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THE RANKING LASSO AND ITS APPLICATION TO SPORT
TOURNAMENTS1

BY GUIDO MASAROTTO AND CRISTIANO VARIN

Università di Padova and Università Ca’ Foscari Venezia

Ranking a vector of alternatives on the basis of a series of paired compar-
isons is a relevant topic in many instances. A popular example is ranking con-
testants in sport tournaments. To this purpose, paired comparison models such
as the Bradley–Terry model are often used. This paper suggests fitting paired
comparison models with a lasso-type procedure that forces contestants with
similar abilities to be classified into the same group. Benefits of the proposed
method are easier interpretation of rankings and a significant improvement
of the quality of predictions with respect to the standard maximum likelihood
fitting. Numerical aspects of the proposed method are discussed in detail. The
methodology is illustrated through ranking of the teams of the National Foot-
ball League 2010–2011 and the American College Hockey Men’s Division I
2009–2010.

1. Introduction. Paired comparison data arise when a series of alternatives
is compared in pairs, typically with the aim of producing a ranking or identifying
predictors of future comparisons. Since the pioneering work of Thurstone (1927),
a considerable amount of literature has been published on modeling paired com-
parison data, especially in the wide field of social sciences. See the recent reviews
by Böckenholt (2006) and Cattelan (2012).

Paired comparison data are also the norm in sport tournaments, where teams
play matches against each other. When the round-robin (all-play-all) tournaments
cannot be scheduled as in North-American major league sports, rankings based
on the records of victories-ties-defeats are questionable because teams may have
a sensible advantage or disadvantage from the skill level of the other teams within
the same division and within the same conference. This tournament design issue
motivated a variety of ranking procedures either based on scientific methods or on
subjective evaluations, such as votes from pools of experts. A case that also yields
much interest within the statistical community is the identification of a champion
of the US college football; see the paper by Stern (2004) and its discussion.

Rankings derived from paired comparison models have been proposed for
several sports, such as American football [Glickman (1999), Mease (2003)],
association football [Fahrmeir and Tutz (1994), Knorr-Held (2000)], basket-
ball [Knorr-Held], chess [Glickman (1999), Joe (1990)] and tennis [Glickman
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(1999, 1999, 2001)]. In these papers, authors suggest variants of the basic paired
comparison models to provide sensible rankings or improve predictions of future
results.

In this paper we argue in favor of rankings constructed so that teams with similar
abilities are classified into the same group. In order to obtain rankings in groups,
we propose to fit a paired comparison model with a lasso-type penalty [Tibshirani
(1996)]. To the best of our knowledge, this is the first time that a lasso-type penalty
is used in conjunction with a paired comparison model for the purpose of ranking.
Benefits of the proposed ranking in groups procedure are twofold. First, interpreta-
tion of ranking is simplified by grouping, especially when the number of teams is
not small and there are teams with similar ability. Then, the shrinkage of the lasso
procedure significantly improves the quality of predictions with respect to the stan-
dard maximum likelihood fitting. The proposed methodology is illustrated through
analysis of the regular season of the National Football League (NFL) 2010–2011
and of the NCAA American College Hockey Men’s Division I 2009–2010.

The paper is organized as follow. First, analyses of NFL data with standard
paired comparison models are presented in Section 2. Section 3 presents our lasso-
type method for ranking in groups. The application to the NFL tournament is given
in Section 4. Section 5 describes the extension to sport with possible ties and illus-
trates it with the analysis of the NCAA hockey tournament.

2. Bradley–Terry rankings. Although the methodology discussed in this pa-
per is of potential interest for any situation where k treatments are compared pair-
wise, thereafter sport terminology is used because of our specific application. Con-
sider a tournament involving k teams and denote by Yijr the random variable for
the outcome of the r th match between team i and team j . We start by considering
only sports whose rules do not allow for ties, hence, Yijr is the Bernoulli variable

Yijr =
{

1, if team i defeats team j ,
0, if team i is defeated by team j ,

with r = 1, . . . , nij . The total number of matches is denoted by n = ∑k
i<j nij . The

extension of the model to handle ties is illustrated in Section 5.
A popular statistical model for ranking teams in tournaments is the Bradley–

Terry model [Bradley and Terry (1952)]. This is a logistic regression model

pr(Yijr = 1) = exp(τhijr + μi − μj)

1 + exp(τhijr + μi − μj)
,(2.1)

where hijr is the home-field indicator for the r th game between teams i and j

defined as follows:

hijr =
⎧⎪⎨
⎪⎩

1, if the match is played at home of team i,
0, if played on neutral field,
−1, if played at home of team j .
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The model parameters are the home-field parameter τ and the vector of team abil-
ities μ = (μ1, . . . ,μk)

T. Alternatively, one could consider separate home-field pa-
rameters τi for each team. However, as observed by Mease (2003), this refinement
is of little benefit for the purpose of ranking because then it requires distinct rank-
ings for teams when playing at home or away.

Model (2.1) is identified through the pairwise differences μi − μj . Hence, it is
necessary to include one contrast on the abilities vector, such as μ1 = 0 or the sum
contrast

∑k
i=1 μi = 0. We choose the second option since it facilitates communi-

cation to a nontechnical audience.
The inferential target of the analysis is to estimate the abilities vector and then

use this for ranking the k teams. The standard analysis relies on the maximization
of the log-likelihood computed under the assumption of the independence among
the matches

�(μ, τ ) =
k∑

i<j

nij∑
r=1

yijr (τhijr +μi −μj)− log
{
1+exp(τhijr +μi −μj)

}
.(2.2)

Maximum likelihood estimation for this Bradley–Terry model can be performed
through standard software for generalized linear models or using specialized pro-
grams as the R [R Development Core Team (2012)] package BradleyTerry2
[Turner and Firth (2012)].

2.1. NFL regular season 2010–2011. The 2010–2011 regular season of the
National Football League (NFL) involves thirty-two teams evenly partitioned into
two conferences, called the American Football Conference (AFC) and the National
Football Conference (NFC). The two conferences are subdivided into four regional
divisions with four teams each. The regular season consists of 16 matches per
team, scheduled in such a way to guarantee six matches (three at home and three
away) against the other teams of their own division, six matches (three at home
and three away) against teams of other divisions in their own conference and four
matches (two at home and two away) against teams of the other conference. The
last regular season of NFL thus involved 256 matches scheduled into 17 weeks
from September 9, 2010 to January 2, 2011. Formally, regular season matches
could end with a tie, but ties are very infrequent since the institution of the overtime
period in 1974. Indeed, there have been only 17 tie games since 1974, and none
occurred during season 2010–2011. In this season 143 matches out of 256 were
won by the home team (55.8%), thus suggesting a slight home advantage. The
second column of Table 1 reports the record of victories-losses for each of the 32
teams during the regular season.

