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This paper describes and compares two methods for estimating the vari-
ance function associated with iTRAQ (isobaric tag for relative and absolute
quantitation) isotopic labeling in quantitative mass spectrometry based pro-
teomics. Measurements generated by the mass spectrometer are proportional
to the concentration of peptides present in the biological sample. However,
the iTRAQ reporter signals are subject to errors that depend on the peptide
amounts. The variance function of the errors is therefore an essential param-
eter for evaluating the results, but estimating it is complicated, as the num-
ber of nuisance parameters increases with sample size while the number of
replicates for each peptide remains small. Two experiments that were con-
ducted with the sole goal of estimating the variance function and its stability
over time are analyzed, and the resulting estimated variance function is used
to analyze an experiment targeting aberrant signaling cascades in cells har-
boring distinct oncogenic mutations. Methods for constructing conservative
p-values and confidence intervals are discussed.

1. Introduction. Improvements in mass spectrometer resolution, accuracy
and sensitivity coupled with the development of increasingly sophisticated algo-
rithms for protein identification from spectra have resulted in mass spectrometry
(MS) becoming the tool of choice in large scale proteomics research. Typically,
the mass spectrometer is used to measure short portions of the proteins called pep-
tides. These are subjected to a process called tandem mass spectrometry (MS/MS)
which ultimately yields a mass spectrum containing peaks which correspond to
the primary amino acid sequence and enable the identification of peptides. When
samples are labeled with iTRAQ (isobaric tag for relative and absolute quantita-
tion) stable isotope reagents, the MS/MS spectra also contain peaks at predefined
masses, whose intensities provide a relative measure of the peptide abundance in a
set of samples. A single experiment can yield tens of thousands of spectra identi-
fying thousands of peptides belonging to thousands of proteins. Analysis of sam-
ples from different sources, for example, cells expressing different mutations in
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FIG. 1. Left: scatterplots of Y;1 versus Y;» in the March experiment. Right: pointwise estimates of
mean and variance and different models for the variance.

a known oncogene versus the wild-type (e.g., nontransforming) counterpart can
provide insight as to the mechanisms by which specific genetic lesions manifested
in the same protein drive a malignant phenotype. A workflow diagram and a brief
explanation of the iTRAQ technique are given in Part A of the supplemental arti-
cle [Mandel et al. (2013)]; for a detailed discussion on MS techniques see Eckel-
Passow et al. (2009).

In an experiment conducted in March 2009 and described below, Zhang et al.
(2010) applied the iTRAQ protocol using two different labels for the same biolog-
ical sample. The experiment yielded 2174 pairs of measurements corresponding to
the amounts of 2174 peptides in the sample. The left panel of Figure 1 depicts the
data! (on a logarithmic scale) and clearly shows that the variance of peak intensity
measurements is nonconstant and depends on the mean. This variance should be
estimated for better understanding of the results of the MS analysis and to enable
statistical inference about the peptide amounts. The right panel of Figure 1 dis-
plays the mean of each pair against its variance together with several estimates of
the variance function described in Section 2.3.

The purpose of the current paper is twofold: first, to estimate the variance func-
tion related to observations obtained by the common technique of iTRAQ stable
isotope labeling [Ross et al. (2004), Aggarwal, Choe and Lee (2006)], which pro-
vides measurements of the relative amounts of peptides from two different bio-
logical samples in a single experimental run; and second, to construct confidence
intervals for the abundance of a given peptide in a biological sample and to the ra-
tio of two abundances under different conditions (e.g., cancer and wild type cells)

IPairs with exactly the same realized value were excluded from the analysis; there were two such
peptides.
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using the estimated variance function, and to calculate p-values for the hypothesis
of equality in peptide amounts in two independent samples.

Models that define the variance as a function of the mean have been studied
intensively in the framework of heteroscedastic regression, where different esti-
mation techniques have been suggested [e.g., Davidian and Carroll (1987)]. How-
ever, in MS, the variance function depends on the unknown peptide amount and
the estimation problem is much more involved. A similar problem arises in certain
immunoassay studies where few or no standard concentrations are available [Raab
(1981), Sadler and Smith (1986), O’Malley, Smith and Sadler (2008)], and in the
evolving area of microarray mRNA expression analysis [Carroll and Wang (2008),
Wang, Ma and Carroll (2009), Fan, Feng and Niu (2010)]. Unlike immunoassay
and microarray, labeled MS data can contain as few as two measurements of each
peptide relative quantity and, therefore, analysis requires a special experiment for
estimating the variance function.

In a previous study, Zhang et al. (2010) suggest a novel controlled experiment
for the estimation of the variance function in the iTRAQ protocol. Using the stan-
dard workflow, they held the sample constant by generating pairs of iTRAQ in-
tensities from identical biological samples. Under this experiment, it is reasonable
to assume that the iTRAQ labels are interchangeable in their error characteristics
since labeled samples are mixed before processing and, therefore, the difference
within pairs of such measurements are entirely attributable to the measurement
error of the instrument itself. Two controlled experiments were conducted in Jan-
uary and March of 2009 with the sole goal of estimating the variance function
[Zhang et al. (2010)]. A separate experiment was conducted to explore differences
observed between wild-type and cancer cells expressing distinct mutations of the
same oncogenic kinase (FLT3); this experiment relied on the variance function es-
timated in the controlled study. The motivation for our current study arises from
these past experiments, and below we describe in detail the mathematical prob-
lem, suggest statistical methods to tackle it and apply them to the three data sets
mentioned above.

In Section 2 we present a naive method for estimating the variance function em-
ployed by Zhang et al. and explore its validity. We show that the method works
well when the error terms are typically small, as is the case in the instrument
explored by Zhang et al. (2010), but may yield biased estimators for the vari-
ance function in other situations. We then suggest an alternative mixture model
approach for estimating the variance function and prove its consistency. In Sec-
tion 3 we use the estimated variance function for interval estimation of the ratio
of peptides across two different biological conditions, and we apply the method
to iTRAQ-based MS analysis that is intended to decipher the oncogenic potential
of two different clinically relevant mutations in the FLT3 receptor tyrosine kinase.
Section 4 discusses testing of the hypothesis that the amounts of peptides in two
biological samples are equivalent. The properties of the estimation approaches are
investigated in Section 5 by simulation. Section 6 completes the paper with some
remarks.
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2. Estimation of the variance function.

