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ADDRESSING MISSING DATA MECHANISM UNCERTAINTY
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We present a framework for generating multiple imputations for contin-
uous data when the missing data mechanism is unknown. Imputations are
generated from more than one imputation model in order to incorporate un-
certainty regarding the missing data mechanism. Parameter estimates based
on the different imputation models are combined using rules for nested mul-
tiple imputation. Through the use of simulation, we investigate the impact of
missing data mechanism uncertainty on post-imputation inferences and show
that incorporating this uncertainty can increase the coverage of parameter es-
timates. We apply our method to a longitudinal clinical trial of low-income
women with depression where nonignorably missing data were a concern.
We show that different assumptions regarding the missing data mechanism
can have a substantial impact on inferences. Our method provides a simple
approach for formalizing subjective notions regarding nonresponse so that
they can be easily stated, communicated and compared.

1. Introduction. The longitudinal clinical trial is a powerful design for esti-
mating and comparing rates of change over time in two or more treatment groups.
However, measuring participants repeatedly over time provides repeated opportu-
nities for participants to miss measurement occasions. Missing values are a prob-
lem in most longitudinal studies and a variety of methods have been developed
to produce valid inferences in the presence of missing data. In particular, multi-
ple imputation—where missing values are replaced with two or more plausible
values—has gained widespread acceptance in recent years and is a common and
flexible approach for handling missing data.

When dealing with missing data, special concern must be given to the process
that gave rise to the missing data, referred to as the missing data mechanism. Most
methods for generating multiple imputations, both fully-parametric methods [Liu
(1995), Schafer (1997)] and semi-parametric methods [Raghunathan et al. (2001),
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Schenker and Taylor (1996), Siddique and Belin (2008a), van Buuren (2007)],
assume the missing data mechanism is ignorable as described by Rubin (1976),
where the probability that a value is missing does not depend on unobserved in-
formation such as the value itself. When data are nonignorably missing, that is,
the probability that a value is missing does depend on unobserved information, the
model for generating imputations must take into account the missing data mech-
anism. The role of nonignorability assumptions has been discussed in the context
of a variety of applied settings; see, for example, Little and Rubin [(2002), chap-
ter 15], Belin et al. (1993), Rubin, Stern and Vehovar (1995), Schafer and Graham
(2002), Wachter (1993) and Demirtas and Schafer (2003).

Nonignorably missing data is of particular concern in depression trials because
it is very likely that the reason for a participant missing an assessment or drop-
ping out of a study is related to their underlying depression status [Blackburn et al.
(1981), Elkin et al. (1989), Warden et al. (2009)]. For example, a depressed partici-
pant may feel like the intervention is not working for them and may be unwilling to
sit through an interview and/or answer the phone. Conversely, a high-functioning,
nondepressed participant may feel like he no longer needs to remain in the trial
or may not be available for an assessment because he is busy working, shopping
or socializing. Failure to take into account the missing data mechanism may result
in inferences that make a treatment appear more or less effective. Failure to incor-
porate uncertainty regarding the missing data mechanism may result in inferences
that are overly precise given the amount of available information [Demirtas and
Schafer (2003)].

Since a nonignorable missing data mechanism depends on unobserved data,
there is little information available to correctly model this process. A common ap-
proach in such cases is to perform a sensitivity analysis, drawing inferences based
on a variety of assumptions regarding the missing data mechanism [Daniels and
Hogan (2008)]. There is a broad literature on sensitivity analyses for exploring
unverifiable missing data assumptions [see Ibrahim and Molenberghs (2009) and
discussion for a review]. One approach begins with the specification of a full-data
distribution, followed by examination of inferences across a range of values for one
or more unidentified parameters [Daniels and Hogan (2008), Molenberghs, Ken-
ward and Goetghebeur (2001), Rubin (1977), Scharfstein, Rotnitzky and Robins
(1999), Vansteelandt et al. (2006)].

When a decision is required, a drawback of sensitivity analysis is that it pro-
duces a range of answers rather than a single answer [Scharfstein, Rotnitzky and
Robins (1999)]. Several authors have proposed model-based methods for obtaining
a final inference. This approach involves placing an informative prior distribution
on the unidentified parameters that characterize assumptions about the missing
data mechanism. Then, inferences are drawn that incorporate a range of assump-
tions regarding the missing data mechanism [Daniels and Hogan (2008), Forster
and Smith (1998), Kaciroti et al. (2006), Rubin (1977)].



1816 J. SIDDIQUE, O. HAREL AND C. M. CRESPI

An alternative approach for handling data with nonignorable missingness is
multiple imputation. Multiple imputation methods have several advantages over
model-based methods for analyzing data with missing values: they allow for stan-
dard complete-data methods of analysis to be performed once the data have been
imputed [Little and Rubin (2002)], and auxiliary variables that are not part of the
analysis procedure can be incorporated into the imputation procedure to increase
efficiency and reduce bias [Collins, Schafer and Kam (2001)].

Methods for multiple imputation with nonignorably missing data include those
of Carpenter, Kenward and White (2007) who use a reweighting approach to in-
vestigate the influence of departures from the ignorable assumption on parameter
estimates. van Buuren, Boshuizen and Knook (1999) perform a sensitivity analysis
with multiply imputed data using offsets to explore how robust their inferences are
to violations of the assumption of ignorability. A limitation of these approaches is
that they do not take into account uncertainty regarding the missing data mecha-
nism. Instead, they provide a range of inferences for various ignorability assump-
tions.

Landrum and Becker (2001) develop an imputation procedure that allows for
model uncertainty to be reflected in the multiple imputations for those cases in
which no one imputation model is clearly the best model by drawing imputations
from more than one model. However, their procedure assumes ignorably missing
data. Siddique and Belin (2008b) use a nonignorable approximate Bayesian boot-
strap to generate multiple imputations assuming nonignorability. Each set of impu-
tations is based on a different assumption regarding the missing data mechanism in
order to incorporate missing data mechanism uncertainty. However, Siddique and
Belin (2008b) use conventional multiple imputation combining rules which are not
appropriate when imputations are generated from different posterior distributions
because they do not take into account the additional uncertainty due to using more
than one imputation model.

In this paper we describe a new multiple imputation approach for estimating pa-
rameters and their associated confidence intervals in the presence of nonignorable
nonresponse. Our goal is to develop a multiple imputation framework analogous
to model-based methods such as those of Rubin (1977), Forster and Smith (1998)
and Daniels and Hogan (2008) that incorporate a range of ignorability assump-
tions into one inference. Rather than attempting the hopeless objective of correctly
modeling the missing data mechanism, we generate our imputations using multiple
imputation models and then use specialized combining rules to generate inferences
that incorporate missing data mechanism uncertainty. Imputations are generated in
three steps: (1) a distribution of models incorporating ignorable and/or nonignor-
able mechanisms is specified; (2) a model is drawn from this distribution; (3) mul-
tiple imputations are generated from the model selected in Step 2. Steps 2 and 3
are then repeated, thereby generating multiple-model multiple imputations. The
nested imputation combining rules of Shen (2000) are used to combine inferences
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across multiple imputations so that between-model uncertainty is incorporated into
the standard errors of parameter estimates.

