inclusion of some
covariates; for example, the number of children in survey respondents’ households
may impact their perception of child efficacy. Among other covariates whose im-
pact on child efficacy is not well understood, such as household wealth or own-
ership of transportation, model selection may help to determine which covariates
to include. Adjusted mean models and augmented estimation require a conditional
mean model that includes intervention, whereas randomization inference requires
that intervention is left out of the adjustment. A wide array of methods for selection
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of baseline covariates is available, particularly for univariate outcomes. Stepwise
selection procedures based on some entry criterion may be used. Methods based
on penalized likelihoods such as LASSO [Tibshirani (1996)], adaptive LASSO
[Zou (2006)], SCAD [Fan and Li (2001)] and MC+ [Zhang (2010)] also apply.
Model selection for multivariate outcomes is less well developed, but extensions
of available methods are presented and discussed in Sofer, Dicker and Lin (2012).
We consider two popular approaches, forward selection by AIC or BIC, and adap-
tive LASSO, where the tuning parameter is selected by cross validation, to identify
correlates of child efficacy.

Forward selection is an example of a greedy algorithm, defined as one that
makes the locally optimal choice at each stage in search of a global optimum
[Black (2005)]. To find the best predictive model, forward selection starts with
a generalized linear model containing the intercept, and at each step enters a single
covariate according to a prespecified criterion. Examples of entry criteria include
minimizing p-values or an information criterion such as AIC, or maximizing ad-
justed r2.

Model selection by penalized regression minimizes an objective function


(β) =
n∑

i=1

L
{
Yi, g(Ai,Xi;β)

} + Pλ(β),(3.6)

consisting of a loss function L{Yi, g(Ai,Xi;β)} and a penalty Pλ(β), which is
indexed by a nonnegative tuning parameter λ. The form of Pλ(β) defines vari-
ous regularized regression methods; for adaptive LASSO Pλ(β) = λ

∑p
k=1 ŵk|βk|

with weights ŵk = 1/|β̂γ
k | derived from an initial fit of β . We consider an adap-

tive LASSO-hybrid implementation motivated by the LASSO–OLS hybrid [Efron
et al. (2004)], in which LASSO is used to determine predictive covariates and the
selected model is subsequently fit by OLS.

For vector-valued outcomes, Sofer, Dicker and Lin (2012) suggest that account-
ing for correlation improves the efficiency of penalized regression estimates. In
small samples like Young Citizens, it is especially desirable to reduce the vari-
ability in penalized regression, as the number of units may not be sufficient to
achieve consistency despite estimation under a misspecified independence corre-
lation structure. We recommend scaling outcomes and covariates by 1/2, where
 = V−1

i is a working precision matrix based on an initial estimate of the coeffi-
cient vector. This initial estimate may be determined by a model selection method
that assumes independence. For validation-based penalized regression, estimation
proceeds as in the univariate case on the scaled outcomes Ỹi = 1/2Yi and co-
variates X̃i = 1/2Xi . The community and individual level covariates selected by
each method are discussed in the results.

4. Results: Young Citizens. We first present analyses of the Young Citizens
study using the independent outcome methods of Section 3.1 and then repeat the
analysis with the dependent outcome methods of Section 3.2. For the independent



FLEXIBLE COVARIATE-ADJUSTED EXACT INFERENCE 2117

TABLE 1
Average number of baseline covariates selected by AIC, BIC and

Adaptive LASSO by sample size when candidate models include the
correct model. First entry—number of baseline covariates selected
when treatment was forced into the model. Second entry—number
of baseline covariates when treatment was omitted from the model

na AIC BIC A. LASSO

10 10.45 7.51 6.09
8.27 5.71 4.70

15 13.32 7.94 7.48
11.08 6.29 6.13

25 10.71 6.74 7.10
9.38 5.44 5.73

50 10.62 6.56 7.26
9.40 5.39 5.84

100 11.10 6.80 7.41
9.96 5.71 5.92

outcome analysis, within-community responses are averaged into a single mean
community score. In the dependent outcome analysis, working independence and
exchangeable working correlations are used to account for correlation in commu-
nity members’ responses. The presentation closes with a comparison of the results
obtained using each strategy.

4.1. Independent outcomes. As stated in Section 3, one strategy for analyzing
clustered data involves averaging individual-level data by cluster and then employ-
ing methods for independent data. In Young Citizens, 30 independent observations
were obtained by averaging child efficacy and baseline covariates by community.
Nominal covariates such as ethnic group and religion were first converted to a set of
individual-level binary variables, each denoting whether or not a subject belonged
to a particular group. The binary indicators were then averaged within communi-
ties to calculate each community’s percentage of subjects falling into each nominal
level. We first describe the results of the AIC, BIC and adaptive LASSO model se-
lection procedures in identifying baseline covariates that predict child efficacy and
then follow with the primary intervention analysis.

