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This paper is concerned with statistical methods for the segmental classi-
fication of linear sequence data where the task is to segment and classify the
data according to an underlying hidden discrete state sequence. Such anal-
ysis is commonplace in the empirical sciences including genomics, finance
and speech processing. In particular, we are interested in answering the fol-
lowing question: given data y and a statistical model m (x, y) of the hidden
states x, what should we report as the prediction x under the posterior dis-
tribution 7 (x|y)? That is, how should you make a prediction of the underly-
ing states? We demonstrate that traditional approaches such as reporting the
most probable state sequence or most probable set of marginal predictions
can give undesirable classification artefacts and offer limited control over the
properties of the prediction. We propose a decision theoretic approach us-
ing a novel class of Markov loss functions and report X via the principle of
minimum expected loss (maximum expected utility). We demonstrate that the
sequence of minimum expected loss under the Markov loss function can be
enumerated exactly using dynamic programming methods and that it offers
flexibility and performance improvements over existing techniques. The re-
sult is generic and applicable to any probabilistic model on a sequence, such
as Hidden Markov models, change point or product partition models.

1. Introduction. This paper is concerned with statistical methods for the seg-
mental analysis of linear sequence data where the task is to segment and classify
data according to an unobserved discrete state sequence. Such analysis is common-
place in the empirical sciences including genomics [Day et al. (2007), Majoros,
Pertea and Salzberg (2004), Su, Balding and Coin (2008)], finance [Banachewicz,
Lucas and van der Vaart (2008), Chopin and Pelgrin (2004), Giampieri, Davis and
Crowder (2005), Rossi and Gallo (2006)] and speech processing [Chien and Furui
(2005), Weiss and Ellis (2008), Yan et al. (2007)]. In particular, we are interested in
answering the question: given data y and a statistical model 7 (x, y) of the hidden
states x, what shall we report as the prediction x?

In this paper we formalise the segmental classification problem within a
Bayesian decision theoretic framework. We propose a new class of Markov loss
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function that penalises the misclassification of state occupancy and transitions
which are errors of direct relevance in many segmental classification problems.
Under the Markov loss function, the state sequence with minimum expected loss
(or maximum expected utility) can be enumerated using dynamic programming
methods and can provide a simple, yet effective, means of reporting for many pre-
existing statistical models of linear sequence data.

Note that throughout we will make a clear distinction between the modeling
task, which involves designing and fitting the best possible statistical model for
m(x,y), and the prediction task, that we address here, which involves finding a
procedure to obtain a segmental prediction upon which actions are taken.

2. Application. Our motivating application is the problem of identifying
DNA copy number alterations from modern high-throughput genomic technolo-
gies: array comparative genomic hybridisation (aCGH), single nucleotide poly-
morphism (SNP) genotyping data or next generation sequencing (NGS). Copy
number alterations are segments of DNA that occur at variable copy number rel-
ative to a reference genome. In humans, we typically possess two copies of every
gene, one inherited from each of our parents. However, in genomic regions con-
taining copy number alterations, it is possible to have less than two copies, in
which case that region is said to harbour a copy number loss or deletion, or more
than two copies, where the region is then said to contain a duplication. In rare
genetic disorders, whole or partial copies of entire chromosomes can be lost or
gained; for example, Downs Syndrome is caused by the gain of an extra copy of
chromosome 21. Our particular interest lies in copy number profiling of genomi-
cally complex cancers where copy number alterations can arise due to mutations
that disrupt the normal function of DNA repair and chromosome segregation dur-
ing cell division.

As an illustration, Figure 1 depicts a SNP genotyping data set that measures
variation in DNA copy number along a particular chromosome from DNA derived
from tumour cells. The statistical problem is to divide the sequence into regions
and to classify each region by the underlying DNA copy number. This task is
typically made substantially more challenging in cancer due to confounding fac-
tors such as aneuploidy, intra-tumour heterogeneity and normal cell contamination.
These issues are reviewed and discussed in Loo and Campbell (2012). Genome-
wide profiling of copy number alterations in cancers [Beroukhim et al. (2010),
Bignell et al. (2010), Curtis et al. (2012), Knight et al. (2012), Northcott et al.
(2002)] have typically employed the use of a variety of statistical approaches for
generating copy number profiles [Carter et al. (2012), Greenman et al. (2010), Li
etal. (2011), Loo et al. (2010), Popova et al. (2009), Yau et al. (2010)].