The outline for the rest of this paper is as follows. In Section 2 we describe the
WECare study, a longitudinal depression treatment trial that motivated this work.
In Section 3 we describe methods for generating multiple-model multiple impu-
tations for continuous data in order to incorporate missing data mechanism un-
certainty and describe the nested imputation combining the rules of Shen (2000).
In addition, we develop a method of quantifying the contribution of missing data
mechanism uncertainty to the overall rate of missing information. Section 4 de-
scribes the design of a simulation study and Section 5 presents the results of the
simulation study. In Section 6 we apply our approach to the WECare study. Sec-
tion 7 provides a discussion.

Closely related to the concept of ignorability are the missing data mechanism
taxonomies “missing at random” (MAR) and “not missing at random” (NMAR).
MAR requires that the probability of missingness depends on observed values
only, while ignorability includes the additional assumption that the parameters
that generate the data and the parameters governing the missing data mechanism
are distinct [Little and Rubin (2002), Rubin (1976)]. While distinctness of these
two sets of parameters cannot always be assumed (particularly in time to event
data), for the purposes of this paper we will use the terms MAR and ignorable
interchangeably and the terms NMAR and nonignorable interchangeably.

2. Motivating example: The WECare study. The Women Entering Care
(WECare) Study investigated depression outcomes during a 12-month period in
which 267 low-income mostly minority women in the suburban Washington, DC
area were treated for depression. The participants were randomly assigned to one
of three treatment groups: Medication, Cognitive Behavioral Therapy (CBT) or
treatment-as-usual (TAU), which consisted of referral to a community provider.
Depression was measured every month through a phone interview using the Hamil-
ton Depression Rating Scale (HDRS).

Information on ethnicity, income, number of children, insurance and education
was collected during the screening and the baseline interviews. All screening and
baseline data were complete except for income, with 10 participants missing data
on income. After baseline, the percentage of missing interviews ranged between
24% and 38% across months.

Outcomes for the first six months of the study were reported in Miranda et al.
(2003). In that paper the primary research question was whether the Medication
and CBT treatment groups had better depression outcomes compared to the TAU
group. To answer this question, the data were analyzed on an intent-to-treat basis
using a random intercept and slope regression model which controlled for ethnicity
and baseline depression. Results from the complete-case analysis showed that both
the Medication intervention (p < 0.001) and the CBT intervention (p = 0.006)
reduced depression symptoms more than the TAU community referral.
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This analysis assumed missing WECare values were MAR. An underlying con-
cern was whether missing values were nonginorably missing. The motivation of
the work described here was to develop methods of inference that would reflect
uncertainty about the missing data mechanism in the WECare trial.

3. Methods. Our approach proceeds in four stages. First, a distribution of im-
putation models is specified. Then, nested imputation is conducted in which M

models are drawn from this distribution of models and N multiple imputations for
each missing value are generated from each of the M models resulting in M × N

complete data sets. Next, parameters of interest are estimated along with their stan-
dard errors for each imputed data set. Finally, the parameter estimates and standard
errors are combined using rules for nested multiple imputation that yield final in-
ferential results. We also present a method of quantifying the contribution of miss-
ing data mechanism uncertainty to the overall rate of missing information.

3.1. Specifying the distribution of imputation models. The first step in our pro-
cedure is identifying a distribution of models from which it is possible to sample.
The choice of which model to use will depend on subjective notions regarding the
dissimilarity of observed and missing values that the imputer wishes to formalize.
Ideally, this external information is elicited from experts or those who collected
the data.

Rubin (1987) notes the importance of using easily communicated models to
generate multiple imputations assuming nonignorability so that users of the com-
pleted data can make judgments regarding the relative merits of the various in-
ferences reached under different nonresponse models. In this section we describe
in detail a method for generating multiple imputations from multiple models using
an adaptation of a nonignorable imputation procedure suggested by Rubin [(1987),
page 22]. In the discussion section we discuss the application of our multiple model
framework using other procedures.

3.2. Transforming imputed ignorable continuous values to create nonignorable
values. Rubin [(1987), page 203] describes a simple transformation for generat-
ing nonignorable imputed values from ignorable imputed values:

(nonignorable imputed Yi) = k × (ignorable imputed Yi).(3.1)

For example, if k = 1.2, then the assumption is that, conditioning on other ob-
served information, missing values are 20% larger than observed values. In order to
create a distribution of nonignorable (and ignorable) models, we replace the multi-
plier k in equation (3.1) with multiple draws from some distribution. If the imputer
believes that missing values tend to be larger than observed values, then a poten-
tial distribution for k might be a Uniform(1,3) distribution or a Normal(1.5,1)

distribution. By centering the distribution of k around values smaller than 1.0,
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nonignorable imputations can be generated which assume that missing values are
smaller than observed values after conditioning on observed information.

When the ignorable imputed value in equation (3.1) is negative, the right-hand
side of the equation needs to be modified so that values of k greater than 1 will
increase the value of the ignorable imputed value and values of k less than 1 will
decrease the value of the ignorable imputed value. A more general version of equa-
tion (3.1), applicable in all settings, is

(nonignorable imputed Yi)
(3.2)

= [(k − 1) × |ignorable imputed Yi |] + ignorable imputed Yi.

Caution should be exercised to avoid unrealistic imputations. Multipliers of large
magnitude may result in imputations outside the range of plausible values.

If the imputer wants to generate imputations that are centered around a miss-
ing at random mechanism but with additional uncertainty, they could specify a
Uniform(0.5,1.5) or Normal(1.0,0.25) distribution for the multiplier. More gen-
erally, Daniels and Hogan (2008) categorize the priors used in a sensitivity anal-
ysis as departures from a MAR mechanism. They use the following categories:
MAR with no uncertainty, MAR with uncertainty, NMAR with no uncertainty
and NMAR with uncertainty. When viewed in this framework, the standard MAR
assumption (MAR with no uncertainty) is simply one mechanism across a con-
tinuum of mechanism specifications and is equivalent to using a Normal(1,0) or
Uniform(1,1) distribution for the multiplier k in equation (3.2). Note that when
we use the term “imputation model uncertainty” we are referring to uncertainty in
the missing data mechanism as governed by uncertainty in the multiplier k.

