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MACROECONOMIC EFFECTS ON MORTALITY REVEALED BY
PANEL ANALYSIS WITH NONLINEAR TRENDS!

BY EDWARD L. IONIDES, ZHEN WANG AND JOSE A. TAPIA GRANADOS
University of Michigan

Many investigations have used panel methods to study the relationships
between fluctuations in economic activity and mortality. A broad consensus
has emerged on the overall procyclical nature of mortality: perhaps counter-
intuitively, mortality typically rises above its trend during expansions. This
consensus has been tarnished by inconsistent reports on the specific age
groups and mortality causes involved. We show that these inconsistencies
result, in part, from the trend specifications used in previous panel models.
Standard econometric panel analysis involves fitting regression models using
ordinary least squares, employing standard errors which are robust to tem-
poral autocorrelation. The model specifications include a fixed effect, and
possibly a linear trend, for each time series in the panel. We propose alterna-
tive methodology based on nonlinear detrending. Applying our methodology
on data for the 50 US states from 1980 to 2006, we obtain more precise and
consistent results than previous studies. We find procyclical mortality in all
age groups. We find clear procyclical mortality due to respiratory disease and
traffic injuries. Predominantly procyclical cardiovascular disease mortality
and countercyclical suicide are subject to substantial state-to-state variation.
Neither cancer nor homicide have significant macroeconomic association.

1. Introduction. The impact of fluctuations in economic activity on mortality
has been a long-running debate. Early evidence for procyclical mortality (i.e., in-
creased mortality during economic booms) was presented by Ogburn and Thomas
(1922). Subsequently, Harvey Brenner made determined efforts to support the hy-
pothesis of counter-cyclical mortality [e.g., Brenner (1979)], although his contro-
versial statistical methods were eventually discredited [Gravelle, Hutchinson and
Stern (1981), Wagstaff (1985)]. There is now evidence for procyclical mortality in
many developed and developing countries [reviewed by Tapia Granados and Ion-
ides (2011)]. Mortality is the most clear-cut measure of population health, but may
be the tip of an iceberg of procyclical morbidity. Indeed, corresponding patterns
have been found for other health-related outcomes [Ruhm (2003, 2005b)], though
these are complicated both by the scope of available data and by the possibility of
macroeconomic influences on data collection.

Cyclical mortality is distinct from the debated relationship between long-term
economic development and long-term improvements in public health. Neverthe-
less, the two debates are related: inasmuch as cyclical mortality is observed for
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macroeconomic fluctuations at all time scales, it plays a role in determining the
long time scale variations which are identified as trends. Certainly, many factors
other than macroeconomic considerations contribute to population mortality levels
[Cutler, Deaton and Lleras-Muney (2006)].

Population level associations are distinct from the health consequences of eco-
nomic fluctuations on specific vulnerable groups, such as those who become un-
employed. Adverse health outcomes are certainly associated with unemployment,
with evidence for causation in both directions [McDonough and Amick (2001)].
The present investigation concerns aggregate effects, which may include both ben-
eficial and harmful consequences for different subpopulations.

A landmark in the investigation of cyclical mortality was the application of
panel methods by Ruhm (2000), allowing the consideration of extensive spa-
tiotemporal data. Ruhm (2000) analyzed annual statistics for 50 US states over
20 years and found predominantly procyclical mortality. This conclusion has been
largely confirmed by subsequent panel investigations [Ruhm (2003, 2006, 2007),
Buchmueller, Grignon and Jusot (2007), Gerdtham and Ruhm (2006), Miller
et al. (2009), Neumayer (2004), Tapia Granados (2005b), Gonzalez and Quast
(2010, 2011)]. The spatial units in these studies vary (states, countries, regions,
French departments), but we will consistently refer to them as states. These panel
studies were typically carried out in the spirit of difference-in-difference analy-
sis [Bertrand, Duflo and Mullainathan (2004)]. In this paradigm, temporal vari-
ations in mortality are controlled by taking a difference between state mortality
and national mortality, interpreted in regression models as a fixed year effect;
spatial variations in mortality are controlled by including state-specific mortal-
ity effects. The resulting relationships identified between macroeconomic vari-
ables and mortality are therefore resistant to bias from either strictly spatial or
strictly temporal additive omitted variables. By removing national mortality ef-
fects, difference-in-difference panel analysis is complementary to time series anal-
ysis [Ruhm (2005a)], though the two approaches have led to broadly consistent
results [Tapia Granados (2005a)]. Individual-level data have also revealed predom-
inantly procyclical effects [Edwards (2008)]. Sample size issues limit the scope of
individual-level analyses; macroeconomic impact on mortality is an effect of small
size (for any given individual), which nevertheless has a considerable overall effect
on entire populations.

A critical question for the proper understanding of procyclical aggregate mortal-
ity is to what extent different age groups and mortality causes are involved in the
procyclical phenomenon. Problematically, different analyses have previously led
to different answers. We argue that these inconsistencies can be explained by the
use of misspecified state-specific trend models. Previous analyses have typically
employed linear or constant state-specific trends and have performed statistical
regression techniques which are inefficient or biased for the data under consid-
eration. The methodological limitations of these analyses have had severe con-
sequences for investigating age and cause-specific mortality, without being large
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enough to interfere with the results for total mortality. To support our argument, we
will show how removal of nonlinear trends allows appropriate statistical analysis
using standard regression methods.

In this investigation, we study data from the US states in the years 1980-2006.
Thus, our data updates the 1972—-1991 analysis of Ruhm (2000) and overlaps the
1978-2004 analysis of Miller et al. (2009). Whereas Miller et al. (2009) extended
Ruhm (2000) by breaking down the data more extensively by age and mortality
cause, here we focus instead on the specification of the model and its consequences
for the conclusions reached. We find that some estimates of interest are fragile to
changes in the specification. Results which are sensitive to the model specification
should be treated with additional caution and also raise the question of which spec-
ification is most appropriate. To resolve existing ambiguities, and to make further
progress, there is a need for objective evaluation of the strengths and weaknesses
of alternative analyses. Assessing the model specification via analysis of the re-
gression residuals can provide such a tool. The constant or linear state-specific
trend specifications used in previous work, including Ruhm (2000) and Miller
et al. (2009), entail substantial violations of the standard assumptions that jus-
tify the use of ordinary least squares (OLS). Combining OLS point estimates with
state-clustered standard errors is a standard econometric technique in this situation
[Bertrand, Duflo and Mullainathan (2004), Petersen (2009)], however, this only
partially alleviates the adverse consequences of the model violations. Our method-
ological remedy is to apply nonlinear detrending methods in this spatiotemporal
setting. We show that our method has many of the advantages of feasible general-
ized least squares (FGLS) while avoiding some of the difficulties inherent in using
data to estimate a large covariance matrix [Hausman and Kuersteiner (2008)].