A popular class of methods is based on the use of Hidden Markov models where
the hidden state is used to denote the unknown copy number at a particular loca-
tion. Copy number sequence predictions are then reported by finding the most
probable state sequence using the Viterbi algorithm or the most probable set of
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FI1G. 1. Example: SNP genotyping data. A SNP genotyping data comprises two sets of measure-
ments—the Log R Ratio and the B allele frequency-measured at multiple locations along the genome.
Alterations in the distributions of the measurements correspond to underlying changes in the DNA
copy number. Each coloured region corresponds to a different underlying DNA copy number state.

marginal predictions using the forward—backward algorithm. A potential limita-
tion of discrete models, such as the HMM, for cancer analysis is the possibility
of cellular heterogeneity in tumour samples. This can be problematic for aCGH
data, as differences in signal intensity level may correspond to cell-to-cell varia-
tion rather than actual copy number changes. With SNP arrays the availability of
allele-specific intensity data can mitigate the problem. Statistical models [Carter
et al. (2012), Li et al. (2011), Loo et al. (2010), Popova et al. (2009), Yau et al.
(2010)] have been developed that modeled the structure of allele-specific signals
that results from certain types of cellular heterogeneity.

With modern high-density microarrays and next generation sequencing data it
is possible to reveal many hundreds of structural aberrations within a single tu-
mour. These aberrations can range in size from large, whole or partial chromoso-
mal gains and losses to small focal aberrations affecting potential driver mutations
(oncogenes and tumour suppressors). Current state-of-the-art methods can report
accurate copy profiles but can lead to practical problems: a collection of lengthy,
unmanageable lists of genomic alterations that must be screened by cancer biolo-
gists. In this paper, we will show that our decision-theoretic methods can be used
to augment existing models and provide increased flexibility for sequence classifi-
cation. We demonstrate the utility of these methods as a means to report smoother
copy number profiles that retain key copy number alterations while having reduced
overall complexity.

3. Motivation.
3.1. Decision theory. We begin by defining some notation. Let x; € {0, ..., S}

denote the true unobserved underlying state at the i = 1, ..., n locations, and y;
the corresponding observation. The task is to obtain a prediction x = {X1, ..., X,}
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given a statistical model 7 (x|y) [for notational simplicity, we shall suppress the
conditioning on y in the following and refer to 7 (x|y) as 7w (x)].

Bayesian decision theory [Berger (1985), Bernardo and Smith (2000)] provides
an axiomatic framework for making optimal decisions via the principle of mini-
mum expected loss (or maximum expected utility). In our problem the “decision”
is the reporting of x from which a set of actions will be taken with associated
losses based on the unknown true state of nature x. We encapsulate the forms of
error into a loss function /(x|x) which quantifies the loss of taking actions with x
when the true state of nature is x. The principle of minimum expected loss (MEL)
prescribes one should report x as

% = argmin Ey ) [[(X]x)],

= argmin Zl(i |x)7(x).

3.2. Standard summaries for segmental classification. Two summary predic-
tions that are often used for x are as follows: (i) the most probable sequence
X = argmax, 7 (x) (MAP) or (ii) the set of marginally most probable classifica-
tions (MaxMarg), X; = arg max,, Zx_i ({x;,x—;}) where the summation is over
x_;, the state sequence other than x;. From a decision theoretic perspective, it is
interesting to note the corresponding loss functions that would motivate the use of
these summaries.

In the case of the MAP sequence, the implicit loss function is the following:

A 0, ifx=ux,

@D lo(xlo) = { 1, otherwise.

We shall refer to this as the global loss function, as a constant penalty is incurred
if the prediction is not completely correct. This loss function is extreme in the
sense that no matter how many misclassification errors are made, the same penalty
is incurred, that is, it is an “all-or-nothing approach.” Furthermore, for this loss
function the entirety of the sequence is important, the optimal prediction must be
globally and locally correct.

For the MaxMarg sequence, the implicit loss function assumed is as follows:

[R]x) =) I (Rilx),

with
0, if )%l- =X,

3.2 I (Xilx;) =
(3-2) p (i) {FC, otherwise,

where FC is the cost of making a false classification. We shall refer to this as the
marginal loss function.
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FI1G. 2. Sequence predictions. An example data set (a) and four predictions of the underlying state
sequence (b)—(e). (Grey, solid) Predicted and (Black, dashed) true state sequence.

