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FINITE-SAMPLE EQUIVALENCE IN STATISTICAL MODELS
FOR PRESENCE-ONLY DATA

BY WILLIAM FITHIAN1 AND TREVOR HASTIE2

Stanford University

Statistical modeling of presence-only data has attracted much recent at-
tention in the ecological literature, leading to a proliferation of methods,
including the inhomogeneous Poisson process (IPP) model, maximum en-
tropy (Maxent) modeling of species distributions and logistic regression mod-
els. Several recent articles have shown the close relationships between these
methods. We explain why the IPP intensity function is a more natural ob-
ject of inference in presence-only studies than occurrence probability (which
is only defined with reference to quadrat size), and why presence-only data
only allows estimation of relative, and not absolute intensity of species oc-
currence.

All three of the above techniques amount to parametric density estimation
under the same exponential family model (in the case of the IPP, the fitted
density is multiplied by the number of presence records to obtain a fitted
intensity). We show that IPP and Maxent give the exact same estimate for
this density, but logistic regression in general yields a different estimate in
finite samples. When the model is misspecified—as it practically always is—
logistic regression and the IPP may have substantially different asymptotic
limits with large data sets. We propose “infinitely weighted logistic regres-
sion,” which is exactly equivalent to the IPP in finite samples. Consequently,
many already-implemented methods extending logistic regression can also
extend the Maxent and IPP models in directly analogous ways using this tech-
nique.

1. Introduction. In recent years ecologists have devoted significant attention
to the problem of estimating the geographic distribution of a species of interest
from records of where it has been found in the past. There are many motivations
for solving this problem, including planning wildlife management actions, moni-
toring endangered or invasive species, and understanding species’ response to dif-
ferent habitats. A great variety of experimental designs and statistical methods
exist for tackling this problem, and can be found in the literature on resource-
selection functions [Lele and Keim (2006), Manly et al. (2002)], case-augmented
designs [Dorazio (2012), Lee, Scott and Wild (2006)] and site occupancy modeling
[MacKenzie (2006)].
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Ecologists have proposed many statistical methods for modeling such data, in-
cluding the inhomogeneous Poisson process (IPP) model [Warton and Shepherd
(2010)], maximum entropy (Maxent) modeling of species distributions [Phillips,
Anderson and Schapire (2006), Phillips, Dudík and Schapire (2004), Phillips and
Dudík (2008)] and the logistic regression model along with its various generaliza-
tions such as GAM, MARS and boosted regression trees [Hastie, Tibshirani and
Friedman (2009)]. See Elith et al. (2006) for discussion and comparison of these
and other methods in common use.

In recent years several articles have emerged detailing connections between the
three modeling methods above. Each method takes as its input a presence-only data
set along with a set of background points consisting of a regular grid or random
sample of locations in some geographic region of interest. Warton and Shepherd
(2010) showed that logistic regression estimates converge to the IPP estimate when
the size of the presence-only data set is fixed and the background sample grows
infinitely large. Aarts, Fieberg and Matthiopoulos (2012) additionally described a
variety of models for presence-only and other data sets whose likelihoods may all
be derived from the IPP likelihood. Renner and Warton (2013) further explore the
connection between Maxent and the IPP, taking up the important issue of how we
might check the IPPs modeling assumptions.

Our primary aim in writing this paper is to provide additional clarity to this
topic, recapitulating and deriving the results in a unified framework and extending
them in several directions. We view all three major methods as solutions to the
same parametric density estimation problem.

1.1. Presence-only data. Modeling of species distributions is simplest and
most convincing when the observations of species presence are collected system-
atically. In a typical design, a surveyor visits a one-square-kilometer patch of land
for one hour and records how many specimens she discovers in that interval. The
records of unsuccessful surveys are called absence records, a mild misnomer since
ecologists recognize that specimens could be present but go undetected. A data
set reflecting presence or absence of a species in each sampling unit is called
presence–absence data.

Unfortunately, dedicated surveys recording sampling effort are expensive, espe-
cially for rare or elusive species. For many species of interest, the only data avail-
able are museum or herbarium records of locations where a specimen was found
and reported, for instance, by a motorist or hiker. Typically these presence-only
records are collected haphazardly and frequently suffer from unknown sampling
bias such as that illustrated in Figure 1. The clustering of koala sightings near roads
and cities probably has more to do with the behavior of people than of koalas.

In recent years many such presence-only data sets have become available elec-
tronically, and geographic information systems (GIS) enable ecologists to remotely
measure a variety of geographic covariates without having to visit the actual loca-
tions of the observations. As a result, presence-only data has become a popular
object of study in ecology [Elith et al. (2006)].
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FIG. 1. Sampling bias in presence-only data for koalas. Taken from Margules et al. (1994).

1.2. What should we estimate? Before we can sensibly decide how to model
presence-only data, we must address the issue of what it is we are modeling
in the first place. How should we think of “species occurrence,” the scientific
phenomenon nominally under study? This issue arises with presence-only and
presence–absence data alike.

1.2.1. Occurrence probability. Figure 2 is a typical “heat-map” output of a
study of the willow tit in Switzerland using count data [Royle, Nichols and Kéry
(2005)]. The map reveals which locations are more or less favored by the species
(in this case, high elevation and moderate forest cover appear to be the bird’s habi-
tat of choice). The legend tells us that the color of a region reflects the local prob-
ability of “occurrence.”

But precisely what event has this probability? Reading the paper, we discover
that occurrence means that there is at least one willow tit present on a survey
path through a 1 km × 1 km quadrat of land. In this case, the authors analyze a
presence–absence data set using a hierarchical model that explicitly accounts for
the possibility that a bird was present but not detected at the time of the survey.

Because the survey path length varies across sampling units, the authors use it
in their model as a predictor of presence probability. It is not specified which value
of this predictor is used in generating the heat map, which makes the map difficult
to interpret.
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FIG. 2. Heat map of occurrence probabilities. Taken from Royle, Nichols and Kéry (2005).