We proceed now with maximum likelihood analysis of the Bradley–Terry
model. The maximum likelihood estimate of the home field parameter is τ̂ (mle) =
0.322, with a standard error equal to 0.149, thus supporting the evidence of a pos-
itive effect of playing on their home field. Maximum likelihood estimates of teams
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TABLE 1
NFL regular season 2010–2011. For each team, the table displays the record and the ability
estimated by maximum likelihood (MLE), by adaptive ranking lasso (lasso) and by hybrid

adaptive ranking lasso/maximum likelihood (hybrid). Results are shown with both AIC and BIC
model selection. Teams qualified for playoff are marked by symbol †

Lasso Hybrid

Teams Record MLE AIC BIC AIC BIC

New England Patriots† 14–2 2.59 1.40 1.13 2.56 2.54
Atlanta Falcons† 13–3 1.82 0.76 0.53 1.78 1.73
Baltimore Ravens† 12–4 1.75 0.76 0.53 1.78 1.73
Pittsburgh Steelers† 12–4 1.74 0.76 0.53 1.78 1.73
New York Jets† 11–5 1.37 0.59 0.40 1.35 1.35
Chicago Bears† 11–5 1.00 0.28 0.10 0.91 0.87
New Orleans Saints† 11–5 0.93 0.28 0.10 0.91 0.87
Green Bay Packers† 10–6 0.91 0.28 0.10 0.91 0.87
Tampa Bay Buccaneers 10–6 0.61 0.04 −0.11 0.55 0.32
Philadelphia Eagles† 10–6 0.49 0.04 −0.11 0.55 0.32
New York Giants 10–6 0.33 −0.02 −0.11 0.23 0.32
Indianapolis Colts† 10–6 0.20 −0.02 −0.11 0.23 0.32
Miami Dolphins 7–9 0.19 −0.02 −0.11 0.23 0.32
Kansas City Chiefs† 10–6 −0.16 −0.21 −0.12 −0.56 −0.63
Detroit Lions 6–10 −0.21 −0.21 −0.12 −0.56 −0.63
Minnesota Vikings 6–10 −0.28 −0.21 −0.12 −0.56 −0.63
San Diego Chargers 9–7 −0.28 −0.21 −0.12 −0.56 −0.63
Cleveland Browns 5–11 −0.38 −0.21 −0.12 −0.56 −0.63
Jacksonville Jaguars 8–8 −0.39 −0.21 −0.12 −0.56 −0.63
Oakland Raiders 8–8 −0.53 −0.21 −0.12 −0.56 −0.63
Washington Redskins 6–10 −0.56 −0.21 −0.12 −0.56 −0.63
Dallas Cowboys 6–10 −0.58 −0.21 −0.12 −0.56 −0.63
Buffalo Bills 4–12 −0.67 −0.21 −0.12 −0.56 −0.63
Houston Texans 6–10 −0.71 −0.21 −0.12 −0.56 −0.63
Tennessee Titans 6–10 −0.74 −0.21 −0.12 −0.56 −0.63
Seattle Seahawks† 7–9 −0.76 −0.21 −0.12 −0.56 −0.63
Cincinnati Bengals 4–12 −0.78 −0.21 −0.12 −0.56 −0.63
St Louis Rams 7–9 −0.86 −0.21 −0.12 −0.56 −0.63
San Francisco 49ers 6–10 −1.03 −0.21 −0.12 −0.56 −0.63
Arizona Cardinals 5–11 −1.42 −0.39 −0.12 −1.43 −0.63
Denver Broncos 4–12 −1.54 −0.39 −0.12 −1.43 −0.63
Carolina Panthers 2–14 −2.02 −0.93 −0.74 −1.91 −1.86

abilities μ̂
(mle)
i , computed under the sum contrast, are reported in the third col-

umn of Table 1. The New England Patriots is the team with the highest estimated
ability during the regular season. This result confirms the top record of the team
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with 14 victories and two defeats only. In fact, the top seven teams according to
the estimated Bradley–Terry model are also those with the best records.

The concordance between the ranking of the maximum likelihood estimates of
the abilities and the frequency of victories does not hold for all the teams. For
example, the Miami Dolphins with a record of seven victories and nine defeats has
an estimated ability of 0.189, which is sensibly larger than the estimated ability of
the Kansas City Chiefs equal to −0.158, although this team has a better record of
ten victories and six defeats. This result is explained by looking more closely at
the results of the matches played by the two teams. In fact, while Kansas played
only teams of similar or lower ability with alternating results, the Dolphins also
played teams with a better record, in two cases succeeding against the Green Bay
Packers and the New York Jets.

At the end of the regular season twelve teams are qualified to the playoff. The
first twelve teams of the Bradley–Terry ranking include ten of the teams actually
qualified to the playoff; see Table 1. The two qualified teams excluded are the
Kansas City Chiefs, which is, however, close to the top 12 since it is ranked at
the 14th position, and the Seattle Seahawks, which instead has a very low 26th
position. In place of these two teams, the Bradley–Terry ranking promotes the
Tampa Bay Buccaneers and the New York Giants.

3. The ranking lasso. As anticipated, in this paper we argue in favor of rank-
ing in groups formed by “statistically equivalent” teams. Ranking in groups is
obtained by maximizing the Bradley–Terry likelihood (2.2) with a L1 penalty on
all the pairwise differences of abilities μi − μj ,

(μ̂λ, τ̂λ) = arg max�(μ, τ ) subject to
k∑

i<j

wij |μi − μj | ≤ s,(3.1)

where wij are pair-specific weights. A particular choice of the weights is dis-
cussed in Section 3.1. The standard maximum likelihood solution is obtained
for a sufficiently large value of the bound s, while fitting is penalized as s de-
creases to zero, resulting in groups of team ability parameters that are estimated
to the same value. Thereafter, the process of solving problem (3.1) is termed the
ranking lasso method. However, the proposed method does not merely produce
a ranking of the teams but a rating also suitable for prediction, as illustrated in
Section 4.1. Hence, an alternative valid name for the proposed method is rating
lasso.