In contrast to the global loss function, the marginal loss function ignores any
form of local or global structure. It concentrates instead on penalising classification
error at each location considered independently of others, which is equivalent to
stating that the overall loss is invariant to permutations of the sequence {x;, x;}7_,.
As a result, if we consider the simulated data sequence in Figure 2(a) which con-
tains a region of elevated signal related to an underlying change in the hidden
state, the predictions shown in Figure 2(b)—(e) which contain the same number of
misclassifications may incur the same loss under the marginal loss function even
though each prediction is qualitatively very different and may contain a different
number of predicted segments that could lead to quite different actions if decisions
are taken upon them. It is clear, therefore, that simply counting the number of state
misclassifications is insufficient.

3.3. Limitations of standard summaries. These two commonly used loss func-
tions correspond to quite opposite extremes and neither scenario seems appropriate
in segmental classification problems. For example, in many situations it is unusual
for classification errors to be completely intolerable, instead there are acceptable
tolerance levels for error. Under these circumstances it would not be appropriate to
use the global loss function in which the same penalty is incurred irrespective of
how many errors are made in the prediction. Moreover, there is no flexibility with



DECISION-THEORETIC APPROACH FOR SEGMENTAL CLASSIFICATION 1819

the global loss and the user cannot explore other predictions with fewer or greater
number of transitions. Furthermore, if we are interested in segmental classification
and we expect dependencies between states at different locations, it does not seem
appropriate to use a marginal loss function that considers classification error at
each location independently of the others.

Nonetheless, the appeal of these loss functions is that the computation of the
state sequence with minimum expected loss is often analytically tractable or simple
to approximate with commonly used statistical models. For example, in Hidden
Markov models, the Viterbi algorithm allows the most probable sequence to be
enumerated exactly while the forward-backward algorithm allows the marginal
probabilities 7 (x;) = }_, . 7 (x) with computational time complexity that is linear
in the length of the data sequence [Rabiner (1989)].

4. Method.

4.1. Markov loss function. We now introduce a loss function for segmental
classification that penalises incorrect state classifications and transitions:

n n—1
IMLE[X) =Y I Gilx) + ) I Fiiv|Xiiv),
i=1 i=1
where x; ;41 denotes the pair {x;, x;4+1}. We refer to this as the Markov loss func-
tion. This loss function extends the marginal loss function /j;(X|x) to include
penalty terms on state transition errors /7 (X; ;+1|x; i+1) as follows:

FT, if X; # Xip1, Xi = Xiyq1,
IT (X i+11xii+1) = | FH, if X =Xit1, X #Xi41,
0, otherwise,

where for exposition we assume a common cost of error irrespective of the actual
state.

The Markov loss function contains three parameters: (i) FC (False Call)—cost
of a state classification error, (i1) FT (False Transition)—the cost associated with
calling a false state transition and (iii) FH (False Hold)—the cost of incorrectly
staying in the same state. In the special case when FT = FH = 0, the Markov loss
function reduces to the marginal loss function which forms a subclass of our more
general loss function. An example pairwise loss function for a binary state problem
is shown in Table 1.

4.2. Calculating the expected loss under the Markov loss function. Under the
Markov loss function, the expected loss is given by

n n—1
B [[(X]x)] = Z[mexa + Y I (Fiis |x,-,,-+1>}n(x>,

X Li=l1 i=1
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TABLE 1
Cost matrix structure for binary state transition

X
v (X[x) 0,0) 0, 1) 1,0) 1,1
F (0,0) 0 FH FC + FH FC
©, 1) FT 0 FC +FT FC + FT
(1,0) FC +FT FC + FT 0 FT
(1,1 FC FC + FH FH 0

where, by exchanging the order of summation,

n n—1
Er[[E0)] =D InGilx)m ) 4+ Y- D> I Giiget i) (i i)

i=1 X i=1%iit1
n n—1

=Y Exop[lmGis 0] + D B o I Gt xi,i4D)],
i=1 i=1

where Ky (v [Iy (Xix;)] and Eg ;) [I7 (Xi i+1x:,i+1)] are the expected posterior
marginal state and switching losses, respectively.

