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The sampling frame in most social science surveys excludes members of
certain groups, known as hard-to-reach groups. These groups, or subpopula-
tions, may be difficult to access (the homeless, e.g.), camouflaged by stigma
(individuals with HIV/AIDS), or both (commercial sex workers). Even ba-
sic demographic information about these groups is typically unknown, espe-
cially in many developing nations. We present statistical models which lever-
age social network structure to estimate demographic characteristics of these
subpopulations using Aggregated relational data (ARD), or questions of the
form “How many X’s do you know?” Unlike other network-based techniques
for reaching these groups, ARD require no special sampling strategy and are
easily incorporated into standard surveys. ARD also do not require respon-
dents to reveal their own group membership. We propose a Bayesian hierar-
chical model for estimating the demographic characteristics of hard-to-reach
groups, or latent demographic profiles, using ARD. We propose two estima-
tion techniques. First, we propose a Markov-chain Monte Carlo algorithm
for existing data or cases where the full posterior distribution is of interest.
For cases when new data can be collected, we propose guidelines and, based
on these guidelines, propose a simple estimate motivated by a missing data
approach. Using data from McCarty et al. [Human Organization 60 (2001)
28–39], we estimate the age and gender profiles of six hard-to-reach groups,
such as individuals who have HIV, women who were raped, and homeless
persons. We also evaluate our simple estimates using simulation studies.

1. Introduction. Standard surveys often exclude members of the certain
groups, know as hard-to-reach groups. One reason these individuals are excluded
is difficulty accessing group members. Persons who are homeless are very unlikely
to be reached by a survey which uses random-digit dialing, for example. Other
individuals can be accessed using standard survey techniques, but are excluded
because of issues in reporting. Members of these groups are often reluctant to self-
identify because of social pressure or stigma [Shelley et al. (1995)]. Individuals
who are homosexual, for example, may not be comfortable revealing their sexual
preferences to an unfamiliar survey enumerator. A third group of individuals is
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difficult to reach because of issues with both access and reporting (commercial sex
workers, e.g.).

Even basic demographic information about these groups is typically unknown,
especially in developing nations. We propose a Bayesian hierarchical model for
estimating the demographic characteristics of hard-to-reach groups, or latent de-
mographic profiles. Specifically, these profiles reveal features such as the number
of males in a certain age range, say, 20–30 years old, who have HIV. Sociologi-
cally, this information yields insights into the characteristics of some of the most
socially isolated members for the population. Along with its contribution to our
understanding of contemporary social institutions, estimating demographic pro-
files for these groups also has public health benefits. The distribution of infected
individuals influences the size of the public health response. UNAIDS—the joint
United Nations program on HIV/AIDS, for example, currently sponsors several
projects using a variety of techniques to estimate the sizes of populations most
at-risk for HIV/AIDS [UNAIDS (2003)]. The proposed method would, along with
estimating the size of the population, provide latent demographic profiles. This in-
formation would not only help calibrate the scale of the response but also tailor
programs to the specific needs of population members.

One approach to estimating demographic information about hard-to-reach
groups is to reach members of these groups through their social network. Some
network-based approaches, such as Respondent-driven Sampling (RDS), recruit
respondents directly from other respondents’ networks [Heckathorn (1997, 2002)],
making the sampling mechanism similar to a stochastic process on the social net-
work [Goel and Salganik (2009)]. RDS affords researchers face-to-face contact
with members of hard-to-reach groups, facilitating exhaustive interviews and even
genetic or medical testing. The price for an entrée to these groups is high, however,
as RDS uses a specially designed link-tracing framework for sampling. Estimates
from RDS are also biased because of the network structure captured during se-
lection, with much statistical work surrounding RDS being intended to reweight
observations from RDS to have properties resembling a simple random sample.

Another approach is Aggregated relational data (ARD) or “How many X’s do
you know” questions [Killworth et al. (1998a)]. In these questions, “X” defines a
population of interest (e.g., How many people who are homeless do you know?).
A specific definition of “know” defines the network the respondent references
when answering the question. In contrast to RDS, ARD do not require reaching
members of the hard-to-reach groups directly. Instead, ARD access hard-to-reach
groups indirectly through the social networks of respondents on standard surveys.
ARD never affords direct access to members of hard-to-reach populations, making
the level of detail achievable though RDS impossible with ARD. Unlike RDS,
however, ARD require no special sampling techniques and are easily incorpo-
rated into standard surveys. ARD are, therefore, feasible for a broader range of
researchers across the social sciences, public health, and epidemiology to imple-
ment with significantly lower cost than RDS.
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In this paper, we propose a model for estimating latent demographic profiles
using ARD. The ease of implementation of ARD means that the models proposed
here will make the demographic characteristics of hard-to-reach groups available
to the multitude of researchers collecting data using standard survey methodology.
Specifically, we propose a Bayesian hierarchical model for estimating the demo-
graphic characteristics of hard-to-reach groups using ARD. When the full posterior
is of interest, we propose a Markov-chain Monte Carlo algorithm.

