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FIBRE-GENERATED POINT PROCESSES AND FIELDS
OF ORIENTATIONS
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University of Warwick

This paper introduces a new approach to analyzing spatial point data
clustered along or around a system of curves or “fibres.” Such data arise in
catalogues of galaxy locations, recorded locations of earthquakes, aerial im-
ages of minefields and pore patterns on fingerprints. Finding the underlying
curvilinear structure of these point-pattern data sets may not only facilitate a
better understanding of how they arise but also aid reconstruction of missing
data. We base the space of fibres on the set of integral lines of an orientation
field. Using an empirical Bayes approach, we estimate the field of orientations
from anisotropic features of the data. We then sample from the posterior dis-
tribution of fibres, exploring models with different numbers of clusters, fitting
fibres to the clusters as we proceed. The Bayesian approach permits inference
on various properties of the clusters and associated fibres, and the results per-
form well on a number of very different curvilinear structures.

1. Introduction. In this paper we introduce a new empirical Bayes approach
concerning point processes that are clustered along curves or “fibres,” with addi-
tional background noise.

In nature such point patterns often arise when events occur near some la-
tent curvilinear generating feature. For example, earthquakes arise around seismic
faults which lie on the boundaries of tectonic plates and hence are naturally curvi-
linear. Similarly, sweat pores in fingerprints lie on the ridges of the finger, which
possess a curvilinear structure. Figure 1 presents these data together with two sim-
ulated examples of point patterns clustered around underlying families of curves
with additional background noise. Identification of curvilinear elements and elu-
cidation of their relationship with the point data is both an interesting theoretical
problem and a useful tool for gaining understanding of the origins of the data. It
also provides a technique for reconstruction of missing data.

The model introduced here describes families of nonintersecting curves via a
field of orientations (a map υFO :W → [0, π) assigning an undirected orientation
to each point in the window). The curves are produced as segments of streamlines
integrating the field of orientations. We say that a curve integrates the field of
orientations if the curve is continuously differentiable and of unit speed, and if its
tangent agrees with the field of orientations at each point. The term streamline is
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FIG. 1. Four examples of point patterns clustered around latent curvilinear features with back-
ground noise. (a) Simulated point pattern. (b) Simulated point pattern described in Stanford and
Raftery (2000). (c) Earthquake epicenters in the New Madrid region. Data is taken from CERI (Cen-
ter for Earthquake Research and Information). (d) Pores along ridges of a portion of the fingerprint
a002–05 from the NIST Special Database 30 [Watson (2001)].

used to describe a curve which integrates the field of orientations and has no end
points in the interior of the window W \ ∂W .

We choose to use a variant on an empirical Bayes approach to estimate the field
of orientations, since a fully Bayesian approach would involve infinite-dimensional
distributions and be very computationally intensive. The empirical Bayes compo-
nent consists of estimation of the field of orientations from the data via a tensor
field as detailed in Section 4.1. In the following, a tensor field is represented by
assignation of a symmetric nonnegative definite matrix to each point of the planar
window. Tensor fields of this kind play an important role in diffusion tensor imag-
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ing [DTI, see Le Bihan et al. (2001)]. The field of orientations is constructed sim-
ply by calculating the orientations of the representative matrices’ principal eigen-
vectors; singularities in the field of orientations correspond to points where there
is equality of the two eigenvectors.

We show how properties of the underlying distribution of fibres can be estimated
using Monte Carlo techniques applied to the spatial point data. Our approach has
the advantage that it can be used to quantify uncertainty on a range of parameters
and does so effectively for different types of curvilinear structure. The use of a field
of orientations to identify fibres leads to a strong performance on data such as that
shown in Figure 1(d), where there is noticeable alignment of points perpendicular
to the fibres.

1.1. Potential applications. Point patterns with a latent curvilinear structure
arise in many different areas of study.

In seismology, epicenters of earthquakes are typically densely clustered around
seismic faults. The earthquake data from the New Madrid region as shown in Fig-
ure 1(c) consists of one short dense cluster of points, one longer rather sparse
cluster, both connected, and a relatively small number of “noise” points scattered
over the window. The New Madrid earthquake data is considered in Stanford and
Raftery’s (2000) approach to detecting curvilinear features.

In cosmology, galaxies appear to cluster along inter-connected filaments form-
ing a three-dimensional web-like structure with large voids between the fila-
ments. There is interest in identifying the nature of the filaments [see, e.g., Stoica,
Martínez and Saar (2007)]. There is also evidence that these galaxies form surfaces
or “walls” in some regions. This suggests the exciting challenge of extending our
model to include two-dimensional surfaces in three-dimensional space.

A further application is that of sweat pore patterns on fingerprint ridges [see
Figure 1(d)]. Sweat pores are tiny apertures along the ridges where the ducts of the
sweat glands open. Robust inference of the ridge structure from the pore pattern
has potential for aiding reconstruction of patchy fingerprints and may also allow
for more efficient storage of fingerprints in very large databases. The underlying
curve structure is a dense set of locally parallel curves along which pores are lo-
cated, usually very close to the center of the ridges. The noise arises mostly from
artifacts in the automatic extraction of pores from the image.

An issue with fingerprint pore data is that pores usually align across the ridges
as well as along them. This can complicate the reconstruction of ridges, as the
dominant orientation is less clear. We overcome this issue by constructing a smooth
tensor field which extrapolates dominant orientation estimates over the regions of
directional ambiguity.

1.2. Background. An existing method of estimating the curves in the underly-
ing structure of a point process is Stanford and Raftery’s (2000) use of principal
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curves (a nonlinear generalization of the first principal component line). An EM-
algorithm is used to optimize the model over a variety of choices of smoothness
parameter and number of components. An optimal choice of smoothness and num-
ber of components is then selected using Bayes factors. This technique generally
performs very well; however, it is sensitive to the initial clustering of the data and
therefore has difficulties reconstructing fibres in some regions where fibres may be
expected but signal points are absent [e.g., the fingerprint pore data—Figure 1(d)].

A piecewise linear “Candy model” (or “Bisous model” in three dimensions) is
used by Stoica, Martínez and Saar (2007) to model filaments in galaxy data. They
compare the empirical densities of galaxies within concentric cylinders and thus
delineate these filaments. This approach is restricted to piecewise linear fibre mod-
els where the deviation of points from fibres follows a uniform distribution over
a thin cylinder centered along the fibre. Sufficient statistics of the model for data
with filamentary structure are then compared to sufficient statistics on structureless
data sets; see Stoica et al. (2005) and Stoica, Martínez and Saar (2007, 2010).