Even if we could interpret the heat map as the probability of a bird being present
anywhere in the quadrat (not just along a path of unspecified length), this prob-
ability would still be larger in a 2 km × 2 km sampling unit and smaller in a
100 m × 100 m one. Therefore, the very definition of “occurrence probability” in
a presence–absence study depends crucially on the specific sampling scheme used
to collect the presence–absence data. Consequently, interpreting the legend of such
a heat map can only make sense in the context of a specific quadrat size, namely,
whatever size was used in the study. We would recommend that this information
always be displayed alongside the plot to avoid conveying the false impression
(suggested by a heat map) that occurrence probability is an intrinsic property of
the land, when it is really an extrinsic property.

Though the choice of quadrat size used to define occurrence probability is eco-
logically arbitrary, it can in principle yield estimates with meaningful interpreta-
tions. By contrast, estimating occurrence probability in a presence-only study is a
murkier proposition. Any method purporting to do so without reference to quadrat
size would be predicting the same occurrence probability within a large or small
quadrat, which cannot make sense.

1.2.2. Occurrence rate. Since occurrence probability is only meaningful with
reference to a specific quadrat size, it is a somewhat awkward quantity to model
in a presence-only study. In this context it is more natural to estimate an occur-
rence rate or intensity: that is, a quantity with units of inverse area (e.g., 1/km2)
corresponding to the expected number of specimens per unit area. Under some
simple stochastic models for species occurrence, including the Poisson process
model considered here, specifying the occurrence rate is equivalent to specifying
occurrence probability simultaneously for all quadrat sizes.

Unfortunately, a presence-only data set only affords us direct knowledge of the
expected number of specimen sightings per unit area. The absolute sightings rate
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is reflected in the number of records in our data set, but, at best, this rate is only
proportional to the occurrence rate discussed above, which typically is the real
estimand of interest. We must assume that our sightings only constitute a small
fraction of the species’ population over our study region, possibly with repeated
sightings of the same specimen. Without other data or assumptions we would have
no way of knowing what this constant of proportionality might be.

In other words, the absolute sightings rate is observable but usually not of di-
rect interest, while the absolute occurrence rate is interesting but not observable
without another source of information. Using presence-only data alone, we can at
best hope to estimate a relative, not absolute, occurrence rate. Even assuming that
the sightings and occurrence rates are proportional is optimistic, since it rules out
sampling bias like that in Figure 1, an issue we take up again in Section 2.5.

1.3. Notation. We now introduce notation we will use for the remainder of the
article. We begin with some geographic domain of interest D, typically a bounded
subset of R

2. If the time of an observation is an important variable, we might al-
ternatively take D ⊆ R

3, so that our observations have both space and time coordi-
nates. Associated with each geographic location z ∈ D is a vector x(z) of measured
features.

Our presence-only data set consists of n1 locations of sightings zi ∈ D for
i = 1,2, . . . , n1, accompanied by n0 “background” observations zi for i = n1 +
1, . . . , n1 + n0 (typically a regular grid or uniformly random sample from D). Fi-
nally, let xi = x(zi) be the features for observation i, and yi be a 0/1 indicator that
i is a presence sample. Our treatment of these data as random or fixed will vary
throughout the article.

1.4. Outline. The rest of the paper is organized as follows. In Section 2 we
define the log-linear inhomogeneous Poisson process (IPP) model and its applica-
tion to presence-only data, with special focus on interpreting its parameters and
their maximum likelihood estimates. In particular, the estimate of the intercept α

reflects nothing more than the total number of presence samples and, as such, is
typically not of scientific relevance for the reasons discussed in Section 1.2.2. In
fact, IPP model estimation amounts to parametric density estimation in an expo-
nential family model, followed by multiplication of the fitted density by n1. The
density thus obtained reflects the relative rate of sightings as a function of geo-
graphic coordinates z.

Aarts, Fieberg and Matthiopoulos (2012) showed that many methods in species
distribution modeling can be motivated by the IPP model. We review these connec-
tions and generalize them for several illuminating examples. In Section 3 we con-
sider a particularly important example, showing that the popular Maxent method
of Phillips, Dudík and Schapire (2004) follows immediately from partially maxi-
mizing the IPP log-likelihood with respect to α, a result which is explored further
in Renner and Warton (2013). Hence, given any set of presence and background
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points, the Maxent and IPP methods obtain identical estimates for the slope β̂ and
for the density.

In Section 4 we discuss so-called “naive” logistic regression and its connec-
tions to the IPP model. We derive its likelihood as a conditional form of the IPP
likelihood, but show that if the log-linear model is misspecified this convergence
may not occur until the background sample is quite large. The need for a large
background sample is due not only to variance, but also to bias that persists un-
til the proportion n1/n0 becomes negligibly small. We show, however, that if we
upweight all the background samples by large weight W � 1, we can use logis-
tic regression to recover the IPP estimate β̂ precisely with any finite presence and
background sample. This procedure, which we call “infinitely weighted logistic re-
gression,” is a device for using GLM software to maximize the IPP log-likelihood.
Section 5 recapitulates the relationships and contains discussion.

2. The inhomogeneous Poisson process model. The IPP is a simple model
for a random set of points Z falling in some domain D. Both the number and
locations of points are random. It can be defined by its intensity function

λ : D −→ [0,∞),(1)

which indexes the likelihood that a point falls at or near z. For A ⊆ D, write

�(A) =
∫
A

λ(z) dz(2)

and assume �(D) < ∞.
There are two main ways to formally characterize an IPP with intensity λ. One

simple definition is that the total number of points is a Poisson random variable
with mean �(D) and, conditionally on the number of points, their locations are
independent and identically distributed with density pλ(z) = λ(z)/�(D). That is,
an IPP is an i.i.d. sample from pλ whose size is itself random.3

Alternatively, we can think of an IPP as a continuous limit of an independent
Poisson count model for ever-finer discretizations of D. If N(A) = #(Z ∩ A), the
number of points falling in set A, then

N(A) ∼ Poisson
(
�(A)

)
(3)

with N(A) and N(B) independent for disjoint sets A and B . For more on the IPP
and other point process models, see Gaetan and Guyon (2009) or Cressie (1993).