The ranking lasso problem is equivalent to the penalized minimization problem

(μ̂λ, τ̂λ) = arg min

{
−�(μ, τ ) + λ

k∑
i<j

wij |μi − μj |
}

(3.2)
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for a certain penalty λ that has a one-to-one relation with the bound s. The fol-
lowing reformulation of the ranking lasso problem as a constrained ordinary lasso
problem is useful for subsequent developments

(μ̂λ, τ̂λ, θ̂λ) = arg min

{
−�(μ, τ ) + λ

k∑
i<j

wij |θij |
}

(3.3)
subject to θij = μi − μj ,1 < i < j < k.

The penalty used in the ranking lasso is a generalization of the fused lasso
penalty [Tibshirani et al. (2005)]. The fused lasso is designed for problems where
the coefficients to be shrunk have some natural order so that only pairwise dif-
ferences of successive coefficients need to be penalized. The lack of order in the
ranking lasso implies substantial computational difficulties. Essentially, the com-
plications arise because of the one-to-many relationship between the coefficients
of interest μi and the penalized parameters θij = μi − μj , i < j . In Section 3.2
we supply a convenient numerical approach to compute the solution of the ranking
lasso.

Recently, a certain interest has been paid to linear regression models for con-
tinuous responses with generalized fused lasso penalties, that is, L1 penalties on
generic sets of pairwise differences of parameters. She (2010) investigates the use
of this type of penalty to perform unsupervised clustering in microarray data analy-
sis. The resulting penalized method has been termed the clustered lasso. She (2010)
provides asymptotic properties of the clustered lasso and develops an annealing-
type algorithm to compute its solution. Bondell and Reich (2009) propose a gen-
eralized fused lasso approach for factor selection and level fusion in ANOVA.
Gertheiss and Tutz (2010) use the same penalty to evaluate the levels of a nominal
categorical variable that should be collapsed together. To this aim, they approx-
imate the lasso solution by introducing a quadratic penalty method. Guo et al.
(2010) suggest to shrink the differences between every pair of cluster centers in
high-dimensional model-based clustering. Optimization is then performed via an
expectation–maximization algorithm where the L1 penalty is substituted by a local
quadratic approximation. Tibshirani and Taylor (2011) develop a path algorithm
for generalized lasso problems with penalty λ|Dβ|, where β are regressor coeffi-
cients and D is a matrix not necessarily of full rank. Hence, the generalized lasso
includes the generalized fused lasso as a special case. The key idea of Tibshirani
and Taylor (2011) is to overcome numerical difficulties by solving the simpler
Lagrange dual problem.

3.1. The adaptive ranking lasso. As noted by various authors [e.g., Fan and
Li (2001), Zou (2006)], the lasso method can yield inconsistent estimates of the
nonzero effects because the shrinkage produced by the L1 penalty is too severe. In
terms of the ranking lasso, this inconsistency means that the bias of the estimators
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of the nonzero pairwise differences of abilities does not decrease to zero as the
number of matches raises.

This drawback of lasso can be overcame by employing different data-dependent
penalties in such a way to preserve true large effects. A first possibility is to sub-
stitute the L1 penalty with a continuous penalty that penalizes large effects less
severely. This idea is implemented in the smoothly clipped absolute deviation
(SCAD) method suggested by Fan and Li (2001). An alternative, which we fol-
low in this paper, is to weight more the terms of the L1 lasso penalty as the size
of the effect decreases. The adaptive lasso [Zou (2006)] follows this strategy using
weights inversely proportional to the maximum likelihood estimates.

Accordingly, we identify the adaptive ranking lasso method as the solution
of (3.1) with weights inversely proportional to the maximum likelihood estimates

wij = ∣∣μ̂(mle)
i − μ̂

(mle)
j

∣∣−1
,(3.4)

so as to protect large differences of abilities. The rationale is that as the sample size
raises, then weights given to nonzero pairwise differences of abilities converge to
a finite constant, while the weights for the zero pairwise differences diverge.

A possible complication with computation of weights (3.4) is that maximum
likelihood estimates μ̂

(mle)
i diverge when team i wins or losses all its matches.

Hence, we suggest to slightly modify μ̂
(mle)
i by adding a small ridge penalty

ε
∑

i<j (μi − μj)
2 to the likelihood (2.2). In the applications, we choose a value

of ε equal to 10−4.

3.2. Computation of the ranking lasso solution. The Lagrangian form of the
ranking lasso problem (3.3) is

(μ̂λ, τ̂λ, θ̂λ)
(3.5)

= arg min

{
−�(μ, τ ) + λ

k∑
i<j

wij |θij | +
k∑

i<j

uij (θij − μi + μj)

}
.

The difficulty with the above optimization problem lies in the computation of the
Lagrangian multipliers uij , i < j . The simpler way to overcome this problem is
likely the quadratic penalty method which consists in replacing the Lagrangian
term with the quadratic penalty

v

2

k∑
i<j

(θij − μi + μj)
2, v > 0.(3.6)

The solution of the quadratic penalty method converges to that of the original prob-
lem (3.5) as v diverges. However, numerical analysis literature discourages the use
of the quadratic penalty method, since numerical instabilities may arise for large
values of the penalty coefficient v even if the objective function is smooth. See,
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for example, Nocedal and Wright [(2006), Section 17.1]. These instabilities moti-
vated the use of more elaborate methods to solve optimization problems with lin-
ear contrasts, such as the Augmented Lagrangian method introduced by Hestenes
(1969) and Powell (1969). We refer the reader to Nocedal and Wright [(2006),
Section 17.3] for technical details and further references.

Below we summarize the application of the Augmented Lagrangian method to
the ranking lasso problem. The idea of the Augmented Lagrangian method is to
modify the Lagrangian formulation in a way to add an explicit estimate of the La-
grangian multipliers u = (u12, . . . , uk−1k). The target is achieved by adding the
quadratic penalty (3.6) to the objective function, thus yielding the augmented ob-
jective function

Fλ,v(μ, τ, θ,u) = −�(μ, τ ) + λ

k∑
i<j

wij |θij |
(3.7)

+
k∑

i<j

uij (θij − μi + μj) + v

2

k∑
i<j

(θij − μi + μj)
2.