Density estimates of the point pattern can be obtained using techniques such as
kernel smoothing. Fibres can be directly estimated from this density; an example
of this can be seen in Genovese et al. (2009) where steepest ascent paths along the
density estimate are constructed and the density of these paths is analyzed.

A further approach discussed in Barrow, Bhavsar and Sonoda (1985) is based
on construction of the minimal spanning tree of the set of points. In three dimen-
sions this gives a useful insight into the overall characteristics of the filamentary
structure.

The method presented in August and Zucker (2003) is based on a random curve
model in which curvature is defined as a Brownian motion. The resulting model is
used to enhance contours in the output of edge operators applied to digital images
and thus to data in which signal points are dense along curvilinear structures.

The treatment advocated here is also based on the formulation of a general
model for families of curves and the point patterns clustered around them. In con-
trast to August and Zucker (2003), curves are modeled as segments of streamlines
integrating a smooth field of orientations which encourages interpolations over ar-
eas of missing data. The prior model for the orientation field is derived via an em-
pirical Bayes step. Then birth–death MCMC is used to sample from the posterior
distribution of the fibres. The model formulation itself uses the initial exploratory
work of Su et al. (2008) [see also Su (2009)], which focused on the fingerprint pore
data and described the use of tensor fields for estimating dominant orientations in
spatial point data.

1.3. Problem definition. In particular, we are interested in modeling a random
point process � viewed in a planar window W ⊂ R

2; we write the observed part of
the point process as W ∩ � = {y1, . . . , ym} for some arbitrary ordering of points.
The point process arises from a mixture of homogeneous background noise and
an unknown number of point clusters, each clustered along a curve, henceforth
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called a fibre. Thus a fibre is a one-dimensional object, a smooth curved segment,
embedded in a higher-dimensional space (the space containing the point process).
Random sets of fibres or “fibre processes” are discussed in Stoyan, Kendall and
Mecke (1995) and Illian et al. (2008).

Having specified an appropriate model, we must identify a suitable method of
analysis of the posterior distribution of fibres given a data set of spatial point loca-
tions {y1, . . . , ym} over the window W .

1.4. Plan of paper. The paper is laid out as follows. The following section
gives an overview of the model proposed in this paper. Details of the underlying
probability model are given in Section 3. The empirical Bayes method of estimat-
ing an appropriate field of orientations is outlined in Section 4. Section 5 presents
a method of sampling from the posterior distribution of the fibres given the point
pattern data using Monte Carlo methods. This is implemented for a number of
examples in Section 6. In the final section we compare this model to other ap-
proaches, discuss some known issues of implementation and statistical analysis,
and note possible directions in which this model might be extended.

2. Basic considerations. We use a Bayesian hierarchical model to describe
the relationship between the points and the fibres.

2.1. Points. A natural choice is to model the spatial point process as a mixed
Poisson process or “Cox process” driven by a random fibre process. By this we
mean that the points arise independently and are associated in some way with
a random fibre—typically clustered around it. Such a point process is called a
“fibre-process generated Cox process;” see Illian et al. (2008).

In our model we do associate points with particular fibres but we remove the
Poissonian character of the distribution of points along fibres, replacing this by
a renewal process based on Gamma distributions for interpoint distances. This al-
lows us to model a tendency to regularity in the way in which points are distributed
along a fibre but includes the Poissonian case with exponentially distributed inter-
point distances.

2.2. Fibres. In contrast to previous work, in which curves are often con-
structed as splines fitted to the data, we define them as integral curves of a field
of orientations. This means that at any point on a fibre, the tangent to the fibre
agrees with the field of orientations at that point. Note that a field of orientations
is equivalent to a vector field except that each point in the field is assigned a direc-
tionless orientation. An instance of a random field of orientations ϒFO is written
as υFO :W → [0, π), where [0, π) represents the space of planar directions (with
0 and π identified).

The simplest way to determine a fibre F is to choose a reference point ω ∈ W

on the fibre and specify the two arc lengths l1, l2 ∈ R
+ of F \{ω}; see Figure 2. For
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FIG. 2. An orientation field is depicted as thin grey lines. A fibre F(ω, l1, l2) is defined as the
curve segment that integrates the orientation field from reference point ω ∈ W in one direction to a
distance l1 and in the other direction to a distance l2. Recall, a curve segment is said to integrate the
orientation field if at any point of the segment its tangent agrees with the orientation field.

a fixed field of orientations this will characterize a fibre, although the parametriza-
tion by reference point and length is evidently not unique. We model the fibres in
terms of these parameters (the reference points, arc lengths and field of orienta-
tions). Note that an alternative construction can be based on random selection of
a finite number of fibres generated by decomposing the streamlines according to
Poisson point processes distributed along the streamlines; however, this construc-
tion introduces intriguing measure-theoretic issues which are out of place in the
present treatment.

We note that taking the reference points to be uniformly distributed over the
window W will lead to a bias in the distribution of fibres in that the mean length
of fibre per unit area is not constant across W . This issue has been considered and
a solution involving an adjustment to the distribution of reference points has been
identified. We have not applied the bias correction to our examples, as there is
sufficient data to make the bias negligible.

The field of orientations is a useful intermediary in constructing fibres and, as
such, is part of a useful decomposition of the construction problem. In practice,
we seek to identify a suitable field of orientations by analysis of properties of the
data.

2.3. Noise. Finally, we include background noise in the form of an indepen-
dent homogeneous Poisson process superimposed onto the fibre-generated “sig-
nal” point process.

3. Probability model. A directed acyclic graph (or DAG) showing the con-
ditional dependencies for the model is shown in Figure 3. A good introduction to
directed acyclic graphs is given by Pearl (1988).
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FIG. 3. Directed acyclic graph (DAG) of model: arrows indicate conditional dependencies, ele-
ments in squares are deterministically calculated or constant, while those in circles are random
variables. For simplicity we have not included reference to hyperparameters λ, κ , η, αsignal and
βsignal.

3.1. Fibres. Henceforth let F = {F1, . . . ,Fk} denote k random fibres. As out-
lined earlier and illustrated in Figure 2, the fibre Fj is determined by a reference
point ωj and arc lengths lj,1, lj,2. It is also written Fj = Fj (ωj , lj , νFO) [where
lj = (lj,1, lj,2)] to indicate that it is a deterministic function of ωj and lj once νFO
is given. For the list of reference points we write ω = {ω1, . . . ,ωk}, and the arc
length vectors are given by l = {l1, . . . , lk}. We use lj,T = lj,1 + lj,2 as a shorthand
for the total arc length of the j th fibre. Note that in general the orientation field
υFO may possess singularities, which would constrain the choice of the lengths
lj = (lj,1, lj,2); however, this does not arise in our examples.