Because of the small number of observations, only main effects were consid-
ered for the covariate-adjusted mean model. For prediction of the cluster-level
averages, forward selection by AIC selected percent Asian ethnicity (Asian), per-
cent employed (employed), percent knowing the local leader (leader), average
years residing in the community (years), urban community status (urban), per-
cent self identifying as protestant (religion_2) and percent with 6–9 local relatives
(relatives_4). BIC selected Asian, employed, leader and years. Adaptive LASSO
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TABLE 2
Analysis of the Young Citizens study: independent, cluster-averaged. Covariate-adjusted method

(Method), regression (R) {AIC, BIC, Adaptive LASSO (A. LASSO)}, test statistic (T) and
p-value (p), with each test statistic evaluated under independence (Ind) and exchangeable (Exch)

working covariance. p-values for Approx. Exact tests are calculated under Bickel’s c.d.f. for
randomization test statistics. “Unadjusted” denotes the unadjusted test

Method Adjustment Test statistic S.t.d. error Z-value p

CMM AIC 0.413 0.064 6.450 <0.0001
BIC 0.460 0.072 6.369 <0.0001

LASSO 0.411 0.072 5.696 <0.0001
Unadjusted 0.362 0.087 4.171 0.0003

Augmented AIC 0.413 0.053 7.774 <0.0001
BIC 0.460 0.062 7.448 <0.0001

LASSO 0.411 0.061 6.720 <0.0001

Approx. Exact AIC 1.358 0.487 2.787 0.0053
BIC 1.711 0.587 2.915 0.0036

LASSO 2.713 0.814 3.334 0.0009
Unadjusted 2.713 0.814 3.334 0.0009

Approx. Exact (BZ) AIC 1.358 0.487 2.787 0.0045
BIC 1.711 0.587 2.915 0.0031

LASSO 2.713 0.814 3.334 0.0005
Unadjusted 2.713 0.814 3.334 0.0005

Exact AIC 1.358 – – 0.0020
BIC 1.711 – – 0.0030

LASSO 2.713 – – 0.0003
Unadjusted 2.713 – – 0.0003

selected years, percent of surveyed households with a good floor (floor), Asian,
employed and urban. Model selection was repeated for randomization tests with
the omission of treatment from considered models. AIC then selected years, floor,
percent with 3–5 local relatives (relatives_3), percent owning transportation (trans-
portation), flush and percent owning their home (home). The BIC-based model
contained years, floor, relatives_3 and employed. Adaptive LASSO did not select
any covariates. The predictive power of covariates varied across models ranging
from r2 = 0.72–0.82 for models including treatment as a covariate and r2 = 0.48–
0.64 for models excluding treatment.

Results of the cluster-level analysis are shown in Table 2. All methods suggest
that the intervention significantly increases child efficacy. Augmented tests were
highly significant at the p = 0.05 level, but as shown in the following section,
these methods generally do not preserve type I error in small samples. Unadjusted
and covariate-adjusted randomization tests also provided strong evidence of an
intervention effect, with smaller standard errors reported for covariate-adjusted
tests than the unadjusted test.
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4.2. Dependent outcomes. For CMM and augmented approaches, which in-
clude treatment assignment in the adjustment model, covariates selected by AIC
include employed, age, presence of flushing toilet (flush), number of relatives in
the neighborhood (relatives), religion, transportation, and home at the individual
level and community population density (density) at the community-level. BICn
selected the same covariates as AIC except for transportation and home. BIC pe-
nalized by the number of total observations (BICm) chose individual-level covari-
ates employed, age and flush. Finally, adaptive LASSO also chose employed, age,
flush and religion. For randomization tests, the AIC-based model contained em-
ployment, flush, age, religion, relatives, home and wealth deviance for each family
from the mean community wealth. BICn selected employment, flush, age, religion
and relatives. Selection by BICm and adaptive LASSO again chose employed,
flush and age. All covariates selected for randomization analyses were individual-
level. The predictive power of covariates ranged from r2 = 0.075–0.106 for models
that included treatment and r2 = 0.052–0.064 for those that did not. In unadjusted
randomization tests, outcomes were mean centered as suggested in Section 3.2
to preserve type I error when cluster size is associated with intervention; in Young
Citizens, intervention communities had on average nine more individuals than con-
trol communities.

Table 3 presents the Young Citizens individual-level analysis. Adjusted and aug-
mented GEE methods were associated with highly significant treatment effects
(p < 0.0001) across covariate-adjusted and unadjusted tests. For the approximate
exact tests, covariate-adjusted and unadjusted methods yielded a significant inter-
vention effect with either correlation structure. Applying Bickel’s small-sample
adjustment to obtain tail probabilities resulted in p-values that were slightly larger
than those based on the standard normal distribution. Significant intervention ef-
fects were also detected using exact tests with either working covariance structure.
The value of baseline covariate adjustment is shown in examining the approxi-
mate exact test under the independence model, where standard errors decreased for
covariate-adjusted vs. unadjusted tests. Under the exchangeable correlation struc-
ture standard errors were larger for covariate-adjusted tests than unadjusted tests.
Altogether, the data provide sufficient evidence that children living in communi-
ties that had received the intervention were perceived as more knowledgeable and
equipped to educate their peers about HIV than children whose communities did
not. The results underscore the importance of using appropriate methodology. The
unadjusted tests based on GEE methods were highly significant, but, as shown
in the following simulation studies of Section 5, the validity of such methods is
not guaranteed when the number of clusters is fairly small and no small-sample
variance adjustment is used.