4.3. Dynamic programming. As the expected loss for the Markov loss func-
tion is additive, the prediction X that has MEL can be found using the following
dynamic programming recursions (in similar fashion to the Viterbi algorithm):

4.3.1. Forward recursion. Compute
¢1(k) = mjin)/(fl,z = (j, b)),
§1(k) = argmjiny(i],z =(J, k),
where k € {0, ..., S}, and then fori =2,...,n,
¢i(k) = mjin[¢i—1(j) +y(&ii-1 =, 0)],
8i(k) = argrnjin[qb,-_l(j) +y(Eiic1 =, k)],
where y (X;i—1) = >y, I (Kilxi) 7w (xi) + 22y, Ir (i i—1|xii—1) 7w (xii—1)-

4.3.2. Backward trace. Find X, = argming ¢, (k), then x;_1 = 8;(X;),i =n —
1,...,2.
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4.4. Computational requirements. The order of computation required is
(’)(S4N ), where S is the number of states and N is the sequence length, since
a summation is required over all possible pairs of the true hidden states x; ;1 and
predictions X; ;1. This can be prohibitive for applications involving large state
spaces but is computationally manageable for smaller state spaces. In practical
situations, though, it is often the case that the posterior probability distribution
assigns high probabilities to a few transitions while the remainder have negligible
probability. For data exhibiting sparse properties, these features can be exploited
in order to derive approximate algorithms for inference in Hidden Markov models
[see Siddiqi and Moore (2005)] that can offer substantial computational gains at
the expense of little error if the assumption of sparseness holds.

4.5. Uncertainty in the statistical model. We have assumed throughout the
availability of the exact statistical model 7 (x|y). In general, of course, it is rare
in practice to have access to the exact statistical model and instead the model is
known up to a form 7 (x, 8|y) that includes some unknown model parameters 6.
The prediction must then satisfy

b3 :argmjn/o[z l(i|x)n(x,9|y)] de

xeX

=argmin Y _ [(¥]x)7 (x]y)
Y oxex

~argmin | [(F]0)7 (x]y),
Y oxex
where, in the second line, the independence of the loss function and the model
parameters allow 6 to be integrated out of the model 7 (x, 8|y) and the problem
is reduced to the same form as before. The integral required will generally be
analytically intractable and an estimate 77 (x|y) must be used that can be obtained
using Monte Carlo simulations, variational methods or by conditioning on point
estimators (such as the MAP).

4.5.1. Connections to the discrete Fused Lasso method. Motivated by a sim-
ilar problem to the one we consider here, Zhang et al. (2010) adopted a dynamic
programming imputation method, based on a discrete version of the Fused Lasso
prior, to penalise state transitions. The objective function being minimized has the
general form

n n
= argrr}vin|:2g(xi; v, 0)+ KZ(I - 5x,|,x,):|a

i=1 i=2

where g(x;; y,0) is a cost term related to data fidelity, for example, the nega-
tive log-likelihood —log f (yi; x;, 8), A is a Lasso penalty for state transitions and
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dx;_,.x; 1 the Kronecker delta function. Note that Zhang et al. (2010) actually pe-
nalise the absolute difference in signal level between copy number assignments,
but we do not do this here, as, in contrast to the examination of germline copy
number alterations, large copy number changes in cancers are frequently occur-
ring.

The Fused Lasso term resembles a one-dimensional stationary Markov Random
Field prior of the form 7 (x) oc exp(—A Y_"_,(1 — 8y, ,.x)). Since, in one dimen-
sion, a stationary Markov Random Field can be expressed as a Markov chain with
a particular transition matrix [Kesten (1976)], the method of Zhang et al. (2010)
can be equivalently expressed as finding the Viterbi sequence for a Hidden Markov
model and the Lasso parameter A provides controls over the prior expected hold-
ing times for the Markov chain. In particular, as only a single parameter is used
to control the state transition penalties, the transition matrix is symmetric and all
states will share the same expected geometric length distribution. Structured non-
symmetric transitions can be specified by transition-specific losses.

An illustration of this relationship can be considered in the symmetric two-state
case. The conditional distribution of X;|X;_{, X;+ for the Markov Random Field
is given by

Pr(X; = x| Xi—1 = xi—1, Xi+1 = Xi+1)
_ CXP(—)\(I - 6)6,;],)6,‘)) CXP(—)M(I - 5xi,x,~+| ))
Y5 exp(=A(l — 8y, ) exp(—A(l — 8 x;,)))

If an equivalent Markov chain exists, with self-transition probability Pr(X; =

xi—1|Xi—1 =xi—1) = 1 — «, the conditional distribution can also be expressed as
a2
m, Xi FXi—1, Xi #Xit+1,
Pr(x;|xi—1, xi+1) = (1 —a)?
>, Xitl =X = X1,
(1 _ Ol)2 +a2 i+ i i

0.5, otherwise.