Given the ease of collecting ARD, we speculate that many researchers may be
interested in including ARD questions on future surveys. In this case, we show that
estimates for some network features very close to those achieved using MCMC can
be obtained using significantly simpler estimation techniques under certain survey
design conditions. Along with giving survey guidelines, we propose a simpler es-
timation technique based on the EM algorithm and regression. Using data from
McCarty et al. (2001), we estimate the age and gender profiles of six hard-to-reach
groups, such as individuals who have HIV, women who were raped, and homeless
persons.

In Section 2 we contextualize our proposed method by reviewing previous sta-
tistical methods for estimating network features using ARD. Then, we describe a
method for estimating demographic profiles from hard-to-reach populations. Sec-
tion 4 illustrates our method using data from McCarty et al. (2001). After demon-
strating the utility of our model, Section 5 describes how, under certain survey
design conditions, we can obtain similar estimates without the computational so-
phistication required by MCMC.

2. Previous research on ARD. ARD are commonly used to estimate the size
of populations that are difficult to count directly. The scale-up method, an early
method for ARD, uses ARD questions where the subpopulation size is known
(people named Michael, e.g.) to estimate degree in a straightforward manner. Sup-
pose that you know two persons named Nicole, and that at the time of the sur-
vey, there were 358,000 Nicoles out of 280 million Americans. Thus, your two
Nicoles represent a fraction (2/358,000) of all the Nicoles. Extrapolating to the
entire country yields an estimate of (2/358,000) × (280 million) = 1560 people
known by you. Then, the size of unknown subpopulations is estimated by solving
the given equation for the unknown subpopulation size with the estimated degree.
Using this method, ARD has been used extensively to estimate the size of popu-
lations such as those with HIV/AIDS, injection drug users, or the homeless [e.g.,
Killworth et al. (1990, 1998b)].

The scale-up method is easy to implement but does not account for network
structure. Consider, for example, asking a respondent how many people named
“Rose” she/he knows. If knowing someone named Rose were entirely random,
then each respondent would be equally likely to know each of the one-half million
Rose’s on the hypothetical list; that is, each respondent on each Rose is a Bernoulli
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trial with a fixed success probability. Network structure makes these types of inde-
pendence assumptions invalid. Since Rose is most common among older females
and people are more likely to know individuals of similar age and the same gen-
der, older female respondents are more likely to know a given Rose than older male
respondents. Assuming independent responses induces bias in the individuals’ re-
sponses. Since estimates of hard-to-count populations are then constructed using
responses to ARD, the resulting estimates are also biased [Bernard et al. (1991),
Killworth et al. (1998a)].

Zheng, Salganik and Gelman (2006) and McCormick, Salganik and Zheng
(2010) propose hierarchical models for ARD which partially address the mani-
festations of network structure present in ARD. McCormick, Salganik and Zheng
(2010) develop a model specifically for estimating respondents’ degree (network
size) and population degree distribution. Though this model accounts for the net-
work structure described in the above example, McCormick, Salganik and Zheng
(2010) do not address hard-to-reach groups. Zheng, Salganik and Gelman (2006)
present a model which estimates the sizes of hard-to-reach groups [see Figure 5 in
Zheng, Salganik and Gelman (2006)]. This paper presents a model which provides
richer information about hard-to-reach groups by estimating both subpopulation
sizes and the demographic breakdown of individuals within these groups.

3. Estimating latent profiles. In this section we describe a model for estimat-
ing latent demographic profiles for hard-to-reach groups. This method will provide
information about the demographic makeup of groups which are often difficult to
access using standard surveys, such as the proportion of young males who are
infected with HIV. The observations, yik , represent the number of individuals in
subpopulation k known by respondent i. In ARD, respondents are conceptualized
as egos, or senders of ties in the network. We divide the egos into groups based
on their demographic characteristics (males 20–40 years old, e.g.). The individ-
uals who comprise the counts for ARD are the alters, or recipients of links in
the network. The alters are also divided into groups, though the groups need not
be the same for both the ego and the alter groups. Under this setup members of
hard-to-reach groups are one type of alter. Thus, determining the alter groups de-
termines the demographic characteristics of the hard-to-reach groups which can
be estimated. We model the number of people that respondent i is connected to in
subpopulation k as

yik ∼ Neg-Binom(μike,ωk)
(3.1)

where μike = di

A∑
a=1

m(e, a)h(a, k)

and ωk represents the variation in the relative propensity of respondents within an
ego group to form ties with individuals in a particular subpopulation k. The degree
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of person i is di and e is the ego group that person i belongs to. The h(a, k) term is
the relative size of subpopulation group k within alter group a (e.g., 4% of males
between ages 21 and 40 are named Michael). The mixing coefficient, m(e, a), for
a respondent with degree di = ∑A

a=1 dia between ego-group e and alter-group a is

m(e, a) = E
(

dia

di

∣∣∣i in ego group e

)
,

where dia is the number of person i’s acquaintances in alter group a. That is,
m(e, a) represents the expected fraction of the ties of someone in ego-group e that
go to people in alter-group a. For any group e,

∑A
a=1 m(e, a) = 1.