2.1. The model. Consider a controlled iTRAQ experiment that quantifies N
peptides. Let Y;1, Yi» denote two measures of intensity of peptide i (on a logarith-

mic scale) having an unknown mean ;. Assume that (Y;1, Y;2) i =1,..., N) are
independent following the model:
(1) Yij ~ N(ui, h(0, 1)), j=1,2, independent,

where 6 is a vector of unknown variance parameters, and 2(6, 1) is a known posi-
tive function, such as the power function 6, MGQ or the exponential function ettt
In problems where (1, ..., uy are known or are modeled by a small number of
auxiliary variables, standard techniques for estimating heteroscedastic regression
models apply [e.g., Davidian and Carroll (1987)]. However, this is not the case in
MS data where u1, ..., uy are unknown nuisance parameters.

Klawonn, Hundertmark and Jansch (2006) and Hundertmark et al. (2009) de-
veloped an EM algorithm that maximizes over (1, ..., uy and 6 the likelihood
corresponding to N independent observations, (y;1, yi2), from model (1):

N

) n{Znh(G,,u,-)}_lexp{

i=1

O = wi)? + iz — 1i)? }
2h(0, ;) '

However, since the number of nuisance parameters increases with sample size, the
maximum likelihood approach may provide biased estimators. The bias is readily
seen in the classical example by Neyman and Scott (1948) of the one-parameter
homoscedastic model /4 (0, n) = 6. The maximum likelihood estimator for 6 under
this model is N~! > iYir— Y;»)?/4 having expectation 6 /2, hence it converges to
half the true variance. Thus, although the model is parametric, alternatives to the
maximum likelihood technique should be employed.

2.2. The MACL approach of Sadler and Smith. Motivated by immunoassay
data, Raab (1981) suggests to modify the likelihood (2) by multiplying the con-
tribution of each of the pairs (Y;1, Yi2) by hl/2 (0, i), and then to maximize the
modified likelihood with respect to i1, ..., uny and 6. Raab shows by simulation
that the standard maximum likelihood estimator is biased, but the modified estima-
tor performs reasonably well. Raab’s method is computer intensive, as it requires
the estimation of all nuisance parameters.

Sadler and Smith (1986) estimate 6 by maximizing Raab’s modified likelihood
at the point y; = Y; := (Y;1 + Yin)/2 (i =1,..., N):

R N 1
3) 6 = arg max l_[

0 i=14xw2,/h(0,Y;)

where Sl.2 =i - }_’i)2 + (Yo — Yi)z =Y - Yi2)2/2. This approach, called max-
imum approximate conditional likelihood (MACL) by Sadler and Smith, reduces

exp{—S?/2h(6, Y))},
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the estimation task to solving a small set of nonlinear equations. The resulting
estimating equations under the normal model are therefore

N 9n(o, Y:)/90,
2 h2(6, Y;)

i=1

{87 —h(, ¥} =0.

For example, for the model 2(0, u) = exp(01 + 6211), the estimating equations
reduce to

N
(4) 1-N"">"S7exp(—6; — 6,7;) =0,
i=1
N N _
(5) N~ Vi = N1 Y Y ST exp(—61 — 62Y)) =0,
i=1 i=1

and can be easily solved by standard optimization algorithms using, for example,
the R function optim [R Development Core Team (2011)]. As pointed out by Sadler
and Smith, the solution for (3) can be obtained by an iterative reweighted least
squares algorithm.

We applied the MACL approach to the January (N = 2144) and March (N =
2174) experiments described in Section 1 using the functional form h(6, u) =
exp(01 + 6ru) and obtained the estimates 6 = (4.89, —0.935) and 6 = (4.89,
—0.925), respectively.? The similarity of the two estimated variance functions is
remarkable, suggesting that the between-study variability is small. This is a very
important finding, as the variance function can be estimated in a control exper-
iment and be applied to data obtained in independent experiments on the same
instrument. We finally pooled the data together and obtained an overall MACL
estimate of = (4.86, —0.927).

Neither Raab nor Sadler and Smith provide sound theoretical justification for
their methods, but explore them in several special relevant cases. In general, the
expectation of the estimating equations differs from 0, hence, the estimators of the
variance function are, in general, inconsistent. This is shown in Appendix A and
is illustrated by simulation in Section 5. However, Appendix A suggests that the
bias is small when the variance (for all 1;) is small, because in such circumstances
Y; is a good estimator for u;, even though it is based on only two observations.
Recently, Wang, Ma and Carroll (2009) studied variance functions for microarray
experiments and showed a similar inconsistency problem of estimators obtained
by the method of moments.

2Data and R codes can be accessed as project syn310406 on the Sage Bionetworks Synapse system
(http://synapse.sagebase.org).
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2.3. A mixture model. A possible strategy to deal with the inconsistency of the
MACL approach is to impose additional reasonable assumptions on the nuisance
parameters. We consider the model

Yijlwi ~ N (i, h(0, 1)), i=12, independent,
(6)
wi ~ Go, i=1,...,N, independent,

where (i) the support of Gy is in the segment [a, b], thatis, P(a < u; <b) =1, (ii)
the variance is bounded, that is, « < h(6, u) < B for all u in the support of G for
some 0 <o < B < oo, (iii) h(6, ) is continuous on [a, b] and identifies 6, that is,
knowing h(6, n) on the support of G implies knowledge of 6.

The assumptions on h are satisfied by most practical models. The reason for
bounding G and the choice of the values a and b are discussed in Section 3. To
see the importance of the identifiability assumption, consider the model A (0, ) =
exp(f1 + 6>11) and a degenerate G that assigns all the mass to some . In such a
model, exp(0; + 6>110) is identifiable, but the pair (61, 6>) is not.

THEOREM 1. Under model (6) and the assumptions following it, the maximum
likelihood estimator of (6, Gg) is consistent.

The proof, which is sketched in Appendix B, is based on the seminal paper by
Kiefer and Wolfowitz (1956) who prove the consistency of the maximum like-
lihood estimator in mixture models such as (6). A recent application of mixture
models for variance estimation in microarray analysis can be found in Wang, Ma
and Carroll (2009), though they suggest a different estimation strategy for 6.

Several algorithms for deriving the maximum likelihood estimator of a mixture
model have been suggested in the literature [see, e.g., Bohning (1999)]. Here we
estimate 8 and G by employing the EM algorithm, treating (Y;1, Y2, it;) as the
complete data on the ith peptide. One strategy for estimating Gy is to restrict the
search to distributions supported on a fine grid and to find the maximum likelihood
among these distributions. In the current problem, the variance becomes small for
large values of u and using a simple grid may lead to data points which are too far
(in terms of standard deviations) from all support points. We found that defining
the support points of G as a function of the variance performed better than using
a simple grid. Thus, we first obtained an initial estimate of the variance function
using, for example, the MACL approach, and then restricted the distance between
two support points to be at most d standard deviations according to the estimated
function. Specifically, let 6 be an initial estimate for 6, and define the maximal sup-

port point to be w; = b, the second to maximal tobe wyj_; = uy — d\/h(é, wy)

and recursively pj 1 =u; —d NVICEM j)- The selected points of support depend
on the initial estimate of the variance function and can be updated as part of the

algorithm, though in our experience, this update made no significant improvement
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when using d = 1/4. Once the support points for G are determined, the EM al-
gorithm is applied to estimate 8 and Gq. The algorithm is quite standard and its
description is detailed in Appendix C.