In the case of a finite discrete domain D = {z1, z2, . . . , zm}, the IPP model re-
duces to a discrete Poisson model, with N(zi) ∼ Poisson(λ(zi)). In this sense, the
IPP model may be seen as a limit of finer and finer discretizations of D. We discuss
this connection further in Section 2.4.

3Cressie (1993) and Aarts, Fieberg and Matthiopoulos (2012) refer to an IPP conditioned on n1 as
a “Conditional IPP”; this is exactly an i.i.d. sample of size n1 from the density pλ(z).
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Warton and Shepherd (2010) proposed modeling species sightings z1, . . . , zn1

as arising from an IPP whose intensity is log-linear in the features x(z):

λ(z) = eα+β ′x(z).(4)

The formal linearity assumption is less restrictive than it seems, since our features
x(z) could include polynomial terms, interactions, splines or other basis expan-
sions, which substantially broaden the space of possible λ(z).

Interpreting the IPP as an i.i.d. sample with random size, we see that α and β

play very different roles. Since α only multiplies λ(z) by a constant, it has no effect
on pλ(z) = λ(z)/�(D). The “slope” parameters β completely determine pλ, while
α scales the intensity up or down to determine the expected sample size �(D).

2.1. Geographic space and feature space. In the context of logistic regression,
it can be more natural to think of the xi as a sample of points in “feature space”
[i.e., the range of x(z)] rather than as the features corresponding to a sample in the
geographic domain D. There is no real distinction between these two viewpoints,
so long as we adjust for the fact that some values of x are more common in D than
others.

Let Ax = {z :x(z) = x} and h(x) = ∫
Ax

1dz. Then if the set Z is an IPP with
intensity λ(x(z)), the corresponding set x(Z) is an IPP with intensity λx(x) =
λ(x) ·h(x) and, conditionally on n1, their distribution is px(x) ∝ pλ(x) ·h(x). For
more detailed discussion see Elith et al. (2011) and Johnson et al. (2006).

2.2. Maximum likelihood for the IPP. The score equations for the log-linear
IPP are simple and enlightening. The IPP log-likelihood in terms of the presence
samples is

�(α,β) = ∑
i:yi=1

(
α + β ′xi

) −
∫

D
eα+β ′x(z) dz − logn1!.(5)

Differentiating with respect to α, we obtain the score equation

n1 =
∫

D
eα+β ′x(z) dz = �(D).(6)

That is, whatever β̂ is, α̂ plays the role of a “normalizing” constant guaranteeing
that λ(z) integrates to n1, the number of total presence records. Hence, if n1 is not
of scientific interest, then neither is α̂.

Solving for α in (6) and ignoring constants, we obtain the partially maximized
log-likelihood

�∗(β) = ∑
i:yi=1

(
β ′xi − log

∫
D

eβ ′x(z) dz

)
= ∑

i:yi=1

logpλ(zi),(7)
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which is the same log-likelihood we would obtain by conditioning on n1 and treat-

ing the zi as a random sample with density pλ(z) = eβ′x(z)∫
D eβ′x(z) dz

.

Finally, differentiating (7) with respect to β and dividing by n1 gives the re-
maining score equations:

1

n1

∑
i:yi=1

xi =
∫

D eβ ′x(z)x(z) dz∫
D eβ ′x(z) dz

= Epλx(z).(8)

Solving (8) amounts to finding β for which the expectation of x(z) under pλ(z)

matches the empirical mean over the presence samples.
Hence, maximum likelihood for a log-linear IPP may be thought of as an algo-

rithm with two discrete steps:

1. Estimate the density pλ: find β̂ for which Ep̂λ
x(z) matches the empirical means

of the presence sample xi .
2. Multiply p̂λ by n1: find α̂ for which λ̂(z) = n1 · p̂λ(z).

Unless n1 is meaningful, then, the IPP is essentially density estimation. In our
view, it is rare that n1 merits much scientific interest, but there are important cases
where it might. For instance, if we are comparing multiple species, study areas or
periods of study, and if we believe that sampling effort is comparable across the
different studies, then comparing the n1 from each data set may teach us some-
thing.

Note, however, that in each of these cases our inference target can be viewed as
a relative intensity across the different data sets. If we wish to make such compar-
isons, the right approach may simply be to expand the survey area D to include
multiple regions or time periods and add region identity or species identity as a
feature, then perform a combined analysis. n1 for the combined analysis (the total
number of sightings across all the different data sets) would then typically not be
of much interest.

2.3. Numerical evaluation of the integral. When we cannot evaluate the inte-
grals in equations (5)–(8) analytically, we replace them with numerical integrals
based on the background samples. Hence, (5) becomes

�(α,β) = ∑
i:yi=1

α + β ′xi − |D|
n0

∑
i:yi=0

eα+β ′xi − logn1!,(9)

where |D| = ∫
D 1dz represents the total area of the region.

The background points may be either a uniform sample from D or a regular
grid. Quadrature weights may also be assigned to the background points to approx-
imate the integral with a weighted sum, instead of the unweighted sum represented
above.
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We could repeat the derivation of Section 2.2 to obtain the criteria

|D|
n0

∑
i:yi=0

eα+β ′xi = n1,

∑
i:yi=0 eβ ′xi xi∑
i:yi=0 eβ ′xi

= 1

n1

∑
i:yi=1

xi.(10)

Throughout, we will refer to (9) as the numerical IPP log-likelihood to distinguish
it from (5). In practice, fitting the IPP means solving (10) for some background
sample.

