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ORDER SELECTION IN NONLINEAR TIME SERIES MODELS
WITH APPLICATION TO THE STUDY OF CELL MEMORY1

BY YING HUNG

Rutgers University

Cell adhesion experiments are biomechanical experiments studying the
binding of a cell to another cell at the level of single molecules. Such a study
plays an important role in tumor metastasis in cancer study. Motivated by an-
alyzing a repeated cell adhesion experiment, a new class of nonlinear time
series models with an order selection procedure is developed in this paper.
Due to the nonlinearity, there are two types of overfitting. Therefore, a dou-
ble penalized approach is introduced for order selection. To implement this
approach, a global optimization algorithm using mixed integer programming
is discussed. The procedure is shown to be asymptotically consistent in es-
timating both the order and parameters of the proposed model. Simulations
show that the new order selection approach outperforms standard methods.
The finite-sample performance of the estimator is also examined via a simu-
lation study. The application of the proposed methodology to a T-cell exper-
iment provides a better understanding of the kinetics and mechanics of cell
adhesion, including quantifying the memory effect on a repeated unbinding
force experiment and identifying the order of the memory.

1. Introduction. Cell adhesion plays an important role in many physiological
and pathological processes, especially in tumor metastasis in cancer study. Cell ad-
hesion experiments refer to biomechanical experiments that study the binding of
cells at the molecular level. The binding is mediated by specific interaction be-
tween cell adhesion proteins, called receptors, and the molecules that they bind
to, called ligands. The resulting bond is called the receptor-ligand bond. There are
various types of measurements in the cell adhesion experiments to study different
aspects of the binding, such as the binding frequency and bond lifetime measure-
ments [Zarnitsyna et al. (2007), Huang et al. (2010)]. This research is inspired by
analyzing a specific type of cell adhesion experiment known as the unbinding force
assay [Marshall et al. (2003, 2005)].

Receptor-ligand bonds that mediate cell adhesion are often subjected to forces
that regulate their dissociation; therefore, an important issue is to study the un-
binding force of a receptor-ligand bond. To address this issue, the unbinding force
assay is developed by using a high-tech version of the micropipette known as the
biomembrane force probe [Chen et al. (2008)]. A biomembrane force probe is
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FIG. 1. Illustration of the biomembrane force probe.

illustrated in Figure 1 where a probe bead (left) is attached to the apex of the
micropipette-aspirated red blood cell to allow tracking of the deflection of another
cell (right). Figure 2 illustrates one cycle of the unbinding force assay. It includes
an approaching stage where the probe bead and the T-cell are brought into contact.
In the next stage, the touch of the two subjects is controlled with a given contact
time so that a receptor-ligand bond might occur. In the last stage, the probe bead
and the T-cell are retracted at a constant rate until they go back to the unbinding
position that indicates the bond failure. The y-axis in Figure 2 represents the ap-
plied force in the foregoing process. The unbinding force is measured by the force
difference observed at the point of bond failure.

Two interesting questions are raised in analyzing the repeated unbinding force
tests where the unbinding force assay (i.e., approaching, contact and retraction) is
performed repeatedly for each pair of experimental units, including a T-cell and
a probe bead attached to a red blood cell. Such repeated assays are conducted for
different pairs of units as replicates. The objective of the experiments is to study
the dependence of the repeated unbinding force measurements because it was dis-
covered recently that cells appear to have the ability to “remember” the previous

FIG. 2. One cycle of the unbinding force experiment.
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adhesion events. Zarnitsyna et al. (2007), Hung et al. (2008) and Huang et al.
(2010) demonstrated that in some biological systems the occurrence of binding in
the immediate past assay could either increase or decrease the likelihood for the
next assay to result in a binding. Such memory effects can affect not only through
the binding frequency but also the unbinding force. Hence, the first question is how
to model the memory effect on the repeated unbinding force assays. Apart from
this, different receptor-ligand bonds can have a different order of the memory due
to their string strength difference. Specifying the order of the memory for receptor-
ligand bonds is important because it can be used to classify the bonds into groups
for further biological study. Therefore, the other question is how to identify the
order of the memory.

To answer the foregoing questions, a naive approach is to study the memory
on the unbinding force by a time series model. However, the standard time se-
ries models cannot be applied directly. The reason is as follows. Due to the in-
herent stochastic nature of single molecular interaction, any particular assay has
two random outcomes, either a receptor-ligand bond occurs or not. An unbinding
force is representative and the resulting memory effects are considered only if the
corresponding assay is associated with the occurrence of a bond. Theoretically,
a distribution function might be used to capture the chance of a bond formation
with respect to unbinding force. However, the related studies are mainly devel-
oped based on the independent assumption on the repeated adhesion experiments
[Marshall et al. (2005)]. Being the first attempt to study the memory, we assume
that the occurrence of a bond is determined by having the unbinding force above
some threshold, which can be interpreted as the average unbinding force for bond
dissociation. That is, if a bond occurs during the contact, the unbinding force would
be larger than some threshold. The threshold, however, is unknown and has to be
estimated from the data because of the detection limits and measurement errors.
For example, Figure 3 is an example of the experiments with 20 repeated unbind-
ing force assays generated from Hung et al. (2008). For each cycle of the assay,
unbinding forces can be easily measured as described in Figure 2. A threshold has

FIG. 3. The measurements from the repeated unbinding force assays.
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to be determined so that time series models can be applied to those forces that
are above the threshold. Failing to include such a threshold term can lead to a
systematic bias in the successive adhesion assays. Because of the unknown thresh-
old, conventional time series modeling techniques cannot be used. Furthermore, to
identify the order of the memory, a new order selection approach that takes into
account the foregoing features is called for.

A new time series model is proposed in this article to study the memory effect
on the repeated unbinding force assays. It is a multiple nonlinear time series model
with an unknown threshold parameter. Even though there are numerous studies on
nonlinear time series modeling [Tong and Lim (1980), Tsay (1989), Fan and Yao
(2003)], most of them are developed based on a single series of observations and
focus on the situation where nonlinearity is determined by a particular variable. For
example, the threshold autoregressive model [Tong (1983, 2007)] is constructed
for a single series of observations with a delay parameter indicating the variable
where the threshold is applied. The proposed nonlinear model is different from
the existing nonlinear time series models in that there is no specific delay param-
eter involved. Instead, the threshold is applied to all the historical observations.
Moreover, there is a hierarchical structure imposed upon the nonlinear model that
makes the model more interpretable. Besides, this model handles multiple time se-
ries by incorporating random effects to take into account the heterogeneity among
experimental units.