Our results confirm the finding of Ruhm (2000) that general mortality fluctuates
procyclically and this procylical phenomenon is stronger in young adults (ages 20—
44), though it is present also in mid-age adults (45-64) and individuals at retire-
ment ages (654-). The conclusion of Miller et al. (2009) that mid-age adults are not
subject to procyclical mortality may be a consequence of model misspecification.
Since Miller et al. (2009) and Ruhm (2000) used similar model formulations, it is
fortuitous that many of the results of Ruhm (2000) happen to agree with the con-
clusions from a more statistically principled analysis of recent data. We find that
the procyclical oscillation of general mortality is mainly mediated by increases in
respiratory disease mortality, cardiovascular disease mortality and traffic mortal-
ity, all of which oscillate procyclically. Suicide differs by being countercyclical;
we find cancer and homicide to be acyclical.

The remainder of this paper is organized as follows. Section 2 describes the data.
Section 3 introduces the panel models under consideration. Section 4 discusses the
methodological issues involved in fitting these models. Section 5 carries out a data
analysis, focusing on issues of methodological relevance. Section 6 investigates
goodness of fit for the models under consideration. Section 7 discusses these re-
sults in the context of the current understanding of cyclical mortality.
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2. Data. We analyzed annual data from the 50 US states over the years
1980-2006. Crude, age-specific, sex-specific and cause-specific mortality rates
were computed using data publicly available from the US Centers for Disease
Control and Prevention (wonder.cdc.gov). Data on annual unemployment rates
were obtained from the US Bureau of Labor Statistics (www.bls.gov). Age-specific
mortality rates were calculated for three age groups: 20-44, 45-64 and 654-. We
analyzed cause-specific mortality rates for eight major causes of death, defined
via (ICD9; ICD10) codes as follows: cardiovascular disease (390-459; 100-199),
ischemic heart disease (410-414; 120-125), cancer (140-165, 170-175, 179-203;
C00-C97), respiratory disease (460-519; JO0-J98), other infectious disease (001—
139; A00-B99), traffic injuries (E810-E819; V01-V79), suicide (E950-E959;
X60-X84), homicide (E960-E969; X85-Y009).

Inspection of the plotted series of mortality rates for the 50 states revealed a
jump in the series for ischemic heart disease and cancer mortality between the
years 1998 and 1999 (results not shown) which corresponds to the transition in
disease coding from the 9th to the 10th edition of the International Classification
of Diseases (i.e., from ICD9 to ICD10). The annual change in ischemic heart dis-
ease mortality took its largest value at this time for 48 states. For cancer, the largest
annual change occurred at this time for 20 states, with the times of the biggest jump
being scattered for the other states. To correct for the potential error introduced by
a change in mortality codes for these two categories, we replaced the log mortality
increment for 1998-1999 by the average value of the remaining increments (a sim-
ple way to remove the effect of the jump while keeping the temporal structure of
the time series intact). This data correction made no qualitative difference to our
conclusions.

3. Models. We consider panel model specifications extending the choices of
Ruhm (2000). Our general model is

(D My =aU;; + BNt + y Air + 6 + ¢i + it + ¢ir,

where M;; is a measure of mortality for state i in year ¢; U;; is a measure of state-
level unemployment; N; is a measure of national unemployment; A;; is a column
vector representing population age-structure,” with y being a row vector of cor-
responding size; §; are year-specific state-invariant effects; ¢; are state-specific
time-invariant effects; the term ;¢ corresponds to state-specific linear trends; &;;
is an error term. The mortality rate measure, M;;, may correspond to total mortal-
ity, age-specific mortality or cause-specific mortality. When M;; is an age-specific
mortality measure, we do not include the term y A;;.

2Age—adjusted state mortality rates are available. However, Rosenbaum and Rubin (1984) have
pointed out the potential biases introduced by using age-adjusted rates. Following these authors, we
prefer to regress crude rates on a set of covariates including age-structure variables.
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To define our mortality and unemployment measures, we introduce notation for
the raw data. The mortality rate data are denoted by m;;, state-specific unemploy-
ment rate by u;; and national unemployment rate by n;. A vector with popula-
tion proportions of children under 5 and of persons over 65 is written as a;;. We
consider four types of model, corresponding to four different ways to work with
state-specific levels and trends:

(B) The Basic model is the foundation for the analysis of Ruhm (2000). It
has dependent variable M;; = logm;; and fits a constant level effect for each state
(i.e., it has a constraint ¥; = 0). The remaining variables are untransformed (U;; =
uir, Ny = ny, Air = ajy).

(L) The Linear model includes linear state-specific trends. The linear model
differs from the basic model only by the inclusion of the term ;7.

(D) The Differenced model includes all time-dependent variables in first
temporal differences. Specifically, M;; = Alogm;; = mj;11 — miz, Uiy = Aujy,
N; = Ang, and A;; = Aaj;.

(HP;) The Hodrick—Prescott model includes the time-dependent variables after
subtracting trends computed via a Hodrick—Prescott filter with smoothing parame-
ter A. In this case, we write M;; = H, (logm;;), Uiy = H; (uir), Ny = H, (n;), and
Ajr = Hy(ai;). Here, H, (x;) denotes the residual component of the time series x;
after removing a trend computed by the method of Hodrick and Prescott (1997). As
discussed in Section 4, and at greater length by lonides, Wang and Tapia Granados
(2013), A can be chosen to approximately prewhiten the mortality measure rather
than aiming specifically to isolate business cycle fluctuations. The choice A = 100
satisfies this requirement [lonides, Wang and Tapia Granados (2013), Figure S-2].