By equating these expressions and solving the resulting quadratic, one can ob-
tain the following relationship between the transition probability « and the Fused
Lasso penalty A:

_B-VB
o= )
B—1
where = exp(—2X). Figure 3 shows that for values of A considered by Zhang
et al. (2010) (A = 0-10), the transition probability is accordingly small, which is
the desired property for applications in copy number calling applications where
DNA copy number state is expected to persist across sizeable genomic regions.

As the discrete Fused Lasso of Zhang et al. (2010) implicitly invokes a struc-
tured Hidden Markov model, it therefore can be used as the base model 7 (x|y)
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FI1G. 3. The relationship between the Fused Lasso penalty ) and the Markov chain transition prob-
ability a.

for our decision theoretic approach. In addition, there are some interesting con-
nections between the discrete Fused Lasso and our decision theoretic approach. In
particular, we can interpret our method as applying a discrete Fused Lasso type
reporting process a posteriori rather than a priori. Our method uses the expected
posterior marginal site-wise and pair-wise losses from a statistical model that has
already been fitted to data. This separation of the reporting and model fitting tasks
means that our loss function does not become a proxy for the prior distribution
on sequences. This allows a user to modify the sequence classification without
having to change the statistical model that is fitted to the data. The benefits of
this approach over the Fused Lasso are illustrated and discussed in the following
simulation study.

5. Results.

5.1. Simulations. We performed a simulation study to examine the properties
of predictions made by the use of Viterbi, Fused Lasso and Markov loss functions
in a generic segmental classification setup.

5.1.1. Assessing performance. In order to assess performance, we will con-
sider two performance metrics: (i) the site-wise (e.) and (ii) segment-wise (ey)
misclassification rates. These are defined as

N 1 &1
eC:l—ZS,@.,xi, eszl_?Z[mZS&,xi]’

i=1 k=1 €Sy
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where (%;, x;) are the prediction and true state at the ith position, K is the number
of segments in the prediction and S is the subset of locations spanned by the kth
segment. A segment-wise misclassification error e, = 0 means all segments are
correctly classified, while e; = 1 means no segments are found correctly. In this
measure, segments contribute equally to the segment-wise performance measure
regardless of size. For the motivating application, this is appropriate, as many small
genomic aberrations are of greater biological importance than larger structural al-
terations. The latter, however, contribute more significantly to site-wise classifica-
tion error.

5.1.2. Simulation models. We simulated data sets, each consisting of 100 data
sequences of length n = 1000 for four different scenarios. The first two data sets
were simulated according to a Hidden Markov model with Gaussian observation
densities,

rr(y,-|x,-:k,u,az)zNormal(uk,az), i=1,...,n,
w(xi = jlxi—1 =k) =Ij, i=2,...,n,
w(x; =k) =y, j=1,...,8,
with a uniform prior state occupancy vector v and the transition matrix IT and
mean levels p are given in Table 2(a), (b).

The third and fourth data sets were generated according to Hidden Semi-Markov
model sequences via the following scheme:

vz =s. o~ Normal(us,o?),
i—1
Ld Lt A, =Xi, 1= Z Aj,
j=1
Ajlx; =k, A ~ Poisson(Ay), i=2,...,N,
p(xi = jlxi1 =k) =Ty, i=2,...,N,(j kel ..., S
plx1=j)=vj, j=1,...,8,

where the transition matrix I, state durations A and mean levels u are shown in
Table 2(c), (d).