3.2. Signal points. Points from the observed pattern may be either signal or
noise. Signal points are typically clustered around fibres. The model we use as-
signs an anchor point pi on some fibre to each data point yi . The data point is
then displaced from pi by an isotropic bivariate normal distribution [i.e., yi ∼
MVN(pi, σ

2
dispI2), where I2 is the 2 × 2 identity matrix].
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The fibre on which pi is located is determined by an auxiliary variable Xi , so
Xi = j if and only if pi ∈ Fj . The pi’s on the j th fibre are spaced such that the
vector of arc-length distances between adjacent points is proportional to a Dirich-
let distributed random variable. Setting an appropriate parameter for the Dirichlet
distribution will encourage points to be either evenly spread, clustered along the
fibre, or placed independently at random along the fibre.

The probability that point yi is allocated to the j th fibre (Xi = j ) is proportional
to the total length of fibre Fj . This ensures that the mean points per unit streamline
remains approximately constant.

3.3. Noise points. Noise is then added as a homogeneous Poisson process.
This is included in the model by first allocating each point yi to noise or signal
(stored in auxiliary variable Zi = 1 or 0 for signal or noise, resp.). Point yi is
allocated to signal independently of the allocations of all other points. The prior
probability that yi is allocated to signal is given by εi . If the point is signal, then
its location is distributed as outlined in the previous subsection. Otherwise, if the
point is noise, it is distributed uniformly across the window W .

3.4. Total number of points. The total number of points m is assumed to be
Poisson distributed. The mean total number of points μtotal is defined to be equal
to some function of μsignal, the mean number of signal points, and ρ, a parameter
governing the number of noise points. For the sake of simplicity we set ρ to be
the prior assumption on the proportion of the total points that are noise points
and define μtotal = μsignal/(1 − ρ). The mean number of signal points μsignal is
assumed to be proportional to the total sum of the fibre arc lengths. Hence, m is
assumed to be Poisson distributed with mean

μtotal =
(

k∑
j=1

(lj,T )

)
η

1 − ρ
,(1)

where ρ = βsignal/(αsignal + βsignal) is the prior estimate of the proportion of points
that are signal and η is a density parameter.

The assumption that the mean number of noise points is proportional to the
mean total number of points (and the fibre length) is particularly well suited to the
fingerprint example [see Section 6.3], where noise points arise as artifacts of the
pore detection process along the fingerprint ridges. Implementation of alternative
relationships between the mean number of signal and noise points would be a
straightforward matter.

3.5. Priors. In the examples given in the next Section 6 we use the following
priors:

P(l|k,λ) =
k∏

j=1

P(lj,1|λ)P (lj,2|λ) where lj,· ∼ Exp(1/λ),
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P(ω|k) =
k∏

j=1

P(ωj ) where ωj ∼ Uniform(W),

P (k|κ) ∼ Poisson(κ),

P (ε|αsignal, βsignal) =
m∏

i=1

P(εi |αsignal, βsignal)

where εi ∼ Beta(αsignal, βsignal).

Here m is the total number of points in {y1, . . . , ym}.
The above prior models are common, parsimonious choices that appear flexible

enough for a range of applications including the examples considered in Section 6.
However, if application-specific prior information suggests alternative prior mod-
els, then these can be accommodated in the presented framework.

3.6. Posterior. We are interested in the posterior distribution of fibres (and
various other parameters) given a particular instance of the point process. This
posterior is given by

π(F, l,ω, k, υFO, ε,Z,X,p)

= P(F, l,ω, k, υFO, ε,Z,X,p|y)

∝ P(F, l,ω, k, υFO, ε,Z,X,p)
(2)

× L(F, l,ω, k, υFO, ε,Z,X,p|y)

= P(l|k)P (ω|k)P (k)P (υFO)P (ε)P (Z|ε)
× P(X|Z, l)P (p|F,X)L(F, l,ω, k, υFO, ε,Z,X,p|y).

Here P(·) indicates a prior distribution. We omit P(F|l1, l2,ω, υFO), as it is deter-
ministically calculated.

Section 5 describes how to sample from this posterior distribution using Markov
chain Monte Carlo techniques.

3.7. Computational simplifications. Computer implementation makes it nec-
essary to represent the field of orientations by a discrete structure. We adopt the
simple approach of estimating the field of orientations at a dense regular grid of
points over W . Integral curves are calculated stepwise by estimating the orienta-
tion at a point by its value at the nearest evaluated grid point and extending the
curve a small distance in that direction. Note that the choice of direction (from
the two available for each orientation) is made so that the angle between adjacent
linear segments is greater than π/2.

Consequently, fibres are stored as piecewise-linear curves and further calcula-
tions are performed on these approximations. Of course, this discretization can be
arbitrarily reduced (at a computational cost) to improve the accuracy of the ap-
proximation.
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4. Construction of field of orientations. We must of course identify a
method for calculating the field of orientations. It is computationally advantageous
to generate a field of orientations which is likely to contain (be integrated by) fibres
that fit the data well (produce a high likelihood). The most natural way to do this
is to base the calculation of the field of orientations on the data, using an empiri-
cal Bayes technique. The use of empirical Bayes to find the prior for the field of
orientations distribution means that aspects of the prior, or parameters of the prior,
are estimated from the data.

An alternative approach would be to use a fully Bayesian model, where we
would treat the field of orientations as an independent random variable ϒFO. We
would then need to identify its state space and a corresponding σ -algebra, tran-
sition kernel and prior on this state space. These could be derived from random
field theory [see, e.g., Adler and Taylor (2007)], using an appropriate covariance
function to maintain smoothness in the field of orientations, however, there are
a number of issues with this approach. In practice, one may expect the task of
sampling a random field of orientations to be computationally expensive, partic-
ularly if the covariance function does not have a simple form (as is likely in this
model). Calculations relating to the conditional distribution of the field of orien-
tations given the fibres are likely to lead to unfeasible computational complexity.
A further issue is that this approach leads to a huge space of possible fibres, result-
ing in corresponding difficulties in ensuring this space is properly explored. Use
of the information given in the data will help to limit this space to a more easily
explorable restricted class of suitable fields of orientations.

Here we use the data to make local orientation estimates and smooth these to
produce a field of orientations estimator. As we are specifically interested in orien-
tation estimates arising from the signal data, we can choose to weight the contri-
bution of each point to the field of orientations estimator by how likely it is to be
noise or signal.