Identifying the order of the memory is equivalent to specifying the correct order
of the proposed time series model. This is different from standard order selection
problems because there are two types of overfitting associated with the proposed
nonlinear time series model. Thus, a double penalized approach is developed and
a global optimization algorithm using mixed integer programming (MIP) is intro-
duced to implement this approach. The order selection consistency and asymptotic
properties for the proposed method are discussed. The discontinuity of the condi-
tional mean function of the new model results in nonstandard asymptotics for the
estimators.

Although the methodology is motivated by the analysis of biomechanical ex-
periments, it can be applied to a wide variety of studies, such as longitudinal data
analysis [Diggle et al. (2002)], econometrics and influenza modeling. For exam-
ple, in influenza modeling [Hyman and LaForce (2003)], the proposed method can
be applied to model the spread of a disease, such as SARS. Because an epidemic
threshold is used to indicate the take off and die out of an epidemic, the spread of
the disease is of interest only when the threshold is reached, such as the infected
population exceeding some amount. These thresholds are often unknown and es-
timated from the data. Therefore, the proposed model can be desirable for these
studies.

The remainder of the paper is organized as follows. In Section 2 the nonlinear
time series model is introduced. The estimation and order selection procedures
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with a global optimization algorithm are introduced. In Section 3 the order selec-
tion consistency and some asymptotic properties of this model are discussed. The
performance of the new model and the order selection procedure is demonstrated
via simulations in Section 4. The proposed model is applied to an unbinding force
assay in Section 5. Summary and concluding remarks are given in Section 6.

2. New class of nonlinear time series models.

2.1. Modeling. A new multiple nonlinear time series model is introduced in
this section. Assume yit represents the unbinding force observed from the ith sub-
ject at time t , where i = 1, . . . , n, t = 1, . . . ,m and the sample size N = mn. De-
fine τ as a threshold parameter. Having the unbinding force above τ indicates
that the corresponding contact results in a receptor-ligand bond and no bond oth-
erwise. A random effect α = (α1, . . . , αn) is incorporated to take into account a
variety of situations with the multiple time series, including subject heterogeneity,
unobserved covariates and other forms of overdispersion. The random effects αi’s
are assumed to be mutually independent and normal distributed with mean 0 and
variance σ 2 in this paper. The following model is proposed to quantify the memory
effect on the unbinding forces that are associated with receptor-ligand bonds:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yit = αi + β0 + εit , if yi,t−1 ≤ τ ,
yit = αi + β0 + β1yi,t−1 + εit , if yi,t−1 > τ,yi,t−2 ≤ τ ,
yit = αi + β0 + β1yi,t−1

+ β2yi,t−2 + εit , if yi,t−1 > τ,yi,t−2 > τ,yi,t−3 ≤ τ ,
...

...

yit = αi + β0 + β1yi,t−1

+ · · · + βkyi,t−k + εit , if yi,t−1 > τ, . . . , yi,t−k > τ ,

(1)

where βi ’s are the fixed effects and the error terms εit are independent with distri-
bution N(0, σ 2

ε ).
The first equation in (1) corresponds to the situation where no receptor-ligand

bond occurs in the previous test (i.e., yi,t−1 ≤ τ ). It amounts to modeling the un-
binding forces in a sequence of independent adhesion tests. Let the mean unbind-
ing force be β0. The estimated value for β0 is the average unbinding force in inde-
pendent adhesion assays and can change with different settings of the experimental
variables, such as different contact durations. Extensions can be easily achieved by
incorporating these experimental variables into the model. The second equation in
(1) describes the unbinding force when a receptor-ligand bond occurs in the previ-
ous test (i.e., yi,t−1 > τ ) but no bond in yi,t−2 (i.e., yi,t−2 ≤ τ ). In this situation, a
memory could be carried over from the previous observations. Thus, a first-order
autoregressive model is considered. This autoregressive modeling continues to the
previous k assays. Similar interpretation can be given to the rest of the model. The
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value k represents the upper bound of the memory order; detailed discussions on
identifying the order of the memory are given in Section 2.2.

The above model can be written in a concise form as follows:

yit = z′
iα + β0 + β1yi,t−1I [yi,t−1 > τ ] + β2yi,t−2I [yi,t−1 > τ,yi,t−2 > τ ]
+ · · · + βkyi,t−kI [yi,t−1 > τ, . . . , yi,t−k > τ ] + εit(2)

= g(β, τ, σ 2 | Hit ) + εit ,

where I (yi,t−1 > τ) is an indicator function which takes value one if yi,t−1 > τ

and zero otherwise. The fixed effects are denoted by β = (β0, β1, . . . , βk)
′, the in-

formation from previous observations are included in Hit = (1, yi,t−1, . . . , yi,t−k),
and zi = {zi,1, . . . , zi,n}′ is the design matrix for the random effects α such that
z′
iα = αi . Since the proposed model is not limited to the analysis of unbinding

force assay, the random intercept alone may not be sufficient to capture the varia-
tion exhibited in other applications. Hence, we use a general random effect struc-
ture hereafter. We call this new nonlinear time series model the multiple threshold
autoregressive (MUTARE) model.

The MUTARE model is very general and includes an interesting special case
with a single series of observations. Assuming that the time series observations
are yt , t = 1, . . . ,m, the special case of the MUTARE model can be written as

yt = β0 + β1yt−1I [yt−1 > τ ] + · · ·
(3)

+ βkyt−kI [yi,t−1 > τ, . . . , yt−k > τ ] + εt .

This is different from the conventional nonlinear time series models. The closest
model in the literature is the threshold autoregressive models introduced by Tong
(1983, 1990). There are various extensions of the threshold autoregressive models
[Samia, Chan and Stenseth (2007)] and the nonlinearity therein is determined by a
particular variable with which the threshold parameter is defined. The MUTARE
model, however, has the threshold applied to all the historical observations. Fur-
thermore, different from the threshold autoregressive model where piecewise lin-
ear submodels are fitted separately, a hierarchical structure is imposed upon the
submodels in MUTARE as illustrated in (1), which makes the model easier to in-
terpret.