5.1.3. Statistical inference. We fitted a Hidden Markov model with Gaussian
observation densities to each data sequence. We assumed that the parameters of
the observational density (1, ) are given, but we used a standard expectation-
maximization (or Baum—Welch algorithm) to obtain maximum likelihood param-
eter estimates for the prior state occupancy vector v and transition matrix, I1. Note
that our primary interest here is the methods for reporting sequence predictions
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TABLE 2
Parameter settings for simulation study

Simulation Transition matrix, IT State durations, A State levels, ©

9/10 1/30 1/30 1/30
(a) HMM (Sticky) 1/30°9710 1/30 1/30 n/a {-1,0,1,2}
1/30 1/30 9/10 1/30
1/30 1/30 1/30 9/10
r0.5 0.2 0.2 0.17
(b) HMM (Dynamic) 04 0.6 0000 n/a {-1,0,1,2}
0.0 0.1 0.7 0.2
L0.2 0.0 0.0 0.5
r0.0 0.2 0.5 0.37
02 0.0 05 03
(c) HSMM (4-state) {20, 50, 20, 10} {-1,0,1,2}
0.1 03 00 0.6
L0.2 04 04 0.0
0.0 0.25 025 0.25 0.25
0.25 0.0 0.25 0.25 0.25
(d) HSMM (5-state) 0.25 025 0.0 0.25 0.25 {30, 50, 30,20, 10} {-1,0,1,2,5}
0.25 0.25 025 0.0 0.25

0.25 025 025 025 0.0

and not the model fitting procedures themselves which we consider a separate ex-
ercise. Given the parameter estimates, we applied three methods for segmental
classification: (i) we used the Viterbi algorithm to find the most probable state
sequence X,; (i) the discrete Fused Lasso method with a range of penalty val-
ues A = 1-10,000; and, finally, (iii) we applied the forward—backward algorithm
to obtain the marginal state and switching probabilities 7 (x;|y) and 7 (x; ;+1]y)
and applied our decision-theoretic approach with loss parameter values FC = 1,
FN =1 and a range FT = 1-10,000.

5.1.4. Results. Figure 4 shows the average performance of the three segmen-
tation methods on the four data sets. The Viterbi segmentation gives excellent site-
wise and segment-wise classification accuracy in all cases. Similar classification
performance may be achieved using the Fused Lasso for a certain choice of penalty
parameter . This parameter would need to be learnt in real applications. For our
decision-theoretic approach, Viterbi-like performance can be achieved using a de-
fault choice of unit loss parameters FC = FH = FT = 1 which is convenient for
default analyses.

We remark that the Viterbi and Fused Lasso solutions are only available as
we condition on fixed or point parameter estimates. In a full Bayesian analysis,
where Markov chain Monte Carlo (MCMC) methods are used to sample from the
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FI1G. 4. Classification of simulated Markov and Semi-Markov sequences under first-order Markov
assumptions. (—) Markov loss. (——) Fused Lasso. (x) Viterbi.

joint posterior distribution, these solutions would not be available. However, our
decision-theoretic approach can utilise Monte Carlo approximations of the poste-
rior expected marginal losses and can be applied to MCMC output.

Our principle interest, though, is not the single prediction provided by Viterbi
but the Fused Lasso and our proposed decision-theoretic approach for exploring
alternative segmentations. In this case, by increasing the transition penalties (A
and FT, resp.), each method is able to produce less complex (smoother) segmen-
tations with fewer segments. However, Figure 4 shows that for a given site-wise
classification accuracy, our decision-theoretic approach is able to attain a higher
segment-wise classification accuracy than the Fused Lasso method.

Figure 5 explains the differing segmentation behaviours. As shown previously,
the Fused Lasso penalty X is related to the prior expected segment length, and
large values of A imply a preference for larger (and therefore fewer) segments.
As a consequence, the short segments tend to be the first to be eliminated from the
Fused Lasso segmentations, while larger segments are retained. This is because the
contribution of small segments to the overall sequence likelihood is insufficient to
justify the penalty of having two breakpoints to define the small segment.
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FIG. 5. Example segmentations using the Fused Lasso and Markov loss functions for different
transition penalties.

With our decision-theoretic approach, when computing the expected loss, the
loss penalties are scaled by the posterior marginal site-wise and transition prob-
abilities. Hence, as the penalty on false transitions (FT) is increased, it is those
breakpoints that are associated with low probability state transitions which are
eliminated first. The segmentations that are produced using the Markov loss func-
tion therefore show a reduction in complexity as the transition loss FT is increased,
but retain the short, high signal segments in the data sequence with high probabil-
ity breakpoints. We shall see the practical implications of this in the following
application study.