We fit the following three forms for A(6, i) that have been suggested in the
literature>: exp(@l)uez, exp(f1 + 62u) and exp(6; + Gru) + exp(63). The right
panel of Figure 1 presents estimates of these three functions on a scatter diagram
of ¥; = (Yi1 + Yi2)/2 against Sl-2 =1 — Yi2)2/2. The X-axis is a naive estimate
of the mean of each pair, p;, and the Y-axis is a naive estimate of the variance.
All three models give similar results in most of the range with some deviation for
very small values of u. A loess fit, presented in the figure by the dotted line, is
quite close to the functional form i (6, u) = exp(0; + 6> ) originally suggested by
Zhang et al. (2010). This latter model is used throughout this paper.

Applying the EM approach using the functional form 2(6, u) = exp(61 + ),
we obtained the estimates § = (4.91, —-0.929) and 6 = (4.96, —0.944) based on
the January and March experiments, respectively. The estimates are very similar
to the estimates obtained by the MACL approach. We then pooled the data from
the two experiments together and obtained our final estimate, 0 = (4.84, —0.927).
The corresponding estimate of G is displayed in the supplemental article [Mandel
et al. (2013)]. Initial values for the EM algorithm were obtained by the MACL
approach. Starting the algorithm from different points resulted in essentially the
same estimate (details are provided in the supplementary materials).

3. Confidence intervals. Having estimated the variance function, confidence
intervals for various parameters of interest can be constructed based on data from a
new experiment that compares different biological samples. We construct frequen-
tist confidence intervals that are based on the estimate & of 6 under model (6), but
do not use the estimate of the mixing distribution G. We take this approach since
the variance function is a stable characteristic of the mass spectrometer, whereas
G depends on the biological sample and may differ from sample to sample.

3.1. Confidence intervals for . It is of interest to attach a measure of un-
certainty to the observed intensity or to report a range rather than one value for
each peptide. This section discusses the construction of 1 — « confidence in-
tervals for the peptide amount, u, based on one observation Y from the model
Y ~N(u, h(6, n)); the next section deals with the construction of confidence sets
for the relative abundance of a peptide in two different samples.

Similar to the MACL approach for estimation, construction of confidence inter-
vals can be simplified by plugging an estimate of x in 4 (6, p). Thus, a naive confi-

dence interval is constructed by ¥ £ 71424/ h(é, Y), where z, is the o quantile of

3Data and R codes can be accessed as project syn310406 on the Sage Bionetworks Synapse system
(http://synapse.sagebase.org).
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the standard normal distribution. This method is expected to perform reasonably
well only in cases were the variance is small and changes slowly with .

An exact 1 —« confidence set for i can be constructed using the pivotal quantity
gv () = (Y — )%/ h(®, w). This interval is defined as Co = {1 : gy (1) < X1.1—als
where x47, 1s the o quantile of the chi-squared distribution with df degrees of
freedom.

For the model 2(0, 1) = exp(61 + 6214), this set can be easily found by a bisec-
tion search using the following observations:

(1) gy(Y)=0is alocal minimum.

(2) For 6, <0, u* =Y 4 2/6, is a local maximum of gy (), with gy (u*) =
492_26_(2+91+92Y).

We thus obtain the following properties of the confidence procedure:

e If gy (™) < x1—q, then the confidence set is a one-sided interval of the form
(—OO, rl)-

e If gy(u®) > x1—«, then the confidence set is a union of two intervals,
(—oo,r))U(lp,rp),where ri < u* <l <Y <rp.

This nonstandard shape of the confidence set reflects the fact that a realization
y is likely either when u is close to y or when p is much smaller than y and
the variance of the measurement is very large. Often, the range of w is a priori
bounded so that values smaller than r; do not belong to the parameter space, and
the confidence set is always an interval.

Since the parameter 6 is unknown, a consistent estimator based on the mixture
approach is plugged in to generate confidence intervals with an approximate level
1 —a.

3.2. Confidence intervals for uy — pup. Let Y1 ~ N(uy, h(0, 1)) and Yo ~
N (2, h(6, o)) be the log intensities of the same peptide obtained by the iTRAQ
protocol under two different conditions, and assume that Y| and Y> are indepen-
dent conditionally on w1 and p;. We consider the construction of a confidence set
for w1 — pa, which is the parameter of primary interest in many quantitative MS
studies.

As in the one-parameter case, a naive confidence interval for wu; — uo
can be obtained by plugging Y; and Y, into the variance term: Y| — Yp &+

-« /2\/ h(8, Y1)+ h(d, Y2). However, such intervals may be anti-conservative,
as the estimator Y; for y; is inconsistent, and hence so is the estimator h(é, Y;) for
h(@, pi).

A direct and a relatively simple way of calculating conservative intervals is by
Bonferroni correction, that is, by first constructing 1 — «/2 intervals for p; and
for 7, as described in the previous section, and then calculating the minimum and
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maximum differences of the two intervals. However, a more direct construction
uses the reparametrization vy = 1 — 2 and vy = 1 + wo.
Let

YiI—Yy—v
Vh©@, (v2 —v1)/2) + h(0, (v2 +1)/2)

gyi-r,(v1, ) =

and
YI+Y—1
VE@, 2 =v)/2) + 1@, (2 +v1)/2)’

then (gy,—v,(v1,12), gv,+1,(v1,12)) has a bivariate standard normal distribution
with correlation

p(i, 1) ={h(0, (v2+v1)/2) —h(0, (v2 —v1)/2)}
J1h(B, (2 — v1)/2) + h(B, (v2 +v1)/2)).

8y+1v, (V1, 12) =

Thus,

gv,.v,(vi,v2) = (gv,—v, (V1, v2), &y, +v, (V1, 12))

-1
o ( 1 p(vi, vz)) (ng—Yz(Vl,VZ))
p(vi, v2) 1 gy +v,(V1, v2)
has a x (22) distribution and can serve as a pivot for constructing confidence regions.
Specifically,

@) Cy,,v,(vi,v2) ={(v1,v2) 1 gy, v,(V1,12) < X2,1-a}

is an exact 1 — « confidence region for (vi, v2) and, therefore, {v;:(vi,vy) €
Cy,.v,(v1,12), —00 < vy < 00} is a conservative confidence set for v;.