The model types are summarized in Table 1(a). All regression models were
weighted by the square root of the state population to account for heteroskedas-
ticity; this has become a standard formulation [Gonzalez and Quast (2011), Miller
et al. (2009), Ruhm (2000), Tapia Granados (2005b)]. State-specific fixed effects
and linear trends are removed by the Hodrick—Prescott filter and so are not in-
cluded in models of type HP;, . The linear trends in models of type L correspond to
fixed effects after temporal differencing; we therefore include state-specific fixed
effects in models of type D.

We consider four subtypes of each model type, corresponding to the inclusion
of differing sets of covariates. The national economy covariate, N;, can be ex-
pressed as a linear combination of the year effects, {4;}, and so we never include
both in the model simultaneously. Model B1 has 8 = 0, excluding an explicit role
for the national economy; model B2 excludes both national unemployment and
year effects (8 = §; = 0); model B3 excludes state unemployment and year effects
(e = §; = 0); model B4 excludes year effects (§; = 0). These model subtypes were
considered by Ruhm (2000), with the goal of disentangling the effects of state-
level unemployment and national-level unemployment on mortality. Subtypes of
the other model types are defined in an identical way, as summarized in Table 1(b).
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TABLE 1
Models under consideration, written as special cases of equation (1). (a) The mortality variable and
time-dependent explanatory variables for the different model types. (b) Model subtypes, including
differing subsets of the explanatory variables

(@)

Mortality State National Age Fixed Linear
Model measure economy economy  structure effect trend
type (M) i) (Ny) (Aip) (%) i)
B (Basic) logmi; Ujt ny aj; yes no
L (Linear) logm;; Uiy ng ajy yes yes
D (Difference) Alogmj; Aujy Ang Aaj; no no
HP, (HP-detrended)  H; (logm;;) H; (uir) Hy (ny) Hy(ajr) no no
(b)

Model State National Year

subtype economy economy effects

1 yes no yes

2 yes no no

3 no yes no

4 yes yes no

4. Methodology. In a panel study such as ours, many variables are measured
at many geographical locations across many time points. This wealth of data leads
to challenges in building graphical representations. Nevertheless, plotting the data
or regression residuals in various ways can play an important role in model de-
velopment and diagnostics. We demonstrate this in Sections 5 and 6. By contrast,
previous panel studies relating mortality to macroeconomics have not shown any
graphical representations of the data below national levels of aggregation.

A classical approach to regression analysis is to present estimates and standard
errors based on OLS methodology, after checking that thorough investigation of
the residuals does not reveal any major violations of the corresponding model as-
sumptions. When serious violations are discovered one seeks to remove them by
respecifying the model, for example, by using transformations of variables or ap-
propriately weighting the error terms. An alternative approach to inference is to
employ nonparametric error models which operate under weaker assumptions, as
discussed in the context of panel analysis by Bertrand, Duflo and Mullainathan
(2004) and Petersen (2009). A hidden cost of nonparametric error models is that
the finite-sample properties can be undesirable despite demonstrably good asymp-
totic properties [Kauermann and Carroll (2001)]. In numerical experiments, a sam-
ple size of 50 independent time series has sometimes been found sufficient to
validate the asymptotic justification of robust standard errors for panel models
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[Bertrand, Duflo and Mullainathan (2004), Petersen (2009)]. However, the numer-
ical validation is dependent on the data and models under consideration and so
should be rechecked on a case-by-case basis. If a relatively simple respecification
justifies standard OLS techniques, the additional complexities of employing and
validating nonparametric error models can be avoided.

In the context of time series analysis, regression with autocorrelated errors can
be handled by a procedure called prewhitening [Shumway and Stoffer (2006)].
One looks for a transformation which provides approximately uncorrelated resid-
uals when the transformed dependent time series is regressed on the transformed
independent series. If the transformation has a linearity property, then the resulting
OLS estimates of the regression coefficients remain unbiased. The linearity prop-
erty of transformations is distinct from the use of the word linear to describe the
term B;¢ in equation (1). Transformations having this linearity property include
temporal differencing, detrending by computing the residuals from fitting an auto-
regressive moving-average model, and detrending using the Hodrick—Prescott fil-
ter. If application of the Hodrick—Prescott filter with a particular choice of smooth-
ing parameter leads to effective prewhitening, this gives a data-driven justification
of the resulting analysis. Thus, the extensive literature on the value of the smooth-
ing parameter appropriate to study business cycle fluctuations in annual data [Ravn
and Uhlig (2002)] is not directly relevant to our methodology. Additional material
on the interpretation and consequences of the choice of smoothing parameter is
given in the supplement [lonides, Wang and Tapia Granados (2013)].

Much of the development of econometric panel analysis (both in theory and
practice) has focused on the standard errors. OLS standard errors can considerably
underestimate the actual variability of the parameter estimates, leading to great po-
tential for the “discovery” of spurious effects [Bertrand, Duflo and Mullainathan
(2004)]. A variety of methods, including clustered error estimates and bootstrap
methodology, have been proposed to amend this problem [Petersen (2009)]. Even
once the standard errors are appropriately corrected, there is a remaining diffi-
culty that OLS point estimates can also be unreliable in these situations. Feasible
generalized least squares (FGLS) aims to improve OLS by using an estimated co-
variance matrix for the error terms [Hansen (2007)]. However, the use of FGLS
in panel analysis is rare, amounting to just 3% of the panel analyses surveyed by
Petersen (2009) and 1% of those surveyed by Bertrand, Duflo and Mullainathan
(2004). Applying FGLS using simple models for the covariance structure can be
ineffective [Bertrand, Duflo and Mullainathan (2004)]. Difficulties arise in com-
plex, flexible models of the covariance structure due to the potentially large number
of parameters to be estimated [Hansen (2007), Hausman and Kuersteiner (2008)].
Our method of applying a detrending linear transform to both sides of the regres-
sion equation (1) is formally similar to the application of FGLS, with detrending
playing the role of covariance estimation. From this perspective, nonlinear detrend-
ing is a variant of FGLS which is readily interpretable and has favorable numerical
properties.
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Granger and Newbold (1974) encouraged analyzing temporal differences as a
practical resolution to the difficulties of jointly estimating regression coefficients
and autocovariance structures in the presence of substantial long-range autocorre-
lation. However, a relationship between differences does not readily imply a rela-
tionship between trends: in practice, fluctuations around a trend can have entirely
different relationships to those of the trends themselves [Hodrick and Prescott
(1997)]. Temporal differencing was the only linear data transformation explored
by Bertrand, Duflo and Mullainathan (2004). This transformation performed ex-
cellently in their numerical experiment [Table IIA, line 8 of Bertrand, Duflo and
Mullainathan (2004)]. However, the authors commented that differencing was sel-
dom used in their survey of current practice and gave the method no further con-
sideration. A concern with differencing is that it can result in substantial negative
autocorrelation of residuals (and it does so for our data). In this case, differencing
is not ideal as a prewhitening filter; it over-enthusiastically removes the positive
autocorrelation. The typical consequences of the negative autocorrelation are inef-
ficient OLS effect estimates and conservative standard errors.