4.3. Comparison of cluster and individual-level analyses. Although both lev-
els of analyses provide evidence of an intervention effect, key differences were ob-
served in the results of various methods between individual-level and cluster-level
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TABLE 3
Analysis of the Young Citizens study: dependent. Covariate-adjusted method (Method), regression

(R) {AIC, BIC by n (BICn), BIC by M , (BICm), Adaptive LASSO (A. LASSO)}, test statistic (T) and
p-value (p), with each test statistic evaluated under independence (Ind) and exchangeable (Exch)

working covariance. p-values for Approx. Exact tests are calculated under Bickel’s c.d.f. for
randomization test statistics. “Unadjusted” denotes the unadjusted test

Independence Exchangeable

Adjust- Test S.t.d. Test S.t.d.
Method ment statistic error Z-value p statistic error Z-value p

CMM AIC 0.364 0.069 5.293 <0.0001 0.365 0.067 5.276 <0.0001
BICM 0.363 0.068 5.333 <0.0001 0.363 0.069 5.275 <0.0001
BICN 0.325 0.072 4.505 <0.0001 0.331 0.072 4.623 <0.0001

LASSO 0.325 0.072 4.505 <0.0001 0.331 0.072 4.623 <0.0001
Unadjusted 0.354 0.085 4.141 <0.0001 0.354 0.082 4.319 <0.0001

Augmented AIC 0.364 0.069 5.294 <0.0001 0.364 0.069 5.312 <0.0001
BICM 0.363 0.068 5.353 <0.0001 0.365 0.069 5.281 <0.0001
BICN 0.325 0.070 4.640 <0.0001 0.330 0.330 4.657 <0.0001

LASSO 0.325 0.070 4.640 <0.0001 0.330 0.330 4.657 <0.0001

Approx. AIC 89.833 28.676 3.133 0.0017 37.058 11.123 3.332 0.0009
Exact BICM 91.216 29.160 3.128 0.0018 36.096 10.779 3.349 0.0008

BICN 88.809 28.443 3.122 0.0018 36.588 10.994 3.328 0.0009
LASSO 88.809 28.443 3.122 0.0018 36.588 10.994 3.328 0.0009

Unadjusted 95.288 32.403 2.941 0.0033 29.103 8.8703 3.2810 0.0010

Approx. AIC 89.833 28.676 3.133 0.0017 37.058 11.123 3.332 0.0008
Exact BICM 91.216 29.160 3.128 0.0017 36.096 10.779 3.349 0.0007
(BZ) BICN 88.809 28.443 3.122 0.0018 36.588 10.994 3.328 0.0009

LASSO 88.809 28.443 3.122 0.0018 36.588 10.994 3.328 0.0009
Unadjusted 95.288 32.403 2.941 0.003 29.103 8.8703 3.2810 0.0010

Exact AIC 89.833 – – 0.0003 37.057 – – 0.0003
BICM 91.912 – – 0.0007 36.508 – – 0.0003
BICN 88.809 – – 0.0007 36.588 – – 0.0007

LASSO 88.809 – – 0.0007 26.588 – – 0.0007
Unadjusted 95.288 – – 0.0010 29.103 – – 0.0003

Young Citizens analyses. The set of covariates selected by model selection was dif-
ferent for cluster-level vs. individual-level analysis, with higher r2 values observed
in models for the cluster-level analysis. In cluster-level analyses, the variance of
the test statistic decreased with covariate adjustment. The variances of covariate-
adjusted approximate exact randomization test statistics were approximately half
of those of the unadjusted statistic variances. The impact of covariate adjustment
on variance in individual-level analyses varied with choice of working covariance.
When assuming an independence working covariance, the variances of covariate-
adjusted tests were at least 19% smaller than the variances of unadjusted tests.
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Under exchangeable correlation, covariate adjustment increased variances relative
to the unadjusted test by about 50%.

5. Simulation studies. Simulation studies were conducted to investigate the
properties of the four methods described above in small samples. Section 5.1 con-
siders methods for independent scalar outcomes that are measured for each ran-
domized unit, as in the community-averaged Young Citizens analysis. Following
the individual-level Young Citizens analysis, Section 5.2 provides simulation re-
sults for vectors of dependent outcomes for each randomized group, where meth-
ods account for potential correlation among outcomes within a group. The final
subsection discusses implications for Young Citizens.

5.1. Independent outcomes. We first consider scalar outcomes Yi . For each
simulated data set 25 baseline covariates Xi1, . . . ,Xi25 were generated from
the multivariate lognormal distribution by exponentiating draws from the mul-
tivariate normal distribution with mean μ = (0,0, . . . ,0) and covariance �,
where � was defined such that corr(log(Xik ), log(Xik′ )) = 0.5 for k, k′ =
1, . . . ,10, corr(log(Xik ), log(Xik′ )) = 0.2 for k = 1, . . . ,10, k′ = 11, . . . ,20,
corr(log(Xik ), log(Xik′ ) = 0 for k = 1, . . . ,20, k′ = 2, . . . ,25, and Var(log(Xik )) =
1 for k = 1, . . . ,25. Skewed covariates were generated to ensure that results did
not rely on symmetry, as covariates may not be symmetric in actual data. Treat-
ment Ai was binary and simulated with a fixed, equal number of subjects as-
signed to treatment or control. Outcomes were generated from the model Yi =
η0 +η1Ai +η2Xi1 +η3Xi2 +η4Xi10 +η5Xi11η6Xi12 +εi with log(εi) ∼ N(0,1.1),
η′ = (1,0,1,1,0.2,0.2,0.2) under the null and η′ = (1,4,1,1,0.2,0.2,0.2) un-
der the alternative. Sample sizes of na = 10,15,25,50,100 in each treatment arm
were considered. Under this design, baseline covariates accounted for 73% of the
variability in Yi |Ai—similar to what was observed in the Young Citizen’s study.