3.3. An application to the iTRAQ protocol. In this section we analyze data
from the two control experiments mentioned in Section 1. As the two biological
samples in these experiments were identical, pj; — ui2 = 0 for all peptides i =
1,..., N.In order to evaluate the performance of our confidence intervals, we used
the parameters’ estimates from one experiment to construct 95% level confidence
intervals for the difference of peptide abundances in the other experiment, and
calculated the proportion of intervals that did not cover 0, the true difference.

As in the uni-parameter case, the confidence set for (v, vp) is not necessarily
a connected set and the resulting confidence set for v; is not always an interval.
Figure 2 demonstrates the shape of the confidence region for the pairs (Y7, Y2) =
(8,9) and (Y1, Y2) = (7.5,8). The X and Y axes are, respectively, v; and v,, and
the confidence sets are the shaded areas. The figure reveals that without restricting
the parameter space of y (hence the parameter space of vy), the confidence interval
for v1 comprises all of the real line and is noninformative. We therefore assumed
that u € [7.3,13.9], where the limits were determined from typically observed



10 MANDEL, ASKENAZI, ZHANG AND MARTO
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FI1G. 2.  95% confidence regions for the pair (vi, v) constructed for two data points: (8,9) (left)
and (7.5, 8) (right).

values as well as the expected range of the intensity values. This decision restricts
the values of v; and v, to the large parallelograms depicted in Figure 2, and enables
the construction of informative confidence intervals. The smaller parallelograms
represent confidence sets obtained by Bonferroni correction applied to univariate
confidence intervals for @ and for wy.

Using estimates from the January data, we calculated confidence intervals for vy
for peptides in the March experiment by (7), Bonferroni correction and the naive
approach, and found that, respectively, 18 (0.8%), 1 (0.05%) and 86 (3.96%) of
the 2174 intervals did not include the true parameter vy = 0. The corresponding
numbers for the 2144 peptides in the January experiments using estimates from
the March data are 47 (2.19%), 8 (0.4%) and 106 (4.94%). This exercise suggests
that interval (7) is better than the Bonferroni interval, but is still conservative. The
naive approach performs surprisingly well in our experiment, but, in general, its
theoretical coverage probability is not controlled. Further research is needed to
understand this phenomenon.

3.4. An application to cancer phosphoproteomics. Zhang et al. (2010) used
iTRAQ labeling to study a key modification to proteins called phosphorylation,
which is important in cell signaling, and is often deregulated in cancer cells. Their
study focused on aberrant signaling arising from oncogenic FLT3 mutations in
acute myeloid leukemia. In particular, they monitored a key, subcomponent of sig-
nal transduction, namely, protein tyrosine phosphorylation, in order to obtain a
global understanding of the oncogenic potential of two clinically identified FLT3
mutants (FLT3-D835Y and FLT3-ITD). Both FLT3 mutants induce constitutive
signaling even in the absence of proper external cues, which results in uncon-
trolled cell proliferation, a hallmark of cancer development [Blume-Jensen and
Hunter (2001)]. Since receptor tyrosine kinases are often constitutively active in
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TABLE 1
95% confidence intervals for the ratio of phosphopeptide quantity across two experimental
conditions using the conservative and the naive approaches

Phosphopeptide FLT3-D835Y FLT3-ITD CI CI naive

VLPQDKEpYYK 10.21 10.78 (0.41,0.76) (0.44,0.72)
GQESEpYGNITYPPAVR 13.62 11.89 (5.05,6.36) (5.11,6.22)
HKEEVpYENVHSK 11.19 9.92 (2.66,5.05) (2.76,4.59)
pYKNILPFDHSR 10.83 9.80 (2.03,4.10) (2.12,3.69)
AVDGpYVKPQIK 11.45 13.36 (0.13,0.17) (0.13,0.17)

cancer cells, it is not surprising that a large proportion of downstream phospho-
rylation events diverge from a 1:1 value (measured relative to a control cell line),
effectively eliminating the possibility of deriving a variance function from the ex-
perimental data themselves.

Based on the mixture model results of the pooled control experiments, we cal-
culated 95% confidence intervals for the ratio of phosphopeptides mentioned ex-
plicitly in the figures of Zhang et al.; these are reported in Table 1. For comparison,
we calculated confidence intervals based on a naive approach mentioned in Sec-
tion 3.2. Using the intensity-dependent variance function described in this paper,
as opposed to a constant cutoff point often used in the literature, subtle changes in
phosphorylation levels can be found (e.g., peptide VLPQDKEpY YK). Such ratios
can be considered statistically significant despite being smaller than the typical
cutoff of 2:1. This in turn suggests that experiments can be designed to explore
phosphorylation under physiological conditions, unlike many current experimen-
tal designs where artificial or extreme environments are used in order to amplify
the observed ratios.

4. Hypothesis testing.

4.1. Calculation of p-values. For a given peptide, consider testing the hypoth-
esis Hp:uy = pup = pu versus the two-sided alternative Hj:puy # u». Theoreti-
cally, this can be done by inverting the confidence intervals discussed in the pre-
vious section. However, for calculating p-values, this inversion is computationally
difficult and the current section explores an alternative approach.

As before, let Y1 ~ N (1, h(6, n1)) and Yo ~ N (w2, h(6, 1u2)) be independent,
then Y1 — Yo ~ N(u1 — p2, h(6, 1) + h(6, o)) and a reasonable test may com-
pare

(Y1 — ¥,)?
ICAD)

to the chi-squared distribution with one degree of freedom. However, (8) contains
the unknown parameters 6 and p, and hence is not a legitimate test statistic. As

®)
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in the construction of confidence intervals, a naive p-value can be calculated by
replacing the denominator of (8) with 2A (é , (Y1 + Y2)/2). Although it is reason-
able to replace 6 with its consistent estimator 6, the average (Y1 + Y2)/2 is an
inconsistent estimator for w, possibly leading to an anti-conservative p-value.