Hence, differently from the quadratic penalty method, in the Augmented La-
grangian formulation the quadratic penalty is added to the Lagrangian term instead
of replacing it. Then, the Augmented Lagrangian method seeks the solution of the
original problem through iteration of the following two steps until convergence:

minimization step: given the current values of the penalty coefficients (u, v), min-
imize Fλ,v(μ, τ, θ,u) with respect to the model parameters (μ, τ, θ);

update step: given the current values of the model parameters (μ, τ, θ), update the
Lagrangian multipliers u and the quadratic penalty coefficient v.

The key result of the Augmented Lagrangian method is that the convergence to
the global solution of the original problem can be assured without increasing v

indefinitely if the sequence of Lagrangian multipliers converges; see Theorem 17.6
of Nocedal and Wright (2006). Thanks to this property, the Augmented Lagrangian
method is a substantially more stable algorithm than the quadratic penalty method.

Similarly to the illustration by Lian (2010) and Ye and Xie (2011) about the
standard fused lasso problem, the minimization step can be conveniently per-
formed through cycling between minimization with respect to the model param-
eters (μ, τ ) for given θ and minimization of θ for given (μ, τ ). Both these sub-
minimization problems have simple and attractive forms. The first sub-problem
is equivalent to computing maximum likelihood estimates of the Bradley–Terry
model with a quadratic penalty

(μ̂λ, τ̂λ) = arg min

{
−�(μ, τ ) + v

2

k∑
i<j

(θ̂λ − μi + μj)
2

}
.
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This is a smooth optimization problem that can be handled with standard numer-
ical algorithms. For the Bradley–Terry model, the minimization can be efficiently
handled by iterated reweighted least squares.

The second sub-problem consists in solving an ordinary lasso problem with
an orthogonal design. Hence, its solution is computed by the soft-thresholding
operator [Donoho (1995)]

θ̂λ,ij = sign(θ̃λ,ij )

(
|θ̃λ,ij | − λwij

v

)
+
, 1 < i < j < k,

where θ̃λ,ij = μ̂λ,i − μ̂λ,j − uλ,ij /v and (x)+ indicates the positive part of x.

The second step updates the Lagrangian multipliers and the quadratic penalty
coefficient. The Augmented Lagrangian method provides a simple recursion for
updating the Lagrangian multipliers

u
(new)
λ,ij = u

(old)
λ,ij + v(θ̂λ,ij − μ̂λ,i + μ̂λ,j ), 1 < i < j < k.

Finally, the quadratic penalty coefficient v is set equal to the maximum of the
squared u

(new)
λ,ij , so that the proportion between the two penalty components is pre-

served. Our experiments suggest that this simple rule provides stable results.

3.3. Selection of the lasso penalty. The Augmented Lagrangian method pro-
vides a feasible method to compute estimates of the model parameters μλ and τλ

and the penalties of uλ and vλ for a given value of the smoothing lasso parameter λ.
This procedure must be repeated for a sequence of values of λ either in decreasing
or increasing order. An efficient implementation uses the solutions for a given λ

as warm starts for minimization of Fλ,v(μ, τ, θ,u) at a smaller (or larger) value
of λ. The remaining task is the selection of a value of λ, which could be somehow
optimal in terms of prediction quality. A viable approach is to base selection of λ

on the minimization of an information criterion, such as the Akaike information
criterion,

AIC(λ) = −2�(μ̂λ, τ̂λ) + 2 df(λ),

or the Schwarz information criterion,

BIC(λ) = −2�(μ̂λ, τ̂λ) + logndf(λ).

The effective degrees of freedom df(λ) are estimated as the number of distinct
groups formed with a certain λ, by this way following the previously cited papers
on generalized fused lasso [Gertheiss and Tutz (2010), She (2010), Tibshirani and
Taylor (2011)].
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3.4. Hybrid ranking lasso. Efron et al. (2004) and Candes and Tao (2007) sug-
gest hybrid lasso procedures where sparse methods are used for model selection
and then the selected model is refitted by ordinary least squares. The refitting pro-
cedures are proposed in order to reduce the bias due to the penalization. Gertheiss
and Tutz (2010) advocate refitting for their generalized fused lasso approach for
sparse modeling of categorical covariates. Following this suggestion, we consider a
hybrid ranking lasso method where ranking lasso is used only for groups selection,
while the abilities of the teams are computed by maximum likelihood constrained
so that the abilities of teams in the same group must be identical. This hybrid pro-
cedure is also useful for model selection. In fact, we found that the computation of
the information criteria such as AIC and BIC at the hybrid ranking lasso estimates
provides more reliable identification of the number of groups. This finding agrees
with Chen and Chen (2008), who also suggest to compute their extended BIC at
the hybrid lasso estimates.

3.5. Uncertainty quantification. One of the advantages of the Bradley–Terry
model with respect to a nonstatistical alternative is the evaluation of the uncertainty
about the difference of estimated abilities of two teams or about the probability that
one team defeats another. If the Bradley–Terry model is fitted by maximum likeli-
hood, then uncertainty can be quantified by standard large sample theory through
the inverse of the Fisher information. The quantification of the uncertainty of lasso
estimators is more difficult and, indeed, it is still an open research problem. Re-
cently, Chatterjee and Lahiri (2011) derived a modified version of the residual
bootstrap to approximate the distribution of lasso estimators in linear regression
models. Furthermore, Chatterjee and Lahiri demonstrated that no modification of
the residual bootstrap is needed for the adaptive lasso method because of its consis-
tency. Similarly, the parametric bootstrap by resampling from the Bradley–Terry
model with the unknown parameters replaced by their estimates can be employed
for the evaluation of the uncertainty of adaptive ranking lasso estimators. Since
adaptive ranking lasso estimators are by construction biased, it is advisable to ad-
just the bootstrap confidence intervals for bias [Efron (1987)]. The performance of
bootstrap confidence intervals is illustrated in the next section.