2.2. Estimation and order selection procedure. A crucial step in this study
is to specify the order of the memory, denoted by k0. This is an order selection
problem but different from standard ones in that there are two types of overfitting.
By maximizing the log likelihood function, the resulting model may overfit the
data with some small values of nonzero βj ’s (type I overfitting) and/or with a
large estimated order (type II overfitting). This is not surprising given the same
problem experienced in estimating parameters in finite mixture models [Chen and
Khalili (2008)]. Therefore, we propose to penalize type I overfitting by a function
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Pλ1(|βk|) and penalize type II overfitting by the estimated order (maxj {j :βj �=
0}). The reason to consider type II overfitting is because the MUTARE model
has a hierarchical structure as shown in (1). Once the order of the model (i.e.,
maxj {j :βj �= 0}) is determined, all the previous equations have to be considered.
So a double penalized likelihood is defined as

pl(β, σ 2, τ ) = 2 logL(β, σ 2, τ ) −
k∑

j=1

Pλ1(|βj |) − λ2 max
j

{j :βj �= 0},(4)

where L is the likelihood function. By maximizing (4), the solutions, β̂ and
maxj {j : β̂j �= 0}, are the estimated parameters and order of the memory.

To prevent the first type of overfitting, there are different penalty functions dis-
cussed in the literature [Donoho and Johnstone (1994), Tibshirani (1996, 1997),
Fan and Li (2001)]. Here we focus on the adaptive Lasso [Zou (2006)] where
Pλ1(|βj |) = λ1νj |βj | and ν1, . . . , νk are known weights. The specification of νj

can be fairly flexible and more discussions can be found in Zou (2006). We con-
sider a weight vector suggested in Zou (2006) with ν̂j = |β̂j |−ρ , where ρ > 0 and
β̂j is a root-n-consistent estimator of βj . In Hung (2011), it is shown that the MLE
of β is root-n-consistent under model (2), therefore it can be applied.

By the following proposition, we can have a closer look at how the double
penalized approach works. The proof is straightforward and is omitted.

PROPOSITION 1. The penalized likelihood function in (4) is equivalent to

pl(β, σ 2, τ ) = 2 logL(β, σ 2, τ ) −
k∑

j=1

Pλ1(|βj |) − λ2

k∑
j=1

I (βj �= 0)

(5)

− λ2

k∑
j=1

I (βj = 0, at least one βj+p �= 0,p = 1, . . . , k − j).

Equation (5) connects the penalty for type II overfitting with the L0 penalty,
which directly controls the number of nonzero coefficients in the model. Therefore,
the double penalized approach is closely related to a combination of L0 and L1
penalties, which is carefully studied by Liu and Wu (2007) and found to deliver
better variable selection than the L1 penalty while yielding a more stable model
than the L0 penalty.

2.3. Mixed integer programming. In this section a global optimization algo-
rithm is introduced using the idea of MIP. MIP is an active research area in op-
erations research with many applications. The objective here is to solve βj ’s by
maximizing the double penalized likelihood function (4). It is achieved by the fol-
lowing proposition.
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PROPOSITION 2. The penalized likelihood function in (4) is equivalent to

pl(β, σ 2, τ ) = 2 logL(β, σ 2, τ ) −
k∑

j=1

Pλ1(|βj |)
(6)

− λ2

k∑
j=1

(
1 − I (βj = · · · = βk = 0)

)
.

As discussed in Proposition 2, this problem is equivalent to the maximization
of (6). Substitute variable βj by two nonnegative variables β+

j and β−
j with βj =

β+
j − β−

j . Then, we have |βj | = β+
j + β−

j , and the maximization problem in (6)
can be converted into a MIP problem with maximization of

2 logL(β+ − β−, σ 2, τ ) −
k∑

j=1

Pλ1(β
+
j + β−

j ) − λ2

k∑
j=1

zj ,

subject to

β+
1 + β−

1 + β+
2 + β−

2 + · · · + β+
k + β−

k ≤ Mz1,

β+
2 + β−

2 + · · · + β+
k + β−

k ≤ Mz2,

...

β+
k + β−

k ≤ Mzk,

β+
j , β−

j ≥ 0, j = 1, . . . , k,

zj ∈ {0,1},
where M is a very large constant and we can choose it to be the smallest upper
bound of

∑
j |βj | if the prior knowledge is available. In the simulations, we apply

the setting M = 50 and it works reasonably well in practice. In general, M can
be even larger (e.g., M = 1000) for those problems with large k. Note that since
β+

j +β−
j are to be minimized, β+

j and β−
j would not be both positive in the optimal

solution.
To solve the foregoing MIP problem, there are numerous methods such as the

most popular branch-and-bound algorithm. More details about algorithms and the
related issues can be found in Nemhauser and Wolsey (1999). The examples we
considered in this article are solved by the C language with a GLPK package (avail-
able at http://www.gnu.org/software/glpk). Some other commercial optimization
software such as CPLEX is also available to solve such a problem. The complex-
ity of MIP can be considerably affected by introducing too many integer variables
(i.e., zj ’s), but it is in general not a critical concern. This is because the number
of integer variables incorporated increases with the order k, and it is usually in a

http://www.gnu.org/software/glpk
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manageable size in this application. For other applications with a large value of k,
one can obtain a reasonably good solution (not necessarily optimal) by setting a
restriction on the computing time to achieve efficiency.

Next we discuss the choice of the tuning parameters, λ1, λ2 and ρ. There are dif-
ferent approaches available in the literature for selecting tuning parameters [Stone
(1974), Craven and Wahba (1979), Fan and Gijbels (1996)]. Burman, Chow and
Nolan (1994) introduced the h-block cross-validation for dependent data. The idea
is to modify the leave-one-out cross-validation and reduce the training set by re-
moving the h observations preceding and following the observation in each test
set. Such blocking allows near independence between the training and test set.
This approach is further improved by Racine (2000) to achieve asymptotic consis-
tency. That is, instead of leave-one-out, the size of the validation set is increased
to nv . So the training set has size nc and nv + nc + 2h = m − k. In this paper,
we implement Racine’s approach with the setting h = (m − k)/4 and nc being the
integer part of m0.5, which appears to work well in a wide range of situations in
practice [Racine (2000)].