As in other statistical problems involving nuisance parameters, an asymptoti-
cally conservative p-value is obtained by

sup P(Z% > (y1 — y2)?/2h (8, ),
uela,b]

where y; and y, are the realized values and Z2 is a X(21) random variable. This
approach is simple and easy to implement but results in an overly conservative
p-value. We therefore suggest to employ the approach of Berger and Boos (1994),
where the p-value is calculated by maximization over a confidence interval for
the nuisance parameter. Specifically, let Cg be a 1 — B level confidence interval
for u, obtained in a way similar to that presented in Section 3.1, then we define
our p-value as

) sup P(Z* > (y1 — y2)*/2h(6, 1)) + B.

neCp
The choice of 8 depends on the context. If a univariate hypothesis is tested with
a significant level of 5%, then § = 0.001 is usually a good choice. However, if a
Bonferroni correction is needed, then 8 must be much smaller, as p-value > 8 by
construction.

4.2. Application to the iTRAQ data. p-values for testing no difference of pep-
tide amounts were calculated for all pairs in the pooled iTRAQ control experiments
described in Section 3.3. We used the variance function i (0, i) = exp(01 + 6> 11)
with 6 estimated by the EM algorithm applied to the pooled data. Three ap-
proaches were compared: the naive approach that replaces u in h(6, u) with
Y = (Y1 + Y2)/2, a conservative simple approach that replaces p with a, and the
approach of Berger and Boos based on (9) with 8 = 107°.

Figure 3 presents scatterplots and histograms of the p-values. Scatterplots are
depicted in logarithmic scale with dotted lines indicating 0.05 and 0.05/N sig-
nificant levels. Recall that the null hypothesis holds in these experiments. Two
peptides had naive p-values smaller than the Bonferroni cutoff value, for one of
them the Berger and Boos p-value was also under the cutoff level. For about 40%
of the experiments the Berger and Boos p-value was similar to the conservative
p-value, but for the other peptides, the Berger and Boos method gives consider-
able smaller values. These are valid p-values and certainly worth the additional
computation effort. The distribution of p-values under the naive approach is very
close to the uniform distribution, whereas the distributions under the other two ap-
proaches are stochastically larger. This and the simulation presented in the next
section suggest that the naive approach for testing differences of peptide amounts
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FI1G. 3. Scatterplots and histograms of p-values for the pooled control experiments obtained by
different approaches. Scatterplots are in log scale with dotted lines indicating significant level of 5%
with and without Bonferroni correction.

may be only slightly anti-conservative, though a more extensive study is required
before the naive approach can be recommended.

As a second application, we calculated p-values for the data described in Sec-
tion 3.4 that contrast two mutants found often in certain types of cancer. There are
N =205 peptides in the data, the p-values of 141, 123 and 9 of them were smaller
then 0.05/N according to the naive, the Berger and Boos and the conservative
approach, respectively. These peptides are then prioritized for in-depth functional
characterization.

5. Simulation.

5.1. Estimating the variance function. The performances of the two estima-
tion approaches, the MACL and the mixture model, were tested by simulation
under various conditions. The first set of simulations aimed at testing the perfor-
mance of the MACL approach. For each of the scenarios described below, we gen-
erated values for the nuisance parameters and then generated independent pairs of
observations from the corresponding normal distributions. We repeated this pro-
cess 1000 times for different sample sizes (N = 200, 500, 1000 and 2000) and for
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TABLE 2
Simulation results for the MACL method under the observations fixed scenario

b1 b2
N 01 bias std 0, bias std
200 5 —0.061 0.830 -1 0.006 0.081
500 5 —0.051 0.508 -1 0.005 0.049
1000 5 —0.020 0.360 -1 0.002 0.036
2000 5 —0.002 0.251 -1 0.000 0.025
200 5 —1.238 0.759 —0.5 0.127 0.074
500 5 —1.175 0.484 —0.5 0.121 0.047
1000 5 —1.156 0.319 —0.5 0.119 0.031
2000 5 —1.164 0.238 —0.5 0.120 0.023

two different variance functions of the form exp(6; + 6 u): (61,62) = (5, —1),
which is similar to the values obtained in our data, and (6;, 62) = (5, —0.5), which
reflects observations with a much larger variance. The following scenarios were
considered:

e Observations fixed: a set of u; values was sampled from the observed Y;’s (with
replacement) and the same values were used in all 1000 replications.

e Observations random: a different set of w; values was sampled from the ob-
served Y;’s (with replacement) for each simulation.

e U(8, 12): the u; values were generated from the continuous uniform distribution
over (8, 12).

e U{8,9,...,12}: the u; values were generated from the discrete uniform distri-
bution over {8,9, ..., 12}.

The results of the simulation are summarized in Table 2 and in more details
in the supplemental article [Mandel et al. (2013)]. There seems to be almost no
difference between the scenarios considered (see Table 1 of the supplementary
materials), and this suggests that the approach is insensitive to modest changes in
the distribution of the nuisance parameters. Both the variance and the bias decrease
with sample size for the model (0, 8;) = (5, —1), and the overall performance of
the MACL approach for this case is satisfactory. However, the MACL estimators
are biased for the case (01, 6;) = (5, —0.5), and the bias did not decrease with
sample size (Table 2). Thus, unless the variance is very small, the approach is
problematic and is not recommended.

In order to test the mixture model approach, we generated w; by the observa-
tions fixed scenario under the two variance functions described above. For each
sample size, we simulated 200 data sets and calculated the empirical biases and
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TABLE 3
Simulation results for the mixture model method under the observations fixed scenario

b1 )

N 01 bias std 0, bias std
200 5 0.580 0914 -1 —0.071 0.088
500 5 0.423 0.534 -1 —0.049 0.052

1000 5 0.274 0.328 -1 —0.030 0.032

2000 5 0.173 0.227 -1 —0.019 0.022
200 5 0.070 1.026 —0.5 —0.009 0.099
500 5 0.019 0.608 —0.5 —0.003 0.059

1000 5 0.027 0.397 —0.5 —0.003 0.039

2000 5 —0.013 0.291 —0.5 0.001 0.028

standard deviations. The results are listed in Table 3. As expected, the bias and
variance of the estimators decrease with sample size for both models.

Figures 4 and 5 display the performance of the estimators for the variance, that
is, the performance of exp(él + 6> ) as a function of p. The gray lines are esti-
mated variance functions from 200 simulated data sets and the true variance func-
tion is depicted in black. The figures demonstrate that the mixture model approach
is as good as the MACL in the low variance case and performs better in the large
variance scenario, especially when the sample size is large.

5.2. Confidence intervals for n. Intervals for u based on one observation use
the pivot (¥ — w)? /h(0, ) and are exact. Here we study the performance of the
corresponding 1 — « naive confidence intervals that replace p with Y in the vari-
ance function i(6, u); see Section 3.1.