4. NFL 2010–2011 regular season. We start the analysis of the NFL data
with the nonadaptive version of the ranking lasso where all weights are identical,
wij = 1 for any i < j . The left panel in Figure 1 shows the path plot of the non-
adaptive estimates for an increasing sequence of values of the bound s. The path is
quite irregular with many crossings between teams and groups along the clustering
process. It would be preferable, instead, to have a smoother clustering process with
intermediate groups formed for relative large values of s and then fused together
in larger groups when the penalty increases, that is, when s decreases.

These drawbacks are fixed by relying on the adaptive version designed to protect
“true” large differences between abilities; see the path displayed in the right panel
of Figure 1.
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FIG. 1. NFL regular season 2010–2011. Path plots for the nonadaptive (left panel) and the adap-
tive (right panel) ranking lasso. The path is described in terms of relative bound s/max(s), where
max(s) is the minimum value of s such that the ranking lasso solution is indistinguishable from the
unpenalized maximum likelihood solution. The AIC selection corresponds to the vertical dot-dashed
line, while the BIC selection to the vertical dashed line. For the nonadaptive case, the two selections
coincide.

A useful visualization of the differences between the nonadaptive and the adap-
tive solutions is given in Figures 2 and 3. The image plots are constructed as fol-
lows. The rows and the columns correspond to the teams sorted in decreasing order
of their maximum likelihood estimated ability, as in Table 1. For each image, the
pixel of position (r, c) is the probability that the team in row r beats the team in
column c in a match played on a neutral field (no home effect),

pr(Yrc = 1) = exp(μ̂λ,r − μ̂λ,c)

1 + exp(μ̂λ,r − μ̂λ,c)
, r, c = 1, . . . , k.

Hence, the diagonal of the image is constant and equal to 0.5. Higher values of
the probabilities pr(Yrc = 1) correspond to colors shading off into dark. Figure 2
reports the image plots for several stages of the nonadaptive ranking lasso path,
from the complete shrinkage (s = 0) with all teams classified into the same group
and thus the probability of victory in any match is 0.5, the toss of a coin, to the
maximum likelihood fit. The corresponding image plots for the adaptive fit are
shown in Figure 3.

The comparison of the image plots in the two figures provides a clear illustration
of the differences of the clustering process when adaptive weights are employed.
Groups formed by the adaptive ranking lasso (Figure 3) are visualized by smooth
blocks formed by spatially contiguous pixels, thus preserving the maximum likeli-
hood ranking order. This is a consequence of the consistency of the adaptive lasso
estimation method which assures that, for a sufficiently large tournament, the sign
of the difference between maximum likelihood and adaptive ranking estimated
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FIG. 2. NFL regular season 2010–2011. Image plots illustrating several stages of the nonadaptive
ranking lasso path. From top-left to bottom-right, images correspond to decreasing level of grouping,
that is, increasing values of the relative bound s/max(s). The rows and the columns correspond to the
teams sorted in decreasing order of their maximum likelihood estimated ability. The pixel of position
(row = r, column = c) corresponds to the probability that team r wins against team c in a match
played on a neutral field. Darker pixels correspond to higher probabilities of victory for the teams
on the row.

abilities is the same. Vice versa, the image plots of the nonadaptive ranking lasso
(Figure 2) have several spots because teams are frequently classified in different
groups with respect to their closer neighbors.

We now move to the interpretation of the adaptive solution reported in Table 1,
columns 4–7. AIC selects 9 groups, while, as expected, BIC supports a sparser
solution with 7 groups. Both criteria agree in placing the New England Patriots
on a single-team top group, followed by a group formed by the Atlanta Falcons,
the Baltimore Ravens and the Pittsburgh Steelers. Differences between the two
criteria regard the middle and the bottom part of the ranking. For example, AIC
suggests that the Tampa Bay Buccaneers and the Philadelphia Eagles do better
than the New York Giants, while BIC places these three teams in the same group
together with the Indianapolis Colts and the Miami Dolphins. Clearly, the abilities
estimated by the adaptive ranking lasso (columns 4–5 in Table 1) are considerably
shrunken toward zero with respect to the maximum likelihood estimates. On the
other hand, the hybrid adaptive ranking lasso method (columns 6–7 in Table 1)
individuates the same groups but with estimated abilities that have the same extent
of the maximum likelihood estimates.
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FIG. 3. NFL regular season 2010–2011. Image plots illustrating several stages of the adaptive
ranking lasso path. From top-left to bottom-right, images correspond to decreasing level of grouping,
that is, increasing values of the relative bound s/max(s). The rows and the columns correspond to the
teams sorted in decreasing order of their maximum likelihood estimated ability. The pixel of position
(row = r, column = c) corresponds to the probability that team r wins against team c in a match
played on a neutral field. Darker pixels correspond to higher probabilities of victory for the teams
on the row.

The uncertainty of the estimated abilities is evaluated by parametric bootstrap
with 1000 replications. Table 2 reports the estimated probability of victory of the
home teams in the matches Atlanta vs Baltimore played at Baltimore and Kansas

TABLE 2
NFL regular season 2010–2011. Estimated probabilities of victory for the home team with

corresponding 90% bias corrected percentile bootstrap confidence intervals for matches the Atlanta
Falcons vs the Baltimore Ravens (home) and the Kansas City Chiefs vs the New England Patriots

(home)

Atlanta vs Baltimore Kansas City vs New England
Method est. (90% c.i.) est. (90% c.i.)

MLE 0.56 (0.09, 0.90) 0.96 (0.75, 0.99)
AIC 0.56 (0.32, 0.81) 0.87 (0.76, 1.00)
BIC 0.56 (0.50, 0.84) 0.82 (0.78, 1.00)
Hybrid AIC 0.58 (0.15, 0.91) 0.97 (0.79, 0.99)
Hybrid BIC 0.58 (0.13, 0.93) 0.97 (0.83, 1.00)
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City vs New England played at the home of the New England Patriots. These two
matches were chosen to illustrate the behavior of the various estimation methods
when the match involves teams with similar ability—Atlanta and Baltimore—or
with large difference—Kansas City and New England. Similar results were ob-
tained for the other matches.