2.4. Connection to Poisson log-linear model. If the background zi comprise a
regular grid, we can discretize D into n0 pixels Ai , each of roughly the same size
|D|
n0

and centered at zi . If x(z) is continuous, then

�(Ai) =
∫
Ai

eα+β ′x(z) dz ≈ |D|
n0

eα+β ′xi .(11)

The IPP model implies that the counts N(Ai) arise independently via

N(Ai) ∼ Poisson
(
�(Ai)

) ≈ Poisson
( |D|

n0
eα+β ′xi

)
.(12)

Hence, the approximate log-likelihood is

�̃(α,β) = ∑
i:yi=0

N(Ai)
(
α + β ′xi

) − |D|
n0

∑
i:yi=0

eα+β ′xi

(13)
− ∑

i:yi=0

logN(Ai)!.

Let Si = {k : zk ∈ Ai, yk = 1} contain the presence samples in pixel i. Then
∑

i:yi=0

N(Ai)
(
α + β ′xi

) ≈ ∑
i:yi=0

∑
k∈Si

α + β ′xk = ∑
k:yk=1

α + β ′xk.(14)

Hence, the only difference between (9) and (13) is that in the latter we also dis-
cretize the location of each presence sample to match its nearest background point.

Berman and Turner (1992) proposed using this approximation to fit the IPP
model using Poisson GLM software, and Baddeley and Turner (2000) show how to
generalize it to other point-process models including generalized additive models.
This device provides a simple means of accessing the modeling flexibility of GLM
methods at a cost of some loss of data, since it effectively replaces the covariate
vector xi for each presence sample with that of its nearest background sample.

Baddeley et al. (2010) discuss the bias incurred by the discretization, showing in
particular that it vanishes in the small-pixel limit. They also propose a strategy for
improving the bias, which splits pixels into subpixels whose covariates are closer
to constant.
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As we will see later, this discretization is not really necessary. In Section 4 we
propose a different procedure, infinitely weighted logistic regression, that also al-
lows us to fit an IPP model using GLM software but produces exactly the same
estimates we would obtain by maximizing (9) on the original presence and back-
ground data.

2.5. Identifiability and sampling bias. Sampling bias poses a serious chal-
lenge to valid inference in presence-only studies. Scientifically, we are interested in
the occurrence process consisting of all specimens of the species of interest. How-
ever, our data set consists of what we might call the sightings process, consisting
only of the occurrences observed and reported by people.

We can model the sightings process as an occurrence process thinned by in-
complete observation, as proposed by Chakraborty et al. (2011) and Renner and
Warton (2013). That is, suppose that specimens occur with intensity λ̃(z), but that
most occurrences go unobserved. Each occurrence is observed with probability
s(z), which may depend on features of the geographic location z (e.g., proxim-
ity to the road network). If detection is independent across occurrences, then the
observation process is an IPP with intensity

λ(z) = λ̃(z) · s(z).(15)

The trouble is that our presence-only data set only directly reflects λ, the intensity
of sightings, and not λ̃.

Optimistically, we might assume that s is constant (no sampling bias). In that
case, by estimating λ(z) we are also estimating λ̃(z) up to an unknown constant
of proportionality s, so pλ̃ = pλ but λ̃ = λ. Even in this optimistic scenario we
can only estimate relative, not absolute, occurrence intensities. Phillips and Elith
(2013) also elaborate the same point in the context of logistic regression models.

Slightly less optimistically, we might assume that s is an unknown function
of z, but that s and λ̃ are known to depend on z through two disjoint feature sets.
For instance, we could model λ̃ and s as log-linear in features x1(z) and x2(z),
respectively:

λ(z) = λ̃(z)s(z)(16)

= eα̃+β̃ ′x1(z)eγ+δ′x2(z).(17)

Then the sightings process follows the log-linear model λ(z) = eα+β ′x(z) with α =
α̃ + γ , x = (x1

x2

)
and β = (β̃

δ

)
. Note that α̃ and β̃ are the quantities of primary

scientific interest, whereas α and β are the parameters governing the process we
actually observe. Nevertheless, β̃ is still identifiable from the data because β is.4

4As with any regression adjustment scheme, we should proceed with caution here. If our linear

model is misspecified (perhaps we should have included x2
2 ) and x1 is correlated with the missing

variables, even regression adjustment will not remove all bias. In perverse situations it could even
make the situation worse.
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As n0, n1 → ∞, our estimate β̂1 converges to the true value of β̃ , the slope
coefficients of λ̃. However, α̂ will converge not to α̃ but rather to α̃ + γ . Without
knowing γ , we have no way of estimating α̃. By the same token, if some features
appear both in x1 and x2—or if x1 and x2 are not linearly independent—the model
is unidentifiable.

To be concrete, suppose koala occurrence is known to depend only on ele-
vation (x1), and that sampling bias is known to depend only on proximity to
roads (x2). Then, despite the obvious sampling bias in Figure 1, we could still es-
timate what elevations koalas tend to frequent, by making the correct adjustments
for road proximity. By contrast, we could not estimate from presence-only data
alone whether koalas tend to avoid roads, since that is confounded by sampling
bias.

Whether or not s is constant, our estimate for α = α̃+γ carries no real informa-
tion about α̃ unless we have independent knowledge of γ . Indeed, we have already
seen that the only role α̂ plays in estimation is to make λ integrate to n1.

The distinction between β and β̃ may be very important for some problems, but
for the remainder of this article we focus on estimation of β , the slope parameters
of the process we get to observe.

3. Maximum entropy. Another popular approach to modeling presence-only
data, which we will see is equivalent to the IPP, is the Maxent method proposed by
Phillips, Dudík and Schapire (2004). The authors begin by assuming that the pres-
ence samples z1, . . . , zn1 are a random sample from some probability distribution
p(z), called the species distribution.

The authors adopt the view, inspired by information theory, that our estimate
p̂ should have large entropy H(p) = − ∫

D p(z) log(p(z)) dz. Large H(p) means
roughly that p is close to the uniform density 1/|D|, the species distribution we
would observe if the species were indifferent to all geographic features. The idea is
that p̂ should be “nearly geographically uniform,” subject to constraints that make
it resemble the observed data.