Figure 6 presents the coverage probability of the naive intervals as a function of
the mean (u =7,7.1, ..., 14), the coverage probability (1 — o = 0.9, 0.95, 0.99)
and the variance function [exp(5 — ), exp(5 — 0.5u)]. For each u, o and variance
function h(6, u), we estimated the coverage probability by simulating 100,000
replications from the model N (u, h(6, w)), constructing naive confidence inter-
vals of level 1 — «, and calculating the proportion of intervals covering p. The
performance depends on the variance at u, where the true coverage for small ©
(i.e., a large variance) could be much lower than the aimed coverage, especially
for large values of 1 — « and for the model 4(0, ©) = exp(5 — 0.5u) represented
by dashed lines.

5.3. p-values. A third simulation study was conducted with the aim of un-
derstanding the properties of p-values obtained by the different approaches. For a
selected set of values for ., we generated 10,000 independent pairs of observations
(Y1, Y7) such that Y1 ~ N(u, 110210y and Y, ~ N (g, 1020y independently,
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FI1G. 4. Estimated variance functions (gray) and the true variance function (black) obtained in 200
simulated data sets for the case (01,62) = (5, —1). The figures on the left show the results of the
MACL approach and those on the right are for the mixture model approach. The simulated data
sample sizes are, from top to bottom, 200, 500, 1000 and 2000.
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FI1G. 5. Estimated variance functions (gray) and the true variance function (black) obtained in 200
simulated data sets for the case (01, 0y) = (5, —0.5). The figures on the left show the results of the
MACL approach and those on the right are for the mixture model approach. The simulated data
sample sizes are, from top to bottom, 200, 500, 1000 and 2000.
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F1G. 6. Coverage probability of the naive confidence interval for u for confidence levels 0.99, 0.95
and 0.90. Solid lines: h(0, ) = exp(5 — w), dashed lines: h(0, i) =exp(5 —0.5un).

where ;= + k x Ve %214 that is, Y| and Y> are centered about k standard
deviations apart. The parameter k ranged from 0O to 3, and for (61, 62) we studied
the values (5, —1) and (5, —0.5). We used the value g = 10~3 for the Berger and
Boos p-values.

Figures 4 and 5 of the supplemental article [Mandel et al. (2013)] present the
proportions of p-values that were smaller than 0.05 as a function of w, k and 6,.
For the case 6, = —1 (supplemental article, Figure 5), the naive approach is only
slightly anti-conservative and only for small values of u, and its power is much
larger than that of the other methods. The Berger and Boos approach works reason-
ably well only for very small and very large values of w; the conservative approach
is useless. For the case 8, = —0.5 (supplemental article, Figure 4), the naive ap-
proach is anti-conservative for small values of u with a significant level of up to
0.08 instead of the declared level of 0.05. However, it is the only method that has
a useful power function.

6. Discussion. This paper presents a protocol for estimating the variance
function of a mass spectrometer when used for relative quantification in proteomic
applications. Using two sets of data collected three months apart, we found that the
variance function is stable over time. However, we expect to find different variance
functions in different instruments and, hence, each lab should estimate the variance
parameters of each spectrometer independently using the protocol described here,
and update them periodically. More importantly, the variance estimated here cor-
responds only to the variance of the instrument itself, and does not include error
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terms corresponding to the natural variability of biological samples or the process-
ing required to solubilize proteins from cells and tissues, generate peptides, etc.

Two inference approaches are considered. The first estimates the nuisance pa-
rameters by simple averages and then maximizes a target function; the second
approach assumes a mixture model and estimates the variance function by maxi-
mum likelihood. When the variance is small and changes slowly as a function of
the mean, as is the case in the data we analyzed, an average of two iTRAQ reporter
ions per peptide provides a reasonable estimate for the unknown p and the first
approach gives good results. However, it may yield highly biased estimators in
other scenarios, as demonstrated by simulations, and we therefore recommend the
routine use of the mixture model approach that has a sound theoretical justification.

When using the estimated variance function for statistical inference on one pa-
rameter [, exact methods for constructing confidence intervals are available and
are much more appropriate than intervals constructed by the anti-conservative
naive approach. On the other hand, for inference on the difference or the ratio of
peptide abundance measured across two biological conditions, the naive approach
performs quite well, yielding a significant level only slightly larger than the aimed
one.

The iTRAQ protocol is somewhat more complicated than presented here, as it
involves preprocessing of the spectral data to correct for differences in total pro-
tein amount, iTRAQ label purity and instrument-specific parameters. Moreover,
iTRAQ is known to suffer from contamination due to co-eluting chromatographic
peaks that also share similar precursor masses (i.e., peptides which have a similar
m/z value and retention time). Theoretically, these factors may induce dependence
between measurements that is ignored in the current analysis.

In order to test the underlying normal assumption, Zhang et al. produced a g—

q plot of (Y;; — Yi2)/ h(d,Y;) that showed a very good fit. Although the graph
is suggestive, it relies on ¥; as an estimate for the nuisance parameter j;, hence
it does not have a theoretical support. A formal approach we intend to explore
requires at least three observations for each peptide. A simple transformation of
each of the triplets results in variables that, under the normal model, have a Cauchy
distribution, and a q—q plot or formal goodness-of-fit tests can be easily employed.
This approach requires iTRAQ data from a control experiment that yields more
than two independent and identically distributed measures for each peptide. We
intend to conduct such an experiment in the future.

The conservative results of the exercise conducted in Section 3.2 are partially
due to the inherently conservative construction of the intervals, but may also be a
result of the special parametric shape for the variance function we considered. Our
chosen parametric model is very simple, enabling the implementation of simple
algorithms, and is supported quite well by the data. A nonparametric method has
been recently suggested for the analysis of microarray data [Carroll and Wang
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(2008)]; the possibility of adopting this method to MS data and of using it for
goodness-of-fit testing should be further explored.

APPENDIX A: BIAS OF THE ESTIMATING EQUATIONS

Recall that ¥; ~ N (u;, %e9'+92’“) and §7 ~ 1 +02ni X(Zl), and that ¥; and S?
are independent. Straightforward calculations show that E (Siz) = 1021 and
Ef{exp(—60; — 60,Y;)} = exp(—0; — O + }10226’9”'92“") and, therefore,

N N
- 1
EINT'S " SPexp(—61 — 67 =N~ ex (—92e91+9wt‘>
i:ZI i exp(—01 — 6aY)) ,:21 p{ 702
so that the expectation of the first equation (4) differs from zero, unless 6, = 0,
that is, the homogeneous model of Neyman and Scott (1943). B

For the second equation, we have EY; exp(—6,Y;) = —%E exp(—tYi)li=o, =
— 4 exp{—tu; 21 01402 = (u: — L1@,ef1102mi —Or; + 621

a1 SXpi—tpi +t 1€ Hi=o, = (Mz_ F02€ Yexp{—bthp; + 27 X
ef1t02miy 5o that E{Y;S?exp(—0; — 6:Y)} = (i — 562517021y exp(567 x
110214y and the expectation of the left-hand side of (5) is

N N
1 1
N! 2 : . N! 2 ( . __p 91+92Mi> <_92 91+92Mi),
i:1Ml i=1 HT e TP e

which again differs from O for 6, # 0.