We start the discussion from the match between the Atlanta Falcons and the Bal-
timore Ravens. The maximum likelihood estimated probability that the Baltimore
Ravens win is exp(1.75 − 1.82 + 0.32)/{1 + exp(1.75 − 1.82 + 0.32)} = 0.56.
The adaptive ranking lasso method with either AIC and BIC selection attributes
the same ability to the two teams. The 90% confidence interval for the victory of
Baltimore based on maximum likelihood is very wide, being equal to (0.09,0.90).
Adaptive lasso bias-corrected percentile bootstrap confidence intervals are much
shorter: (0.32,0.81) with AIC selection and (0.50,0.84) with BIC selection. In-
stead, hybrid adaptive ranking lasso confidence intervals are only slightly shorter
than the maximum likelihood confidence interval.

In order to provide insights into the lengths of these confidence intervals, we
estimated the sample distribution of the difference of the estimated abilities of At-
lanta and Baltimore according to the various estimation methods assuming that
the maximum likelihood estimate is the true model parameter. The above sample
distributions are estimated with 1000 Monte Carlo simulations and summarized by
the boxplots in the left panel of Figure 4. Since the difference of the maximum like-
lihood estimated abilities for the two teams is close to zero, 1.75 − 1.82 = −0.07,
the adaptive ranking lasso estimators have small biases with either AIC and BIC
selection. Furthermore, the shrinkage effect yields a significant reduction in the

FIG. 4. NFL regular season 2010–2011. Left panel: boxplots of the sample distributions of the es-
timated difference of abilities for the match between the Atlanta Falcons and the Baltimore Ravens
(home) when the true model parameters correspond to the maximum likelihood estimates. The box-
plots correspond to estimates by maximum likelihood (MLE), adaptive ranking lasso with AIC and
BIC selection and hybrid adaptive ranking lasso/maximum likelihood with AIC (h-AIC) and BIC
(h-BIC) selection. Right panel: boxplots of the sample distributions of the estimated difference of
abilities for the match between the Kansas City Chiefs and the New England Patriots (home).
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variability of the adaptive ranking lasso estimators with respect to maximum like-
lihood estimators, as shown by the much smaller height of the boxes in Figure 4.
Instead, the distributions of the hybrid adaptive ranking lasso estimators are very
similar to the distribution of the maximum likelihood estimators.

The second match is played by the Kansas City Chiefs on the home field of
the New England Patriots. The difference between the abilities of these two teams
is very large. Indeed, the maximum likelihood estimate of the probability of New
England victory is 0.96. The adaptive ranking lasso is somehow more cautious
with an estimated probability of wins equal to 0.87 and 0.82 according to AIC and
BIC selections, respectively. The hybrid adaptive ranking lasso gives estimated
probability of victory for New England that is essentially identical to maximum
likelihood. However, the interesting aspect is that, despite the difference between
the estimated probabilities of victory with maximum likelihood and adaptive rank-
ing lasso, the bias-corrected confidence intervals are almost identical.

Again, insights into these confidence intervals come from the sample distribu-
tion of the differences of the estimated abilities assuming that the maximum like-
lihood estimate corresponds to the true model parameter. Boxplots reported in the
right panel of Figure 4 show that in this case adaptive ranking lasso estimators are
significantly biased toward zero with respect to maximum likelihood and hybrid
adaptive ranking lasso estimators. More interestingly, the height of the boxes of
all the five different estimators is rather similar. Accordingly, bias-corrected boot-
strap percentile confidence intervals for the adaptive ranking lasso estimators are
quite similar to those based on maximum likelihood and hybrid adaptive ranking
lasso.

The overall conclusion is that if we compare two teams with close ability, then
the shrinkage of the adaptive ranking lasso provides a sensible reduction in vari-
ability and thus shorter confidence intervals for the result of the match. Vice versa,
if the ability of two teams is sensibly different, then the adaptive weights allow
to obtain confidence intervals that are essentially equivalent to those obtained by
maximum likelihood. Furthermore, the hybrid method does not seem particularly
convenient in this context because it resembles maximum likelihood too closely.

These conclusions are coherent with the predictive performance of the various
estimators discussed in the next section.

4.1. Predictive performance. We compare the predictive performance of the
hybrid and the nonhybrid adaptive ranking lasso by repeating the following cross-
validation exercise 100 times:

(1) form the training set by random sampling without replacing half the
matches in the season;

(2) determine the estimates of model parameters using the matches in the train-
ing set;

(3) compute a predictive fit statistic summed over the remaining matches (the
validation set).
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FIG. 5. Boxplots of the cross-validated negative log-likelihoods computed at maximum likelihood
(MLE) estimates, adaptive ranking lasso estimates with AIC and BIC selection and hybrid adaptive
ranking lasso/maximum likelihood estimates with AIC (h-AIC) and BIC (h-BIC) selection. Left
panel corresponds to the NFL regular season 2010–2011, right panel to the NCAA College Hockey
Men’s Division I 2009–2010.

As a summary of the forecast’s quality in each cross-validation, we consider
the negative of the log-likelihood computed with the matches in the validation set
and model parameters estimated with the matches in the training set. This choice
is, up to a constant term, equivalent to the Kullback–Leibler divergence and thus
consistent with information model selection criteria.

The left panel of Figure 5 displays the boxplots of the 100 negative log-
likelihoods (one for each replication of the cross-validation experiment) and Ta-
ble 3 provides some summaries. As clearly shown by boxplots, the shrinkage of
adaptive ranking lasso estimates provides a sensible improvement of the predic-
tion quality with respect to maximum likelihood predictions. Summaries in Ta-
ble 3 show that the AIC selection improves on maximum likelihood of about 15%
in mean and 19% in median, while BIC selection does slightly better with an im-
provement of 16% in mean and 20% in median. Predictions based on the hybrid
ranking lasso, instead, are comparable to those based on maximum likelihood esti-
mates with a very limited improvement. In summary, this prediction exercise sup-

TABLE 3
NFL regular season 2010–2011. Means and medians of the cross-validated negative log-likelihoods

and percentage of predictions of the correct result which are better than coin tossing (� coin)

Lasso Hybrid

MLE AIC BIC AIC BIC

Mean 139.90 119.10 117.20 135.20 131.60
Median 137.30 111.70 109.30 131.90 127.30
� coin 0.59 0.60 0.58 0.60 0.60
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ports adaptive ranking lasso without refitting because the method is able to create
groups and at the same time increase the quality of predictions.

Finally, we observe that the percentage of matches which are predicted better
than coin tossing is about 60% for all methods.