If trends are considered as fixed effects, rather than zero mean random effects,
then OLS and FGLS models which fail to account for these trends incur bias.
Panel model implementations of FGLS typically assume that the error terms are
independent between states, so that only temporal autocorrelations are substan-
tial. Nonlinear trends which show similarities between states are not appropriately
modeled under this assumption. By contrast, inasmuch as these phenomena are
effectively removed by a detrending operation, the corresponding prewhitened re-
gression is protected from bias. The statistical evidence in the data (Sections 5
and 6) suggests that there are unmodeled sources of spatiotemporal dependence
which can largely be removed by employing national year effects in combination
with nonlinear detrending.

Interpreting the results of observational studies requires care because of the pos-
sible consequences of omitted variables. Another hazard is the possibility that an
association between two variables which is interpreted as causal in one direction
in fact has a causal mechanism in the opposite direction. In the context of cycli-
cal mortality, two uncontroversial assertions can assist the causal interpretation of
observed associations:

(A1) It has been generally accepted that mortality fluctuations could not plau-
sibly be a substantial cause of recent US booms and busts.

(A2) There is a lack of plausible noneconomic phenomena which could simul-
taneously have substantial effects on civilian mortality and macroeconomic fluc-
tuations in recent years in the US. Perhaps the best candidates are wars, natural
disasters, climate variation, or epidemic diseases; none of these have been previ-
ously considered as plausible omitted variables to explain procyclical mortality.

An alternative to (A2) is to employ a broad definition of macroeconomic phenom-
ena, including macroeconomic effects of variables external to the economy as well
as interacting variables within the economy, by assuming the following:
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(A3) Any phenomenon with macroeconomic consequences is itself a macroe-
conomic phenomenon.

If there is adequate statistical evidence for an association, then either (A1), (A2)
or (Al), (A3) implies that the association can be interpreted as a causal effect
of macroeconomic fluctuations on mortality. This follows directly from a basic
principle of inductive reasoning, that an association between two variables must
be explained by either a direct causal effect or by each variable responding to
some third variable [Mill (1853)]. From (A2) or (A3) one can deduce that any
such third variable is itself a macroeconomic variable. This argument does not
allow us to infer a specific causal mechanism. In particular, we cannot infer that
unemployment operates causally to produce an observed association; its role in
our analysis is as a proxy for the multitude of economic variables (measurable and
nonmeasurable) which fluctuate synchronously.

5. Results. Figure 1 displays national annual series of total mortality rates
and the unemployment rate. The national death rate declined dramatically during
the recessions of the early 1980s, and then increased throughout much of the ex-
pansion of the mid-1980s. In general, the evolution of mortality tends to mirror
the evolution of the unemployment rate, suggesting an inverse relation between
unemployment and mortality. The long-run behavior of the crude mortality rate
(unadjusted for age, as shown in Figure 1) is affected by changes in the age-
structure of the population; it is much less likely, however, that changes in the
age-structure cause short term oscillations of the mortality rate. When attempting
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the right axis scale. (b), (c), (d) The data in (a) detrended using a linear trend, first difference and
Hodrick—Prescott filter (.. = 100), respectively.



MACROECONOMIC EFFECTS ON MORTALITY 1371
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FI1G. 2.  Mortality and unemployment for four states. Mortality per 1000 per year is shown as a
dashed line corresponding to the left axis scale. The unemployment rate is shown as a solid gray line
corresponding to the right axis scale.

to interpret the data in Figure 1, the strength of the statistical evidence for the as-
sociation is more critical than the issues of causal direction and omitted variable
bias. Assumptions (A1)—(A3) can justify interpreting statistically significant asso-
ciations as macroeconomic effects on mortality, without being able to pin down
specific mechanisms. Securing the statistical evidence in sub-categories, broken
down by demographic group and cause of mortality, then gives a foundation for
the discussion of causal mechanisms consistent with the resulting pattern of associ-
ations. Unfortunately, the association at the 27 annual time points in Figure 1 does
not give statistically conclusive evidence. Disaggregating mortality and unemploy-
ment rates from the national level to the state level has potential to reinforce the
evidence, as long as the states show sufficient variation from the national pattern.
Figure 2 plots mortality rates and unemployment rates for four states, revealing
quite different patterns in different states. Some of these time series, such as mor-
tality in Alaska, are clearly not well modeled by variation around a linear trend.
Table 2 summarizes our results in models that have been repeatedly used, fol-
lowing Ruhm (2000), to estimate the effect of macroeconomic fluctuations on mor-
tality. The models with linear trends (L1-L4) give similar results to the correspond-
ing results for 1972-1991 [Ruhm (2000), Table I]. In addition, inspection of the
Akaike information criterion (AIC) values in Table 2 shows that L1-L.4 provide a
considerably superior statistical explanation of the data over B1-B4. AIC is only
one of many possible measures for quantitative model comparison [Burnham and
Anderson (2002)]. However, the differences between the AIC values in Table 2
are entirely unambiguous. Differences of order 1 unit of AIC are considered small,
and so alternative methodologies might be expected to disagree; differences of
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TABLE 2