When the data are continuous, equation (3.2) can be applied to ignorable im-
puted values that are generated from any imputation method that assumes ignora-
bility. In this paper we generate ignorable imputations using regression imputation
[Rubin (1987), page 166]. We use different values for the multiplier k in equa-
tion (3.2) to easily generate imputations from many different models.

3.3. Nested multiple imputation. Once the distribution of models has been
specified, imputation proceeds in two stages. First M models are drawn from a
distribution of models such as those described in Section 3.2. Then N multiple im-
putations for each missing value are generated for each of the M models, resulting
in M × N complete data sets.

More specifically, let the complete data be denoted by Y = (Yobs, Ymis). For the
first stage, the imputation model ψ is drawn from its predictive distribution

ψm ∼ p(ψ), m = 1,2, . . . ,M.(3.3)

The second stage starts with each model ψm and draws n independent imputa-
tions conditional on ψm,

Y
(m,n)
mis ∼ p(Ymis|Yobs,ψ

m), n = 1,2, . . . ,N.(3.4)
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Because the M × N nested multiple imputations are not independent draws
from the same posterior predictive distribution of Ymis, the traditional multiple
imputation combining rules of Rubin (1987) do not apply. Instead, it is necessary
to use combining rules that take into account variability due to the multiple models.
Fortunately, the method described here is similar to nested multiple imputation
[Harel (2007, 2009), Rubin (2003), Shen (2000)]. In the Appendix we provide
further justification for using the nested imputation combining rules.

3.4. Combining rules for final inference. In this section we describe the nested
multiple imputation combining rules that we use to combine inferences across mul-
tiply imputed data sets based on multiple imputation models. In describing the
rules below, we use notation that follows closely to that of Shen (2000).

Let Q be the quantity of interest. Assume with complete data, inference about
Q would be based on the large sample statement that

(Q − Q̂) ∼ N(0,U),

where Q̂ is a complete-data statistic estimating Q and U is a complete-data statis-
tic providing the variance of Q− Q̂. The M ×N imputations are used to construct
M × N completed data sets, where the estimate and variance of Q from the sin-
gle imputed data set is denoted by (Q̂(m,n),U(m,n)), where m = 1,2, . . . ,M and
n = 1,2, . . . ,N . The superscript (m,n) represents the nth imputed data set under
model m. Let Q̄ be the overall average of all M × N point estimates

Q̄ = 1

MN

M∑
m=1

N∑
n=1

Q̂(m,n),(3.5)

and let Q̄m be the average of the mth model,

Q̄m = 1

N

N∑
n=1

Q̂(m,n).(3.6)

Three sources of variability contribute to the uncertainty in Q. These three sources
of variability are as follows: Ū , the overall average of the associated variance esti-
mates

Ū = 1

MN

M∑
m=1

N∑
n=1

U(m,n),(3.7)

W , the within-model variance

W = 1

M(N − 1)

M∑
m=1

N∑
n=1

(
Q̂(m,n) − Q̄m

)2
,(3.8)
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and B , the between-model variance

B = 1

M − 1

M∑
m=1

(Q̄m − Q̄)2.(3.9)

The quantity

T = Ū +
(

1 + 1

M

)
B +

(
1 − 1

N

)
W(3.10)

estimates the total variance of (Q − Q̄). Interval estimates and significance levels
for scalar Q are based on a Student-t reference distribution

T −1/2(Q − Q̄) ∼ tv,(3.11)

where v, the degrees of freedom, follows from

v−1 =
[
(1 + 1/M)B

T

]2 1

M − 1
+

[
(1 − 1/N)W

T

]2 1

M(N − 1)
.(3.12)

In standard multiple imputation, only one model is used to generate imputations
so that the between-model variance B [equation (3.9)] is equal to 0 and it is not
necessary to account for the extra source of variability due to model uncertainty.

3.5. Rates of missing information. Standard multiple imputation provides a
rate of missing information that may be used as a diagnostic measure of how
the missing data contribute to the uncertainty about Q, the parameter of inter-
est [Schafer (1997)]. Harel (2007, 2009) derived rates of missing information for
nested multiple imputation based on the amount of missing information due to
model uncertainty and missingness. These rates include an overall rate of miss-
ing information γ , which can be partitioned into a between-model rate of missing
information γ b, and a within-model rate of missing information γ w . With no miss-
ing information (either due to nonresponse or imputation model uncertainty), the
variance of (Q − Q̄) reduces to Ū so that the estimated overall rate of missing
information is [Harel (2007)]

γ̂ = B + (1 − 1/N)W

Ū + B + (1 − 1/N)W
.(3.13)

If the correct imputation model is known, then B , the between-model variance,
is 0 and the estimated rate of missing information due to nonresponse is

γ̂ w = W

Ū + W
.(3.14)

Roughly speaking, equation (3.13) measures the fraction of total variance ac-
counted for by nonresponse and model uncertainty and equation (3.14) measures
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the fraction of total variance accounted for by nonresponse when the correct im-
putation model is known. See Harel (2007, 2009) for details. The estimated rate of
missing information due to model uncertainty is then γ̂ b = γ̂ − γ̂ w .

In a nested imputation framework, Harel (2008) takes the ratio γ̂ w

γ̂
which he

terms outfluence. In nested imputation, outfluence is a measure of the influence
of one type of missing data relative to all missing values. Here, we use the ratio
γ̂ b

γ̂
to measure the contribution of model uncertainty to the overall rate of missing

information. For example, a value of γ̂ b

γ̂
equal to 0.5 would suggest that half of the

overall rate of missing information is due to missing data mechanism uncertainty,
the other half due to missing values. We anticipate that most researchers would not
want to exceed this value unless they have very little confidence in their imputation
model. Note that most imputation procedures use one model and implicitly assume

that γ̂ b

γ̂
is equal to 0.

In the next section we present simulations showing that incorporating more than
one imputation model in an imputation procedure increases both γ̂ b and γ̂ b

γ̂
and

increases the coverage of parameter estimates versus procedures that use only one
imputation model.

4. Design of simulation study. In this section we describe a simulation study
to illustrate the method of multiple-model multiple imputation. We simulate longi-
tudinal data with missing values in order to demonstrate how incorporating missing
data mechanism uncertainty can increase the coverage of parameter estimates.