Phillips, Dudík and Schapire (2004) propose to choose the p which maximizes
H(p) subject to the constraint that the expectation of the features x(z) under p̂

matches the sample mean of those features, that is,
1

n1

∑
yi=1

xi =
∫

D
x(z)p̂(z) dz = Ep̂x(z).(18)

They show that this criterion is equivalent to maximizing the likelihood of the
parametric exponential family density:

p(z) = eβ ′x(z)∫
D eβ ′x(u) du

.(19)

This is exactly the form of pλ for our log-linear IPP, and its log-likelihood is ex-
actly the partially maximized log-likelihood �∗(β), the log-likelihood for an IPP
conditioned on n1. The constraint (18) is precisely the score criterion (8) for β in
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an IPP, so the Maxent β̂ is the same as the IPP β̂ . This result may also be found in
Appendix A of Aarts, Fieberg and Matthiopoulos (2012).

The popular software package Maxent implements a method slightly more com-
plex than the one originally proposed in 2004. First, it automatically generates a
large basis expansion of the original features into many derived features: quadratic
terms, interactions, step functions and hinge functions of the original features.
Then, it fits a model by optimizing an �1-regularized version of the conditional
IPP likelihood (7):

∑
yi=1

β ′xi − n1 log
(∫

D
eβ ′x(z) dz

)
− ∑

j

rj |βj |.(20)

The regularization parameters rj are chosen automatically according to rules based
on an empirical study of various presence-only data sets [Phillips and Dudík
(2008)].5

Mathematically, the basis expansion increases the dimension of x(z) but
changes nothing else. Moreover, the �1 regularization scheme does not consti-
tute an essential difference with the other methods considered here. One could
(and often should) regularize β when fitting an IPP model as well, especially if
x(z) contains many features resulting from a large basis expansion.

Penalizing the Maxent log-likelihood does not change the equivalence between
the two models, so long as α is left unpenalized. If we add a penalty term J (β) to
the IPP log-likelihood (5), we still obtain (6) after differentiating with respect to α.
Then, partially maximizing �(α,β) − J (β) gives us �∗(β) − J (β), the penalized
Maxent log-likelihood. This equivalence depends on our not penalizing α in (5).

This argument generalizes immediately to a generic penalized likelihood
method with any parametric form for logλ(z). We have established the follow-
ing general proposition:

PROPOSITION 1. Given some parametric family of real-valued functions
{fθ : θ ∈ R

d} with penalty function J (θ), consider the penalized log-likelihood g1
for an IPP with intensity eα+fθ (x(z)),

g1(α, θ) =
( ∑

yi=1

α + fθ (xi)

)
−

∫
D

eα+fθ (x(z)) dz − J (θ) − logn1!(21)

and the penalized log-likelihood g2 for a sample with density ∝ efθ (x(z)):

g2(θ) = ∑
yi=1

fθ(xi) − n1 log
(∫

D
efθ (x(z)) dz

)
− J (θ).(22)

Then θ maximizes g2 iff (α, θ) maximize g1 for some α. The same applies if we
replace the integrals in (21)–(22) with sums over the background sample.

PROOF. Partially maximize g1 over α as in (7) to obtain g2. �

5The notation of the Maxent papers uses λ and β to denote what we call β and r , respectively.
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Thus, we see that, while Maxent and the IPP appear to be different models with
different motivations, they result in the exact same density estimate p̂λ(z). In terms
of the two-step algorithm we derived in Section 2.2, Maxent is identical to step 1,
but it skips step 2. The IPP fit λ̂ is n1 times the Maxent fit p̂.

4. Logistic regression. Another ostensibly different model for presence-only
data is so-called “naive” logistic regression, which casts presence-only modeling
as a problem of classifying points as presence (y = 1) or background (y = 0) on
the basis of their features. The logistic regression model treats n1, n0 and the xi as
fixed and the yi as random with

P(yi = 1|xi) = eη+β ′xi

1 + eη+β ′xi
.(23)

Superficially, this approach may appear ad hoc and unmotivated compared to
IPP or Maxent. Nevertheless, it has enjoyed some popularity, in part because lo-
gistic regression is an extremely mature method in statistics, enjoying myriad well-
understood and already-implemented extensions such as GAM, MARS, LASSO,
boosted regression trees and more.

Logistic regression modeling of presence-only data has often been motivated
by analogy to logistic regression for presence–absence data. Since it is not known
whether the species is present at or near the background examples, these are some-
times referred to as “pseudo-absences,” and the supposed naivete of the method is
that it appears to treat background samples as actual absences. For instance, Ward
et al. (2009) introduced latent variables coding “true” presence or absence and
proposed fitting this model via the EM algorithm.

This interpretation raises once again the troublesome question of what it would
mean for one of our randomly sampled background points to be a “true presence.”
Need there be a specimen sitting directly on the location, or is it enough for it to
be within 100 m? 1 km?

Fortunately, we can sidestep these concerns, since connections between the lo-
gistic regression and IPP models yield a more straightforward interpretation.

4.1. Case-control sampling. Suppose the background data are a uniform ran-
dom sample, and the presence data arise from a log-linear IPP. Then if we condition
on n1, the zi are a mixture of two i.i.d. samples, one from density eα+β ′x(z)/�(D)

and the other from density 1/|D|. By Bayes’ rule, for a random index i,

P(yi = 1|zi) = P(yi = 1)P(zi |yi = 1)

P(yi = 0)P(zi |yi = 0) + P(yi = 1)P(zi |yi = 1)
(24)

= n1e
α+β ′xi /�(D)

n0/|D| + n1eα+β ′xi /�(D)
(25)

= eη+β ′xi

1 + eη+β ′xi
,(26)
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with eη = n1e
α |D|

n0�(D)
. Since P(yi = 1|zi) depends only on xi = x(zi), we could just

as well condition on xi instead, giving (23). Therefore, if the log-linear IPP model
is correct, it implies the individual yi |xi follow a logistic regression with the same
slope parameters β .6

Thus, given any finite sample of presence and background points, if we believe
in the IPP model, then we could either maximize the numerical IPP likelihood or
the logistic regression likelihood, and in either case we would be estimating the
same population parameter β . This does not guarantee we will obtain the same
estimates β̂ in any given finite sample, but if the model is correct, then either
method gives a consistent estimator of β .