Estimation of a field of orientations given that y1, . . . , ym are all signal points
is outlined in the following section. Section 4.2 shows how to extend this to take
account of the information given in the vector of probabilities that points are signal
(ε1, ε2, . . . , εm).

4.1. Estimation for all signal points. The mapping and tensor method de-
scribed in Su et al. (2008) [and further discussed in Su (2009)] is applied to the
point pattern to construct a tensor at each point. To this we apply a Gaussian ker-
nel smoothing in the log-Euclidean metric to construct a tensor field. The tensor
field is represented by an assignation to each point of a 2 × 2 nonnegative defi-
nite matrix whose principal eigenvector indicates the dominant orientation at that
point; the relative magnitude of the eigenvalues indicates the strength of the dom-
inant orientation. The field of orientations assigns the orientation of this principal
eigenvector to each respective point. If the principal eigenvector is not unique at
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a certain point (which is to say that the eigenvalues are equal there), then that
indicates a singularity in the field of orientations.

Three-dimensional tensor fields of this kind are commonly used in diffusion
tensor imaging (DTI) to understand brain pathologies such as multiple sclerosis,
schizophrenia and strokes. DTI is used to analyze images of the brain collected
from magnetic resonance imaging (MRI) machines. The MRI scan detects diffu-
sion of water molecules in the brain and uses the data to infer the tissue structure
that limits water flow. The three-dimensional diffusion tensor describes the orien-
tation dependence of the diffusion. Roughly speaking, the eigenvalues indicate a
measure of the proportion of water molecules flowing in the associated eigenvector
direction. For more information on DTI see, for example, Le Bihan et al. (2001)
and Li et al. (2007).

Let y1, . . . , ym denote the spatial data points. A tensor is constructed at a point
yj using a nonlinear transformation applied to the vectors vi = (vi

1, v
i
2) = −−→yjyi for

i �= j [Su et al. (2008), Su (2009)]. Specifically,

ṽi = (ṽi
1, ṽ

i
2) = exp

(
−((vi

1)
2 + (vi

2)
2)

2σ 2
FO

)
(vi

1, v
i
2)√

(vi
1)

2 + (vi
2)

2
,(3)

where σFO is a scaling parameter.
The tensor at yj is then represented by

T0(yj ) = ∑
i �=j

(ṽi
1, ṽ

i
2)

T(ṽi
1, ṽ

i
2).(4)

The result of the above method is to produce a set of 2 × 2 matrices located
over a sparse set of locations. In order to create a field of orientations, we must
then interpolate to get a tensor field. Thus, we use the orientation of the principal
eigenvector, where defined, to construct a field of orientations.

Interpolation of tensors inevitably requires a notion of tensor metric. We elect to
work in the log-Euclidean metric [see Arsigny et al. (2006)]. For an extended ac-
count of tensor metrics see Dryden, Koloydenko and Zhou (2009). Log-Euclidean
calculations are simply Euclidean calculations on the tensor logarithms which are
transformed back to tensor space by taking the exponential. The tensors arising in
this study can all be represented by positive definite matrices. Tensor logarithms
are therefore well defined as logarithms of these matrices. However, the matrix
calculated in (4) will have a zero-eigenvalue if the points are collinear, and there-
fore not be positive definite. If all points are truly collinear, then our approach
breaks down—and indeed the method is not intended for such noise-free data sets.
The more common situation is that one vector ṽi dominates the tensor represen-
tation as calculated in (4) due to the relative distances between points. Typically
this occurs if two points are close while other points are far from the pair. Due to



FIBERS, POINT PROCESSES, FIELDS OF ORIENTATIONS 1005

rounding errors, the contribution of other points to the matrix becomes zero, and
the two remaining points are collinear by definition. In order to avoid an error in
the log-Euclidean calculation, if a tensor has at least one zero-eigenvalue, then it
is replaced by the “uninformative” identity matrix, suggesting a lack of directional
information. Thus, we take a conservative approach that excludes any potentially
misleading directional information.

We calculate the interpolated tensor field ThFO(x) for (x ∈ W) as a kernel
smoothing procedure, using a Gaussian kernel f with variance parameter h2

FO in
the log-Euclidean metric. Hence, when the smoothing parameter hFO is positive,
hFO > 0,

ThFO(x) = exp
(∑

yi∈{y1,...,ym} f (dist(x, yi)) log(T0(yi))∑
yi∈{y1,...,ym} f (dist(x, yi))

)
.(5)

The field of orientations υFO(y1, . . . , ym;hFO)(x) for x ∈ W is then defined to
be equal to tan−1(v1(x)/v2(x)), where (v1(x), v2(x)) is the principal eigenvector
of the matrix representation of ThFO(x).

In most instances this procedure will give a good estimation of a suitable field
of orientations for modeling the point process with integral fibres. The smoothing
method has the drawback that it can create a bias around areas of high curvature
(rapidly varying orientation) in the field of orientations. Potential solutions have
been analyzed and found to perform well. The magnitude of the bias was found to
be proportional to the smoothing parameter hFO, hence, these solutions typically
involve compensating for hFO: we give two examples:

(A) We allow the smoothing parameter to vary over the window, such that lower
values are used in areas of high point intensity. This ensures that less information
is extrapolated to regions where there is already sufficient data, and therefore less
bias occurs in those regions.

(B) We consider two instances of the field of orientations with different val-
ues of smoothing parameter h′

FO and h′′
FO; the unbiased estimate can be found by

extrapolating back to estimate the field of orientations with hFO = 0.

We do not go into further detail here because doing so would distract from the main
ideas in this paper, but we do notice a minor effect of this bias in the examples in
Section 6. Details of these bias corrections can be found in Hill (2011).

4.2. Estimation using signal probabilities. We extend this field of orienta-
tions estimation to take account of the vector of probabilities that points are signal
(ε1, ε2, . . . , εm) by weighting the construction of the initial tensor and also weight-
ing the contribution of each initial tensor to the kernel smoothing.

Specifically, the initial tensors are represented by

T0(yj ) = ∑
i �=j

(ṽi
1, ṽ

i
2)

T(ṽi
1, ṽ

i
2)εi(6)
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for each point yj , and the tensor field becomes

ThFO(x) = exp
(∑

yi∈{y1,...,ym} εif (dist(x, yi)) log(T0(yi))∑
yi∈{y1,...,ym} εif (dist(x, yi))

)
.(7)

This weighting allows points that are more likely to be signal points to have a
greater effect on the field of orientations estimation. As εi → 0 the effect of the
point yi on the field of orientations tends to zero, whereas if εi = 1 for all i we
would be performing the calculation described in Section 4.1.