5. Handling ties. We focused on the analysis of sports not allowing ties or
with no ties observed, as in the NFL example. However, there are a number of
sports where ties are allowed and occur with a certain frequency. The ranking
lasso analysis of these sport tournaments follows the lines outlined along the paper,
with the only difference that we need to modify the Bradley–Terry model so as to
handle ties. The match outcome becomes a three-level ordinal variable that can be
arbitrarily coded as

Yijr =
⎧⎪⎨
⎪⎩

2, if team i defeats team j ,
1, if teams i and j tied,
0, if team i is defeated by team j .

Matches with ties can be modeled by some ordinal-valued extension of the
Bradley–Terry model. For example, one may consider a cumulative link Bradley–
Terry model [Agresti (2010)]

pr(Yijr ≤ yijr ) = exp(δyijr
+ hijrτ + μi − μj)

1 + exp(δyijr
+ hijrτ + μi − μj)

,

where −∞ ≤ δ0 ≤ δ1 ≤ δ2 ≡ +∞ are cutpoint parameters, while the other quanti-
ties are defined as in the previous sections of this paper.

Model identifiability now requires an additional contrast. Indeed, for every
match played on a neutral field we must ensure that the probability that team i

defeats team j is equal to the probability that team j is defeated by team i. This
condition is guaranteed when δ0 = −δ1. If no tie is observed, or if it is not allowed
by sport rules, then categories 1 and 2 are collapsed, δ0 = δ1 = 0, and the model
reduces to the standard Bradley–Terry model.

5.1. NCAA college hockey men’s division I 2009–2010. We employ the rank-
ing lasso with ties to the regular season of the NCAA College Hockey Men’s Divi-
sion I 2009–2010. This tournament comprises 58 teams partitioned in six confer-
ences, namely, the Central Collegiate Hockey Association, the Western Collegiate
Hockey Association, the Hockey East, the College Hockey America, the ECAC
Hockey and the Atlantic Hockey. The composite schedule includes within and be-
tween conference games. The total number of matches is 1083. The tournament
design is highly incomplete. Indeed, about 73.3% of the (58 · 57)/2 = 1653 pos-
sible matches are not played, 6.8% are played just once, 10.5% twice and the
remaining 9.4% are played three or more times, with seven matches (0.4%) re-
peated even seven times. The tournament is also unbalanced with the total number
of matches per team varying from 31 to 43.



1966 G. MASAROTTO AND C. VARIN

Hockey matches may end with ties and these occur with a nonnegligible fre-
quency. In the regular season of the NCAA College Hockey Men’s Division I
2009–2010 there were 125 ties out of the 1083 matches, that is, 11.5% of the
matches. The home effect also seems quite relevant because 54.8% of the matches
were won by the home team, 11.6% ended with a tie and 33.5% were won by the
visitors. These numbers do not count the 69 matches played on a neutral field.

At the end of the season, sixteen teams are qualified for the four regional semi-
finals. Hence, the four regional champions compete in the Frozen Four for the
national championship. The matches’ results are available in the data frame ice-
hockey through the R package BradleyTerry2 [Turner and Firth (2012)]. As
reported in the help pages of this package, the NCAA selection system has been
the source of several criticisms because there is no agreement that it correctly ac-
counts for the highly irregular design of the tournament. The ranking based on
the Bradley–Terry model is seen as a sensible alternative to the NCAA selection
mechanism.

The maximum likelihood estimates of the home field parameter τ and the
threshold parameter δ1 are both strongly significant: τ̂ (mle) = 0.402 with a standard
error of 0.066 and δ̂

(mle)
1 = 0.288 with a standard error of 0.024. The maximum

likelihood estimates of the teams abilities, under the sum contrast, are listed in the
third column of Table 4. According to the maximum likelihood fit of the Bradley–
Terry model with ties, the best team is Denver, followed by Miami (Ohio), Wis-
consin and Boston College. The last two teams were the finalists of the national
championship won by Boston College on April 4, 2010.

Adaptive ranking lasso estimates of team abilities with or without refitting are
listed in columns from four to seven of Table 4. AIC selects seven groups with a
top group formed by the five teams with higher maximum likelihood estimates,
namely, Denver, Miami, Wisconsin, Boston College and North Dakota. BIC in-
stead suggests a slightly sparser solution with six groups. The only difference be-
tween AIC and BIC is that the latter rates Lake Superior and Alaska Anchorage at
the same level of the preceding group in the AIC ranking.

The rankings obtained with the adaptive lasso penalization differ from the max-
imum likelihood ranking for a few teams at the bottom of the ranking. This result
is not surprising. Both maximum likelihood and adaptive ranking lasso yield con-
sistent estimation of teams’ abilities and, thus, they are expected to converge to
the same ranking for sufficiently large tournaments, but for a finite tournament dif-
ferences between the two rankings may occur. Given the strong incompleteness
of the NCAA hockey tournament, the few observed differences between the two
rankings are reasonable.

The predictive performance of the adaptive ranking lasso with the NCAA
hockey tournament data is evaluated by the same cross-validation exercise pre-
viously used for the NFL example, as described at the beginning of Section 4.1.
The right panel of Figure 5 displays the boxplots of the cross-validated nega-
tive log-likelihoods computed at the various estimators. The figure illustrates the
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TABLE 4
American College Hockey Men’s Division I composite schedule 2009–2010. For each team, the
table displays the record and the ability estimated by maximum likelihood (MLE), by adaptive
ranking lasso (lasso) and by hybrid adaptive ranking lasso/maximum likelihood (hybrid).