Note that if we change the marginal class ratio n1/n0 by some factor ec, the
only effect will be to multiply the odds of yi = 1 given xi by the same factor, that
is, add c to η and leave β unchanged. Hence, under correct specification, β̂ → β

regardless of the limiting ratio n1/n0.

4.2. Case-control sampling under misspecification. Now, suppose that λ(z) is
not really log-linear in our features x. Then, the fitted slopes β̂ for logistic regres-
sion and the numerical IPP will not converge to the same limiting β if n1 and n0
grow large together. In fact, the limiting logistic regression parameters depend on
the limiting ratio of n1/n0 [Xie and Manski (1989)].

To gain some intuition for why this is so, suppose we have a single covariate x,
with λ(z) = eα+x(z)2

. Then the derivation of (24)–(26) gives

P(yi = 1|xi) = eη+x2
i

1 + eη+x2
i

(27)

with η as before. In the large-sample limit, then, our estimation problem amounts
to finding η̂, β̂ for which

η̂ + β̂x ≈ η + x2 = log
n1|D|

n0�(D)
+ x2(28)

in the population from which we are sampling. Now, since changing n1/n0 only
adds a vertical shift to the right-hand side of (28), it may seem rather counterintu-
itive that this should have any impact on the slope β̂ of our approximation on the
left-hand side.

To understand why, we must come to grips with the sense in which we make the
approximation in (28). The logistic regression log-likelihood is

�LR(η,β) = ∑
i

(
η + β ′xi

)
yi − ∑

i

log
(
1 + eη+β ′xi

)
.(29)

6The yi are technically not conditionally independent (if we knew the other n1 +n0 − 1 labels, we
would know the last as well). This is always true in case-control studies, but it is typically ignored
since the dependence is weak for large samples.
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FIG. 3. The dashed red curve in the left panel is a vertical shift of the solid black curve. However,
vertically shifting the log-odds changes the conditional probability in a more complex way.

Its first derivatives with respect to η and β can be written in terms of the fitted
conditional probabilities ŷi(η, β) = Pη,β(y = 1|x = xi):

∂�LR

∂η
= ∑

i

(
yi − eη+β ′xi

1 + eη+β ′xi

)
= ∑

i

(yi − ŷi ),(30)

∂�LR

∂β
= ∑

i

xi

(
yi − eη+β ′xi

1 + eη+β ′xi

)
= ∑

i

xi(yi − ŷi).(31)

If we define ri = yi − ŷi , then η̂, β̂ maximize the likelihood if and only if
∑

i ri = 0
and x ⊥ r . The crucial point is that the residuals of our approximation, yi − ŷi , are
measured on the probability scale, and not the log-odds scale.

The black and red curves in the left panel of Figure 3 show the conditional log-
odds log P(yi=1|xi=x)

P(yi=0|xi=x)
for our misspecified model with two different values of η,

0 and −8, respectively. On the log-odds scale, one is no steeper than the other.
But when we look at the same two curves on the conditional probability scale
(right panel), now the red looks steeper than the black. This is due to a “ceiling”
effect for the black curve: in the region where the log-odds x2 is changing fast, the

probability ŷ = ex2

1+ex2 has already saturated at 1. The actual estimates of η̂ and β̂

depend on the background density of x as well as n1/n0; see Section 4.5 for a full
simulation.

As Warton and Shepherd (2010) prove, this ceiling effect vanishes in the limit

where n1/n0 → 0; in that case η̂ → −∞, ŷi = eη̂+β̂

1+eη̂+β̂
≈ eη̂+β̂ , and the logistic

regression and IPP estimates are identical. Hence, there is no difference when the
background sample grows so large that it dwarfs the presence records in the popu-
lation from which we are sampling. Dorazio (2012) considers a similar framework,
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called the case-augmented design, and proves a similar equivalency to the IPP as
n0 → ∞.

4.3. Infinitely weighted logistic regression. If we modify the logistic regres-
sion procedure a bit, we can resolve the discrepancy in the previous section and
recover the same β̂ that we would estimate with an IPP using the same presence
and background samples.

We can remove the ceiling effect of the previous section if we add case weights
to the samples

wi =
{

W, yi = 0,
1, otherwise,

(32)

for some large number W . We then obtain the weighted log-likelihood

�WLR(η,β) = ∑
i

wi

[
yi

(
η + β ′xi

) − log
(
1 + eη+β ′xi

)]
(33)

= ∑
i:yi=1

η + β ′xi − ∑
i

W 1−yi log
(
1 + eη+β ′xi

)
.(34)

PROPOSITION 2. Let J (β) be any convex penalty, and suppose �IPP(α,β) −
J (β) has a unique maximizer (α̂IPP, β̂IPP). Then if (η̂W , β̂W ) maximize �WLR(η,

β) − J (β) for weight W ,

lim
W→∞ β̂W = β̂IPP.(35)

PROOF. Reparameterizing (33) with α = η+ log(Wn0/|D|) and ignoring con-
stants, we obtain

�WLR(α,β) = ∑
i:yi=1

α + β ′xi − ∑
i:yi=0

W log
(

1 + |D|
Wn0

eα+β ′xi

)

(36)

− ∑
i:yi=1

log
(

1 + |D|
Wn0

eα+β ′xi

)
.

Fixing (α,β) and taking W → ∞, each term in the second sum converges to
|D|
n0

eα+β ′xi while the third sum converges to 0. Hence, ignoring constants, (36)
converges to the numerical IPP log-likelihood (9), and this convergence occurs
uniformly on compact subsets of the parameter space.