The vector of mixing rates for an ego group, (m(e,1), . . . ,m(e,A))T , enters
the likelihood via an inner product with h(a, k); therefore, its components are
only identifiable if the A by K matrix of h(a, k) terms, HA×K , has rank A. This
condition requires K > A and that the columns of HA×K not be perfectly corre-
lated. When all elements of HA×K are fixed, then (3.1) is the LRNM model from
McCormick, Salganik and Zheng (2010). Specifically, McCormick, Salganik and
Zheng (2010) propose asking ARD questions about populations where the ele-
ments of h(a, k) are readily available, such as first names in the United States pop-
ulation. When h(a, k) is known, it is simply Nak/Na or the number of individuals
in alter group a who have characteristic k divided by the number of individuals in
alter group a.

In hard-to-reach groups, h(a, k) is rarely known. In many cases, even the num-
ber of individuals in a hard-to-reach group, Nk , is unknown. In the following sec-
tion we propose a method for estimating h(a, k) for hard-to-reach groups using
information from groups when h(a, k) is available. This method provides infor-
mation beyond the size of the subpopulation group, also estimating the number of
individuals in each of the a alter groups, Nak .

In summary, the number of people that person i knows in subpopulation k, given
that person i is in ego-group e, is based on person i’s degree (di), the proportion of
people in alter-group a that belong to subpopulation k, (h(a, k)), and the mixing
rate between people in group e and people in group a, (m(e, a)). Additionally, if
we observe random mixing, then m(e, a) = Na/N .

Similar to Zheng, Salganik and Gelman (2006), a negative binomial model is
assumed in (3.1) for each yik with an overdispersion, ωk , parameter measuring the
residual relative propensity of respondents to form ties with individuals in group k,
controlling for the variations that define the ego groups.

3.1. Latent demographic profiles. We propose a two-stage estimation pro-
cedure. We first use a multilevel model and Bayesian inference to estimate di ,
m(e, a), and ω′

k using the latent nonrandom mixing model described in Mc-
Cormick, Salganik and Zheng (2010) for the subpopulations where h(a, k) =
Nak/Na is known. Second, conditional on this information, we estimate the la-
tent profiles for the remaining subpopulations.
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For the estimation of the McCormick, Salganik and Zheng (2010) model com-
ponents, we assume that log(di) follows a normal distribution with mean μd and
standard deviation σd . Zheng, Salganik and Gelman (2006) postulate that this prior
should be reasonable based on previous work, specifically McCarty et al. (2001),
and found that the sampler described using this prior mixed well and satisfied pos-
terior predictive checks. McCormick, Salganik and Zheng (2010) also conducted
simulation experiments which demonstrated that the shape of the posterior was
not an artifact of this prior assumption. We estimate a value of m(e, a) for all E

ego groups and all A alter groups. For ego group, e, and alter group, a, we as-
sume that m(e, a) has a normal prior distribution with mean μm(e,a) and standard
deviation σm(e,a). For ω′

k , we use independent uniform(0,1) priors on the inverse
scale, p(1/ω′

k) ∝ 1. Since ω′
k is constrained to (1,∞), the inverse falls on (0,1).

The Jacobian for the transformation is ω′−2
k . For the latent profiles, define 1h(a,k)

as the indicator of the latent profiles. The matrix h(a, k) is defined as Nak/Na

when population information is available (1h(a,k) = 0) and entries to be estimated
(1h(a,k) = 1) are given normal priors on the log scale with mean μh and standard
deviation σh. That is, we model each log(h(a, k)) ∼ N(μh,σ

2
h ) with a common

mean and variance for all entries in the latent profile matrix. Since many of the
profiles are close to zero, we found that the additional structure from a common
prior across all entries improved convergence without being too rigid to capture
fluctuations in latent intensity. Finally, we give noninformative uniform priors to
the hyperparameters μd , μm(e,a), μh, σd and σm(e,a), σh. The joint posterior den-
sity can then be expressed as

p
(
d,m(e, a),ω′,μd,μm(e,a), σd, σm(e,a)|y)

∝
K∏

k=1

N∏
i=1

(
yik + ξik − 1

ξik − 1

)(
1

ω′
k

)ξik
(

ω′
k − 1

ω′
k

)yik

×
(

1

ωk

)2 N∏
i=1

N
(
log(di)|μd,σd

)

×
E∏

e=1

N
(
m(e, a)|μm(e,a), σm(e,a)

)

× 1h(a,k)

K∏
k=1

A∏
a=1

N
(
h(a, k)|μh(a,k), σh(a,k)

)
,

where ξik = dif (
∑A

a=1 m(e, a)h(a, k))/(ω′
k − 1).