All four covariate-adjusted methods were applied to each simulated data set, and
various adaptive procedures were used to select among the 25 baseline covariates.
Several variations for each covariate-adjusted test were considered, with each vari-
ation defined by a different regression model. For adaptive approaches, selection of
regression models was based on three methods: forward selection minimizing AIC,
forward selection minimizing BIC, and the adaptive LASSO–OLS hybrid. The
adaptive LASSO tuning parameter was selected by l-fold cross-validation, where
l = n/10. For Method Ia, inference was performed by OLS on the model including
Ai and covariates suggested by the adaptive model selection procedure. Adaptively
selected models were compared to two fixed models: the data-generating model,
which serves as a benchmark for the largest possible improvement in power, and
an incorrect model, E[Yi |Xi ,Ai] = η0 +η1Xi1 +η2Xi3 +η3X10 +η4Xi13 +η5Xi21 ,
that included two predictive covariates and 3 noisy covariates. We chose to include
a fixed covariate-adjusted model to mirror settings where a select few baseline co-
variates are known a priori to correlate with the trial outcome. Finally, each method
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was also applied to the unadjusted outcomes Yi to assess whether incorporating
baseline covariates improved power compared to no adjustment. Treatment was
forced into the regression model for Methods Ia and IIa. In investigation of Meth-
ods IIIa and IVa, treatment was omitted from covariate selection, as the strong null
excludes any estimated effect of treatment even if not significant. In addition to as-
sessing type I error and power when the set of candidate models included the true
data-generating model, we also assessed power when important transformations
of baseline covariates were not included. We modified the data-generating mecha-
nism to include squared terms for Xi1 and Xi10 and changed the coefficient of Xi1

to η1 = 0.50. As in the previous setting, model fitting algorithms for determining
predictive covariates only considered linear terms.

Results for type I error are shown below in Figure 1 and Table 1 of the sup-
plementary material [Stephens, Tchetgen Tchetgen and De Gruttola (2013b)]. All
tables summarizing simulation results are contained in the supplementary material
[Stephens, Tchetgen Tchetgen and De Gruttola (2013b)]. Method Ia performed
poorly for small sample sizes with model selection, leading to type I error rates
as large as α = 0.25. For fixed models chosen a priori, testing the adjusted treat-
ment effect β∗

1 preserves type I error and is even slightly conservative as a result
of the skewness in the covariates and outcomes (α = 0.044–0.049). The perfor-
mance of asymptotically equivalent Method IIa varies over the choice of model
selection procedure. For adaptive LASSO, the augmented test resulted in type I er-
rors approximately three times the nominal level at na = 10. Adaptive selection of
covariates by AIC or BIC had even larger type I error inflation (α = 0.39–0.52 for
na = 10). Type I error was still not preserved when augmenting with fixed models
(0.12 for na = 10). By contrast, Methods IIIa and IVa maintained type I error at
all sample sizes considered. The approximate exact test remained slightly conser-
vative due to the skewness in the data, whereas the exact test preserved nominal
type I error levels. Regarding model selection, there were noteworthy differences
in the behavior of the various methods. As expected, BIC favored more parsimo-
nious models than did AIC; AIC-based selection resulted in models with 9 to 13
baseline covariates on average; BIC, 6 to 8 covariates. Adaptive LASSO was the
most conservative model selection procedure and included 4 to 7 covariates, with
the number of selected covariates increasing with the sample size. These data are
displayed in Table 1.

Figure 2 and Table 1 of the supplementary material [Stephens, Tchetgen Tch-
etgen and De Gruttola (2013b)] provides simulation results demonstrating the im-
pact of model selection procedures on power. For na ≤ 50, covariate adjustment
based on AIC and BIC resulted in larger power than did the correct covariate ad-
justment model for Methods Ia and IIa (Power = 0.86–0.99 for AIC and BIC,
Power = 0.83–0.99 for the correct model), suggesting that the former led to over-
fitting of the regression model. The power of adjustment with adaptive LASSO
did not exceed the power of adjustment under the correct model for any covariate-
adjusted test statistic considered. In general, Methods IIIa and IVa had lower power
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FIG. 1. Type I error and power of univariate CMM and augmented tests. Adaptive regression model
selection: AIC, BIC, Adaptive LASSO. Prespecified models: Correct, Incorrect. “Unadjusted” de-
notes the test statistic that does not incorporate baseline covariates.
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FIG. 2. Power of univariate approx. exact and exact tests when the correct model is a candidate
model. Adaptive regression model selection: AIC, BIC, Adaptive LASSO. Prespecified models: Cor-
rect, Incorrect. “Unadjusted” denotes the test statistic that does not incorporate baseline covariates.
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than Methods Ia and IIa, reflecting the fact that the randomization-based tests pre-
serve type I error, whereas adding covariates to the mean model and augmentation
tests do not. For very small sample sizes (na ≤ 15), covariate adjustment by AIC in
randomization tests resulted in lower power than the unadjusted test (Approx. Ex-
act AIC = 0.51–0.66, Approx. Exact Unadjusted 0.54–0.68; Exact AIC = 0.53–
0.67, Exact Unadjusted = 0.58–0.70). For na ≥ 25, AIC-based adjustment im-
proved power compared to no adjustment. Model selection by BIC and adaptive
LASSO, which penalize more severely for model complexity than AIC, improved
power over unadjusted test statistics across all simulated sample sizes. Method IVa
had higher power than Method IIIa, with the difference in power increasing in-
versely with sample size. Across all settings considered, Bickel’s adjustment for
the distribution of the approximate exact test had little impact on resulting in-
ferences, suggesting that even higher-order terms may be necessary to preserve
nominal type I error.