Now, both �WLR(α,β)−J (β) and �IPP(α,β)−J (β) are concave, and the latter
is strictly concave by assumption; hence, the maximizer of the first converges to
the maximizer of the second. �

From the above, we see that IWLR is not really a new statistical method,
but rather a technical device for optimizing the IPP/Maxent log-likelihood using
already-implemented GLM software.
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Although technically β̂W = β̂IPP for any finite W (hence the name “infinitely
weighted”), in practice, we only need W large enough that the approximation of
�WLR(α,β) to �IPP(α,β) is good near (α̂, β̂).

Essentially, if |D|
Wn0

eα+β ′xi ≈ 0 for each i (say, all are less than 0.001), then the
Taylor approximation should be good. We can assess this easily if we observe that

ŷi = |D|eα̂+β̂ ′xi /(Wn0)

1 + |D|eα̂+β̂ ′xi /(Wn0)
≈ |D|

Wn0
eα̂+β̂ ′xi ,(37)

when all of the above are small. To rephrase, then, if maxi ŷi from the logistic
regression is less than 0.001 or so, it seems to us that W should be sufficiently
large. If not, we can set W ← maxi ŷi

0.001 W and check that the fitted ŷi are now small
enough. If any uncertainty remains whether W is large enough, one can always
increase it by (say) another factor of 100 and check that the estimates do not change
appreciably.

4.4. Logistic regression as density estimation. One interpretation of the re-
sults we have just reviewed is that in the context of presence-only data, logistic
regression solves the same parametric density estimation problem as Maxent and
the IPP do. Moreover, our infinitely weighted logistic regression yields an identical
estimate of the density.

Using logistic regression for density estimation has been proposed before. For
example, Hastie, Tibshirani and Friedman (2009) discuss it as a means for turning
an unsupervised density estimation problem into a supervised classification prob-
lem. Their proposal uses a different weighting scheme (assigning half the total
weight to the presence samples) which, unlike infinitely weighted logistic regres-
sion, does not give exactly the IPP solution.

4.5. Simulation study: Weighted vs unweighted logistic regression. We have
seen that both infinitely weighted logistic regression (a.k.a. numerical IPP) and un-
weighted logistic regression estimate the same β parameter of the same log-linear
IPP model, and when the background sample is much larger than the presence
sample the estimates β̂ are close to each other.

However, the infinitely weighted logistic regression estimate can converge much
faster to the large-background-sample limit if the linear model is misspecified, as
we illustrate here with a simulation study.

Consider a geographic region with a single covariate x whose background den-
sity is p0(x) = N(0,1). Now, suppose a species follows our log-linear IPP model
with slope β , so that λ(x(z)) ∝ eβx . Then the density of presence samples in fea-
ture space is p1(x) = eβxp0(x)/(

∫
eβup0(u) du) = N(β,1).

Suppose our species is in fact a mixture of two subspecies, one of which com-
prises 95% of the population and prefers x large, while the remaining 5% prefer x
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FIG. 4. Large-sample estimates for the simulation study, misspecified case. The black curves rep-
resent the true presence density (left panel) and intensity (right panel). The blue and red curves show
the fitted densities using IWLR and standard logistic regression with n0 = n1.

small. If each subspecies follows our model with coefficients 1.5 and −2, respec-
tively, then

λ(x) ∝ 0.95e1.5x + 0.05e−2x,(38)

which no longer follows the log-linear model. p0(x) and p1(x) are depicted in
the upper panel of Figure 4 as the dashed and solid black lines. The black line
in the left panel shows λ(x) = p1(x)/p0(x), the relative intensity as a function
of the covariate x. In the left panel all the curves have been normalized so that
�(D) = ∫

λ(x)p0(x) dx = 1.
If we fit an infinitely-weighted logistic regression (or, equivalently, a log-linear

IPP) to a large presence and background sample, our fitted β̂(IWLR) will tend to
μ1 = Ep1(x) = 1.325. We have plotted the corresponding large-sample estimates

λ̂(IWLR)(x) and p̂
(IWLR)
1 (x) as blue lines in the respective panels of Figure 4.

If, alternatively, we fit an unweighted logistic regression to the same data set
with large n0 = n1, the estimate β̂(LR) will tend to roughly 1.04. The resulting
large-sample estimates p̂

(LR)
1 (x) and λ̂(LR)(x) are plotted in red.

If we fit an unweighted logistic regression to a large sample with a different
ratio n1/n0, we would get a different estimate, which would tend toward the IPP
estimate of 1.325 if and only if this ratio tended to 0. By the same token, when n1
and n0 are fixed, the ratio between them can play a significant role in determining
the estimated β . In contrast, the IWLR/IPP estimate tends to 1.325 in large samples
no matter what the ratio n1/n0.

The left panel of Figure 5 illustrates this with a simulation study of the example
just discussed. We first generate a single presence sample of size n1 = 3000 from
this species, then generate 20 sets of n0 background samples from p0 = N(0,1)

for each of a range of values n0 ranging from 103 to 106.
For each background sample, we fit both an “infinitely” weighted (W = 104)

and unweighted logistic regression to the combination of presence and background
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FIG. 5. β̂ estimates for simulation study with n1 = 3000 and varying n0. Unweighted logistic
regression may require a very large background sample before convergence when the model is mis-
specified.

points. For relatively large sizes of background sample, there is very little sam-
pling variability, but the logistic regression estimates carry a large bias that de-
pends greatly on the size of the background sample. The limiting β̂ , to which both
methods would converge given an infinite background sample, is depicted with a
horizontal line.

In the right panel, we repeat this study with a presence sample from N(μ1,1),
the correctly-specified model with the same mean as our misspecified model. Now
the situation is very different; no matter what the mix of presence and background

samples, the log-odds are truly linear with slope β = μ1. Consequently, β̂(LR) p→ β

as n0 → ∞ and n1 → ∞, regardless of the limiting ratio n1/n0.
Since the choice of background sample size is primarily a matter of conve-

nience, it is preferable to use an estimator that depends on it as little as possible.
When the linear model is misspecified (which is nearly always the case), we rec-
ommend the infinitely weighted logistic regression over unweighted logistic re-
gression for this reason.