Adapting Zheng, Salganik and Gelman (2006) and McCormick, Salganik and
Zheng (2010), we use a Gibbs–Metropolis algorithm in each iteration v:

(1) For each i, update di using a Metropolis step with jumping distribution
log(d∗

i ) ∼ N(d
(v−1)
i , (jumping scale of di )2).
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(2) For each e, update the vector m(e, ·) using a Metropolis step. De-
fine the proposed value using a random direction and jumping rate. Each of
the A elements of m(e, ·) has a marginal jumping distribution m(e, a)∗ ∼
N(m(e, a)(v−1), (jumping scale of m(e, ·))2). Then, rescale so that the row sum
is one.

(3) Update μd ∼ N(μ̂d, σ 2
d /n), where μ̂d = 1

n
�n

i=1di .
(4) Update σ 2

d ∼ Inv-χ2(n − 1, σ̂ 2
d ), where σ̂ 2

d = 1
n

× �n
i=1(di − μd)2.

(5) Update μm(e,a) ∼ N(μ̂m(e,a), σ
2
m(e,a)/A), for each e where μ̂m(e,a) =

1
A
�A

a=1m(e, a).
(6) Update σ 2

m(e,a) ∼ Inv-χ2(A − 1, σ̂ 2
m(e,a)), for each e where σ̂ 2

m(e,a) = 1
A

×
�A

a=1(m(e, a) − μm(e,a))
2.

(7) For each k with a known profile, update ω′
k using a Metropolis step with

jumping distribution ω′∗
k ∼ N(ω

′(v−1)
k , (jumping scale of ω′

k)2
).

We now proceed to estimate the H latent profiles:
(8) For each element of h(a, k) where 1h(a,k) = 1, update h(a, k) using a

Metropolis step with jumping distribution h(a, k)∗ ∼ N(h(a, k)(v−1), (jumping
scale of h(a, k))2).

(9) Update μh ∼ N(μ̂h, σ
2
h/(A × H)) for each k where

μ̂h = 1

(A × H)

K∑
k=1

A∑
a=1

1h(a,k)h(a, k).

(10) Update σ 2
h ∼ Inv-χ2((A × H) − 1, σ̂ 2

h ) where

σ̂ 2
h = 1

A × H

K∑
k=1

A∑
a=1

1h(a,k)

(
h(a, k) − μh

)2
.

(11) For each k where h(a, k) is estimated, update ω′
k using a Metropolis step

with jumping distribution ω′∗
k ∼ N(ω

′(v−1)
k , (jumping scale of ω′

k)2).

Having h(a, k) for some subpopulations is critical to estimating latent structure
through latent profiles. Often, h(a, k) can be obtained from publicly available
sources (Census Bureau, Social Security Administration, etc.) for subpopulations
such as first names. The number of populations with known h(a, k) impacts the
precision of the estimates for subpopulations with unknown profiles. Adding an-
other known subpopulation increases the hypothetical sample size of each ques-
tion, in essence asking each respondent if they know more alters. McCormick,
Salganik and Zheng (2010) show that the total size of the subpopulations asked
is related to the variance of estimated degree. Since known subpopulations are
used to estimate degree, adding another subpopulation impacts variability in de-
gree estimation in the first stage of our procedure, which propagates to estimates
of h(a, k). The alter groups where information is available for known h(a, k) also
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limit the type of latent structure that can be estimated. McCormick, Salganik and
Zheng (2010) create alter groups based on age and gender but note that separating
alters based on other factors (such as race) would provide valuable information.
The Census Bureau collects the information required to conduct such an analysis;
however, McCormick, Salganik and Zheng (2010) report that their efforts to obtain
the data were ultimately unsuccessful.

The choice of populations with known h(a, k) is also important in ensuring that
the mixing matrix is estimated appropriately. First, the subpopulations with known
sizes need to be sufficiently heterogeneous with respect to their interactions with
the ego groups to adequately estimate the mixing matrix. If, for example, our mix-
ing matrix consists of only gender and we chose to use first names for subpop-
ulations with known h(a, k), then we should use a set of both male and female
names. If we only asked male names, then we could estimate the propensity for
males/females to interact with males but could not estimate the propensity of ei-
ther gender to interact with females. Second, we make an assumption about the
representativeness of respondents’ networks rather than of the respondents them-
selves. For our method it would not be an issue, for example, if we recruit a smaller
fraction of men into the survey than the proportion of men in the population. In-
stead, we would encounter bias if the networks of the men we selected were not
representative of male networks in the population. This could happen, for exam-
ple, if we recruit only men who know a disproportionately large number of women.
This issue could also be exacerbated by differential nonresponse. Consider, for ex-
ample, the case where individuals who know members of the hard-to-reach groups
are less likely to answer questions than the general population. We continue this
discussion in Section 4 where we postulate that errors in the estimates obtained in
our data could be from bias in the estimates of the mixing matrix.

Finally, certain types of bias which are consistently associated with ARD should
also be considered when selecting the subpopulations with known h(a, k). We
assume, for example, that the responses are free from transmission error, when
a respondent knows a member of a subpopulation but is unaware of the alter’s
membership. McCormick, Salganik and Zheng (2010) suggest using first names
since they represent the minimum conceivable possibility of transmission error.
We also assume that respondents accurately recall the number of individuals they
know in a given subpopulation. In reality, underestimation is common in large
groups [see McCormick and Zheng (2007) for a detailed discussion].