Fixed-effects panel regressions with state mortality modeled as a function of economic conditions
for the 50 US states

Basic model Linear state-specific trends

B1 B2 B3 B4 L1 L2 L3 L4
State —0.52%%  0.12f —0.67%**% —0.31%** —0.41*** —0.30%**
unemployment  (0.07) (0.07) (0.09) (0.05) (0.04) (0.06)
National 0.78***  1.36%** —0.46%** —0.20%*
unemployment (0.08) (0.11) (0.05) 0.07)
Year effects Yes No No No Yes No No No
AIC —5818.3 —5027.5 —5114.7 —5165.0 —7569.6 —6938.5 —6917.7 —6945.0

The model specifications are as described in equation (1) and Table 1, and were estimated using least
squares, with states weighted by the square root of the state population. The state unemployment
effect is reported as the estimate of 100c, the percentage increase in mortality due to a unit increase
in unemployment. Similarly, the national unemployment effect is given as the estimate of 1008.
Corresponding OLS standard errors [as used by Ruhm (2000)] are in parentheses. ***P < 0.001,
P <0.01,*P <0.05, TP <0.1.

order 100 or 1000 units of AIC are compelling evidence. The comparisons pro-
vided by these AIC values are therefore, presumably, insensitive to the measure
of model comparison used. Differences in AIC are useful for detecting issues of
model misspecification, but they cannot, by themselves, explain how and why this
misspecification manifests itself.

Ruhm (2000) found that B1-B4 provided qualitatively similar results to L1-L4
and therefore proceeded to use the simpler basic specification for subsequent anal-
ysis. For our analysis, B1 is qualitatively consistent with L1-L4 and, indeed, the
effect estimate for this model (—0.52) happens to be identical to the estimate of
Ruhm (2000). Problematically, B2—B4 suggest conclusions which are inconsistent
both with Ruhm (2000) and with the other specifications in Table 2. Since B2-B4
also provide poor fits to the data (as judged by AIC and diagnostic plots), this could
be explained by model misspecification bias. Model subtypes 2—4 aim to investi-
gate the contextual role of unemployment, addressing whether national macroeco-
nomic conditions continue to play a role given state-level variables. However, our
objective here is not to interpret the results from fitting B2-B4 or L.2-L4, but to
observe how standard methodology can lead to apparent contradictions. The AIC
values in Table 2 suggest that year effects play a statistically important role. We
therefore focus henceforth on models of subtype 1.

Table 3 shows that the results for age-specific mortality are also sensitive to
model specification. Model B1 demonstrates considerable consistency with the
1972-1991 results of Ruhm (2000), Table III, indicating strong procyclical mor-
tality in all age groups and especially in young adults and middle age adults. Our
model L1, which corresponds to a supplementary model for Ruhm (2000) and the
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TABLE 3
Percentage increase in mortality associated with a unit increase in the state unemployment rate,
using different model specifications

Model B1 L1 D1 HP1g 35 HP14¢
Total —0.52%F% 0311 %%F —0.16% —0.24F%%  _033F%%
*k *k * X % %
20-44 CLISEEE 014 —0.54% —0.73%X* 0478
* + *
45-64 —0.72%F*  —0.01 —0.13 —0.14 —0.227%*
* *
65+ —0.43%X* 0160 —0.03 —0.16+ —0.25F %%
* *
Cardiovascular disease ~ —0.38" + —0.20%*  —0.06 —0.14 _0.24%
+ *
Ischemic heart disease —0.33 + —0.35 i* —-0.14 —0.28 :t —0.58 ix* *
*
Cancer —0.20" 0.21%** 0.13 0.05 0.04
*
Respiratory disease —1.045%% —039%% —0.37 —0.69%3% —0.715%%
k% * * kk
Other infectious disease ~ —0.35 0.37 —1.14% _L72¥E* 0897
* ok
Traffic injury —3.765F% 348K Ft  —148FEt —1a4fit —2mii
Suicide 0.25 1.065** 0.94% 0.807% 0.77%*
* * + +
Homicide —1.715%*  —1.20% -1.02 —0.74 —0.41
* +

Columns represent models, as described in equation (1) and Table 1. Rows represent mortality cat-
egories. Table entries are estimates of 100c, using OLS with states weighted by the square root of
the state population. Statistical significance is shown using standard OLS errors (black symbols, top
row), error estimates clustered by state (gray symbols, middle row) and error estimates of Cameron,
Gelbach and Miller (2011), Section 2.2, with two-way clustering by state and year (gray symbols,
bottom row; red in electronic version). *** P < 0.001, **P < 0.01, *P < 0.05, T P < 0.1.

primary model structure for Miller et al. (2009), is in close agreement with the
1978-2004 results of Miller et al. (2009). In particular, L1 suggests that procycli-
cal mortality is weak or nonexistent in young adults and middle age adults, and
is therefore in conflict with the conclusions suggested by B1. Model D1 suggests
effect estimates which are relatively small, while being broadly indicative of pro-
cyclical mortality across age groups. Model HP1 o9 suggests consistent procycli-
cal mortality across age groups, with smaller effect sizes than B1. Ionides, Wang
and Tapia Granados (2013) show that a Hodrick—Prescott smoothing parameter of
A = 100 has superior prewhitening properties to A = 6.25, and the corresponding
regression therefore has more statistical power to identify cyclical effects.



1374 E. L. IONIDES, Z. WANG AND J. A. TAPIA GRANADOS

From a methodological perspective, the cause-specific mortality results in Ta-
ble 3 tell a similar story to the age category results. Traffic fatalities, typically the
most clearly procyclical mortality cause, are highly statistically significant in all
analyses. Procyclical cardiovascular mortality is identified by all models, but is
insignificant for D1 and HP1¢ 5. Model D1 typically estimates small effect sizes,
relative to the other models in Table 3 and relative to previous reports in the lit-
erature: we propose an explanation for this later. For cancer, models B1 and L1
detect a cyclical effect, with opposite signs! Model B1 also fails to find a cycli-
cal pattern for suicide, which has been considered countercyclical in the US [Eyer
(1977), Luo et al. (2011), Ruhm (2000), Tapia Granados (2005a)]. When method-
ologies disagree on detection of accepted relationships, they do not provide a firm
foundation for investigating new phenomena. For example, the cyclical behavior
of respiratory disease mortality has previously received relatively little attention,
perhaps because it is somewhat unexpected. Table 3 agrees with other studies [such
as Miller et al. (2009)] in detecting a clear procyclical pattern of mortality due to
respiratory disease.