We emphasize here that although IWLR resolves the issue of bias that we dis-
cussed in Section 4.2, using IWLR does not guarantee that we will obtain a good
estimate for small n0. The smaller n0 is, the larger the variance of our estimate, so
a larger background set is always better unless computational constraints apply.

What is more, the variability in our estimate due to the background sample is
not reflected in the default standard error outputs from GLM software—only the
variability due to the presence records is. Because �IWLR(α,β) ≈ �IPP(α,β) for
large W , its Hessian will also converge to the Hessian of the IPP.

Even if our background sample was extremely large, the standard error esti-
mates for any of the models we have discussed are based on asymptotic normal
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approximations that hold when the log-linear model is correctly specified. Re-
sampling methods such as the bootstrap are more generally reliable, but even the
bootstrap will depend crucially on the assumption that presence records (and in
the case of logistic regression, background records) are independent observations.
In terms of the IPP model, this assumption rules out spatial clustering of presence
records. Renner and Warton (2013) provide evidence that this assumption may not
hold for presence-only data. Therefore, model-based estimates of standard error
should be viewed with suspicion no matter what method we choose.

5. Discussion. We have discussed several closely related models for a single
presence-only sample. In this section we collect them all in one place and review
their relationships:

Inhomogeneous Poisson process. The “mother” model, from which the others
can be derived, is the inhomogeneous Poisson process (IPP), whose log-likelihood
is

∑
i:yi=1

(
α + β ′xi

) −
∫

D
eα+β ′x(z) dz.(39)

In practice, (39) is approximated numerically via

∑
i:yi=1

(
α + β ′xi

) − |D|
n0

∑
i:yi=0

eα+β ′xi .(40)

Fitting this model amounts to solving for the density pλ(z) ∝ eβ ′x(z) for which the
expected features Epλx(z) match the empirical mean 1

n1

∑
i:yi=1 xi , then multiply-

ing that density by n1.
Maxent. Conditioning on n1, we obtain the exponential family density model

p(z) ∝ eβ ′x(z), resulting in the log-likelihood

∑
i:yi=1

β ′xi − n1 log
(∫

D
eβ ′x(z) dz

)
(41)

or its numerical counterpart. This is the log-likelihood maximized by Maxent, and
it corresponds exactly to the log-likelihood (39) partially maximized with respect
to α. Hence, both procedures give exactly the same estimates of β and p.

Logistic regression. The logistic regression log-likelihood is∑
i

yi

(
η + β ′xi

) − log
(
1 + eη+β ′xi

)
.(42)

When the log-linear IPP model is correctly specified, this model is as well (aside
from the fact that the yi |xi are only approximately independent), with the same
true β as in the IPP model. However, in finite samples the estimates for β given by
maximizing (42) instead of (40) may be substantially different.
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Infinitely weighted logistic regression. We can resolve this difference by up-
weighting all the background points by W � 1, obtaining weighted log-likelihood∑

i:yi=1

(
η + β ′xi

) − ∑
i

W 1−yi log
(
1 + eη+β ′xi

)
.(43)

In the limit where W → ∞, we recover exactly the same β̂ as we would by maxi-
mizing (40).

Discretized Poisson LLM. Another means for approximating the IPP log-
likelihood with a GLM log-likelihood is the Berman and Turner method, which
simply discretizes geographic space into pixels and assigns each presence point to
a bin belonging to its nearest background point:

∑
i:yi=0

N(Ai)
(
α + β ′xi

) − 1

n0

∑
i:yi=0

eα+β ′xi .(44)

This discretization of presence features is unnecessary given that we can exactly
fit the IPP likelihood using the infinitely weighted approach of (43).

5.1. Extending the IPP model. Logistic regression is one of the most widely
applied methods in statistics. For decades, applied statisticians have been devel-
oping, studying and using variations on logistic regression to solve classification
problems in statistics. R packages exist for fitting generalized additive models
(GAMs), boosted regression trees, MARS and every manner of tailored regular-
ization schemes [see, e.g., Hastie, Tibshirani and Friedman (2009)].

All of these methods are well understood within the context of logistic regres-
sion. We believe that the most important practical implication of the finite-sample
equivalence between the IPP model and infinitely weighted logistic regression is
that all of these methods can now be equally well understood and easily applied
within the context of the IPP model.

For instance, we can fit an IPP / Maxent version of boosted regression trees with
the following single line of R:
boosted.ipp <- gbm(y~., family=‘‘bernoulli,’’
data=dat, weights=1E3^(1-y)).
For an IPP / Maxent version of LASSO, ridge, or the elastic net:7

lasso.ipp <- glmnet(dat.x, dat.y, family=‘‘binomial,’’
weights=1E3^(1-y)).
For an IPP GAM:
gam.ipp <- gam(y~s(x1)+x2, family=binomial, data=dat,
weights=1E3^(1-y)).

This added flexibility promises to provide a powerful tool to modelers of
presence-only data.

7The user should be warned that glmnet automatically re-normalizes the weights so they sum to
n0 + n1. To avoid issues, set glmnet.control(pmin=1.0e-8, fdev=0) in your R session,
and keep in mind this renormalization when setting the Lagrange parameter λ.
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5.2. Model selection. Regardless of which of the various related likelihoods
we choose, there remains the issue of model selection. With the use of geographic
information systems, ecologists often have access to a large number of predictor
variables and may wish to winnow the field before modeling to avoid overfitting.
Conversely, if some continuous variables are known to be important predictors,
assuming a linear effect on the log-intensity may be too restrictive, and we may
wish to expand the basis using splines, interactions, wavelets, etc. In either case,
regularization may be called for.

Though it would be impossible to give a full treatment here of the many impor-
tant considerations governing model selection, we note that these choices need not
be governed by which likelihood we take as our starting point. In particular, the
large set of derived features and �1 regularization used by Maxent software can
just as well be applied to the IPP model or, for that matter, to logistic regression.
Using the infinitely weighted logistic regression method, we can implement the
exact loss function used by the Maxent with software for penalized GLMs.
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