4. Results for hard-to-count populations. We use data from a telephone sur-
vey by McCarty et al. (2001) with 1375 respondents and twelve names with known
demographic profiles. These data have been analyzed in several previous studies
and are typical ARD which are becoming increasingly common. The age and gen-
der profiles of the names are available from the Social Security Administration. On
this survey, “know” is defined “that you know them and they know you by sight
or by name, that you could contact them, that they live within the United States,
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FIG. 1. Estimates of latent profiles for six hard-to-reach populations. The lighter text represents
males and the darker text females. Letters correspond to posterior medians, while lines represent
the width of the middle half of the posterior distribution. The estimated profiles are consistent with
contemporary understanding of the profiles of these groups.

and that there has been some contact (either in person, by telephone, or mail) in
the past 2 years.” We then estimate latent profiles for seven subpopulations. Six
are groups often considered hard-to-count while the seventh uses ARD to learn
about population social structure. Figure 1 displays the latent profiles for six popu-
lations which are often described as hard-to-count. For both individuals with HIV
and those with AIDS we estimate the highest concentration to be among youth and
young adult respondents. We estimate a higher concentration of young adult males
than females for both HIV and AIDS with the concentration decreasing with age.
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Subpopulations such as victims of homicide or persons who have committed
suicide portray a key advantage of using ARD for measuring these populations.
Our model estimates characteristics of these populations without requiring mem-
bers of these populations to be reached directly through our survey. We compared
our estimates of the number of individuals murdered in the past year with the
1999 Uniform Crime Reports (UCR) [Federal Bureau of Investigation (1999)] and
figures from the Centers for Disease Control National Center for Injury Preven-
tion and Control (CDC) [Centers for Disease Control (2011)]. A technical dis-
tinction between the two sources for external validation is that the CDC figures
measure homicides (killing of another person) while UCR tally murders (unlawful
killing of another person). So-called justifiable homicides (police officers using
deadly force, e.g.) are therefore not counted in the UCR figures. This distinction
accounts for part of the discrepancy between the two data sources (the FBI only
keeps records on firearms-related justifiable homicides), though the exact amount
could not be determined from available data. Also, the McCarty et al. (2001) sur-
vey took place partially in January of 1999 and partially in June, meaning that
this report does not capture precisely the period respondents were asked to recall.
Since homicide statistics do not typically change drastically on a national scale
over the course of a year, we expect, nonetheless, that these figures are reasonable
for comparison. In all six age-gender categories, the UCR and CDC estimates are
within the middle 50% of the posterior distribution of our estimates [computed by
multiplying h(a, k) by the number of individuals in the given age-gender group].
For males 20–40, for example, the UCR counts approximately 5300 murders while
that CDC counts just under 7300 homicides. Our method estimates the first quar-
tile of the posterior distribution as roughly 300 murders and the third quartile as
around 7300. Similarly, for females between 40 and 60 the middle half of our pos-
terior lies between around 100 and 2300 while the UCR records around 700 and
the CDC counts about 1900. Overall our estimates underrepresent the disparity in
the proportion of male and female homicide victims, which we believe is due to
the individuals who are most likely associated with murdered individuals being
underrepresented in the survey frame. McCormick et al. (2009) found a similar
issue in an internet survey.

Our estimates for women who were raped in the past year reveal a common issue
with ARD questions. Though the questions asks respondents to recall only women
who were raped, we hypothesize respondents will include men who are connected
to a woman who was raped, even if the woman does not meet the definition of a
tie. Respondents may also be likely to over-recall such traumatic events. Similarly,
our estimates for female suicides are consistently higher than for males (though
the difference is well within the uncertainty of measurements). Males are actually
nearly four times as likely to commit suicide as females [Centers for Disease Con-
trol and Prevention (2011)]. This discrepancy might be because of the isolation
of many suicide victims before their deaths, making them difficult to reach with
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FIG. 2. Estimates of latent profiles for individuals starting their own business. Letters correspond
to posterior medians, while lines represent the width of the middle half of the posterior distribution.
The lighter text represents males and the darker text females. Overall estimates are higher for males
than for females, with the largest discrepancy for young adults.

ARD. Our estimates are especially consistent with the case of males being more
isolated than females before committing suicide.

Recent work has used ARD for estimating population-level social phenomenon
outside the context of hard-to-reach groups [DiPrete et al. (2011)]. To demonstrate
the applicability of latent profile estimation in this context, Figure 2 shows the
latent profile of individuals who opened a small business in the past year. The
trend across ages in the profiles for males and females is similar, with most new
business openers being younger adults [Office of Advocacy, U.S. Small Business
Administration (1997)]. The fraction of males opening a business is consistently
higher, however. This discrepancy is especially pronounced among young adults,
the group with highest overall propensity.