4.1. Setup. Building on an example in Hedeker and Gibbons [(2006),
page 283], longitudinal data with missing values were simulated according to the
following pattern-mixture model:

yij = β0 + β1Timej + β2Txi + β3(Txi × Timej )
(4.1)

+ β4(Dropi × Timej ) + v0i + v1iTimej + εij ,

where Timej was coded 0, 1, 2, 3, 4 for five timepoints, Txi was a dummy-coded
(i.e., 0 or 1) grouping variable with 150 subjects in each group, and Dropi was
a dummy-coded variable indicating those subjects who eventually dropped out
of the study. There were 100 dropouts in each treatment group. The regression
coefficients were defined to be as follows: β0 = 25, β1 = −3, β2 = 0, β3 = −1,
and β4 = 1.5. This setup represents a randomized controlled trial in which group
means are equal at baseline and there is a greater decrease in the outcome measure
over time in the treatment group. Participants who eventually drop out of the study
have smaller decreases in outcomes over time as compared to nondropouts. Thus,
the slope of the treatment and control groups were −3.0 and −2.0, respectively.
The random subject effects v0i and v1i were assumed normal with zero means,
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variances σ 2
v0 = 4 and σ 2

v1 = 1 and covariance σv01 = −0.1. The errors εij were
assumed to be normal with mean 0 and variance σ 2 = 9 for nondropouts and σ 2 =
16 for dropouts.

We generated nonignorable missing values on yij using the following rule: at
timepoints 1, 2, 3 and 4, subjects in the dropout group dropped out with proba-
bilities (0.25, 0.50, 0.75, 1) so that the overall proportions of missing values were
0.17, 0.42, 0.60 and 0.67 for the four timepoints. Nondropouts have no missing
values at any time point. The high proportion of dropouts and the use of monotone
missingness (versus intermittent missingness) were chosen so that post-imputation
inferences were sensitive to assumptions regarding the missing data mechanism.

Imputation using the multiplier approach of Section 3 proceeded as follows. We
first generated 200 imputations of each missing value using the software package
MICE [van Buuren and Oudshoorn (2011)] which imputes variables one-at-a-time
based on a conditional distribution for each variable. We specified a linear regres-
sion model [Rubin (1987), page 166] which assumes the missing data are MAR.
Each treatment group was imputed separately to preserve the desirable property in
an intent-to-treat analysis framework that imputed values depend only on informa-
tion from other cases in the same treatment arm.

Using the methods described in Sections 3, we then transformed the MICE
imputations—which assume the data are ignorably missing—into imputations that
assume the data are nonginorably misssing. Specifically, we simulated 100 values
of k from one of the imputation model distributions listed in Table 1 and described
in Sections 4.2 and 4.3. Using equation (3.2), each of these values of k was mul-
tiplied to the imputed values in 2 imputed data sets to create 2 imputations nested
within 100 models, that is, 200 imputed data sets.

We used M = 100 imputation models and N = 2 imputations within each model
so that the degrees of freedom for the within-model variance M(N − 1) [equa-
tion (3.8)] and the degrees of freedom for the between-model variance M − 1
[equation (3.9)] were approximately equal. This allowed us to estimate within-
and between-model variance with equal precision, which is necessary for stable
measurements of the rates of missing information [Harel (2007)].

We then analyzed the 200 imputed data sets using the random intercept and
slope model described in equation (4.1) but without the covariates that include
dropout. Inferences were combined using the nested multiple imputation combin-
ing rules described in Section 3.3. Here, for brevity, we focus on the slope of the
treatment group.

One thousand replications for the above scenario were simulated. An R func-
tion for combining nested multiple imputation inferences and calculating rates of
missing information is available in the supplementary materials [Siddique, Harel
and Crespi (2012)].

4.2. Ignorability assumptions. We explored the effect of imputing under four
different ignorability assumptions which we refer to as MAR, Weak NMAR,
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Strong NMAR and Misspecified NMAR. We now discuss each of these assump-
tions in turn:

(1) Missing at Random (MAR): Under this assumption, we generate multiple
imputations assuming the data are missing at random. Specifically, we generate
imputations assuming the multiplier k in equation (3.2) is drawn from a distribu-
tion with a mean of 1.0.

(2) Weak Not Missing at Random (Weak NMAR): Under this assumption, we
generate multiple imputations assuming the data are not missing at random, but
that nonrespondents are not very different from respondents. Specifically, imputa-
tions assuming weak NMAR are generated by assuming the multiplier k in equa-
tion (3.2) is drawn from a distribution with a mean of 1.3 (nonrespondents have
values that are 30% larger than respondents).

(3) Strong NMAR: Here we generate multiple imputations assuming the data
are NMAR and that nonrespondents are quite a bit different than respondents. Im-
putations are generated assuming nonrespondents are 70% larger than respondents
(a multiplier distribution mean of 1.7).

(4) Misspecified NMAR: Here we generate multiple imputations assuming the
data are NMAR but that nonrespondents have lower values than respondents even
though in truth the reverse is true. Imputations assuming misspecified NMAR are
generated by assuming the multiplier k in equation (3.2) is drawn from a distri-
bution with a mean of 0.8 (nonrespondents have values that are 20% smaller than
respondents). We chose this assumption to demonstrate that even when the imputer
is wrong about the nature of nonignorability, incorporating mechanism uncertainty
can increase coverage and make a bad situation better.

4.3. Mechanism uncertainty assumptions. In addition to generating imputa-
tions using the above ignorability assumptions, we also generated imputations
based on four different assumptions regarding how certain we were about the cor-
rectness of our models. When there is no mechanism uncertainty, all imputations
are generated from the same model. When there is mechanism uncertainty, then
multiple models are used. All models are centered around one of the ignorabil-
ity assumptions in Section 4.2. Uncertainty is then characterized by departures
from the central model. The four different uncertainty assumptions used to gen-
erate multiple models were as follows: no uncertainty, mild uncertainty, moderate
uncertainty and ample uncertainty. These assumptions are described below:

(1) No uncertainty: This is the assumption of most imputation schemes. One
imputation model is chosen and all imputations are generated from that one model.
In particular, the most common imputation approach is to assume the data are
MAR with no uncertainty. Imputations with no mechanism uncertainty were gener-
ated by using the same multiplier k in equation (3.2) for all 100 imputation models.

(2) Mild uncertainty: Here we assume that there is a small degree of uncer-
tainty regarding what is the right mechanism. By incorporating some uncertainty
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into our choice of imputation model, imputations are generated using multiple
models. Specifically, the multiplier k in equation (3.2) was drawn from a Normal
distribution with a standard deviation of 0.1.

(3) Moderate uncertainty: Multiple models with moderate uncertainty are gen-
erated using equation (3.2) by drawing the multiplier from a Normal distribution
with a standard deviation of 0.3.

(4) Ample uncertainty: Multiple models with ample uncertainty are generated
using equation (3.2) by drawing the multiplier from a Normal distribution with a
standard deviation of 0.5.

With four ignorability assumptions and four uncertainty assumptions, we im-
puted the data under a total of 16 scenarios. Within each scenario, we evaluated
the percent bias and RMSE of the post-multiple-imputation treatment slope as well
as the coverage rate and width of its nominal 95% interval estimate. In addition, we
calculated measures of missing information: the overall estimated rate of missing
information [γ̂ in equation (3.13)], the estimated rate of missing information due
to nonresponse [γ̂ w in equation (3.14)], the estimated rate of missing information
due to model uncertainty, γ̂ b = γ̂ − γ̂ w , and the estimated contribution of model
uncertainty to the overall rate of missing information as measured by the ratio γ̂ b

γ̂
.