The rest of the parameters can be estimated by the standard maximum like-
lihood approach. Denote the observation by vector Y = (y1, . . . ,yn)

′, where the
observations for subject i are denoted by yi = (yi1, . . . , yim)′. Given the historical
information Hit and the random effects, the associated likelihood as a function of
the fixed effects β and the threshold parameter can be written as

L(β, τ | α) =
n∏

i=1

m∏
t=1

l(yit | α,Hit ),

where l(·) is the likelihood for each observation yit given α and the correspond-
ing historical information. Considering the normality of the error ε and random
effects α, the joint log likelihood can be easily derived as

2 logL(β, σ 2, τ )
(7)

= −log|W| − (
Y − g(β, τ, σ 2 | H)

)′W−1(
Y − g(β, τ, σ 2 | H)

)
,

where g(β, τ, σ 2 | H) is the mean vector, H = (H ′
1, . . . ,H

′
n)

′, Hi = (H ′
i1, . . . ,

H ′
im)′, Z is the design matrix for the random effects with rows z′

i , and W =
σ 2

ε I + σ 2ZZ′. Note that σ 2
ε is assumed to be known for notational convenience.

The variance component σ 2 is estimated by maximizing the original likelihood
throughout the paper and the estimator can be further improved by the restricted
maximum likelihood [McCulloch and Searle (2008)]. Such a version of the vari-
ance components developed for the linear mixed model can be easily extended to
the multiple threshold autoregressive model so that the estimated variance compo-
nent is invariant to the values of the fixed effects and the degrees of freedom for
the fixed effects can be taken into account implicitly.
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3. Large sample properties. The consistency of the order selection proce-
dure and the asymptotic properties of the resulting estimators in the MUTARE
model are studied in this section. The parameter space of γ = (β, τ, σ 2) is de-
noted by 
 and the true parameter is denoted by γ 0 = (β0, τ0, σ

2
0 ). Assumptions

and proofs are deferred to the Appendix.
Lemma 1 shows that the maximum penalized likelihood estimator for the

MUTARE model is stochastically bounded.

LEMMA 1. Under Assumptions A1–A4, there exists a ν > 0 such that, for
m and m sufficiently large, the maximum penalized likelihood estimator of the
parameter γ = (β, τ, σ 2) lies in a compact space 
1 = {γ ∈ 
 : |γ − γ 0| ≤ ν}
almost surely.

The convergence rate of the estimated threshold parameter is derived in The-
orem 1 for the MUTARE model. This result is analogous to Chan (1993) for the
least squares estimator of the threshold autoregressive model. Not surprisingly,
the estimated threshold parameter in the MATARE model has a fast convergence
rate [O(1/N)] which is similar to that in the threshold autoregressive model, and
the fast convergence rate is also due to the discontinuity of the conditional mean
function [Chan (1993), Hansen (2000)]. Note that, as a special case, the estimated
threshold parameter in (3) obtains a convergence rate O(1/m).

THEOREM 1. Under Assumptions A1–A4, the maximum likelihood estimator
of the threshold has the property that τ̂ = τ0 + Op(1/N), based on the MUTARE
model.

Define H̃ = (H̃ ′
1, . . . , H̃

′
n), H̃i = (H̃ ′

i1, . . . , H̃
′
im), and

H̃it = (
1, yi,t−1I (yi,t−1 > τ), . . . , yi,t−kI (yi,t−1 > τ, . . . , yi,t−k > τ)

)
.

Let β0 = (β ′
(1),β

′
(2))

′, where β ′
(1) is a vector with all the nonzero parameters and

the rest of the parameters are denoted by β ′
(2). Furthermore, assume H̃ ′W−1H̃

N
→ �,

where � is positive definite and can be written as

� =
[
�11 �12
�21 �22

]

according to β ′
(1) and β ′

(2).
In the next theorem, we show that the penalized likelihood estimator of β en-

joys the oracle properties [Fan and Li (2001)], which indicates the consistency in
variable selection and the asymptotic normality. This result also implies the order
selection consistency of the proposed order selection procedure.
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THEOREM 2. Suppose that λ1/
√

N → 0 and λ1N
(ρ−1)/2 → ∞. Under As-

sumptions A1–A4, for any η, 0 < η < ∞, the maximum penalized likelihood esti-
mator of β in the MUTARE model satisfies the following two properties as n → ∞
and m → ∞:

(i) β̂(2) = 0 with probability 1,

(ii) sup|τ̂−τ0|≤η/N,|σ̂ 2−σ 2
0 |<η/

√
N

√
N(β̂(1) − β(1)) →d N(0,�−1

11 ).

Apart from the fixed effects, asymptotic distributions of the estimated variance
components deserve more investigation. Numerous works have appeared in the lit-
erature addressing methods of variance component estimation in linear models and
the associated asymptotic properties [Jiang (1996), McCulloch and Searle (2008)].
Strong consistency of the estimated variance component in nonlinear mixed effect
models [Nie (2006)] is expected to be extended to the MUTARE model. A rig-
orous theoretical proof along the lines of Nie (2006) is not attempted here, and
remains the subject of ongoing theoretical work. However, it is briefly noted that
the asymptotic conditions, such as Assumptions A3 and A4, required for the results
here are indeed met by the requirement in Nie (2006). The requirement of n → ∞
for the main theorems is based upon the asymptotic study in Nie (2006) and it is
expected to be further relaxed by the techniques developed in Jiang (1996).

4. Finite-sample performance and empirical application. In this section
simulations are conducted to examine the finite-sample performance of the pro-
posed models. Two examples are considered. The first example demonstrates the
performance of the estimators in the MUTARE model and the second example
compares the double penalized order selection procedure with a standard approach.

4.1. Example 1. Consider the following MUTARE model with k = 2:

yit = αi + β0 + β1yi,t−1I [yi,t−1 > τ ] + β2yi,t−2I [yi,t−1 > τ,yi,t−2 > τ ] + εit .

The coefficients of this model are fixed at γ 0 = (β0,0.1,0.5), where the fixed
effects are β0 = (0,0.5,0.4). The random error εit is generated from a normal
distribution with mean 0 and variance 0.5. The sample size combinations used are
(m = 30, n = 10), (m = 40, n = 15), and (m = 60, n = 25). For each combination,
the simulations are conducted based on 1000 replicates. In this example, tuning
parameters are determined by minimizing the mean squared prediction error of
new generated testing data with the same size and then fixed for all the replicates.