Overall, our estimates of latent profiles are similar to estimates from other
sources for the U.S. population. The similarity between previous knowledge about
the profiles of these populations and our estimates indicates that ARD contain a
significant amount of information about the latent structure of these subpopula-
tions. The estimates presented in this section were obtained using the MCMC al-
gorithm described in Section 3. In the following section we present an alternative
regression-based estimation strategy which is significantly less time-consuming
to implement and provides comparable performance when certain conditions are
satisfied.

5. Simple calculations and design recommendations. Given data from an
existing survey, we have shown that our method will recover features of unob-
served subpopulation profiles. We propose an alternative strategy to recover this
information under certain conditions without using MCMC. Our simple method
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combines estimation and survey-design strategy, making it well-suited for re-
searchers who intend to collect ARD. McCormick, Salganik and Zheng (2010)
proposed the scaled-down condition for selecting subpopulations to reduce bias in
simple estimates of respondent degree. To estimate latent profiles, we need accu-
rate degree and mixing matrix estimates. To accurately estimate the mixing matrix,
we introduce a missing data perspective for ARD and propose an estimator based
on the EM algorithm.

In Section 5.1 we review degree estimation and the scaled-down condition.
Next, Section 5.2 describes a simple ratio estimator for the mixing matrix mo-
tivated by the EM algorithm. We then describe a regression based estimator for
latent profiles in Section 5.3 and demonstrate its effectiveness through simulation
studies in Section 5.4.

5.1. Estimating degree. In this section we review work on estimating respon-
dent degree by McCormick, Salganik and Zheng (2010). We use these estimates
in subsequent sections to estimate mixing rates and latent profiles.

McCormick, Salganik and Zheng (2010) develop a degree estimator based on
the scale-up method of Killworth et al. (1998b). This approach uses respondents’
answers to ARD questions and recalibrates based on the proportion of the total
population comprised of the populations used on the survey. For example, if a
respondent reports knowing 3 women who gave birth, this represents about 1-
millionth of all women who gave birth within the last year. This information then
could be used to estimate that the respondent knows about 1-millionth of all Amer-
icans, (3/3.6 million) · (300 million) ≈ 250 people.

The precision of this estimate can be increased by averaging responses of many
groups, yielding the scale-up estimator [Killworth et al. (1998b)],

d̂i =
∑K

k=1 yik∑K
k=1 Nk

· N,

where yik is the number of people that person i knows in subpopulation k, Nk is
the size of subpopulation k, and N is the size of the population.

The scale-up estimator is easy to compute, yet can induce substantial bias if
subpopulations aren’t selected correctly. The scale-up estimator assumes random
mixing across the K populations. That is, that the propensity for an individual to
know members of a subpopulation depends only on the size of the subpopulation.
In practice, this is rarely the case, as individuals tend to know more alters who are
demographically similar to themselves.

McCormick, Salganik and Zheng (2010) derived a scaled-down condition for
selecting names so that the collection of individuals with first names that are used
to collect ARD constitute a balanced and representative sample of the population.
In other words, the combined demographic profiles of the used first names match
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those of the general population. Specifically,
∑K

k=1 Nak

Na

=
∑K

k=1 Nk

N
∀a.

Using the scaled-down condition, McCormick, Salganik and Zheng (2010) demon-
strate that the scale-up estimator produces reduced-bias estimates of degree. In
deriving the subsequent latent profile estimates, we assume we have selected sub-
populations which satisfy the scaled-down condition.

5.2. A simple ratio estimator of individual mixing rates. If for a given respon-
dent, i, we could take all the members of the social network with which i has a link
and place them in a room, we would compute the mixing rate between the ego and
a given alter group, a = (1, . . . ,A), by dividing the room in A mutually exclusive
sections and asking alters to stand in their respective group. The estimated mixing
rate would then be the number of people standing in a given group divided by the
number of people in the room.

We could also perform a similar calculation by placing a simple random sample
of size n from a population of size N in a room. Then, after dividing the alters into
mutually exclusive groups, we could count yia or the number of alters respondent i

knows in the sample who are in each of the a alter groups. Since we have a simple
random sample, we can extrapolate back to the population and estimate the degree
of the respondent, d̂i , and within alter group degree, d̂ia , as

d̂i =
A∑

a=1

yia/(n/N) and d̂ia = yia/(na/Na).

Given these two quantities, we can estimate the mixing rate between the respon-
dent and an alter group by taking the ratio of alters known in the sample who are
in alter group a over the total number known in the sample. This computation is
valid because we assumed a simple random sample, thus that (in expectation) the
demographic distribution of alters in our sample matches that of the population.