In the second set of power simulations, the data-generating model contained
quadratic terms that were not considered in covariate adjustment. Results are
shown in Figure 3 and the supplementary material [Stephens, Tchetgen Tchetgen
and De Gruttola (2013b)] Table 3. The relative performance of adaptive proce-
dures remained the same. At small samples sizes, exact inference AIC resulted in
less power improvement than did the other adjustment methods, but greater power
than not adjusting at all (0.27–0.32 AIC, 0.34–0.47 BIC and adaptive LASSO,
0.34 prespecified incorrect model 0.22 unadjusted). For Method IIIa, power gains
when AIC was used in the adjustment were again less than those achieved using
BIC selection, adaptive LASSO and the prespecified incorrect model (AIC = 0.25,
Unadjusted = 0.12, BIC = 0.33, adaptive LASSO = 0.37, Prespecified = 0.33).
Increasing the sample size per arm to na = 25, power for AIC-selected ad-
justment was more similar to that associated with BIC and adaptive LASSO.
At na ≥ 50, all adaptive procedures resulted in similar power, while the incor-
rect prespecified model had lower power (Prespecified = 0.45–0.63, Adaptive
Methods = 0.51–0.69).

5.2. Dependent outcomes. To evaluate clustered outcome data, values for
covariates Xij1, . . . ,Xij25 were generated, with Xijk

= Xik for k = 1, . . . ,10.
For each cluster, (log(Xi1), . . . , log(Xi10)) ∼ MV N(0,�2), where �2 was de-
fined such that corr(log(Xik ), log(Xik′ )) = 0.5 for k = 1, . . . ,5, k′ = 1, . . . ,5 and
k = 6, . . . ,10, k′ = 6, . . . ,10, corr(log(Xik ), log(Xik′ )) = 0.2 for k = 1, . . . ,5,
k′ = 6, . . . ,10. Each covariate Xijk

for k = 11, . . . ,20 was simulated from the
multivariate lognormal distribution with corr(log(Xijk

), log(Xij ′
k
)) = 0.2 inde-

pendently across k. Finally, for k = 21, . . . ,25, log(Xijk
) ∼ N(0,25) with inde-

pendence between and within clusters. Binary treatment Ai was generated with
P(A = 1) = 0.5, with the total number of clusters assigned to each treatment
level fixed accordingly. To induce unexplained correlation within clusters, ran-
dom cluster effects bi were simulated, with log(bi) ∼ N(0, ρσ 2), where ρ was
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FIG. 3. Power of univariate approx. exact and exact tests when the correct model is not a can-
didate model. Adaptive model selection: AIC, BIC, Adaptive LASSO. Prespecified models: Correct,
Incorrect. “Unadjusted” denotes the test statistic that does not incorporate baseline covariates.
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varied to induce high or low intracluster correlation. Outcomes Yij were generated
from the model Yij = η0 + η1Ai + η2Xi1 + η3Xij11 + η4Xi3 + η5Xij12η6Xij15 +
bi + εij , with log(εij ) ∼ N(0, σ 2 = 2.8). We set the coefficient vector η =
(1,0,1.25,1.25,0.2,0.2,0.2) under the null hypothesis of no treatment effect,
and η = (1,2.2,1.25,1.25,0.2,0.2,0.2) under the alternative. These covariates
and η values were chosen for the data-generating model to include at least one
strongly predictive and one weakly predictive covariate at each of the cluster and
individual levels. Monte Carlo data sets consisted of n = 10,15,25 clusters of size
mi = 20,30 or n = 25,50,100 clusters of size mi = 4,6,8 per treatment arm. The
correlation scale parameter was set to ρ = 10/19, inducing a conditional correla-
tion [corr(Yij , Yij ′ |Xi ,Ai)] of 5% and 5.6% of variability in Yij |Ai explained by
baseline covariates. In Young Citizens, the median cluster size was m̃ = 31, intr-
acluster correlation was nearly 5%, and the r2 of predictive models ranged from
0.052–0.106. Average cluster size, intracluster correlation and predictiveness of
covariates under the simulation design were therefore similar to Young Citizens
when considering the dependent outcome data structure. In a second set of simu-
lations we set log(εij ) ∼ N(0, σ 2 = 1.9) and ρ = 1, corresponding to r2 = 0.17
and a conditional correlation of 50% to examine the impact of high intracluster
correlation.