The simulation results are reported in Table 1. For each sample size combina-
tion, the sample means and standard deviations of the estimates are listed. The
empirical coverage probabilities of the fixed effects, denoted by “CP,” are listed in
the last row of each setting. They are calculated based on the 90% confidence inter-
vals of the corresponding regression parameters. As shown in the table, the sample
mean of the estimates becomes closer to the true value and the associated standard
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TABLE 1
Summary of simulation results in example 1

τ β0 β1 β2 σ 2

m = 30, n = 10

Mean 0.114 0.038 0.491 0.390 0.385
sd 0.029 0.174 0.083 0.080 0.188
CP 0.906 0.859 0.866

m = 40, n = 15

Mean 0.111 0.035 0.484 0.393 0.431
sd 0.028 0.155 0.058 0.047 0.140
CP 0.915 0.868 0.889

m = 60, n = 25

Mean 0.105 0.036 0.501 0.398 0.477
sd 0.019 0.123 0.041 0.032 0.090
CP 0.918 0.878 0.898

True 0.1 0 0.5 0.4 0.5

deviation becomes smaller as the sample size increases. These results confirm the
asymptotic consistency discussed in Section 3. Moreover, when the sample size
increases, the empirical coverage probabilities for the fixed effects are closer to
the nominal coverage probabilities.

To assess the asymptotic normality, normal Q–Q plots are reported in Figure 4.
It is plotted based on the three estimated fixed effects, β̂1, β̂2 and β̂3, with the

FIG. 4. Normal Q–Q plots in example 1.
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TABLE 2
Parameter values in example 2

Model β1 β2 β3 β4 β5

1 0.4 0.4 0 0 0
2 0.5 0.3 0.1 0 0
3 0.3 0.2 0.1 0.05 0

sample size combination m = 60 and n = 25. In general, the data points being
close to straight lines in the Q–Q plots confirms that the estimates are normally
distributed.

4.2. Example 2. In this example we study the performance of the proposed or-
der selection procedure. Since there is no existing approach available, we compare
the double penalized approach with a naive Akaike information criterion [AIC;
Akaike (1973)], which is suggested for order selection in the threshold autoregres-
sive models [Tong (1980)], and the Bayesian information criterion [BIC; Schwarz
(1978)]. Three different models following equation (3) are considered with param-
eters given in Table 2 and sample size 200. The threshold parameters are assumed
to be 0.01 and the random errors are generated from a normal distribution with
mean 0 and variance 0.1. The tuning parameters are determined as in example 1.

Table 3 shows the order selection performance of AIC, BIC and the double pe-
nalized approach. The column k0 indicates the true order. For both methods, we
report the percentage of times that the estimated order equals a number of values
(i.e., 1 to 5) out of 1000 replicates. The numbers with boldface indicate the most
selected orders. For model 1, all the three methods select the right order with their
highest frequency. The double penalized approach and BIC perform equally well
in this model and both of them perform better than AIC. For example, the double
penalized approach has a 30% [= (0.751 − 0.580)/0.580] higher chance to select
the right order compared with AIC. For models 2 and 3, both AIC and BIC tend
to underestimate the order and the double penalized approach selects the correct
order with probability higher than 65%. These results indicate that the double pe-
nalized approach outperforms the other two methods in terms of order selection.
The computational efficiency of the double penalized approach is reasonably close
to AIC and BIC in the simulation. The average computing times are 4.38 seconds
for AIC, 4.45 seconds for BIC and 4.92 seconds for the double penalized approach.

5. Application in unbinding force experiments. In this section we revisit
the repeated unbinding force experiments and apply the proposed method to study
the memory effect on such repeated assays. There are 15 pairs of experimental sub-
jects and each pair includes a T-cell and a probe bead attached to a red blood cell
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TABLE 3
Simulation results in example 2

AIC

Model k0 1 2 3 4 5

1 2 0.178 0.580 0.193 0.014 0.020
2 3 0.142 0.574 0.150 0.101 0.031
3 4 0.522 0.325 0.111 0.042 0.000

BIC

Model k0 1 2 3 4 5

1 2 0.001 0.749 0.152 0.088 0.001
2 3 0.243 0.536 0.151 0.058 0.012
3 4 0.553 0.322 0.110 0.015 0.000

Double penalized

Model k0 1 2 3 4 5

1 2 0.103 0.751 0.091 0.050 0.004
2 3 0.000 0.053 0.659 0.167 0.121
3 4 0.023 0.081 0.248 0.645 0.003

as described in Figure 1. For each cell adhesion cycle, a T-cell and a probe bead are
brought into contact (i.e., touch) for 4 seconds and then retracted to the unbinding
position (see Figure 2). Such a cycle is performed repeatedly on the same pair of
experimental subjects for 50 times. Figure 5 is three randomly selected samples of
the repeated unbinding forces from such experiments. For each sample, the forces
are plotted based on observations in 1000 seconds with 50 repeated adhesion cy-
cles completed.

The unbinding forces are collected according to the definition in Figure 2. Prior
knowledge [Zarnitsyna et al. (2007), Hung et al. (2008)] indicates that a reason-
able order of the memory in this process should be less than 5. Therefore, we first
fit the MUTARE model with k = 5 and then the double penalized order selection
procedure is applied. The order of the memory is identified as two and the mem-
ory effect on the repeated unbinding force experiments can be quantified by the
MUTARE model as

ŷit = αi + 0.245yi,t−1I [yi,t−1 > τ̂ ] + 0.11yi,t−2I [yi,t−1 > τ̂, yi,t−2 > τ̂ ],
where i = 1, . . . ,15, t = 1, . . . ,50, the random effect αi follows normal distribu-
tion with mean −0.072 and variance 0.389. The estimated order of the memory
in this experiment is consistent with that in Hung et al. (2008) with a similar set-
ting but different measurements. Such consistency provides important evidence of
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FIG. 5. The measurements from the repeated unbinding force assays.

a unified underlying kinetic mechanism in the adhesion process. The estimated
threshold, τ̂ = 0.089, indicates that an adhesion leads to a bond only if the unbind-
ing force is larger than 0.089pN . Based on this result, the occurrence of a bond,
although unobservable, can be easily studied by measuring the corresponding un-
binding forces. Since random effects are considered, the fitted model can be used
to make inference beyond the 15 pairs of experimental subjects.