5. Simulation results. Table 1 lists the results of our imputations under the
16 different ignorability/uncertainty scenarios using regression imputation and the
methods described in Section 3 for the slope of the treatment group. Beginning
with the first row, we see that assuming MAR with no mechanism uncertainty re-
sults in estimates that are highly biased with a coverage rate close to 0%. This
result is not surprising, as the data are nonignorably missing and here we are as-
suming in all of our models that the data are ignorably missing. Since we are using
the same model for all imputations, γ̂ b, the estimated fraction of missing informa-
tion due to model uncertainty is approximately equal to 0 as is γ̂ b

γ̂
, the estimated

contribution of model uncertainty to the overall rate of missing information.
Moving to the subsequent rows in Table 1, still assuming MAR, we see the ef-

fect of increasing mechanism uncertainty on post-imputation parameter estimates.
Both percent bias and RMSE are the same as with no uncertainty, but now coverage
is increasing as we increase the amount of uncertainty in our imputation models.
Coverage increases from 0% to 99.5%. The mechanism here is clear—by increas-
ing the amount of uncertainty in our imputation models, we are now generating
imputations under a range of ignorability assumptions. This additional variability
in the imputed values translates to wider confidence intervals and hence greater
coverage. We also see that our measures of missing information are able to pick
up this uncertainty. Both γ̂ b and γ̂ b

γ̂
increase as the amount of model uncertainty

increases. As model uncertainty increases, it becomes a larger proportion of the
overall rate of missing information.
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TABLE 1
Simulation study of multiple imputation of continuous data using multiple models. One hundred

models, 2 imputations within each model

Ignore Model Width
assump. Uncertainty Dist’n PB RMSE Cvg. of CI γ̂ γ̂ w γ̂ b γ̂ b

γ̂

MAR None N(1.0,0.0) 33.04 1.01 0.1 0.75 0.63 0.62 0.01 0.02
Mild N(1.0,0.1) 33.18 1.01 0.3 0.98 0.77 0.61 0.16 0.21

Moderate N(1.0,0.3) 33.44 1.02 53.4 2.05 0.93 0.57 0.36 0.39
Ample N(1.0,0.5) 33.72 1.03 99.5 3.28 0.96 0.49 0.47 0.49

Weak None N(1.3,0.0) 18.22 0.59 36.2 0.96 0.64 0.63 0.01 0.02
NMAR Mild N(1.3,0.1) 18.35 0.59 53.5 1.14 0.74 0.62 0.12 0.16

Moderate N(1.3,0.3) 18.56 0.60 98.0 2.13 0.91 0.59 0.32 0.35
Ample N(1.3,0.5) 18.77 0.61 100.0 3.33 0.95 0.53 0.42 0.44

Strong None N(1.7,0.0) −1.53 0.27 98.2 1.28 0.60 0.59 0.01 0.02
NMAR Mild N(1.7,0.1) −1.40 0.27 99.6 1.42 0.67 0.58 0.09 0.13

Moderate N(1.7,0.3) −1.19 0.27 100.0 2.29 0.86 0.56 0.29 0.34
Ample N(1.7,0.5) −1.03 0.28 100.0 3.42 0.92 0.53 0.40 0.43

Misspec. None N(0.8,0.0) 42.95 1.30 0.0 0.64 0.57 0.56 0.01 0.02
NMAR Mild N(0.8,0.1) 43.10 1.30 0.0 0.90 0.77 0.56 0.22 0.28

Moderate N(0.8,0.3) 43.39 1.31 8.5 2.01 0.94 0.50 0.43 0.46
Ample N(0.8,0.5) 43.70 1.32 88.1 3.26 0.96 0.43 0.54 0.56

PB: percent bias; RMSE: root mean squared error; Cvg: coverage.

Since missing values in our simulation study tended to be larger than observed
values, the weak and strong NMAR conditions result in smaller bias than the im-
putations assuming MAR. As before, increasing the amount of model uncertainty
does not change bias but instead increases coverage (by increasing the width of the
95% confidence intervals) to the point that weak NMAR with moderate and am-
ple uncertainty exceeds the nominal level. Under the strong NMAR assumption,
bias is small enough that there is no benefit to additional mechanism uncertainty.
Also, as before, additional model uncertainty is reflected in increasing values of γ̂ b

and γ̂ b

γ̂
.

Finally, the last four rows of Table 1 present results when the missing data mech-
anism is misspecified. Here, the missing data are imputed assuming that missing
values are smaller than observed values (even after conditioning on observed in-
formation) when in fact the reverse is true. Not surprisingly, bias and RMSE are
poor in this situation, but by incorporating mechanism uncertainly into our im-
putations we are able to build some robustness into our imputation model. With
ample uncertainly, coverage is 88.1%, a substantial increase over the coverage rate
of 0%, which is the result of using the same (misspecified) model for all imputa-
tions.
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6. Application to the Women Entering Care study. We applied our methods
to the WECare data as follows. We imputed the continuous WECare HDRS scores
using the same method and imputation model distribution parameters as described
in the simulation study.

The Weak NMAR and Strong NMAR assumptions assume that missing val-
ues tend to be larger than observed values with the same covariates. Since higher
HDRS scores reflect more depression symptoms, these assumptions imply that
nonrespondents are more depressed than respondents even after conditioning on
observed information. The term “Misspecified” NMAR is a misnomer in this set-
ting because we do not actually know the correct specification. We use the term
only to be consistent with the simulation study. For Misspecified NMAR, the as-
sumption is that nonrespondents are less depressed than respondents.

We investigated how different factors in our imputation procedure affected in-
ferences from the WECare data. In every scenario, 100 models were used and 2
imputations were generated within each model for every missing value. As in the
simulation study, each treatment group was imputed separately.

When imputing and analyzing the WECare data, we restricted our attention to
the depression outcomes that were analyzed in Miranda et al. (2003), variables
used as covariates in final analyses, and a set of additional variables used in the
imputation models because they were judged to be potentially associated with the
analysis variables. Table 2 lists variables that were used in imputation and analysis
models and also indicates the percentage of missing values.

Four important targets of inference from the random intercept and slope model
used in Miranda et al. (2003) are the slopes of the Medication treatment group and
the CBT treatment group, reflecting the change in HDRS scores over time for the
two active interventions and their difference with the slope of the TAU condition,
which estimates the effect of treatment. Here, for brevity, we focus our attention on
the slope of the Medication treatment group and also its difference with the slope
of the TAU group (i.e., the Medication treatment effect) to illustrate the impact of
different ignorability and uncertainty assumptions in our imputation procedures.