We first adaptively determined predictive models for the mean outcome condi-
tional on baseline covariates without consideration of correlation among outcomes
within a cluster. We then compared these results to the Monte Carlo power of
adjusted tests when model selection did account for correlation in responses (Sec-
tion 3.3). Selection of baseline covariates for adjustment included forward selec-
tion by AIC, two modifications of BIC for multivariate data and adaptive LASSO.
All regression models were ultimately fit by OLS. For BIC, two regression models
were selected: the first considered the number of clusters in the penalty for model
complexity (BICn), and the second calculated BIC based on the total number of
individual-level observations (BICm).

In deriving BIC for linear mixed models, Pauler (1998) showed that for a ran-
dom intercept model the true penalty is of the form 
h = ∑p

k=1 log(N∗
k ), where h

indexes candidate models, k indexes the p covariates in the hth model, N∗
k = n

for between-cluster effects, and N∗
k = M for within-cluster effects. BICm and

BICn would therefore correspond to the true BIC for models containing only
cluster-level covariates or individual-level covariates, respectively. Evaluating the
true BIC for models including both types of covariates requires calculating 
h

for each candidate model in the stepwise procedure by observing its number of
cluster-level and individual-level covariates. To ease computational burden, BICm
and BICn were used. The adaptive LASSO tuning parameter was selected based
on fivefold cross-validation. The two fixed regression models included the data-
generating model and an incorrect model, E[Yij |Xij ,Ai] = η0 + η1Xi1 + η2Xi2 +
η3Xi10 + η4Xij13 + η5Xij21 , including two predictive covariates and 3 noisy co-
variates. For Methods Ib and IIb, treatment was forced into the regression model;



2128 A. J. STEPHENS, E. J. TCHETGEN TCHETGEN AND V. DE GRUTTOLA

model selection and prespecified models for the randomization tests omitted treat-
ment. The null distribution of the observed test statistic under the exact test was
determined by permuting the treatment assignment across clusters b = 1000 times.
Unadjusted tests were also performed for each method and compared to covariate-
adjusted tests. The impact of incorporating the covariance structure on random-
ization tests was evaluated by conducting each test under both independence and
exchangeable correlation structures for each adjustment model. Specification of a
covariance structure for standard GEE and augmented GEE methods have been
evaluated elsewhere [Stephens, Tchetgen Tchetgen and De Gruttola (2012), Wang
and Carey (2003)].

All tables for multivariate simulation results may be found in supplementary
material Supplement C [Stephens, Tchetgen Tchetgen and De Gruttola (2013b)].
Type I error for each method is presented in Tables 4–6. In small samples (na ≤ 25)
GEE methods fail to control type I error for all covariate-adjusted analyses. Infla-
tion of type I error reflects small sample bias in the sandwich variance estimator
as well as additional variance induced by model selection. Under model selection,
type I error was as large as α = 0.21 for Method Ib and α = 0.253 for Methods IIb
when there were 10 randomized units per arm. For 15 or 25 clusters per interven-
tion arm, type I error inflation was present but less severe (α = 0.057–0.132 for
15 ≤ na ≤ 25). When the number of clusters was large (na ≥ 50), nominal type I
error levels of α = 0.05 were achieved even under adaptive covariate adjustment.
For testing treatment effects, model selection by AIC resulted in the largest type I
error, followed by the BIC methods; the adaptive LASSO had the least type I er-
ror inflation. For the randomization tests, the approximate exact test was generally
conservative across all outcomes. The Bickel adjustment for defining the rejection
region increased type I error levels of the approximate exact test closer to the nom-
inal level. The exact test had nominal type I error across adaptively-selected and
prespecified covariate-adjusted models.

Figures 4–6 and Tables 7–12 of the supplementary material [Stephens, Tchet-
gen Tchetgen and De Gruttola (2013b)] compare power across covariate-adjusted
tests for dependent outcomes. In most cases, covariate adjustment improved power
compared to the corresponding unadjusted approaches, regardless of the method
of model selection used. Of the adaptive methods considered, forward selection
by BICm resulted in the largest power for both levels of intracluster correlation.
Exchangeable working covariance specification improved power over working in-
dependence only for randomization tests of the unadjusted outcomes. Method IVb
at na = 10 using AIC selection did not improve power over unadjusted analy-
sis when the exchangeable working covariance was used (Unadjusted 0.187, AIC
0.185). All other model selection techniques resulted in greater power than unad-
justed analyses at all sample sizes and working covariance structures considered.