6. Summary and concluding remarks. Despite numerous results available
in modeling nonlinear time series, their applications are limited. For example, they
are mainly constructed for a single series of observations and focus on the case
where the nonlinearity is determined based on one variable. Furthermore, there is
no order selection procedure available with theoretical justification for such mod-
els. Motivated by the analysis of the repeated unbinding force experiments, a new
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nonlinear time series model, MUTARE, and a double penalized order selection
procedure are introduced.

The proposed model handles multiple time series by incorporating random ef-
fects to borrow strength across different subjects. Thus, inference and predictions
can be made beyond the experimental units in the study. Moreover, the proposed
methodology provides a new nonlinear time series model that is easy to interpret
and captures the autoregressive behavior of the observations above some unknown
threshold. The double penalized procedure can be used to efficiently identify the
order and can be easily implemented by a global optimization algorithm using
mixed integer programming. The selection consistency and asymptotic normality
of the estimators are derived. Apart from the asymptotic results, the finite-sample
performance is examined via simulations.

As an application, the MUTARE model is illustrated by modeling the memory
effect on the repeated unbinding force assays. The fitted model provides a better
understanding of how force regulates receptor-ligand interactions. This work is
one of the first few studies considering memory effects in the cell adhesion exper-
iments. More studies are needed to construct a rigorous and interpretable biologi-
cal model. An ongoing project includes theoretical development for the estimated
threshold, relaxation of the constant threshold assumption, and taking into account
important process variables, such as contact duration, into the model.

APPENDIX A: ASSUMPTIONS

ASSUMPTION A1. The process yit is stationary, ergodic and has finite second
moments.

ASSUMPTION A2. The autoregressive function is discontinuous, that is,
there exists a H ∗ = (1, y∗

t−1, . . . , y
∗
t−k) such that H ∗(As − At) �= 0 and yt−1 =

· · · = yt−j = τ , where A1 = (β0,0, . . . ,0)′, . . . ,Ak−1 = (β1, . . . , βk)
′, (s, t) ∈

(1, . . . , k − 1), and j = 1, . . . , k.

ASSUMPTION A3. There exists a M1 > 0 such that E[tr(W−1
i ZiZ

′
i ×

W−1
i ZiZ

′
i )]2 ≤ M1, and E[tr(W−1

i ZiZ
′
i ) − (yi − g(Hi,β0, τ0, σ

2))′W−1
i ZiZ

′
i ×

W−1
i (yi − g(Hi,β0, τ0, σ

2)]2 ≤ M1 for all i, where Wi and Zi are the matrices of
the covariance and random effects for the ith subject.

ASSUMPTION A4. lim infn→∞ λn = λ > 0, where λn is the smallest eigen-
value of − 1

n

∑
i E[tr(W−1

i ZiZ
′
iW

−1
i ZiZ

′
i)].

Assumptions A1 and A2 are necessary for the strong consistency of the fixed
effect and threshold parameter estimators. Assumptions A3 and A4 are used for
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the strong consistency of the variance components. More discussions can be found
in Nie (2006).

APPENDIX B: PROOF OF LEMMA 1

The proof relies on verifying the following two claims.

CLAIM 1. There exists a M2 > 0 such that, for m and n sufficiently large,
the maximum likelihood estimator of γ lies in 
2 = {γ ∈ 
 : |β1 − β1,0| ≤
M2, . . . , |βk − βk,0| ≤ M2, |σ 2 − σ 2

0 | ≤ M2} almost surely.

VERIFICATION OF CLAIM 1. Recall γ 0 = (β0, τ, σ
2
0 ) and define β0 =

(β0,0, . . . , βk,0)
′. To prove Claim 1, it suffices to show that for m and n sufficiently

large and uniformly for γ not belonging to 
2, we have (mn)−1(pl(γ )−pl(γ 0)) <

0 almost surely:

pl(γ ) − pl(γ 0)

mn
= pl(β, τ, σ 2) − pl(β0, τ0, σ

2)

mn
(8)

+ pl(β0, τ0, σ
2) − pl(β0, τ0, σ

2
0 )

mn
.

We first examine the first part on the right-hand side of (8). Assuming that the
variance component is consistent along the lines of Nie (2006), the study of the
first part can be transformed into the study of Y ∗ = W−1/2(Y − Zα), which is
used in the derivation for both pl(β, τ, σ 2) and pl(β0, τ0, σ

2). We have

pl(β, τ, σ 2) − pl(β0, τ0, σ
2)

= 2 logL(β, τ, σ 2) − 2 logL(β0, τ0, σ
2)

+
k∑

j=1

[Pλ1(|βj,0|) − Pλ1(|βj |)]

+ λ2

[
max

j
{j :βj,0 �= 0} − max

j
{j :βj �= 0}

]
.

First, up to an additive constant, we have

2 log(β, τ, σ 2) = −∑
i

∑
t

(
y∗
it − g(β, τ, σ 2 | Hit )

)2
.

Due to the nonlinearity, the derivation for a general MUTARE model can be
lengthy in nature. Therefore, we illustrate the detailed derivation by a smaller
model and consider the case where τ > τ0. The same argument can be easily ap-
plied and extended to the MUTARE model and the case τ ≤ τ0 in general.
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Consider a MUTARE model with k = 2:⎧⎨
⎩

yit = αi + β0 + εit , if yi,t−1 ≤ τ ,
yit = αi + β0 + β1yi,t−1 + εit , if yi,t−1 > τ,yi,t−2 ≤ τ ,
yit = αi + β0 + β1yi,t−1 + β2yi,t−2 + εit , if yi,t−1 > τ,yi,t−2 > τ ,

(9)

the corresponding log likelihood function can be decomposed by

2 logL(β, τ, σ 2)

= −∑
i

∑
t

(y∗
it − β0)

2I [yi,t−1 ≤ τ0]

− ∑
i

∑
t

(y∗
it − β0)

2I [τ0 < yi,t−1 ≤ τ, yi,t−2 ≤ τ0]

− ∑
i

∑
t

(y∗
it − β0)

2I [τ0 < yi,t−1 ≤ τ, yi,t−2 > τ0]
(10)

− ∑
i

∑
t

(y∗
it − β0 − β1y

∗
i,t−1)

2I [yi,t−1 > τ,yi,t−2 ≤ τ0]

− ∑
i

∑
t

(y∗
it − β0 − β1y

∗
i,t−1)

2I [yi,t−1 > τ, τ0 < yi,t−2 ≤ τ ]

− ∑
i

∑
t

(y∗
it − β0 − β1y

∗
i,t−1 − β2y

∗
i,t−2)

2I [yi,t−1 > τ,yi,t−2 > τ ]

= R1(β, τ, σ 2) + · · · + R6(β, τ, σ 2).