In general, the bias will be small if 110214 §g small for all i, which means that
the variance of the measurements is small and, hence, the local averages are good
estimators for the unknown p; parameters.

APPENDIX B: CONSISTENCY OF THE MLE

A generic sample point is y = (y1, ¥2), where, by conditional independence,

01— 1)+ (1 — w)? }
216, 1)

The marginal density of Y = (Y1, Y2) is g(y; 0, Go) = [, f(y; 01t) dGo(t).

The proof of consistency is based on the result of Kiefer and Wolfowitz (1956)
(KW hereafter); the metric we use below is given in KW equation (2.2).

We complete the parameter space of (6, Go) by including all proper distribu-
tions functions with support in [a, b].

Assumption 1 of KW trivially holds with respect to the Lebesgue measure.
Next, note that f(y; 8|u), and hence g(y; 68, Gg), is bounded above by a ! Let
6;, G;) = (0%, G*), where (6*, G*) is in the complete parameter space. In order
to verify Assumption 2 of KW, we need to show that g(y; 6;, G;) — g(y; 0%, G*).

(10) f(y;9lu)={2nh(9,u)}_leXp{—
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We have
8(y:6i, Gi) — g(y: 0%, G|

ff(y;ein)dG,-(r) —/f(y;e*n)dG*(r)‘

<|[trosai0 - eiotin)a6 | +| [ 1o aGio - 6 o)

sf\f(y;em) —f(y;9*|t)|dG*(r>+a"feri<r> — G0,

The first term vanishes by the Dominated Convergence theorem and the second
vanishes by the convergence of G; to G*.

For verifying Assumption 3 of KW, define m(y; 0%, G*, p) = supg(y; 6, G),
where the supremum is taken over all (8, G) such that |§ —0*| 4+ |G — G*| < p. We
need to show that m is a measurable function of y for any p > 0 and any (6*, G*) in
the complete parameter space. This is true for the same arguments given by KW in
their first example: g is for each y continuous in (8, G) and the parameter space is
separable. To show this formally, define A(0*, G*, p,c) = {y:m(y; 0%, G*, p) >
c}, and let {(6;, G;)} and {y;} be dense subsets in the parameter and sample space,
respectively. Let B(y, r) and B(6, G, r) be balls of radius r around the correspond-
ing points, then

o
A0*, G*, p,c) = ﬂ UB(yj, 1/n),
n=1 j
where the union is over {j :3(0;, G;) € B(6*, G*, p) such that g(y;; 6;, G;) > c}.

Assumption 4 of identification follows from Bruni and Koch [(1985), Theo-
rem 1], that proves that Gg and h(@, ) are identifiable on the support of 1. As-
sumption (iii) below equation (6) ensures identifiability of 6.

To verify Assumption 5, note that our assumptions on A (6, 1) guarantee that
g(y; 6, G) is bounded above and below so that Elog{g(Y; 6, G)} > —oo, where
the expectation is taken with respect to g(y; 8y, Go), the true density of Y.

APPENDIX C: AN EM ALGORITHM

Let f(y; 0|wn) be the bivariate normal density defined in (10), and leta < 1 <
-+, iy < b be fixed scalars (support points of Gg). We approximate the likelihood
of one observed pair by the following discrete mixture model:

J
(11) g(yi0.m) =) 7 f(y:0luj),
j=1
where w = (7y,...,7my), m; > 0and w1 + - -- + 7y = 1. The unknown parameters

are the 7;’s and 0.
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To construct the EM algorithm, consider a Multinomial variable A over 1, ..., J
with a probability vector &, and define (81, ...,8y) by §; = I{A = j}, where I is
the indicator function. Let ¥ = (yy, ..., yn) be data on N pairs, then the complete
log likelihood can be written as

N J
(12) Em,0;Y)=> "> &jlog{f(yi;0luj)}+ Z ZSU log(7;),
i=1j=1 i=1j=1

where §;; is an indicator for the (unobserved) event {pair i has mean p; }.
Denote by old the current estimates of the unknown parameters, then, using the
Bayes formula, the expectation step reduces to estimating

E%N ;1Y) = EYS51yi) = PO = 1w)
I AR 175 B
=7 _od old =W -
Zk:ﬂfk F i 099 ux)

Note that Zle d;j = 1 by definition, so the above formula can be interpreted as
the current estimate of the probability that y; was generated by the distribution
having mean ;.

The maximization step is obtained by replacing §;; in (12) with w"ld and solving

N J
1 Oldl ; Oldl
(13) n;%x;: EZ og{ f(yi:0luj) +§ E w;; log(mj),

i=1j=1

which is done separately for & and 6. For 6, the problem is of a nonparametric re-
gression type and can be solved by reweighted least squares, similar to the MACL
approach. The mixing probabilities are simply updated by

new Z wold‘
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SUPPLEMENTARY MATERIAL

Web-based supplementary materials variance function estimation in quan-
titative mass spectrometry with application to iTRAQ labeling (DOI: 10.1214/
12-AOAS572SUPP; .pdf). Section A: Workflow of the iTRAQ technique. Sec-
tion B: Estimate of G¢. Section C: Sensitivity of the EM algorithm to initial values.
Section D: Detailed simulation results.
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http://dx.doi.org/10.1214/12-AOAS572SUPP

VARIANCE FUNCTION ESTIMATION IN QUANTITATIVE MS 23

REFERENCES

AGGARWAL, K., CHOE, L. H. and LEE, K. H. (2006). Shotgun proteomics using the iTRAQ iso-
baric tags. Briefings in Functional Genomics and Proteomics 5 112—120.

BERGER, R. L. and Boos, D. D. (1994). P values maximized over a confidence set for the nuisance
parameter. J. Amer. Statist. Assoc. 89 1012-1016. MR1294746

BLUME-JENSEN, P. and HUNTER, T. (2001). Oncogenic kinase signalling. Nature 411 355-365.