The state clustered standard errors in Table 3 generally produce similar conclu-
sions to the OLS standard errors, with some important exceptions. For models D1,
HP1¢ .25 and HP1qg, state clustered standard errors are generally similar in mag-
nitude to OLS standard errors (results not shown). This is to be expected when
residual autocorrelation is small, and in this case state clustered standard errors
may be less reliable than the usual OLS standard errors [Kauermann and Carroll
(2001)]. For models B1 and L1, many large effect sizes remain significant despite
substantially inflated clustered standard errors. Conclusions about the effects on
suicide and cardiovascular disease are noticeably sensitive to the use of state clus-
tered standard errors. These two mortality categories are also identified in Section 6
as having inconsistent effects between states. Inconsistency between states leads
to relatively large state clustered standard errors, since these error estimates as-
sess uncertainty by quantifying variability between states rather than between time
points.

The five models in Table 3 emphasize relationships at different ranges of fre-
quencies. The synchronous fluctuations of many macroeconomic variables around
their trends, known as business cycles, are of irregular duration and have a power
spectrum spread broadly over a wide range of frequencies [Canova (1998)]. It need
not be the case that all frequencies of macroeconomic fluctuations are equally
associated with population health. The range of frequencies at which the statis-
tical evidence for cyclical associations is greatest could, potentially, differ from
the range at which the public health consequences are greatest. One way to study
these issues is through spectral analysis [Tapia Granados and Ionides (2008)], but
here we simply interpret the frequency-domain behavior of the specified regres-
sion models [Ionides, Wang and Tapia Granados (2013), Section S3]. Model B1
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performs the least detrending and therefore places the most emphasis on low fre-
quency associations. This leads to some large effect estimates, matched with in-
creased uncertainty (which can be viewed as larger standard errors or unknown bi-
ases). Model HP1¢ 25 emphasizes a range of frequencies intermediate between D1
and HP1qg, and the results for HP1¢ 25 are generally intermediate between these
two analyses. Model D1 emphasizes the highest frequencies, to such an extent
that some cyclical relationship becomes obscured. Macroeconomic fluctuations
involve complex relationships between many variables [Canova (1998)] and so it
may be unreasonable to expect any single economic measure to capture reliably, at
high frequencies, the relationship to health outcomes. Traffic injuries might be ex-
pected to have a relatively clean high-frequency relationship to economic activity
(proxied by unemployment in our models), as there is an obvious and immediate
causal mechanism. However, even for traffic mortality, the parameter estimates for
models D1 and HP1¢ 5 are smaller than for the other models.

Inasmuch as equation (1) is valid, all the estimation methods result in unbiased
effect estimates: the weighting of frequencies in the estimation procedure affects
the variability of the OLS estimate but not its bias. However, in practice, one cannot
expect any model to be equally appropriate over all time scales. Investigating the
time scales at which the model applies is therefore an integral part of data analysis.
Model HP1gp emphasizes an intermediate range of frequencies and is seen to
provide the clearest statistical evidence for cyclical mortality.

If cyclical mortality were to exist only in the context of fluctuations around a
trend, then it would have no long term consequences, since above-trend and below-
trend fluctuations necessarily cancel out in the long run. Alternatively, if cyclical
mortality were present in macroeconomic fluctuations occurring over a decade
or longer, one should consider the cyclical effects at least partly responsible for
observed health trends on these time scales. The indications from model B1 that
procyclical mortality may be even stronger at low frequencies support this second
interpretation.

6. Diagnostic analysis. The spatiotemporal dependence of the regression
residuals affects the appropriate choice of model specification, the suitability of
parameter estimation methodologies and the evaluation of uncertainty in the re-
sulting estimates. Figure 3 shows the temporal autocorrelation of the residuals
for each state at each lag. We see that there is strong positive autocorrelation for
model B1, at short lags. This positive autocorrelation is reduced, but still substan-
tial, for model L1. The autocorrelation for model D1 becomes significantly nega-
tive at lag 1, as might be expected from applying a differencing operation. There
is some indication of mild negative autocorrelation after lag 1 for model HP11¢g,
but this model shows relatively minor deviation from the expected behavior of
uncorrelated residuals.

Similar patterns emerge when investigating spatial correlation. Figure 4 shows
the sample correlations between the time series of residuals for all 1225
(=50 x 49/2) pairs of states. Models B1 and L1 show considerably more variabil-
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FI1G. 3. Autocorrelation of the residual in four models for total mortality. Points show the sample

autocorrelation for each state at each lag. The dashed lines are at +t, >{n — 2 + 13_2}71/2,

where t,_o is the 97.5 percentile of the t distribution on n — 2 degrees of freedom and n is the
number of pairs of time points available to compute the sample autocorrelation at each lag. If the
residual series were temporally uncorrelated, approximately 95% of the points should lie between
the dashed lines [Moore and McCabe (1999), Section 10.2]. The gray solid line graphs the mean
sample autocorrelation at each lag.