Defining A1 = (β0,0,0,0)′, A2 = (β0,0, β1,0,0)′, A3 = (β0,0, β1,0, β2,0)
′, B1 =

(β0,0,0)′, B2 = (β0, β1,0)′, and B3 = (β0, β1, β2)
′, we have

R4(β, τ, σ 2) − R4(β0, τ0, σ
2)

= ∑
i

∑
t

[−(y∗
it − β0 − β1y

∗
i,t−1)

2 + (y∗
it − β0,0 − β1,0y

∗
i,t−1)

2]

× I (yi,t−1 > τ,yi,t−2 ≤ τ0)

= ∑
i

∑
t

[−(y∗
it − H ∗

i,t−1B2)
2 + (y∗

it − H ∗
i,t−1A2)

2]

× I (yi,t−1 > τ,yi,t−2 ≤ τ0)

= 2|B2 − A2|
∑
i

∑
t

H ∗
i,t−1

(B2 − A2)

|B2 − A2| (y
∗
it − H ∗

i,t−1A2)

× I (yi,t−1 > τ,yi,t−2 ≤ τ0)

− |B2 − A2|2
∑
i

∑
t

(
H ∗

i,t−1
(B2 − A2)

|B2 − A2|
)2

I (yi,t−1 > τ,yi,t−2 ≤ τ0).
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Therefore, based on the uniform law of large numbers [Pollard (1984), page 8], we
have

1

mn

(
pl(β, τ, σ 2) − pl(β0, τ0, σ

2)
)

≤ 2(|B1 − A1| + |B1 − A2| + |B1 − A3|
+ |B2 − A2| + |B2 − A3| + |B3 − A3|)ε

− (|B1 − A1|2 + |B1 − A2|2 + |B1 − A3|2
+ |B2 − A2|2 + |B2 − A3|2 + |B3 − A3|2)(K − ε)

+ (mn)−1

{
k∑

j=1

[Pλ1(|βj,0|) − Pλ1(|βj |)]

+ λ2

[
max

j
{j :βj,0 �= 0} − max

j
{j :βj �= 0}

]}

= 2ε1 − 2(K − ε) + 3,

where

K = inf
β

min
i≤j

E

((
Hi,t−1

(Bi − Aj)

|Bi − Aj |
)2

Iij

)

and Iij is the corresponding indicator function as listed in (10). Note that the uni-
form law of large numbers in Pollard [(1984), page 8] assumes that the data are
independent and identically distributed. This assumption is relaxed to a station-
ary ergodic process by Samia and Chan (2011). Therefore, the uniform law of
large numbers can be applied here. Based on the Cauchy–Schwarz inequality, we
have 1 ≤ √

62 ≤ 62 for sufficiently large M2. For sufficiently large m and n,
3 < ε2. Thus, by selecting ε < K/14, it follows that (mn)−1(l(β, τ, σ 2) −
l(β0, τ0, σ

2)) < 0.
For the second term on the right-hand side of (8), under Assumptions A3

and A4, the maximum likelihood estimator of the variance component al-
most surely converges based on the results in Nie (2006). Therefore, we have
(mn)−1(l(β0, τ0, σ

2) − l(β0, τ0, σ
2
0 )) < 0 and Claim 1 follows.

CLAIM 2. There exists a M3 > 0 such that, for m and n sufficiently large, the
maximum likelihood estimator of γ lies in 
3 = {γ ∈ 
2 : |τ − τ0| ≤ M3} almost
surely.

VERIFICATION OF CLAIM 2. Similar to Claim 1, it suffices to show that, for
m and n sufficiently large, (mn)−1(pl(γ )−pl(γ 0)) < 0 for γ not belonging to 
3.
We apply the same decomposition as in Lemma 1 and focus on the first part on the
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right-hand side of (8). Applying the uniform law of large numbers and the same
transformation as described in Claim 1, for m and n sufficiently large, it holds that

pl(β, τ, σ 2) − pl(β0, τ0, σ
2)

mn

= mn−1

{
2 logL(β, τ, σ 2)

− 2 logL(β0, τ0, σ
2)

k∑
j=1

[Pλ1(|βj,0|) − Pλ1(|βj |)]

+ λ2

[
max

j
{j :βj,0 �= 0} − max

j
{j :βj �= 0}

]}

≤ E
{(−(y∗

it − H ∗
i,t−1B1)

2 + (yit − Hi,t−1A1)
2)

I [yi,t−1 ≤ τ0]}
+ E

{(−(y∗
it − H ∗

i,t−1B1)
2 + (y∗

it − H ∗
i,t−1A2)

2)
× I [τ0 < yi,t−1 ≤ τ, yi,t−2 ≤ τ0]}

+ E
{(−(y∗

it − H ∗
i,t−1B1)

2 + (y∗
it − H ∗

i,t−1A3)
2)

× I [τ0 < yi,t−1 ≤ τ, yi,t−2 > τ0]}
+ E

{(−(y∗
it − H ∗

i,t−1B2)
2 + (y∗

it − H ∗
i,t−1A2)

2)
× I [yi,t−1 > τ,yi,t−2 ≤ τ0]}

+ E
{(−(y∗

it − H ∗
i,t−1B2)

2 + (y∗
it − H ∗

i,t−1A3)
2)

× I [yi,t−1 > τ, τ0 < yi,t−2 ≤ τ ]}
+ E

{(−(y∗
it − H ∗

i,t−1B3)
2 + (y∗

it − H ∗
i,t−1A3)

2)
× I [yi,t−1 > τ,yi,t−2 > τ ]} + ε.