6.1. Imputation of HDRS scores. Imputation of the monthly HDRS scores us-
ing the multiplier approach of Section 3 proceeded as follows. For every ignora-
bilty/uncertainty combination in Table 1, we first generated 200 imputations of the
WECare missing data using MICE [van Buuren and Oudshoorn (2011)] and spec-
ified a linear regression model [Rubin (1987), page 166] to impute income and
depression scores. This method assumes the missing data are MAR. Each imputa-
tion model conditioned on all the variables listed in Table 2. In particular, depres-
sion scores were imputed using a model that conditioned on both prior depression
scores and subsequent depression scores in order to make use of all available in-
formation. Imputed values were rounded to the nearest observed value to create
plausible HDRS scores.
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TABLE 2
WECare variables used for imputation and analysis

Imputation Percent Variable
Variable name or analysis? missing type

Baseline HDRS Both 0% Scaled
Month 1 HDRS Both 25% Scaled
Month 2 HDRS Both 24% Scaled
Month 3 HDRS Both 30% Scaled
Month 4 HDRS Both 34% Scaled
Month 5 HDRS Both 38% Scaled
Month 6 HDRS Both 30% Scaled
Month 8 HDRS Imputation 33% Scaled
Month 10 HDRS Imputation 34% Scaled
Month 12 HDRS Imputation 24% Scaled
Ethnicity Both 0% Nominal
Age Imputation 0% Continuous
Income Imputation 4% Continuous
HS graduate Imputation 0% Binary
Number of children Imputation 0% Continuous
Received 9 wks of Meds Imputation 0% Binary (Med tx only)
No. of CBT sessions Imputation 0% Continuous (CBT tx only)
No. of mental health visits Imputation 0% Continuous (TAU tx only)
Insurance Status Imputation 0% Binary
Marital Status Imputation 0% Binary

HDRS: Hamilton depression rating scale.

We then simulated 100 values from the corresponding ignorability/uncertainty
distributions listed in Table 1 and described in Sections 4.2 and 4.3. Using equa-
tion (3.2), each of these values of k was multiplied to the imputed values in 2
imputed data sets to create 2 imputations nested within 100 models. Many of the
ignorability/uncertainty distributions that are used in the simulation are not real-
istic for this application, but we use them here for the sake of brevity and so that
we can clearly see the effect of different assumptions on post-imputation infer-
ences. Imputed values were again rounded to the nearest observed value to create
plausible HDRS scores. We then analyzed the 200 imputed data sets using the ran-
dom intercept and slope regression model of Miranda et al. (2003), and the nested
imputation combining rules described in Section 3.4.

6.2. Post multiple imputation results from the WECare analysis. Table 3 pro-
vides estimates, standard errors, confidence intervals, p-values and rates of miss-
ing information for the WECare Medication slope by the 16 different ignora-
bility/uncertainty scenarios described in Sections 4.2 and 4.3 using the multiple
model approach described in Section 3. Table 4 provides the same information for
the difference between the Medication and TAU slopes.
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TABLE 3
Post-imputation WECare Medication intervention slopes by ignorability/uncertainty scenario.

One-hundred models with 2 imputations per model were used to generate 200 imputations.
Multipliers were generated by drawing from a Normal distribution. MAR, Weak NMAR, Strong

NMAR and Misspecified NMAR correspond to Normal distributions with means of 1, 1.3, 1.7 and
0.8, respectively. Amounts of uncertainty None, Mild, Moderate, Ample correspond to Normal

distributions with standard deviations of 0, 0.1, 0.3 and 0.5, respectively

Ignore
assump. Uncertainty Est. SE LCI UCI p-val. γ̂ γ̂ w γ̂ b γ̂ b

γ̂

MAR None −1.93 0.47 −2.86 −1.00 <0.01 0.37 0.36 0.01 0.03
Mild −1.95 0.53 −3.00 −0.91 <0.01 0.49 0.37 0.13 0.25

Moderate −2.02 0.85 −3.70 −0.35 0.02 0.77 0.35 0.42 0.54
Ample −2.09 1.20 −4.46 0.28 0.08 0.87 0.32 0.54 0.63

Weak None −1.71 0.56 −2.81 −0.61 <0.01 0.42 0.41 0.01 0.03
NMAR Mild −1.74 0.60 −2.91 −0.57 <0.01 0.49 0.41 0.08 0.16

Moderate −1.82 0.84 −3.46 −0.17 0.03 0.72 0.40 0.33 0.45
Ample −1.91 1.15 −4.17 0.35 0.10 0.84 0.36 0.47 0.57

Strong None −1.53 0.65 −2.80 −0.25 0.02 0.42 0.40 0.01 0.03
NMAR Mild −1.54 0.66 −2.84 −0.24 0.02 0.45 0.40 0.04 0.09

Moderate −1.61 0.80 −3.19 −0.03 0.05 0.62 0.40 0.22 0.35
Ample −1.70 1.04 −3.74 0.34 0.10 0.76 0.38 0.39 0.51

Misspec. None −2.10 0.42 −2.93 −1.27 <0.01 0.30 0.29 0.01 0.03
NMAR Mild −2.12 0.49 −3.09 −1.16 <0.01 0.47 0.30 0.17 0.37

Moderate −2.18 0.85 −3.85 −0.51 0.01 0.79 0.29 0.49 0.63
Ample −2.22 1.20 −4.59 0.16 0.07 0.87 0.28 0.59 0.68

SE: standard error; LCI: lower 95% confidence interval; UCI: upper 95% confidence interval.

Looking first at Table 3, we see that assumptions regarding ignorability and
uncertainty have an impact on parameter estimates and their associated standard
errors. Starting with those rows assuming MAR, we see that the point estimate
for the slope changes very little for all four uncertainty assumptions. However, as
we assume more uncertainty, the associated standard errors increase. This same
phenomenon was seen in the simulation study. The additional model uncertainty
is also reflected in increasing values of γ̂ b and γ̂ b

γ̂
, the estimated rate of missing

information due to model uncertainty and the estimated contribution of model un-
certainty to the overall rate of missing information, respectively. These values are
quite large under ample uncertainty, reflecting the fact that the ample uncertainty
assumption is relatively diffuse for these data. Because of this, for every ignora-
bility scenario, ample uncertainty results in slopes that are no longer significantly
different from 0 at the 0.05 level.