ity in the sample correlation that is consistent with spatiotemporally uncorrelated
residuals. The sample autocorrelations of the residuals are necessarily centered
near zero, due to the inclusion of year effects. The lack of a substantial spatial pat-
tern suggests that dependence between neighboring states is not a major concern.
The increased spread is another indication of temporal correlation: independent
sequences which each have positive marginal temporal autocorrelation typically
have sample cross-correlation with mean zero but greater variability than tem-
porally uncorrelated sequences. Models D1 and HP11¢gp have a spread of sample
cross-correlations which is approximately consistent with spatiotemporally uncor-
related residuals. The lower variability for models D1 and HP1gg reveals a small
pattern of positive correlations between residuals of states in close proximity. It
would be surprising if no such phenomenon existed, but we see here that the effect
is rather weak. Most of the cross-correlation of fluctuations in mortality between
states is removed by the inclusion of the national year effect §;. If these year effects
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(b) Model L1
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FI1G. 4. The cross-correlation between residuals for each pair of states, plotted against distance
between population-weighted state centers (from the 2000 census) in four models for total mortality.
The dashed lines are at + t,_o{n — 2 + t&_z}_l/z, where t,_o is the 97.5 percentile of the t
distribution on n — 2 degrees of freedom, and n = 27 (for B1, L1, HP11¢g) or n = 26 (for D1).
If the residual series were spatiotemporally uncorrelated, approximately 95% of the points should
lie between the dashed lines [Moore and McCabe (1999), Section 10.2]. The actual percentages for
models B1, L1, D1 and HP1¢g are 46.1%, 79.3%, 90.9% and 91.3%, respectively. The gray solid
line shows a local linear regression fit to these cross-correlations, implemented using the loess
Sfunction in R2.15.0, with the default parameter settings.

are not included (i.e., in models of subtype 2, 3 or 4), a plot analogous to Figure 4
shows consistently positive cross-correlations across all geographic distances (re-
sults not shown).

Residuals can also be investigated by examination of the time plots for each
state. Some representative time plots are shown in Figure 5. This figure reinforces
the conclusion that OLS estimation of the basic model is a questionable practice,
since the underpinning model assumptions are violated for almost all states. The
linear trend model is sometimes adequate (e.g., Hawaii and Oklahoma) and some-
times not (e.g., Maine and Ohio). Both differencing and HP detrending remove
systematic trends from the time series of residuals.

The conclusion from these diagnostic investigations is that, among these al-
ternatives, model HP1;p9 unambiguously comes closest to satisfying the model
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rows graph residuals for each of four models.

assumptions for a standard linear model analysis. As another criterion to com-
pare model specifications, we compared the consistency of the estimated cyclical
mortality effects between states. A robust relationship between macroeconomic
fluctuations and mortality might be expected to demonstrate consistent results in
separate state-by-state time series analyses. We explored the stability of the panel
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model effect estimates across states by estimating the unemployment effect on
mortality using data for one state only, that is, the model in equation (1) for a
single fixed value of the state label i. For a state-by-state analysis, one cannot es-
timate fixed year effects, but one can still estimate models of subtypes 2—4. The
results for subtype 2 are plotted in Figure 6, from which we observe that HP21¢g
provides the greatest consistency between states, closely followed by D2. For ex-
ample, the standard error of the 50 state-specific estimates of 100« for total mor-
tality is 0.53 for L2, 0.45 for D2, and 0.43 for HP21¢p. National fluctuations in
mortality unrelated to the economy, perhaps due to infectious disease or climate,
are not controlled for in model subtype 2. Some mortality categories nevertheless
demonstrate consistent state-by-state effects, especially for the larger states. As
might be expected, there is typically greater variation in the estimated effects for
smaller states. From Figure 6, we see that the effects for total mortality, respira-
tory disease, traffic injuries and ages 65+ have consistent signs in all (or almost all)
of the larger states. Perhaps surprisingly, suicide and cardiovascular disease show
only weak patterns in the state-by-state analysis despite the evidence for overall
cyclical behavior from the full panel analysis (Table 3, column HP11¢p).

7. Conclusions. We have seen that the choice of model can have consider-
able influence on panel analysis of the associations between fluctuations in mor-
tality and macroeconomic variables. These influences are simultaneously a con-
cern, a challenge and an opportunity. The concern is that, unless a methodological
consensus is found, scientific claims which are sensitive to choice of methodology
must remain unresolved. The challenge is to establish statistical procedures which
objectively assess the strengths and weaknesses of different analyses, and so dis-
ambiguate the conclusions. Overcoming this challenge will give an opportunity
to improve understanding of the phenomenon of procyclical mortality. A historical
precedent for methodological introspection in this research area is the examination
and eventual rejection of the methods employed by Harvey Brenner. Indeed, panel
analyses have played an important role in clarifying the evidence for overall pro-
cyclical mortality. However, we have shown that previous panel approaches have
limited capability to identify more subtle components of the cyclical effect.

It is well known that positive temporal autocorrelation [Bertrand, Duflo and
Mullainathan (2004)] and positive spatial cross-correlation [Layne (2007)] typ-
ically cause OLS standard errors for panel models to be anti-conservative (i.e.,
inappropriately small). Underestimated standard errors lead to overestimated sta-
tistical significance, and hence the detection of spurious relationships. Clustering
standard errors by state helps to resolve this issue, but these robust standard errors
fail to correct for dependence between states. Clustering standard errors by state
and year gains additional robustness, with the cost being increased variability in
the standard error estimates. In addition, the OLS regression coefficient estimates
remain inefficient (if unmodeled trends are considered random variables) or biased
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(if unmodeled trends are considered as fixed effects). We have shown that nonlin-
ear detrending can be employed to fix these methodological shortcomings in the
context of investigating cyclical mortality.

The study of cyclical mortality fluctuations is sensitive to these methodologi-
cal issues because relatively small effects, which are hard to unravel from other
background sources of variability, can nevertheless have substantial consequences
at the population level. The larger and clearer the effect, the less sensitive its de-
tection should be to the details of the statistical methodology used to investigate
it. However, understanding the overall pattern requires investigating which sub-
populations and mortality causes are involved. Inevitably, one seeks to press to the
limits of the available data and statistical methodology.

We have proposed a resolution to the differing accounts of age-dependency for
procyclical mortality. Our preferred specification (Table 3, column HP1,¢p) sug-
gests that the effect is relatively uniform across ages, which has attractive con-
ceptual simplicity. There may be no reason a priori to expect age uniformity. In
particular, individuals in the 65+ age category are predominantly out of the work-
force: they are therefore largely unaffected by some potential mechanisms such as
extra hours of work, or fewer hours of sleep, during economic expansions. The 20—
44 age category has the largest estimated effect for model HP1qg, yet, according
to the spatiotemporal clustered errors, this age group is the only one in which the
association is statistically insignificant. Other lines of reasoning, including the spa-
tiotemporal clustered errors for other choices of the Hodrick—Prescott smoothing
parameter, and other choices of standard error for model HP1¢g, suggest adequate
statistical evidence for this association.