Considering the situation where τ > τ0, we have

l(β, τ, σ 2) − l(β0, τ0, σ
2)

mn
≤ J + ε,

where

J = E
{(−(y∗

it − H ∗
i,t−1B1)

2 + (y∗
it − H ∗

i,t−1A1)
2)

I [yi,t−1 ≤ τ0]}
+ E

{(−(y∗
it − H ∗

i,t−1B1)
2 + (y∗

it − H ∗
i,t−1A2)

2)
× I [τ0 < yi,t−1 ≤ τ, yi,t−2 ≤ τ0]}

+ E
{(−(y∗

it − H ∗
i,t−1B1)

2 + (y∗
it − H ∗

i,t−1A3)
2)

× I [τ0 < yi,t−1 ≤ τ, yi,t−2 > τ0]}.
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When τ = ∞, the model becomes a linear mixed model; therefore, by the dom-
inated convergence theorem and a similar argument in Samia and Chan (2011),
it holds almost surely that, for m and n sufficiently large and for any M3 > 0,
(mn)−1(l(β, τ, σ 2) − l(β0, τ0, σ

2)) < 0 for τ ≥ τ0 + M3. Similar derivation can
be applied to the case τ < τ0, thus the detail is omitted.

Following the same argument for Claim 1, the second part on the right-hand
side of (8) is smaller than 0 with Assumptions A3 and A4. Therefore, Lemma 1
holds.

APPENDIX C: PROOF OF THEOREM 1

Without loss of generality, the parameter space can be restricted to 
δ = {γ ∈

 : |β − β0| < δ, |σ 2 − σ 2

0 | < δ, |τ − τ0| < δ} according to Lemma 1. To simplify
the notation, we assume that τ0 = 0. Because the derivation for a general model is
lengthy, we consider the same model in Lemma 1, the MUTARE model with k = 2
in (9), and assuming τ > 0, we have

pl(β, τ, σ 2) − pl(β,0, σ 2)

= 2 logL(β, τ, σ 2) − 2 logL(β,0, σ 2)

= −∑
i

∑
t

{[(y∗
it − H ∗

i,t−1B1)
2 − (y∗

it − H ∗
i,t−1B2)

2]Q1

+ [(y∗
it − H ∗

i,t−1B1)
2 − (y∗

it − H ∗
i,t−1B3)

2]Q2

+ [(y∗
it − H ∗

i,t−1B2)
2 − (y∗

it − H ∗
i,t−1B3)

2]Q3}
≤ −∑

i

∑
t

{[
2H ∗

i,t−1(B2 − B1)εit + (
H ∗

i,t−1(A2 − B1)
)2

− (
H ∗

i,t−1(A2 − B2)
)2]

Q1

+ [
2H ∗

it−1(B3 − B1)εit + (
H ∗

i,t−1(A3 − B1)
)2

− (
H ∗

i,t−1(A3 − B3)
)2]

Q2

+ [
2H ∗

it−1(B3 − B2)εit + (
H ∗

i,t−1(A3 − B2)
)2

− (
H ∗

i,t−1(A3 − B3)
)2]

Q3
}
,

where Q1 = I (0 < yi,t−1 ≤ τ, yi,t−2 ≤ 0), Q2 = I (0 < yi,t−1 ≤ τ, yi,t−2 > 0),
Q3 = I (τ < yi,t−1,0 < yi,t−2 ≤ τ). If δ is sufficiently small, based on Assump-
tion A2, we have

∑
i

∑
j [(H ∗

i,t−1(As − Bj))
2 − (H ∗

i,t−1(As − Bs))
2]Qk ≥ 0, for

k = 1,2,3 and s > j . Therefore, by the same argument in Proposition 1 of Chan
(1993), it holds that for all ε > 0, there exists a T such that with probability greater
than 1−ε, γ ∈ 
δ , τ > T/N , implies l(β, τ, σ 2)− l(β,0, σ 2) < 0. Similar deriva-
tion can be extended to the case where τ < −T/N . Hence, Theorem 1 holds.
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APPENDIX D: PROOF OF THEOREM 2

We first prove the asymptotic normality. Based on the adaptive lasso penalty,

û = arg min
u

npl(u),

where npl(u) = −2 logL(β + u, σ 2, τ ) + λ1
∑k

j=1 νj (|βj + uj |) + λ2 maxj {j :
βj + uj �= 0}. By the Taylor expansion, we have

npl(u) = npl(0) − u′H̃ ′W−1(σ )
(
Y − g(H,β, τ, σ 2)

)
+ 1

2

√
Nu

′(H̃W−1(σ )H̃ ′

N

)√
Nu

+ λ1

k∑
j=1

νj (|βj + uj | − |βj |)

+ λ2

(
max

j
{j :βj + uj �= 0} − max

j
{j :βj �= 0}

)
.

The last term on the right-hand side equals 0 if uj = 0 and βj = 0, combining with
the fact that [Zou (2006)]

λ1νj (|βj + uj | − |βj |) →P

⎧⎨
⎩

0, if βj �= 0,
0, if βj = 0 and uj = 0,
∞, if βj = 0 and uj �= 0,

(11)

we have for every u

npl(u) − npl(0)

→D

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−u′
(1)H̃ (1)′W−1(σ )

(
Y − g(H,β, τ, σ 2)

)
+ (

√
Nu(1))

′�11(
√

Nu(1))

2
, if u(2) = 0,

∞, otherwise.

By the same argument of Theorem 2 in Zou (2006), the asymptotic normality holds
by the martingale central limit theorem [Hall and Heyde (1980)].

For consistency, it suffices to show that P(β̂(2) �= 0) → 0. Using the Karush–
Kuhn–Tucker (KKT) optimality conditions, it follows that

2H̃ (1)′W−1(σ )
(
Y − g(H, β̂, τ, σ 2)

) = λ1ν(1),

where ν(1) are the weights corresponding to the first q variables. Note that

λ
ν(1)√

N
→P ∞ [Theorem 2, Zou (2006)] and 2 H̃ (1)′W−1(σ )(Y−g(H,β̂,τ,σ 2))√

N
is asymp-

totically normal. Therefore,

P
(
β̂(2) �= 0

) ≤ P
(
2H̃ (1)′W−1(σ )

(
Y − g(H, β̂, τ, σ 2)

) = λ1ν(1)

) → 0,

and Theorem 2 holds.
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