5. Sampling from the posterior distribution. We seek to infer some char-
acteristics of the fibre process when only the point pattern is known. Typical at-
tributes of interest include the number of fibres, where they are located/orientated,
which points arose from which fibre and which points arose from background
noise.

Direct inference from the model is hindered by the complexity of its hierarchi-
cal structure. Hence, we choose to draw samples from the posterior distribution of
the fibres and other variables using Markov chain Monte Carlo methods. Charac-
teristics of interest can be estimated from these samples.

5.1. Hyperparameters. As a rough guideline, hyperparameters can be chosen
as follows.

The prior mean number of fibres κ and the prior mean length of fibres λ can be
estimated from any prior knowledge or expectations of the fibres. The deviation of
points from fibres σ 2

disp can be estimated using prior knowledge of fibre widths and
the approximation that 95% of points should lie within 2.45σdisp of the center of a
fibre. The density of points per unit length of fibre η can be similarly estimated.

Orientation field parameters hFO and σFO should be chosen to ensure the orien-
tation field is smooth. These can be estimated by evaluating the orientation fields
for different selections of hFO, σFO and choosing from this set. If the proportion of
noise points is approximately known, then the hyperparameters αSignal and βSignal
can be suitably estimated, however, we suggest choosing the parameters such that
αSignal, βSignal > 1 to ensure good mixing properties of the Markov chain Monte
Carlo sampling algorithm. Otherwise the noise hyperparameters can be set equal
to 1, indicating no prior knowledge.

Alternatively, if little prior information is known about the nature of the latent
curvilinear structure, then it would be feasible to extend the empirical Bayes step
to include the estimation of further prior parameters.

5.2. Birth–death Monte Carlo. The starting point for our algorithm is a con-
tinuous time birth–death Markov chain Monte Carlo (BDMCMC) in which fibres
are created and die at random times controlled by predetermined or calculated
rates. This enables exploration of a wide range of models with different numbers
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of fibres, and is suited to this type of clustered data. See Møller and Waagepetersen
(2004) for an introduction to spatial birth–death processes. For the sake of brevity
we present in the following the key points of the algorithm. Further details can be
found in Hill (2011).

Here we choose to fix the birth rate and calculate an appropriate death rate at
each step to maintain detailed balance.

Following a birth or death we update the following auxiliary variables: Z to Z′,
the indicators of the components (signal/noise) to which the points are associated;
X to X′, the indicators of the fibres to which the signal points are associated; p
to p′, the vector (p1, . . . , pm) where pi is the point on the fibre to which the data
point yi is associated.

5.3. Births of fibres. Recall that the parameterization of fibres is described in
Section 2.2. Birth events occur randomly at rate β . Upon the occurrence of a birth,
the number of fibres is updated from k to k + 1, and a new fibre is introduced by
sampling a reference point ωk+1 and lengths lk+1,1, lk+1,2 from the prior distri-
butions P(ω),P (l), respectively. The new fibre Fk+1 is then calculated by inte-
grating the field of orientations according to these parameters, and the set of fibres
F = F1, . . . ,Fk is updated to F′ = F1, . . . ,Fk,Fk+1. In order to ensure that the
distribution of the lengths lk+1,1, lk+1,2 is independent of the respective directions
in which the field of orientations is integrated, we choose them to be independently
and identically distributed.

Data points which are currently assigned to the noise component are reassigned
to noise or signal with proposal probability dependent on the new fibre Qbirth(Z 
→
Z′|Z,ε,Fk+1).

Finally, new values are proposed for all of X,p according to a proposal density
Q(X,p 
→ X′,p′). For simplicity, we choose not to sample from the full condi-
tional distribution of p and X, but rather from a density proportional to the likeli-
hood L(p,X|y).

In full, the birth density of fibre Fk+1 including updates of auxiliary variables
to Z′,X′,p′ is given by

b(Fk+1,ωk+1, l1,k+1, l2,k+1,Z′,X′,p′)
= βP (ωk+1)P (l1,k+1)P (l2,k+1)Qbirth(Z 
→ Z′|Z, ε,Fk+1)(8)

× Q(X,p 
→ X′,p′).

5.4. Deaths of fibres. We must calculate the death rate δj for each fibre to
ensure detailed balance holds. Following the death of fibre Fj , the variables F,ω
and l are updated by omitting the j th term. Further, auxiliary variables Z,X and p
are all updated. All points allocated to fibre Fj are now allocated to noise. We call
this trivial proposal density Qdeath(Z′|Z,X, j). Again the final step is to propose
new values for all of X and p according to proposal density Q(X,p 
→ X′,p′).
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Hence, the death rate that satisfies detailed balance for the j th fibre is given by

δj = P(l1 \ l1,j , l2 \ l2,j |k − 1)

P (L1,L2|k)

P (ω \ ωj |k − 1)

P (ω|k)

P (k − 1)

P (k)

× b(Fj ,ωj , l1,j , l2,j ,Z′,X′,p′)
Qdeath(Z′|Z,X, j)Q(X,p 
→ X′,p′)

(9)

= P(k − 1)

P (k)

βQbirth(Z′ 
→ Z|ε,Fj )Q(X′,p′ 
→ X,p)

Qdeath(Z′|Z,X, j)Q(X,p 
→ X′,p′)
.

5.5. Additional moves. It can be desirable to add extra moves to the BDM-
CMC process to improve mixing. Some possible moves which were all utilized in
the examples in Section 6 include the following:

• moving a fibre by a small amount (by perturbing the reference point),
• resampling the lengths of a fibre (while keeping the reference point fixed).

Each of these events occur at some predefined rate, whence they are proposed and
either accepted or rejected according to the Metropolis Hastings probability.

We may also wish to update other model variables, giving more flexibility and
improving the algorithm’s exploration of the sample space. The additional variable
updates used in the examples in Section 6 include the following:

• proposing new signal-noise allocations of the data (Z),
• proposing new signal probabilities (ε) according to nondegenerate Beta distri-

butions whose parameters depend on the current signal- noise allocations Z.
This move leads to an update in the prior for the field of orientations due to the
empirical Bayes step, hence, all fibres are resampled.

Details of all moves can be found in Hill (2011).
Hyperprior parameters, such as the constant of proportionality η in the prior for

the Poisson-distributed number of points or σdisp governing the deviation of points
from fibres, may also be updated. We have chosen not to update any hyperprior
parameters to reduce complexity of the model.