In ARD, the distribution of the hypothetical alters we sample depends on the
subpopulations we select. If we only ask respondents subpopulations which con-
sist of young males, for example, then our hypothetical room from the previous
example would contain only the respondent’s young, male alters. Estimating the
rate of mixing between the respondent and older females would not be possible in
this situation. Viewed in this light, ARD is a form of cluster sampling where the
subpopulations are the clusters and respondents report the presence/absence of a
tie between all alters in the cluster. Since the clusters are no longer representative
of the population, our estimates need to be adjusted for the demographic profiles
of the clusters [Lohr (1999)]. Specifically, if we observe yika for subpopulations
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k = (1, . . . ,K) and alter groups a = (1, . . . ,A), then our estimates of d̂i and d̂ia

become

d̂i =
K∑

k=1

yik

/(
K∑

k=1

Nk/N

)
and d̂ia =

K∑
k=1

yika

/(
K∑

k=1

Nak/Na

)
,

where Nk is the size of subpopulation k and Nak is the number of members of
subpopulation k in alter group a. To estimate the mixing rate, we could again di-
vide the estimated number known in alter group a by the total estimated number
known. Under the scaled-down condition the denominators in the above expres-
sions cancel and the mixing estimate is the number known in the subpopulations
that are in alter group a over the total number known in all K subpopulations.

In the examples above, we have assumed the alters are observed so that yika

can be computed easily. This is not the case in ARD, however, since we observe
only the aggregate number of ties and not the specific demographic makeup of
the recipients. Thus, ARD are a cluster sample where the specific ties between the
respondent and members of the alter group are missing.

If we ignore the residual variation in propensity to form ties with group k indi-
viduals due to noise [see (3.1) in Section 3], we may assume that the number of
members of subpopulation k in alter group a the respondent knows, yika , follows
a Poisson distribution. Under this assumption, we can estimate mia by imputing
yika as part of an EM algorithm [Dempster, Laird and Rubin (1977)]. Specifically,
for each individual define y(com)

ik = (yika, . . . , yi1A)T as the complete data vector
for each alter group. The complete data log-likelihood for individual i’s vector of
mixing rates, mi = (mi1, . . . ,miA)T , is �(mi;y(com)

i1 , . . . ,y(com)
iK ), which has the

form

�
(
mi;y(com)

i1 , . . . ,y(com)
iK

)
(5.1)

=
K∑

k=1

A∑
a=1

log
(

Poisson
(
yika;λika = dimia

Nak

Na

))
.

Using (5.1), we derive the following two updating steps for the EM:

y
(t)
iak = yik

(
m

(t−1)
ia (Nak/Na)∑A

a=1 m
(t−1)
ia (Nak/Na)

)
,

m
(t)
ia =

∑K
k=1 y

(t−1)
ika∑K

k=1 yik

.

If one sets m
(0)
ia = Na/N , which corresponds to random mixing in the population,

and runs one EM update, this would result in the following simple ratio estimator
of the mixing rate for individual i:

m̂ia =
∑K

k−1 yik(Nak/Nk)∑K
k−1 yik

.(5.2)
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In our simulation studies, this simple estimator produces estimates very close to
the converged EM estimates. Additionally, it is easy to show that the simple ratio
estimate, m̂ia , is unbiased if Nak/Na 	= 0 for only one alter group a and that for
any a there exists a subpopulation, k, such that Nak = Na . We refer to this con-
dition as complete separability. Therefore, (5.2) constitutes a simple estimate for
individual mixing rate and can be used to estimate average mixing behaviors of
any ego group.

5.3. Regression-based estimates for latent profiles. The estimates for respon-
dent degree and mixing estimates rely on latent profile information from some
populations. Using these estimates, we now develop a regression-based estimator
for unobserved latent profiles. For each respondent and each unknown subpopula-
tion we now have

yik =
A∑

a=1

d̂im̂iah(a, k).(5.3)

If we denote Xk as the n × A matrix with elements d̂im̂ia and the vector h(·, k) =−→
βk , then (5.3) can be regarded as a linear regression equation, −→y k = Xk

−→
βk , with

the constraint that coefficients,
−→
βk , are restricted to be nonnegative. Lawson and

Hanson (1974) propose an algorithm for computing these coefficients. Since the
m̂·k sum to one across alter groups, the columns of Xk are collinear. This could
produce instability in solving the quadratic programming problem associated with
finding our estimated latent profiles. In practice, we have found our estimates per-
form well despite this feature.

5.4. Simulation experiments. We present simulation experiments to evaluate
our regression-based estimates under four strategies for selecting observed pro-
files. First, we created profiles which are completely separable. Second, we con-
structed profiles for the names satisfying the scaled-down condition presented
in McCormick, Salganik and Zheng (2010) using data from the Social Secu-
rity Administration. These names provide insights into the potential accuracy of
our method using actual profiles. As a third case, we include the names from
McCormick, Salganik and Zheng (2010) which violate the scaled-downed con-
dition and are almost exclusively popular among older respondents. For the fourth
set of names, recall from Section 3 that the mixing matrix estimates are identifiable
only if the matrix of known profiles, HA×K, has rank A. To demonstrate a viola-
tion of this condition, we selected a set of names with uniform popularity across
the demographic groups, or nearly perfect collinearity. There is some correlation
in the scaled-down names since several names have similar profiles. The degree of
correlation is substantially less than in the flat profiles, however.