5.3. Implications for Young Citizens. The simulation study provides insight
into inferences for Young Citizens. In Young Citizens, significant treatment ef-
fects were observed using all four methods of analysis, in both independent and
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FIG. 4. Type I error and power of multivariate CMM and augmented tests. Adaptive regression
model selection: AIC, BIC by n (BICn), BIC by M , (BICm), Adaptive LASSO (Lasso). Prespecified
models: Correct, Incorrect. “Unadjusted” denotes the test statistic that does not incorporate baseline
covariates.
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FIG. 5. Power of multivariate approx. exact and exact tests: low correlation. Adaptive regression
model selection: AIC, BIC by n (BICn), BIC by M , (BICm), Adaptive LASSO (Lasso). Prespecified
models: Correct, Incorrect. “Unadjusted” denotes the test statistic that does not incorporate baseline
covariates.
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FIG. 6. Power of multivariate approx. exact and exact tests: high correlation. Adaptive regression
model selection: AIC, BIC by n (BICn), BIC by M , (BICm), Adaptive LASSO (Lasso). Prespecified
models: Correct, Incorrect. “Unadjusted” denotes the test statistic that does not incorporate baseline
covariates.
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dependent analyses. Particularly under independent analysis, simulation studies
provide reason to caution against interpreting significant findings of nonrandom-
ization tests for post-selection inference as evidence of a treatment effect, consid-
ering the severe inflation of type I error. In dependent analysis, the type I error
inflation of nonrandomization tests was also present but not as severe. Significant
findings of the post-selection randomization tests, however, may be interpreted as
evidence of a treatment effect, as randomization tests preserved type I error rates
after flexible covariate selection. The decreased standard errors in the Young Citi-
zens analysis for test statisics that incorporate baseline covariate data compared to
unadjusted test statistics are consistent with simulation results showing improved
power when adjusting for baseline covariates through both prespecified and adap-
tive mechanisms.

6. Discussion. We investigated the merits and potential downsides of sev-
eral procedures that allow for flexible covariate adjustment when applied to small
samples such as the Young Citizens cluster-randomized trial. We cannot provide
guidance regarding which method optimizes efficiency, but do provide below a dis-
cussion of the precise nature of the null hypotheses being tested. These hypotheses
place restrictions on the distributions of the outcome, treatment and covariates that
may be ranked from weakest to strongest. The least restrictive (weakest) is that
of the augmented approach, for which the null hypothesis is that average child

TABLE 4
Characteristics and behavior of covariate-adjusted tests

Method H0 Description Type I error

Adjusted mean model
(Method Ia–Ib)

Weak
(Neyman)

Adds baseline covariates
to a mean model that con-
tains a treatment variable

Does not preserve type I
error under model selec-
tion in small samples

Augmented
(Method IIa–IIb)

Weak
(Neyman)

Incorporates baseline co-
variates through a separate
augmentation term

Does not preserve type I
error under model selec-
tion in small samples

Approx. Exact
(Method IIIa–IIIb)

Strong
(Fisher)

Tests residuals from a co-
variate model that does
not include treatment and
uses the randomization-
based variance estimator

Preserves type I error
under model selection in
small samples

Exact
(Method IVa–IVb)

Strong
(Fisher)

Tests residuals from a co-
variate model that does
not include treatment by
permuting the treatment
assignment

Preserves type I error
under model selection in
small samples
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efficacy is the same for the two groups of patients defined by treatment assign-
ment. The null hypothesis tested by the CMM approach is the next weakest and
implies equivalent average child efficacy among population subgroups—defined
by treatment and additional covariates—regardless of assigned treatment. The ran-
domization tests consider the same null hypothesis, which is stronger than that
corresponding to CMM and augmented tests. They test that there is no individual
for whom treatment has had an effect; the null hypothesis being tested is referred
to as the strong or sharp null in distinction to that of the CMM and augmented
tests, referred to as the weak or mean null. Differences at the individual level do
not always imply differences averaged over population subgroups, but differences
at the averaged population level imply differences at the individual level.

It may be more useful for developing treatment policy to draw conclusions about
average outcomes in subgroups of the population rather than about variations in in-
dividual responses due to treatment. There may be little interest in promulgating
an intervention that affects individuals but does not reduce the population bur-
den of an illness. Our investigation demonstrates, however, that there are common
settings for which conclusions drawn about population averages under flexible co-
variate selection may be invalid. These settings may be characterized as having
a large number of baseline covariates considered adaptively for potential power
gain and a relatively small number of randomized units. For univariate outcomes,
the augmented approach, unlike the CMM, resulted in inflated type I error even
under a prespecified model, reflecting the variability associated with the nuisance
parameters of the conditional model. When responses are correlated, CMM and
augmented methods both suffer from variance underestimation and type I error
inflation of the sandwich variance estimator—an occurrence that has previously
been noted. For studies that randomize clusters, the intracluster correlation also
affects the validity of augmented approaches [Stephens, Tchetgen Tchetgen and
De Gruttola (2012)]. By contrast, the randomization methods, which condition on
outcomes and baseline covariates, provide valid tests for treatment effects while
flexibly incorporating baseline covariates. The randomization test requires no as-
sumptions about the underlying data-generating distribution of outcomes and base-
line covariates. As a result, the variability in model selection of correlates of the
outcome does not confer additional uncertainty in the primary test, thereby pre-
serving type I error.

Randomization tests provide the most reliable inference when covariate selec-
tion is flexible and sample sizes are small. To provide further insight into this
issue, we consider the interpretation of results from nonrandomization and ran-
domization tests applied to the same data. The combination of rejecting H0 using
nonrandomization tests and failing to reject H0 using randomization tests provides
evidence against the validity of the former; if the weak null is properly rejected, the
sharp null cannot hold. By contrast, rejection of the strong but not the weak null
would imply the absence of an average effect of treatment. Such a scenario would
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provide support against rejecting the weak null hypothesis, as the nonrandomiza-
tion tests are not generally conservative. Rejection of both tests would provide
evidence for an effect at the individual level; an effect on the population average is
less certain, as a liberal test does not permit us to distinguish a true positive result
from a false positive. Valid conclusions about population averages would require
an unadjusted test or one in which a select set of covariates are prespecified for
adjustment.