5.2. Application: DNA copy number profiling of colorectal cancer.

5.2.1. Setup. We now consider the use of our methods as an augmented step in
existing Hidden Markov model based approaches for classifying DNA copy num-
ber alterations. One of the problems with such a task is the difficulty of making for-
mal performance assessments due to a unavailability of “gold standard” genome-
wide copy number profiles for cancers. Standard experimental approaches, such
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FI1G. 6. Cancer simulation strategy. (a), (b) SNP data from the original colorectal tumor was anal-
ysed using OncoSNP [Yau et al. (2010)] to obtain a copy number profile (c). Using this copy number
profile we simulated a new data set (d) upon which we tested the Viterbi, Fused Lasso and our deci-
sion-theoretic approaches for segmental classification.

as FISH or PCR, lack the resolution and throughput necessary to confirm the hun-
dreds to thousands of possible findings arising from more modern technologies
based on microarrays of next generation sequencing technologies. As a conse-
quence, in the absence of ground truth data, we adopted the following simulation
set up to produce realistic data sets for evaluation.

We collated a genome-wide DNA copy number data set derived from a recent
study of colorectal cancers [Christie et al. (2012)] consisting of over 630 colorectal
tumours. Secondly, for each tumour, the raw microarray data was processed using a
state-of-the-art method, OncoSNP [Yau et al. (2010)], to infer the DNA copy num-
ber profile. Finally, from this collection of tumour copy number profiles, we then
simulated a series of one-dimensional data sets with Student ¢-distributed noise us-
ing these copy number profiles as a scaffold. The simulation strategy is illustrated
graphically in Figure 6 using a data set derived from a colorectal tumour exhibiting
chromosomal instability—a common phenomenon in colorectal cancers. Chromo-
somal instability gives rise to large segments with shorter segments interspersed
along the genome residing at sites containing genes with potential oncogenic or
tumor suppressing activity.

This strategy allows us to generate copy number sequence data with real-world
characteristics where we know the truth, and hence better understand the effect of
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using Viterbi, the Fused Lasso and our preferred method based on Markov loss
functions for segmental classification. This partially circumvents the lack of “gold
standard” copy number profiles for complex tumour samples, without which we
are not able to verify the accuracy of the copy number profile predictions that
would be inferred.

5.2.2. Simulations. Given a DNA copy number profile xy, ..., xy involving S
copy number states, we simulated a data set y according to the following scheme:

(5.1) yilxi =k, o~ Student(ur,0%,v), i=1,...,N,

where v =4 and p = log(k/2) and u = —4 for k = 0 in the simulations (our sim-
ulations mimic the nonlinear response behaviour of homozygous deletions that in-
volve zero copy number in microarray experiments). As before, we fitted a Hidden
Markov model to the data using the EM algorithm to obtain maximum likelihood
estimates of the initial state occupancy vector and transition matrix. We applied
the Viterbi algorithm, Fused Lasso and our decision-theoretic method to give a
segmental classification of the data compared to the actual profile used to generate
the data sequence.

Note, for these applications, a true physical basis for the statistical model 7 (x)
is unknown and first-order Markov models are often used as an approximation.
Semi-Markov models provide greater modeling flexibility but are rarely used in
genomic applications, as the data sets involve long sequences (in our CRC appli-
cation N = 6 x 10°). Inference methods for the semi-Markov models have com-
putational requirements that are order O(S 2N?) [Murphy (2002)], which preclude
their use in real applications.

Segmentation Accuracy / %
o D ~ o © o
(<} (<] (=] o (<] o

a
=)

N
S

50 60 70 80 90 100 50 60 70 8 90 100 50 60 70 80 90 100 50 60 70 80 90 100
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F1G. 7. Classification performance on the colon cancer data set. (—) Markov loss. (——) Fused
Lasso. (x) Viterbi.
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F1G. 8. Example segmentations using the Fused Lasso and Markov loss functions for a tumour
containing an RBFOX1 deletion.