BOHNING, D. (1999). Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis,
Disease Mapping and Others. Monographs on Statistics and Applied Probability 81. Chapman &
Hall/CRC, Boca Raton, FL. MR1684363

BRUNI, C. and KOCH, G. (1985). Identifiability of continuous mixtures of unknown Gaussian dis-
tributions. Ann. Probab. 13 1341-1357. MR0806230

CARROLL, R. J. and WANG, Y. (2008). Nonparametric variance estimation in the analysis of mi-
croarray data: A measurement error approach. Biometrika 95 437-449. MR2422697

DAVIDIAN, M. and CARROLL, R. J. (1987). Variance function estimation. J. Amer. Statist. Assoc.
82 1079-1091. MR0922172

ECKEL-PASSOW, J. E., OBERG, A. L., THERNEAU, T. M. and BERGEN, H. R. (2009). An insight
into high-resolution mass-spectrometry data. Biostatistics 10 481-500.

FAN, J., FENG, Y. and NIU, Y. S. (2010). Nonparametric estimation of genewise variance for mi-
croarray data. Ann. Statist. 38 2723-2750. MR2722454

HUNDERTMARK, C., FISCHER, R., REINL, T., MAY, S., KLAWONN, F. and JANSCH, L. (2009).
MS-specific noise model reveals the potential of iTRAQ in quantitative proteomics. Bioinformat-
ics 25 1004-1011.

KIEFER, J. and WOLFOWITZ, J. (1956). Consistency of the maximum likelihood estimator in the
presence of infinitely many incidental parameters. Ann. Math. Statist. 27 887-906. MR0086464

KLAWONN, F., HUNDERTMARK, C. and JANSCH, L. (2006). A maximum likelihood approach to
noise estimation for intensity measurements in biology. In Proceedings of the Sixth IEEE Inter-
national Conference on Data Mining Workshops 180-184. IEEE conference publications.

MANDEL, M., ASKENAZI, M., ZHANG, Y. and MARTO, J. A. (2013). Supplement to “Vari-
ance function estimation in quantitative mass spectrometry with application to iTRAQ labeling.”
DOI:10.1214/12-A0AS572SUPP.

NEYMAN, J. and SCOTT, E. L. (1948). Consistent estimates based on partially consistent observa-
tions. Econometrica 16 1-32. MR0025113

O’MALLEY, A. J., SMITH, M. H. and SADLER, W. A. (2008). A restricted maximum likelihood
procedure for estimating the variance function of an immunoassay. Aust. N. Z. J. Stat. 50 161-177.
MR2516873

R DEVELOPMENT CORE TEAM (2011). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http:
/Iwww.R-project.org/.

RAAB, G. M. (1981). Estimation of a variance function, with application to immunoassay. Appl.
Statist. 30 32-40.

RoSS, P. L., HUANG, Y. N., MARCHESE, J. N., WILLIAMSON, B., PARKER, K., HATTAN, S.,
KHAINOVSKI, N., PILLAI, S., DEY, S., DANIELS, S., PURKAYASTHA, S., JUHASZ, P., MAR-
TIN, S., BARTLET-JONES, M., HE, F., JACOBSON, A. and PAPPIN, D. J. (2004). Multiplexed
protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents.
Molecular and Cellular Proteomics 3 1154—1169.

SADLER, W. A. and SMITH, M. H. (1986). A reliable method of estimating the variance function
in immunoassay. Comput. Statist. Data Anal. 3 227-239.

WANG, Y., MA, Y. and CARROLL, R. J. (2009). Variance estimation in the analysis of microarray
data. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 425-445. MR2649604


http://www.ams.org/mathscinet-getitem?mr=1294746
http://www.ams.org/mathscinet-getitem?mr=1684363
http://www.ams.org/mathscinet-getitem?mr=0806230
http://www.ams.org/mathscinet-getitem?mr=2422697
http://www.ams.org/mathscinet-getitem?mr=0922172
http://www.ams.org/mathscinet-getitem?mr=2722454
http://www.ams.org/mathscinet-getitem?mr=0086464
http://dx.doi.org/10.1214/12-AOAS572SUPP
http://www.ams.org/mathscinet-getitem?mr=0025113
http://www.ams.org/mathscinet-getitem?mr=2516873
http://www.R-project.org/
http://www.ams.org/mathscinet-getitem?mr=2649604
http://www.R-project.org/

24 MANDEL, ASKENAZI, ZHANG AND MARTO

ZHANG, Y., ASKENAZI, M., JIANG, J., LUCKEY, C. J., GRIFFIN, J. D. and MARTO, J. A. (2010).
A robust error model for iTRAQ quantification reveals divergent signaling between oncogenic
FLT3 mutants in acute myeloid leukemia. Mol. Cell Proteomics 9 780-790.

M. MANDEL

DEPARTMENT OF STATISTICS
HEBREW UNIVERSITY OF JERUSALEM
MOUNT SCOPUS, JERUSALEM
ISRAEL, 91905

E-MAIL: msmic@huji.ac.il

Y. ZHANG

DEPARTMENTS OF CANCER BIOLOGY
AND BLAIS PROTEOMICS CENTER

DANA-FARBER CANCER INSTITUTE

BOSTON, MASSACHUSETTS 02215-5450

USA

M. ASKENAZI
DEPARTMENTS OF CANCER BIOLOGY
AND BLAIS PROTEOMICS CENTER
DANA-FARBER CANCER INSTITUTE
AND
DEPARTMENT OF BIOLOGICAL CHEMISTRY
AND MOLECULAR PHARMACOLOGY
HARVARD MEDICAL SCHOOL
BOSTON, MASSACHUSETTS 02215-5450
USA
AND
DEPARTMENT OF BIOLOGICAL CHEMISTRY
HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM
ISRAEL

J. A. MARTO
DEPARTMENTS OF CANCER BIOLOGY
AND BLAIS PROTEOMICS CENTER
DANA-FARBER CANCER INSTITUTE
AND
DEPARTMENT OF BIOLOGICAL CHEMISTRY
AND MOLECULAR PHARMACOLOGY
HARVARD MEDICAL SCHOOL
BOSTON, MASSACHUSETTS 02215-5450
USA


mailto:msmic@huji.ac.il

	Introduction
	Estimation of the variance function
	The model
	The MACL approach of Sadler and Smith
	A mixture model

	Confidence intervals
	Confidence intervals for µ
	Confidence intervals for µ1-µ2
	An application to the iTRAQ protocol
	An application to cancer phosphoproteomics

	Hypothesis testing
	Calculation of p-values
	Application to the iTRAQ data

	Simulation
	Estimating the variance function
	Confidence intervals for µ
	p-values

	Discussion
	Appendix A: Bias of the estimating equations
	Appendix B: Consistency of the MLE
	Appendix C: An EM algorithm
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