Our results for cause-specific mortality (Table 3, column HP1qgg) give a single
set of figures consistent with previous analyses but without the occasional pecu-
liarities that are a hallmark of misspecified models. For example, the models B1
and L1 suggest macroeconomic associations for cancer with differing signs. The
statistical significance of cancer for model B1 disappears when using clustered
standard errors; for L1, the countercyclical association remains significant. Miller
et al. (2009) found a countercyclical association with cancer (with unspecified
statistical significance) consistent with the similarity of their model specification
to L1. Tapia Granados (2005a) found a procyclical association in the US for 1945-
1970, but not in other time intervals. The long lag times involved in the chronic
development of cancer are hard to reconcile with an unlagged cyclical relationship.
However, it is entirely possible that external factors could be associated with acute
complications resulting in death of cancer patients. This possibility is self-evident
for cardiovascular disease, where acute cardiovascular failures are associated both
with chronic disease development and external stress.

Cardiovascular disease and cancer are the two foremost causes of death in de-
veloped countries, and the cyclical behavior of cardiovascular mortality has there-
fore attracted considerable attention [Ruhm (2007)]. Cardiovascular disease mor-
tality has a relatively small procyclical signature over the 23 developed countries



1382 E. L. IONIDES, Z. WANG AND J. A. TAPIA GRANADOS

in the Organization for Economic Cooperation and Development (OECD) studied
by Gerdtham and Ruhm (2006). In some countries, such as Japan [Tapia Granados
(2008)], the procyclical signature of cardiovascular disease mortality seems to be
strong; in others, such as Germany [Neumayer (2004)], it seems to be negligible.
In Sweden there is some evidence for a countercyclical effect [Svensson (2008),
Tapia Granados and Ionides (2011)]. In the US, Table 3 reconfirms the conclusions
of Ruhm (2000) and Miller et al. (2009) that the dominant behavior of cardiovas-
cular disease is procyclical. However, we found in Figure 6 that this result is not
strongly consistent at the level of individual states.

The unambiguous evidence for procyclical respiratory mortality requires further
investigation. This phenomenon has been noted in other studies of developed coun-
tries [Eyer (1977), Gerdtham and Ruhm (2006), Miller et al. (2009), Neumayer
(2004), Ruhm (2000), Tapia Granados (2005b)], but it has become further clar-
ified by the statistical methods we have employed. Specifically, we have shown
the strong consistency between individual states, and we have employed methods
that minimize the risk of identifying spurious relationships. Our data cannot read-
ily reveal how mechanisms such as air quality (pollution) and weakened immune
status (increased infectious disease transmission) may combine to produce this
procyclical effect. Respiratory disease, as categorized in ICD9/10, is not neces-
sarily infectious but does include influenza and pneumonia, which are responsible
for substantial mortality in old age. Infectious diseases provide a potential avenue
by which those outside the workforce suffer procylical mortality, since collective
resistance plays a substantial role in controlling disease spread [an effect known as
herd immunity in epidemiology; Bonita, Beaglehole and Kjellstrom (2006)]. Over-
work and a reduction in healthy behaviors during economic booms could lead
to a population with weaker overall health and therefore greater transmission of
pathogens. Increased travel, associated with increased economic activity, provides
another potential mechanism for increased transmission of pathogens.

Previous studies [Miller et al. (2009), Ruhm (2000)] have found that homicides
oscillate procyclically. This result may appear counterintuitive and, to our knowl-
edge, it has not been fully explored. According to our specification HP1gg (and
also D1 and HP1¢»5) in Table 3, there is no clear evidence that homicides are cor-
related with the business cycle. Inasmuch as the data support procyclical homicide,
this is based on the models B1 and L.1 which place more emphasis than HP1;gp on
longer-term variation.

Our analyses provide weak support for an overall countercyclical nature of sui-
cide in the US, consistent with the conclusions of Luo et al. (2011). A cyclical
effect on suicide might be intuitively unsurprising, but the direction of the ef-
fect is not consistent between countries. For example, suicide in Japan is strongly
countercyclical [Tapia Granados (2008)], whereas in Germany and Finland there
is evidence for procyclical suicide [Hintikka, Saarinen and Viinamiki (1999),
Neumayer (2004)]. No dominant pattern was found in a study of OECD data



MACROECONOMIC EFFECTS ON MORTALITY 1383

[Gerdtham and Ruhm (2006)]. Figure 6 suggests that the cyclical behavior of sui-
cide is inconsistent between states. This conclusion is supported by the diminished
significance of the overall countercyclical effect once the standard errors are clus-
tered by state.

Debate about individual components of cyclical mortality, and remaining uncer-
tainty about specific causal mechanisms, should not obscure the main achievement
of recent research in this area. There is now overwhelming evidence that down-
turns in economic activity have not had overall adverse health consequences at the
population level, in the recent past of developed countries with market economies.
Groups of individuals adversely affected by phenomena associated with economic
booms and busts deserve assistance. At earlier stages of socioeconomic develop-
ment, economic growth may have substantial health benefits above and beyond
other factors such as public health programs and education [Pritchett and Sum-
mers (1996)]. However, the government’s responsibility to consider the net public
health consequences of its actions [Childress et al. (2002)] cannot be used as a
moral argument for pro-growth economic policies in the US and similar countries.
Other moral obligations relevant to macroeconomic policy include the protection
of individual liberties, environmental stewardship and homeland security. Future
public policies will require trade-off between economic growth and other objec-
tives, and evidence-based assessment of the positive and negative consequences of
economic growth should inform this debate.
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SUPPLEMENTARY MATERIAL

Supplement to “Macroeconomic effects on mortality revealed by panel
analysis with nonlinear trends” (DOI: 10.1214/12-A0OAS624SUPP; .pdf). We
present supplementary material on: (i) interpretation of detrending choices;
(ii) data analysis for additional detrending choices; (iii) prewhitening as a goal
for selecting the Hodrick—Prescott smoothing parameter.
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