For cluster-randomized studies, the observed trends of type I error and power
are not expected to vary with individual-level versus cluster-level covariates. With
either type of covariate, flexible covariate selection will tend to lead to inflated
type I error with nonrandomization tests, but not with randomization tests. Con-
sideration of covariates at both levels has important implications for validity and
power of tests. Because the number of randomized clusters may be small, imbal-
ance among cluster-level characteristics may arise and distort the interpretation
of tests of treatment effects. The same may hold for individual-level covariates
whose distributions vary by cluster. In the Young Citizens study, there were many
more urban than rural communities, and randomization resulted in an uneven dis-
tribution of the latter, with 6 rural communities in the control arm and 3 in the
intervention arm. To some degree, the effect of urban or rural status may be medi-
ated through an individual-level covariate such as wealth. Adjusting for individual
level covariates can therefore potentially reduce the impact of chance imbalance
in community characteristics on test statistics. This is especially relevant when un-
measured community characteristics impact measured individual-level covariates
and outcomes. Because individual and cluster-level covariates may each explain
variability in the outcome, adjustment will tend to improve power in testing. As
the number of individuals is often much larger than the number of randomized
units, individual-level data provide more information for a predictive mean model.
This is especially true in settings with small intracluster correlation, which results
in a large effective sample size for individuals.

The dependent data analysis also highlights the interplay between working co-
variance selection and baseline covariates. In generalized linear mixed models
for clustered data, random effects are conceptualized as unmeasured cluster-level
covariates that induce correlation within clusters. A similar rationale applies to
unadjusted analyses, where imposition of a working covariance structure may par-
tially account for the impact of baseline covariates on between-cluster differences,
even though these covariates do not directly enter in the analysis. Unadjusted
dependent data methods that assume working independence ignore the effect of
cluster-level and individual-level covariates whose distributions may vary by clus-
ter on within-community correlation. Although it is standard practice to assume
working independence and appeal to the robustness of semiparametric analyses
for establishing validity in correlated data analysis, this strategy may result in
inefficient inferences. Our results suggest that individual-level analyses of clus-
tered data for the evaluation of intervention effects should include covariate ad-
justment or a nonindependence working covariance structure to reduce residual
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between-community differences that may mask intervention effects. If there are
substantial between-community differences in responses, as determined by either
unmeasured or measured covariates, the unadjusted independent data strategy av-
eraging individual-level data by clusters may be more efficient than unadjusted
dependent-data analyses.

Our investigation also showed that model selection techniques have varying im-
plications for type I error and power, depending on the strength of the penalty
used in selecting covariates. The severity of type I error inflation varied inversely
with penalty strength. Our discussion of power focuses on randomization tests, as
consideration of power must follow demonstration of validity. Adjustment gener-
ally increased the power of testing for treatment effects over unadjusted methods,
with the caveat that in extremely small samples of independent outcomes, such
as na = 10,15, model selection approaches must be sufficiently conservative. Our
simulation study design used covariates accounting for 70% of the outcome vari-
ability in independent data and 10% in dependent data, where the addition of a
random cluster effect diluted the predictive power of covariates. The degree of
correlation between covariates and the outcome impacts the interpretation of our
findings; larger correlation implies greater improvement in power compared to
unadjusted analyses. Model selection by BIC and adaptive LASSO, which have
stronger penalties and therefore favor more parsimonious models than does AIC,
resulted in improved power at the smallest sample sizes considered. Further re-
search is needed to formally characterize the power of covariate-adjusted tests un-
der misspecified covariate adjustment and adaptive covariate selection.

Our work has focused on hypothesis testing for evaluating treatment effects;
such tests may be inverted to estimate confidence intervals. When inverting
randomization-based hypothesis tests, model selection needs to be repeated for
each potential value of the treatment effect considered, as estimation of conditional
mean models pools across treated and untreated subjects. Interval estimation may
be simplified by a slight modification of the testing procedure. Under the strong
null, the conditional mean model may be estimated using data only for untreated
subjects. The model may then be applied to all subjects in conducting the test.
Avoidance of pooling the data when estimating the conditional mean model re-
moves the need for its re-estimation with each treatment effect value considered.
For small-sample univariate data, it may not be feasible to perform model selection
on a single treatment group, but for a small number of moderately sized clusters
such a strategy may be practicable.

We close with a reference table summarizing the properties of the flexible
covariate-adjusted tests considered.

SUPPLEMENTARY MATERIAL

Supplement to “Flexible covariate-adjusted exact tests of randomized
treatment effects with application to a trial of HIV education” (DOI: 10.1214/

http://dx.doi.org/10.1214/13-AOAS679SUPP
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13-AOAS679SUPP; .pdf). Supplement A: Small sample adjustment of Bickel and
van Zwet (1978). Function definitions in Bickel and van Zwet (1978) small-sample
approximation. Supplement B: Simulation study tables—independent outcomes.
Type I error and power of covariate-adjusted tests in independent outcomes. Sup-
plement C: Simulation study tables—dependent outcomes. Type I Error under low
correlation and power under low correlation and high correlation of covariate-
adjusted tests for dependent outcomes.
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