As mentioned above, the Weak NMAR and Strong NMAR assumptions assume
that nonrespondents are more depressed than respondents even after conditioning
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TABLE 4
Post-imputation WECare Medication intervention treatment effects by ignorability/uncertainty

scenario. One hundred models with 2 imputations per model were used to generate 200
imputations. Multipliers were generated by drawing from a Normal distribution. MAR, Weak

NMAR, Strong NMAR and Misspecified NMAR correspond to Normal distributions with means of 1,
1.3, 1.7 and 0.8, respectively. Amounts of uncertainty None, Mild, Moderate, Ample correspond to

Normal distributions with standard deviations of 0, 0.1, 0.3 and 0.5, respectively

Ignore
assump. Uncertainty Est. SE LCI UCI p-val. γ̂ γ̂ w γ̂ b γ̂ b

γ̂

MAR None −0.69 0.25 −1.18 −0.19 <0.01 0.34 0.34 0.00 0.00
Mild −0.69 0.27 −1.22 −0.17 0.01 0.42 0.35 0.06 0.15

Moderate −0.70 0.38 −1.46 0.05 0.07 0.69 0.34 0.35 0.51
Ample −0.71 0.52 −1.73 0.31 0.17 0.81 0.31 0.49 0.61

Weak None −0.70 0.30 −1.29 −0.11 0.02 0.37 0.37 0.00 0.00
NMAR Mild −0.71 0.31 −1.31 −0.10 0.02 0.41 0.38 0.02 0.05

Moderate −0.71 0.39 −1.48 0.05 0.07 0.62 0.37 0.25 0.40
Ample −0.72 0.51 −1.72 0.29 0.16 0.77 0.35 0.41 0.54

Strong None −0.70 0.35 −1.39 −0.00 0.05 0.36 0.36 0.00 0.00
NMAR Mild −0.70 0.35 −1.39 −0.01 0.05 0.37 0.37 0.00 0.00

Moderate −0.71 0.40 −1.49 0.07 0.07 0.50 0.38 0.12 0.24
Ample −0.71 0.48 −1.66 0.23 0.14 0.66 0.37 0.29 0.44

Misspec. None −0.67 0.22 −1.12 −0.23 <0.01 0.27 0.27 0.00 0.00
NMAR Mild −0.68 0.25 −1.16 −0.20 <0.01 0.38 0.29 0.10 0.26

Moderate −0.69 0.38 −1.43 0.05 0.07 0.71 0.29 0.42 0.59
Ample −0.70 0.52 −1.72 0.32 0.18 0.82 0.27 0.55 0.67

SE: standard error; LCI: lower 95% confidence interval; UCI: upper 95% confidence interval.

on observed information. Since there are more missing values later in the study,
these assumptions have the effect of flattening the slope of the Medication in-
tervention. Within any ignorability assumption, the point estimates of the slope
change only a little but standard errors increase as more model uncertainty is as-

sumed. Again, the values of γ̂ b and γ̂ b

γ̂
appear to capture this uncertainty.

The “Misspecified” NMAR assumption assumes that nonrespondents are less
depressed than respondents and, as a result, the slope estimate is steeper than any
of the other scenarios.

Table 4 displays results for the difference between the Medication and TAU
slopes. For this quantity, the point estimate is almost the same in every ignorabil-
ity/uncertainty scenario. This result is not surprising, as there were similar amounts
of missing Medication and TAU data at each timepoint. For each ignorability as-
sumption, the slope of the TAU intervention changed by the same magnitude as
the slope of the Medication intervention. As a result, their difference remains con-
stant at each assumption. However, incorporating model uncertainty into the im-
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putations does increase the standard error of this parameter estimate. In fact, under
moderate and ample uncertainty the treatment effect of the Medication intervention
is no longer significant at the 0.05 level. These results underscore the importance
of making reasonable assumptions. As noted above, the uncertainty assumptions
in this example were chosen to be consistent with the simulation study and may
not be realistic in a depression study.

In the scenarios in Table 4 where there was no model uncertainty, the original
estimates of the rate of missing information due to model uncertainty were nega-
tive. As noted by Harel and Stratton (2009), this is possible due to the use of the
method of moments for calculating the rates of missing information. Following
their recommendation, we set γ̂ b and γ̂ b

γ̂
equal to 0 when γ̂ b was negative.

7. Discussion. We have described a relatively simple method for generating
multiple imputations in the presence of nonignorable nonresponse. By generating
multiple imputations from multiple models, our method allows the user to incor-
porate uncertainty regarding the missing data mechanism into their parameter es-
timates. This is a useful approach when the missing data mechanism is unknown,
which is almost always the case with nonignorably missing data. Our goal was
not to develop a competitor to model-based methods such as selection models and
pattern-mixture models. Instead, we wished to provide a imputation-based alterna-
tive to model-based methods for those researchers who prefer to use complete-data
methods.

As seen in both the simulation studies and the application to the WECare data,
post-imputation inferences can be highly sensitive to the choice of the imputation
model. With the WECare data, imputation using our methods had a strong effect
on the slope of the Medication intervention but little effect on the difference in
slopes between the Medication and TAU groups. However, the Medication treat-
ment effect was no longer significant when moderate and ample imputation model
uncertainty were assumed.

This ability to render nonsignificant a result that is significant assuming ignor-
ability (and vice versa) suggests that careful attention should be paid to the spec-
ification of the imputation model in equation (3.3). It may make sense to have
analysis protocols specify clearly in advance what missing data assumptions will
be explored. Imputation model assumptions should be chosen prior to analysis
and not based on whether it produces the desired result. Here, the literature on
prior elicitation may be helpful [Kadane and Wolfson (1998), Paddock and Ebener
(2009), White et al. (2007)].

One approach for eliciting expert opinion when choosing a distribution for the
multiplier k in equation (3.2) is to ask a subject-matter expert to provide an up-
per and lower bound for the multiplier. Then, assuming the multiplier is normally
distributed, set the multiplier distribution mean equal to the average of the lower
and upper bounds, and the standard deviation equal to the difference in bounds
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divided by 4. This assumes that the range defined by the upper and lower bounds
is a 95% confidence interval which may be appropriate given the tendency of peo-
ple to specify overly narrow confidence intervals [Tversky and Kahneman (1974)].
A similar calculation can be used if assuming a uniform prior.

Once the data have been imputed, it is important to examine rates of missing

information, in particular, γ̂ b and γ̂ b

γ̂
, to confirm that appropriate uncertainty is

being incorporated into imputations. For example, if imputations outside the range
of possible values are rounded up or down to the nearest observed value, this could
result in too little variability, resulting in decreased coverage.

One approach for ensuring that appropriate uncertainty is incorporated into in-
ferences is to generate imputations and perform analyses based on a few different
distributions for the multiplier. Then, without examining the significance of pa-
rameter estimates, confirm that appropriate imputation model uncertainty is being
incorporated into the parameter estimates. Because our methods begin with the
same set of ignorable imputations, it is relatively easy to generate imputations us-
ing different missing data mechanisms.