5.6. Convergence and output analysis. First recall that the signal probabilities
ε are updated according to nonsingular Beta distributions. Hence, the underlying
tensor field as defined in (7) will not become degenerate even when Z allocates all
points to noise.

Consider the set A of states in which the fibre configuration is empty and all
points are allocated to noise. In the following discussion we exclude any degener-
ate states of equilibrium probability zero. Inspection of the algorithm shows that
the set A can be reached from any nondegenerate state in finite time and so the
birth–death process is φ-irreducible. Recurrence can be deduced by noting that the
set A is visited infinitely often; see Kaspi and Mandelbaum (1994).
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We motivate a heuristic lower bound on a suitable burn-in time by considering
aspects of the prior derived after inspection of the data (e.g., σdisp, λ, κ—see Sec-
tion 5.1), and estimating the number of fibre births that must occur before a fibre
has been created around each potential fibre cluster. We approximate the lower
bound by considering the number of fibre births required for this to happen around
the smallest suitable cluster of points.

A lower bound on half the length of the shortest suitable cluster is derived from
the 10% quantile of an exponentially distributed random variable of rate κ/λ. Then
the probability that a point chosen at random from W lies in a region corresponding
to an actual fibre of this length (up to 2σdisp from the fibre) is approximated by

8λ log(10/9)σdisp

κ|W | .(10)

It follows that, with probability 0.99, a fibre will be proposed in the region corre-
sponding to the shortest fibre within the first

log(0.01)

log(1 − 8λ log(10/9)σdisp/(κ|W |))(11)

births. Hence, we choose a burn-in time of

Tburn = max
{

1500,
log(0.01)

β log(1 − 8λ log(10/9)σdisp/(κ|W |))
}
,(12)

taking 1500 as a lower bound to ensure the burn-in time remains substantial.
Convergence was assessed by considering variables such as the number of fibres

k or the number of noise points and using Geweke’s spectral density diagnostic; see
Brooks and Roberts (1998). Convergence of a sequence of n samples is rejected if
the mean value of the variable in the first n/10 samples is not sufficiently similar
to the mean value over the last n/2 samples.

We also tested convergence by assessing whether the mean sum of the death
rates is approximately equal to the birth rate β . Consider δk

totalt
k where δk

total is the
sum of the death rates of fibres after the kth event (e.g., birth, death, etc.) and tk

is the length of algorithmic time before the next event. If the MCMC has reached
stationarity, then

Zm =
∑m

k=1 δk
totalt

k − mβ/(2β + radd)

σδtotalt

√
m

D→ N(0,1),(13)

where σδtotalt is an estimate of the standard deviation of δk
totalt

k , β is the birth
rate of fibres, and radd is the sum of the rates of any additional moves imple-
mented (as suggested in Section 5.5). We used this result to test the convergence
of 1/m

∑m
k=1 δk

totalt
k to β/(2β + radd).

Bearing in mind the complexities of the underlying model, output analysis
showed no evidence for a lack of convergence.
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Outputs of various variables are recorded at random times at some constant rate.
The rate of this sampling (effectively the reciprocal of the thinning of the Monte
Carlo process) is chosen such that there is a low probability that any of the fibres
remain unchanged between samples. The inclusion of the extra moves designed
to improve mixing also helps to decrease the thinning required. The thinning is
chosen approximately proportional to the number of fibres (estimated based on
aspects of priors derived from inspection of the data).

6. Simulation studies and applications. The implemented algorithm runs on
a continuous time scale. Events occur at a determined rate, either fixed or calcu-
lated to ensure that detailed balance holds. The units for the rate of an event are
“per unit of algorithm time.” The BDMCMC is then allowed to run for a large
number of time units and samples are taken at random times (at some fixed rate).
Of course, the relationship of algorithm time to actual processing time depends on
hardware and implementation details. Hardware details are described below.

In each of the following examples, the birth rate and the rate of other moves
(moving a fibre, adjusting lengths of a fibre, proposing a split or a join, variable
updates) were all unit rate. The only exceptions were the signal probability (ε)
updates which were proposed at a rate of 0.1 per unit of time, and the recording of
output variables at random times whose rate varied for different data sets.

We evaluate the field of orientations over a square grid of points, each one unit
length from its four nearest neighbors. The total size of this grid is given by the
dimensions of the window W .

All three examples were run on the cluster owned by the Statistics Department
in the University of Warwick using a Dell PowerEdge 1950 server with a 3.16 GHz
Intel Xeon Harpertown (X5460) processor and 16 GB fully-buffered RAM. The
algorithm was implemented in Octave version 3.2.4.1 The total run-times on the
cluster ranged from 34.7 hours for the fingerprint pore data (32,300 units of algo-
rithm time) to 61.3 hours for the earthquake data set (30,000 units of algorithm
time). Due to the limitations of the current version of Octave, the benefits of a
parallel implementation have not yet been explored.

Analysis has been performed on all four of the data sets shown in Figure 1.
However, for the sake of brevity, we omit discussion of results for the first simu-
lated point pattern [Figure 1(a)] from this paper.

6.1. Simulated example. Figure 4(a) shows the simulated data set used in
Stanford and Raftery (2000). We include it here to facilitate comparison with the
methods proposed by Stanford and Raftery. The data consists of 200 signal points
and 200 noise points over a 200 × 150 window, and is based on a family of two
fibres each of length 157.

1The Octave code for this algorithm is available at URL http://www2.warwick.ac.uk/go/ethonnes/
fibres.

http://www2.warwick.ac.uk/go/ethonnes/fibres
http://www2.warwick.ac.uk/go/ethonnes/fibres
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(a) (b)

(c) (d)

FIG. 4. Simulated example from Stanford and Raftery (2000). (a) Simulated data. (b) A random
sample from the BDMCMC output. Fibres are represented by curves, pluses indicate points allocated
to signal and crosses indicate points allocated to noise in this sample. (c) Estimate of the density of
signal points found by smoothing a series of samples of fibres (darker areas indicate higher den-
sities). Pluses indicate points allocated to signal and crosses indicate points allocated to noise in
at least 50% of samples. The size of points representing the data has been reduced to enhance the
clarity of the density estimate. (d) Estimate of the clustering of the signal points—different symbols
indicate different clusters, crosses indicate noise. Estimated by considering how often pairs of points
are associated with the same fibre across a number of samples.

The birth–death MCMC was run for 60,000 units of algorithm time, the first
30,000 of which were discarded. Samples were taken at a rate of 0.033 per unit of
time. The initial state was a randomly sampled set of κ = 2 fibres. Other hyperpa-
rameters were chosen as follows: dispersion parameter σdisp = 3; signal probabil-
ity hyperparameters αsignal = 1 and βsignal = 1; density parameter η = 0.64; mean
half-fibre length λ = 78.5; and the Dirichlet parameter αDir = 1.5.