In each simulation, we generated 500 respondents using the Latent Nonrandom
Mixing Model in (3.1) [see also McCormick, Salganik and Zheng (2010)] with
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FIG. 3. Total mean squared error across all elements of the mixing matrix and latent profile matrix.
The vertical axis is the sum of the errors across all eight alter groups. We generated 500 respondents
using the four profile structures, then evaluated our ability to recover the mixing matrix estimated
in McCormick, Salganik and Zheng (2010) and the known profiles of six additional names. We re-
peated the simulation 1000 times. In both cases the ideal profile has the lowest error, followed by the
scaled-down names suggested by McCormick, Salganik and Zheng (2010).

each of the four profile strategies. Mixing matrix estimates were calculated using
the simple estimate derived from the first step of the EM algorithm in Section 5.2.
We compare our mixing matrix estimates to the estimated mixing matrix from
McCormick, Salganik and Zheng (2010), which we use to generate the simulated
data. We evaluate the latent profiles using six names with profiles known from
the Social Security Administration. We repeated the entire process 1000 times.
Figure 3 presents boxplots of the squared error in mixing matrix and latent profile
estimates. In both cases, the ideal, completely separable, profiles have the lowest
error. The scaled-down names also perform well, indicating that reasonable esti-
mates are possible even when complete separability is not. The flat profiles per-
form only slightly worse than the scaled-down names for estimating mixing but
significantly worse when estimating latent profiles. The names which violate the
scaled-down condition produce poor estimates of both quantities.

6. Conclusion. We present a method for estimating latent profiles in hard-to-
reach groups using standard surveys. Our method has two stages. First, we use
known profiles for some populations to estimate respondent degree and the rate
of mixing between survey respondents and groups in the population. Next, condi-
tional on these estimates, we infer latent structure in populations where profiles are
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unknown. For existing data, we present a Bayesian hierarchical model and MCMC
algorithm. We also propose viewing ARD in the context of missing data and pro-
vide a simple ratio estimate of mixing rates based on the EM algorithm. We then
describe a regression-based estimate for latent profiles.

Despite its utility, there are several known issues with ARD. Using ARD in
hard-to-reach populations presents special challenges which intersect with these
known issues. Many events in this context are especially traumatic, leaving a more
persistent signal in the respondent’s memory than a typical tie. This phenomenon
causes respondents to over-count their ties with a specific subpopulation. In Sec-
tion 4 we contend that our overestimation of the proportion of men who are women
who were raped in the past year is due to respondents overestimating by counting
males who are associated with females who have been raped, for example. This
issue is in some sense the opposite of that faced by early ARD surveys for degree
estimation when the concern was respondents under-recalling acquaintances from
large populations [Killworth et al. (2003)]. Hard-to-reach groups are also often
more open to interpretation than standard subpopulations. McCarty et al. (2001)
give the example of people opening their own business and the homeless, for ex-
ample. While there is some ambiguity in whether or not an individual has opened a
new business, there is likely much greater variability between respondents in their
classification of an individual as homeless. Hard-to-reach groups are also often as-
sociated with social stigma. This stigma increases the likelihood that a respondent
will know a member of a subpopulation but not be aware that the alter belongs to
the subpopulation, known as transmission errors. Recent work by Salganik et al.
(2011) offers new insights into the magnitude of transmission errors in the con-
text of HIV/AIDS, though the nature of the error likely depends heavily on the
specific group of interests (respondents’ decisions to reveal HIV status are likely
quite different than their decision to discuss diabetes, e.g.).

This method also makes an assumption that the networks of the respondents are
representative of networks of similar individuals in the population. In Section 4,
in our discussion of the ratio of males to females who commit suicide, another
possible explanation is that our survey does not include enough individuals who
are likely to know people who commit suicide. This bias could be present in the
networks of respondents even if the sample is, within respondents, observably rep-
resentative. This point demonstrates the potential for future work in modeling bias
that comes not from the respondents selected, but from the features of the net-
works of these respondents. This type of sampling bias is related to previous work
by Lavallée (2007) and could prove a promising area for future work.

Our method demonstrates that ARD capture aspects of latent social structure
through indirect observations of the social network. To do this, however, we require
known profiles for some subpopulations. This requirement limits the estimable la-
tent profiles to features which are known for some subpopulation. In our examples
we use first names and estimate age and gender profiles. We may, for example,
be interested in the race/ethnic profiles of the hard-to-reach populations. We are
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unable to estimate this from our current data because of the issues with obtaining
demographic profiles for first names mentioned in Section 4. An alternative ap-
proach, and direction for potential future work, would be estimating a geometric,
multidimensional latent social space based on features of the actors and the so-
cial network [Hoff (2005), Hoff, Raftery and Handcock (2002)]. Such a technique
would provide a sense of the broad topography of the network (similar to Bayesian
multi-dimensional scaling) and elucidate similarities between network structure in
hard-to-reach groups.

An additional direction for future work involves combining information from
ARD with other forms of data collection to better understand hard-to-reach groups.
As mentioned in Section 1, RDS provides detailed information about a biased sam-
ple of members of the hard-to-reach group. This detailed information is in con-
trast to the indirect, general information obtained through ARD. The missing-data
framework presented in Section 5 provides a first-step toward a general framework
for combining information across various network-based data collection strategies.
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