Our approach uses a large number of imputation models M , as this is necessary
to obtain stable estimates of the rates of missing information. The relative (com-
pared to an infinite number of imputations) efficiency of point estimates using
nested multiple imputation is a function of the fraction of missing information as
well as M and N . Improvements in relative efficiency are minimal when one uses
more than a modest number of imputations. Hence, when the researcher’s main
interest is point estimates and their variances, a smaller number of imputations are
usually sufficient, for example, M = 10–20 and N = 2 [Harel (2007)].

In line with more of a sensitivity analysis rather than a final analysis, when it
is hard to pin down a single range for the multiplier, one may consider a grow-
ing set of ranges and observe how subsequent inferences evolve accordingly. This
approach will allow the user to make more precise statements regarding the ex-
act conditions under which the obtained results apply [van Buuren, Boshuizen and
Knook (1999)].

Although we believe that all imputation model uncertainty should be incorpo-
rated into one inference, our approach is not inconsistent with a sensitivity analysis
that examines inferences across a range of ignorability assumptions. Scharfstein,
Rotnitzky and Robins (1999) view sensitivity analysis as useful “preprocessing”
for any full Bayesian analysis that places prior distributions on sensitivity parame-
ters and recommend that one also publish the results based on the individual sensi-
tivity parameters in addition to the results that average across a range of sensitivity
parameters so that readers are aware of how inferences vary based on individual
sensitivity parameters.

Our approach is less extreme than worst-case best-case intervals [Cochran
(1977), page 361] because we allow for imputation model parameters to fall within
a chosen range in order to obtain narrower and more plausible ranges of estimates.
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Including implausible imputation model parameters broadens the range of infer-
ences unnecessarily and can introduce implausible values. Instead, our imputation
models are given appropriate weight, with imputation models that lead to extreme
scenarios receiving less weight than models that lead to less extreme alternatives.

Of course, in any applied setting it is impossible to know exactly how strong a
nonignorable assumption one should make and how much uncertainty one should
place on their models. We see the second of these dilemmas—incorporating ap-
propriate mechanism uncertainty—as deserving more attention. Attempting to cor-
rectly specify the missing data mechanism is difficult in most settings. Still, we see
our method as an improvement over methods that make no assumptions regard-
ing missing data mechanism uncertainty. In addition, our method provides easily
stated subjective notions regarding nonresponse so that they can be easily stated,
communicated and compared.

We see a number of possible variations of our approach. For example, in some
longitudinal data settings, it may be appropriate to use ignorable models early in
the study, and nonignorable models later in the study, or perhaps incorporate less
mechanism uncertainty early in the study and more later in the study.

Another possible approach is to use different imputation models for different
groups of participants. For example, in the WECare study, we might want to gen-
erate nonignorable imputations for dropouts and ignorable imputations for every-
one else. If the reasons for missingness are thought to differ by treatment group, it
may be appropriate to use different assumptions for each treatment group. If one
believes that nonresponse is due to both NMAR and MAR mechanisms [Barnes
et al. (2010)], one could draw the multiplier from a mixture of distributions cen-
tered around both MAR and NMAR assumptions.

When an analyst has prior beliefs about the nature of missingness at a given
time point given what occurred at previous time points, careful thought should
go into the choice of the imputation model and multiplier distribution. Uncer-
tainty regarding these beliefs can also be incorporated into the multiple models
framework. Alternatively, methods that explicitly model this temporal relationship
such as selection models and pattern-mixture models may be more appropriate
[Molenberghs et al. (2003), Thijs et al. (2002)].

Some other approaches for generating multiple-model multiple imputations that
can be incorporated into our framework include mixture model imputation [Rubin
(1987), van Buuren, Boshuizen and Knook (1999)], imputation based on a multi-
variate t-distribution with varying degrees of freedom [Liu (1995)] and pattern-
mixture model imputation [Demirtas and Schafer (2003), Thijs et al. (2002)].
Carpenter, Kenward and White (2007) propose an extension to their method where
the multiple reweighting parameters are drawn from a Normal distribution to incor-
porate uncertainty in the sensitivity parameter. Finally, a nonignorable approximate
Bayesian bootstrap [Rubin and Schenker (1991), Siddique and Belin (2008b)] in
conjunction with hot-deck imputation can be also be used. This approach has the
added benefit of generating plausible imputed values since imputations are based



1834 J. SIDDIQUE, O. HAREL AND C. M. CRESPI

on values observed elsewhere. An important consideration when developing meth-
ods for generating nonignorable imputations is that as the methods become more
complex, it becomes harder to communicate exactly how imputations were gener-
ated and the payoff for the additional complexity is not always clear.

APPENDIX: MOTIVATION FOR USING NESTED MULTIPLE IMPUTATION

In this section we provide motivation for using the nested multiple imputation
combining rules. As in Section 3, let Q be the quantity of interest, Ymis represent
the missing values and ψ the imputation model. The observed data posterior of Q

using our approach is

p(Q|Yobs) =
∫ ∫

p(Q|Yobs, Ymis,ψ)p(Ymis,ψ |Yobs) dYmis dψ

(A.1)
=

∫ ∫
p(Q|Yobs, Ymis,ψ)p(Ymis|Yobs,ψ)p(ψ)dYmis dψ.

Note the posterior distribution of Ymis, p(Ymis|ψ,Yobs), conditions on ψ so that
nested multiple imputations are not independent draws from the same posterior
distribution. When the posterior mean and variance are adequate summaries of the
posterior distribution, equation (A.1) can be effectively replaced by

E(Q|Yobs) = E(E(E(Q|Yobs, Ymis,ψ)|Yobs,ψ))(A.2)

and

Var(Q|Yobs) = E(Var(Q|Yobs, Ymis,ψ)) + Var(E(Q|Yobs, Ymis,ψ))

= E(E(Var(Q|Yobs, Ymis,ψ)|Yobs,ψ))(A.3)

+ E(Var(E(Q|Yobs, Ymis,ψ)|Yobs,ψ))(A.4)

+ Var(E(E(Q|Yobs, Ymis,ψ)|Yobs,ψ)).(A.5)

The three variance components in equations (A.3), (A.4) and (A.5) correspond to
the the overall average complete data variance, the within-model variance and the
between-model variance, respectively.

The mean in equation (A.2) is approximated using equation (3.5). And the vari-
ance components in equations (A.3), (A.4) and (A.5) are approximated using equa-
tions (3.7), (3.8) and (3.9) in Section 3.4.
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SUPPLEMENTARY MATERIAL

CombineNestedImputations: An R function for combining inferences
based on nested multiple imputations (DOI: 10.1214/12-AOAS555SUPP; .R).
This R function combines inferences based on nested multiply imputed data sets
and calculates rates of missing information.

http://dx.doi.org/10.1214/12-AOAS555SUPP
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