Figure 4(b)–(d) shows that our model fits the data very well, albeit with a slight
extrapolation of fibres beyond the curves used to generate the data set. The two
fibres in the sample in Figure 4(b) compare favorably with the principal curves
fitted in Stanford and Raftery (2000).

Table 1 gives the posterior probabilities of the number of fibres and the means
and highest posterior density intervals of a variety of properties conditional on the
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number of fibres. The number of fibres is simply a count of the fibres present in
each sample; in this example we expect it to be around 2. The number of points
assigned to the noise component will typically be closely correlated with the num-
ber of fibres. With more fibres comes a greater chance of there being a fibre close
to a given point and hence a greater chance that it is a signal point. We take the
95th percentile of the distances of signal points from their associated points on
fibres for each sample. This summarizes the dispersion of points from the fibres.
It is comparable to 2.45σdisp, where σdisp is the dispersion parameter (set to 3 in
this example). The constant 2.45 arises as the 95th percentile of the Euclidean dis-
tance from the origin to a bivariate standard-normal distributed random variable.
The curvature bias in the field of orientations results in a mild bias on the 95th
percentile of distances from signal points to anchor points.

In this example, less points are associated to noise than were simulated as noise
points in the data generation. This is partly due to the high intensity of noise points,
and also explained by a slight bias in the length of the fibres. The posterior statistics
on the lengths of the fibres suggest that the extension of fibres beyond their known
length (of 157) is supported by the high intensity of noise points. This extrapolation
is sometimes beneficial, particularly for fibre reconstruction in areas of missing
data. Here the extrapolation is less desirable, as it suggests there is evidence for
fibres in the background noise.

The extrapolation of fibres into less dense regions of points can be reduced by
choosing a higher Dirichlet parameter αDir for the distribution of anchor points
along the fibres. This decreases the posterior density of fibres lying through point
clusters of nonconstant intensity. The drawback of increasing αDir is that a large
value of αDir leads to a multimodal anchor point distribution with most of the
probability mass concentrated at the modes. As the proposal of a birth/change of a
fibre does not take account of the shape of anchor point distribution, the proposal
of a state with low posterior density is more likely for larger αDir.

6.2. Application: Earthquakes on the new Madrid fault line. The epicenters
of earthquakes along seismic faults are a good example of point data clustered
around a system of fibres with additional background noise. Here the fibres are the
unknown fault lines. Stanford and Raftery (2000) consider the structure of the data
set of earthquakes around the New Madrid fault line in central USA. We use data
on earthquakes in the New Madrid region between 1st Jan 2006 and 3rd Aug 2008
(inclusive) taken from the CERI (Center for Earthquake Research and Information)
found at http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html.

The birth–death MCMC was run for 40,000 units of algorithm time, the first
10,000 of which were discarded. Samples were taken at a rate of 0.0167 per unit
of time. The initial state was a randomly sampled set of κ = 4 fibres. Other hyper-
parameters were chosen as follows: dispersion parameter σdisp = 2; signal prob-
ability hyperparameters αsignal = 4 and βsignal = 1; density parameter η = 1.06;
mean half-fibre length λ = 30; and the Dirichlet parameter αDir = 1.5.

http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html
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TABLE 1
Results for Stanford and Raftery’s simulated example: first sub-table gives posterior probabilities on

the number of fibres, while the second gives posterior means and 50% and 95% HPD (highest
posterior density) intervals for a selection of properties of the posterior distribution conditional on
the number of fibres. The simulated data consists of 200 signal points and 200 noise points over a

200 × 150 window, and is based on a family of two fibres each of length 157. The dispersion
parameter σdisp is set to 3 and the prior mean probability that a point is noise is 0.5.

Posterior probabilities only given if nonzero to rounding error

Posterior probabilities for number of fibres

Number of fibres 2 3 4
Posterior probability 0.73 0.23 0.04

Other properties conditioned on the number of fibres

Number of Posterior 50% HPD 95% HPD
fibres mean interval interval

Number of noise points 2 181.85 [176,193] [156,205]
3 180.81 [179,197] [149,201]
4 178.78 [167,184] [155,197]

95th percentile of the distances 2 8.16 [7.17,8.32] [6.64,9.66]
from signal points to fibres 3 8.06 [7.28,8.27] [6.61,9.53]

4 7.95 [7.20,7.91] [6.75,9.50]
Total length of fibres 2 317.68 [319,325] [301,325]

3 319.60 [315,322] [300,342]
4 320.10 [325,303] [303,325]

Table 2 gives some numerical properties of the posterior distribution of fibres.
Our method has the advantage over Stanford and Raftery (2000), in that it does

not try to over-fit the fibres where there is less data. Rather it uses information from
surrounding data to extrapolate fibres as required. One limitation of our model is
that every fibre is assumed to share a number of properties. In particular, the dis-
placement of points from fibres (effectively the width of influence of a fibre) and
the intensity of signal points per unit length of fibre are assumed to be constant,
independent of the fibre. These assumptions are not reasonable for this data as
the “thickness” and density of points varies considerably. This is apparent in Fig-
ure 5(b) where the central dense cluster is described by multiple parallel fibres.
The dispersion parameter σdisp was chosen by considering the apparent “width” of
the longer thinner fibre, hence, points around the shorter, wider fibre effectively
increase the 95th percentile of the point to fibre distances, as given in Table 2. To
overcome this issue, one could extend the model to allow different hyperparame-
ters for each fibre.
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TABLE 2
Results for earthquake data: first sub-table gives posterior probabilities on the number of fibres,

while the second gives posterior means and 50% and 95% HPD (highest posterior density)
intervals for a selection of properties of the posterior distribution conditional on the number of

fibres. The data are all the recorded earthquakes in the New Madrid region between 1st Jan 2006
and 3rd Aug 2008; the data were acquired from the CERI (Center for Earthquake Research and

Information) found at http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html. In total there
are 317 points in a 300 × 300 window, the dispersion parameter σdisp is set to 2 and the prior mean
probability that a point is noise is 0.2. Posterior probabilities only given if nonzero to rounding error

Posterior probabilities for number of fibres

Number of fibres 6 7 8
Posterior probability 0.56 0.36 0.07

Other properties conditioned on the number of fibres

Number of Posterior 50% HPD 95% HPD
fibres mean interval interval

Number of noise points 6 42.99 [41,44] [38,48]
7 40.65 [38,41] [36,45]
8 42.06 [42,44] [35,45]

95th percentile of the distances 6 5.25 [4.94,5.19] [4.96,5.60]
from signal points to fibres 7 5.29 [5.12,5.40] [4.85,5.89]

8 5.17 [4.94,5.22] [4.74,5.65]
Total length of fibres 6 257.24 [247,257] [246,269]

7 257.43 [257,262] [249,264]
8 252.89 [250,252] [248,265]

While multiple fibres in the central cluster is a common feature in samples from
this BDMCMC, Figure 5(d) indicates that the agglomerative clustering algorithm
identifies the points as arising from the same cluster.