5.2.3. Results. Figure 7 shows that using the Markov loss function we were
able to achieve improved segmental classification rates compared to the Fused
Lasso for the colon cancer data set. A specific example is illustrated in Figure 8
which shows data simulated based on a tumour carrying a number of large copy
number alterations on chromosome 16 and a small homozygous deletion involv-
ing the alternative splicing factor RBFOX1. Deletions of RBFOX1 are a recurrent
event in colorectal cancer [Cancer Genome Atlas Network (2012)] and were re-
cently found to have high prevalence in patients from a Bangladeshi population
versus Caucasians [Sengupta et al. (2013)]. Deletions in this region are complex,
with focal deletions targeting the 5’ end of the gene, and have been shown to af-
fect mRNA and protein expression in colorectal cell lines and tumours. A copy
number profile of this tumour should ideally report the presence of the RBFOX1
deletion, but the other larger copy number changes may be of less importance as
they are likely to be passenger events formed due to genomic instability during
tumour evolution.
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In the Fused Lasso segmentations, we can encourage smoother segmentations
by increasing the transition penalty. However, the effect of using larger penal-
ties causes the important RBFOX1 deletion to be eliminated and only the larger
copy number alterations are retained. With our decision-theoretic approach, the
RBFOX1 deletion is identified even when the false transition loss parameter was
increased—we are able to achieve smoothing without losing this important fine
detail.

These results indicate that our method could be used to augment existing Hid-
den Markov model-based calling algorithms for copy number aberrations, such as
those by Sun et al. (2009), Yau et al. (2010) and Li et al. (2011), with a sequence
classification algorithm that provides a more flexible alternative to the Viterbi algo-
rithm and has improved segmental classification performance relative to the Fused
Lasso method. In particular, we demonstrate the adaptive nature of the Markov loss
function, in terms of its ability to provide reduced complexity copy number seg-
mentations while retaining important features such as small homozygous deletions
or gene amplifications. This may assist cancer researchers in isolating important
genetic alterations of interest in cases where a default Viterbi segmentation might
produce unmanageably complex copy profiles.

6. Discussion. Segmental classification problems are ubiquitous across many
fields, including signal processing, finance and, more recently, genomics. We have
introduced a Markov loss function that allows a user to take their preferred sta-
tistical model 7 (x) of the sequence x and obtain a sequence prediction X whose
properties can be adjusted in an intuitive way by specifying loss parameters on
state and transition errors. The calculation of the posterior expected loss with re-
spect to a Markov loss function was shown to have a simple form and a dynamic
programming algorithm was provided to compute the state sequence with the min-
imum expected loss.

Although the emphasis in this presentation was on the Hidden Markov model
as the statistical model 7 (x), this method can be applied to any statistical model
for the segmentation and classification of linear sequence data that can provide
estimates of the marginal state transition probability 7 (x; ;+1). Therefore, it can
be used to augment, without modification, many existing statistical methods for
analyzing sequence data, such as those based on semi-Markov models, change
point methods [Fearnhead and Liu (2007)] or product partition models [Barry and
Hartigan (1992)]. While it is a relatively simple addition, the application of this
method could greatly enhance the adaptability of many existing statistical algo-
rithms, transferring power to the experimenter to allow them to assign losses to
various error types relevant to their own study.

Our approach can be considered to be a specific form of the loss functions con-
sidered by Rue (1995) in Bayesian imaging applications. Rue (1995) considered
a more complex two-dimensional domain, using Markov Random Field priors,



1832 C. YAU AND C. C. HOLMES

where exact enumeration of the optimal decision is impossible and numerical op-
timisation using computationally-intensive MCMC and simulated annealing is re-
quired. Recently, Lember and Koloydenko (2010) have also considered generalised
risk-based inference for Hidden Markov models including a subclass of posterior
decoding schemes that can be viewed as hybrids of the Viterbi and marginal ap-
proaches.

Throughout this paper we have not explicitly stated how the loss values should
be selected. This is purposeful because the selection of the costs associated with
various error types is study-dependent and the individual data analyst must balance
the appropriate losses for the particular application. For example, in genomics,
costs might be related to tangible quantities such as the financial, time and man-
power requirements for follow-up studies and validation taken upon the predic-
tions. We indicate that a default choice of loss parameters can lead to a Viterbi-like
performance.

It is also of further research interest to characterise the effect on predictions
when only an approximation of the statistical model is available. Furthermore, in
some applications there may be some utility in combining of Markov loss func-
tions on the hidden state sequence x and loss functions on the model parameters 6.
The Markov loss function introduced here focuses on costs associated with classi-
fication errors of the hidden state sequence and assumes that the model parameters
are in some sense nuisance variables. There are applications where both the state
sequence and model parameters may be of interest; for example, the transition
matrix may have some interpretation for a given application and a loss function
may be given on 6. In these instances it may be necessary to derive optimal joint
predictions (x, 6) under the appropriate loss functions.
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