Results are shown with both AIC and BIC model selection. Teams qualified for NCAA Regional
semifinals are marked by symbol †

Lasso Hybrid

Teams Record MLE AIC BIC AIC BIC

Denver† 27–4–9 1.65 0.58 0.41 1.38 1.36
Miami (Ohio)† 27–7–7 1.60 0.58 0.41 1.38 1.36
Wisconsin† 25–4–10 1.53 0.58 0.41 1.38 1.36
Boston College† 25–3–10 1.43 0.58 0.41 1.38 1.36
North Dakota† 25–5–12 1.37 0.58 0.41 1.38 1.36
St Cloud State† 23–5–13 1.10 0.18 0.09 0.60 0.56
New Hampshire† 17–7–13 0.89 0.18 0.09 0.60 0.56
Minnesota Duluth 22–1–17 0.87 0.18 0.09 0.60 0.56
Bemidji State† 23–4–9 0.87 0.18 0.09 0.60 0.56
Michigan† 25–1–17 0.86 0.18 0.09 0.60 0.56
Colorado College 19–3–17 0.86 0.18 0.09 0.60 0.56
Northern Michigan† 20–8–12 0.81 0.18 0.09 0.60 0.56
Vermont† 17–7–14 0.79 0.18 0.09 0.60 0.56
Ferris State 21–6–13 0.77 0.18 0.09 0.60 0.56
Minnesota 18–2–19 0.74 0.18 0.09 0.60 0.56
Alaska† 18–9–11 0.74 0.18 0.09 0.60 0.56
Cornell† 21–4–8 0.73 0.18 0.09 0.60 0.56
Maine 19–3–17 0.66 0.18 0.09 0.60 0.56
UMass-Lowell 19–4–16 0.64 0.18 0.09 0.60 0.56
Yale† 20–3–9 0.60 0.18 0.09 0.60 0.56
Michigan State 19–6–13 0.58 0.18 0.09 0.60 0.56
Boston University 18–3–17 0.57 0.18 0.09 0.60 0.56
Nebraska-Omaha 20–6–16 0.57 0.18 0.09 0.60 0.56
Massachusetts 18–0–18 0.56 0.18 0.09 0.60 0.56
Northeastern 16–2–16 0.51 0.18 0.09 0.60 0.56
Ohio State 15–6–18 0.45 0.18 0.09 0.60 0.56
Minnesota State 16–3–20 0.43 0.18 0.09 0.60 0.56
Merrimack 16–2–19 0.40 0.18 0.09 0.60 0.56
Union (New York) 21–6–12 0.29 0.18 0.09 0.60 0.56
Notre Dame 13–8–17 0.16 0.10 0.09 0.10 0.56
Lake Superior 15–5–18 0.15 0.10 0.09 0.10 0.56
Alaska Anchorage 11–2–23 −0.00 −0.09 −0.04 −0.34 −0.34
St. Lawrence 19–7–16 −0.17 −0.09 −0.04 −0.34 −0.34
Providence 10–4–20 −0.19 −0.09 −0.04 −0.34 −0.34
Rensselaer 18–4–17 −0.20 −0.09 −0.04 −0.34 −0.34
Quinnipiac 20–2–18 −0.24 −0.09 −0.04 −0.34 −0.34
Western Michigan 8–8–20 −0.24 −0.09 −0.04 −0.34 −0.34
Colgate 15–6–15 −0.34 −0.09 −0.04 −0.34 −0.34
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TABLE 4
(Continued)

Lasso Hybrid

Teams Record MLE AIC BIC AIC BIC

Rochester Institute of Technology† 26–1–11 −0.39 −0.09 −0.04 −0.34 −0.34
Alabama-Huntsville† 12–3–17 −0.49 −0.09 −0.04 −0.34 −0.34
Robert Morris 10–6–19 −0.50 −0.09 −0.04 −0.34 −0.34
Niagara 12–4–20 −0.51 −0.09 −0.04 −0.34 −0.34
Princeton 12–3–16 −0.56 −0.09 −0.04 −0.34 −0.34
Brown 13–4–20 −0.61 −0.09 −0.04 −0.34 −0.34
Bowling Green 5–6–25 −0.76 −0.25 −0.10 −0.93 −0.92
Sacred Heart 21–4–13 −0.80 −0.09 −0.04 −0.34 −0.34
Harvard 9–3–21 −0.89 −0.25 −0.10 −0.93 −0.92
Dartmouth 10–3–19 −0.89 −0.25 −0.10 −0.93 −0.92
Michigan Tech 5–1–30 −1.03 −0.42 −0.24 −1.30 −1.30
Clarkson 9–4–24 −1.06 −0.42 −0.24 −1.30 −1.30
Air Force 16–6–15 −1.27 −0.25 −0.10 −0.93 −0.92
Canisius 17–5–15 −1.31 −0.25 −0.10 −0.93 −0.92
Mercyhurst 15–3–20 −1.59 −0.42 −0.24 −1.30 −1.30
Army 11–7–18 −1.60 −0.42 −0.24 −1.30 −1.30
Holy Cross 12–6–19 −1.71 −0.42 −0.24 −1.30 −1.30
Bentley 12–4–19 −1.78 −0.42 −0.24 −1.30 −1.30
Connecticut 7–3–27 −2.44 −1.17 −0.97 −2.19 −2.18
American International 5–4–24 −2.60 −1.17 −0.97 −2.19 −2.18

outstanding predictive performance of the adaptive ranking lasso which largely
outperforms predictions based on maximum likelihood. Differently from the pre-
viously analyzed NFL example, the larger number of teams and the strong irregu-
larity of the tournament makes more evident the usefulness of the grouping effect
induced by the lasso. Furthermore, the results strongly support the selection of the
lasso penalty by AIC, while in the NFL application, predictions based on AIC and
BIC were essentially of the same quality.

6. Conclusions. Lasso and its many variants have provided successful solu-
tions to model selection in a variety of high-dimensional problems. In this paper
we suggested a further use of the lasso ideas in the context of ranking contestants
participating in a tournament. We showed how a generalized fused lasso penalty
can be used for enhancing rankings derived from paired comparison models. The
proposed adaptive ranking lasso method produces ranking in groups in a way that
teams with similar ability are shrunk to the same common level.

Uncertainty of ranking lasso estimates can be evaluated by means of a para-
metric bootstrap. Our results support the idea that, as expected, the lasso-based
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estimates are more precise with respect to maximum likelihood estimates, in par-
ticular, when the true abilities of two teams are equal or nearly equal.

Lasso and other shrinkage methods are often motivated by superior predictive
performance with respect to standard maximum likelihood. This is also the case
of the proposed adaptive ranking lasso method. An empirical study suggests that
ranking in groups induced by the adaptive ranking lasso produces forecasts of fu-
ture matches whose quality is sensibly better than predictions based on maximum
likelihood.

Although this paper is addressed to sport tournaments, we think that the dis-
cussed methodology can be of interest in many other ambits where rankings have
to be derived from preference data. Further, the results in this paper can also be of
interest because they highlight the benefits of adaptive versions of the lasso method
as suggested by Zou (2006).
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