Interestingly, the total length of fibres does not appear to be positively correlated
to the number of fibres, suggesting that the additional fibres arise from splitting a
fibre into multiple parts while preserving the total fibre length.

6.3. Application: Fingerprint data. The second application we consider is that
of pores lying along ridge lines in fingerprints. Fingerprint pore data is considered
in some depth in Su et al. (2008) and Su (2009).

We used a portion of the data set extracted from fingerprint a002–05 from
the NIST (National Institute of Standards and Technology) Special Database 30
[Watson (2001)].

The birth–death MCMC was run for 40,000 units of algorithm time, the first
8000 of which were discarded. Samples were taken at a rate of 0.007 per unit of
time. The initial state was a randomly sampled set of κ = 10 fibres.

http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html
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(a) (b)

(c) (d)

FIG. 5. New Madrid fault earthquake data. (a) Earthquake data. (b) A random sample from the
BDMCMC output. Fibres are represented by curves, pluses indicate points allocated to signal and
crosses indicate points allocated to noise in this sample. (c) Estimate of the density of signal points
found by smoothing a series of samples of fibres (darker areas indicate higher densities). Pluses
indicate points allocated to signal in at least 50% of samples. The size of points representing the
data has been reduced to enhance the clarity of the density estimate. (d) Estimate of the clustering of
the signal points—different symbols indicate different clusters, crosses indicate noise. Estimated by
considering how often pairs of points are associated with the same fibre across a number of samples.

The fingerprint pore data will typically cause breakdown of nearest neighbor
clustering methods. This is because, while the fibrous structure of the point pattern
is clear when viewing the global picture, it is not so apparent on a small scale. This
phenomena is partly due to the apparent inter-ridge alignment of points [from left
to right in Figure 6(a)]. By way of contrast, our field of orientations model takes
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(a) (b)

(c) (d)

FIG. 6. Pores from portion of fingerprint a002–05 from the NIST Special Database 30 [Watson
(2001)]. (a) Pore data. (b) A random sample from the BDMCMC output. Fibres are represented by
curves, pluses indicate points allocated to signal and crosses indicate points allocated to noise in
this sample. (c) Estimate of the density of signal points found by smoothing a series of samples of
fibres (darker areas indicate higher densities). The size of points representing the data has been
reduced to enhance the clarity of the density estimate. (d) Estimate of the clustering of the signal
points—different symbols indicate different clusters, crosses indicate noise. Estimated by considering
how often pairs of points are associated with the same fibre across a number of samples.

any information available on a small scale and uses it across the window, thanks to
the smoothing step in the field of orientations.

As Figure 6 shows, our model succeeds in fitting many of the fibres (or fin-
gerprint ridges) to the pore data. Figure 6(c) indicates areas of doubt in the fibre
locations where the shading is lighter near the edges of the window, showing that
fibre samples were more dispersed.

This data set is an ideal candidate for reconstruction of missing data. We work
under the assumptions that pores lie at fairly regularly intervals along ridges, but
some are not identified during the pore extraction process. Our method uses in-
formation from nearby ridges to complete fibres where data is missing. In this
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TABLE 3
Fingerprint Pore Data Set: Posterior means and 50% and 95% credible intervals of a selection of

properties of the posterior distribution conditional on the number of fibres. The data was extracted
from a portion of fingerprint a002–05 from the NIST (National Institute of Standards

and Technology) Special Database 30 [Watson (2001)]. It consists of 123 points
on a 100 × 100 window. A dispersion parameter of σdisp = 1.5 is used, and the mean

prior probability a point is noise is 0.091. Posterior probabilities
only given if nonzero to rounding error

Posterior probabilities for number of fibres

Number of fibres 13 14 15 16 17 18 19 20
Posterior probability 0.03 0.11 0.17 0.17 0.25 0.11 0.09 0.05

Other properties conditioned on the number of fibres

Number of Posterior 50% HPD 95% HPD
fibres k mean interval interval

Number of noise points 14 14.45 [14,16] [9,18]
15 15.71 [12,15] [12,21]
16 15.00 [12,17] [8,21]
17 18.86 [16,19] [16,23]
18 16.08 [15,18] [10,25]

95th percentile 14 3.76 [3.74,3.82] [3.25,4.22]
of the distances 15 3.68 [3.52,3.69] [3.32,4.77]
from signal points 16 3.56 [2.34,3.52] [3.34,3.89]
to fibres 17 3.58 [3.38,3.64] [3.23,3.95]

18 3.67 [3.44,3.75] [3.24,4.38]
Total length of fibres 14 862.18 [861,883] [785,964]

15 882.38 [872,933] [818,966]
16 864.75 [836,886] [784,927]
17 814.43 [788,804] [788,878]
18 861.76 [821,876] [761,941]

example this is particularly evident in the region below the center of the window.
Knowledge of the posterior distribution of fibres could lead to a “filling in the
gaps” approach to reconstructing the missing pore data.

Table 3 gives some numerical properties of the posterior distribution of fibres.

7. Discussion. In this paper we have identified a new model for fibre pro-
cesses and for point processes generated from a fibre process. We have shown how
Monte Carlo methods can be used to sample from the posterior distribution of a
fibre process that is instrumental in generating a point process.

Many different data sets of this type arise in nature. We investigated earthquakes
that cluster around fault lines and pores in fingerprints that are situated along the
fingerprint ridges. Other data can be found in catalogues of galaxies in the vis-
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ible universe. Galaxies are known to align themselves along “cosmic” filaments
which, in turn, connect to form a web-like structure. Understanding these fibres
and identifying where they lie is of great interest to cosmologists; see, for exam-
ple, Martínez and Saar (2002) for a statistical overview of some current ideas and
also Stoica, Martínez and Saar (2007) for a different approach to modeling the fil-
ament structure. Other data sets for which this model may be suitable include the
locations of land mines, often placed in straight lines. Identifying these lines may
aid in the discovery of currently undetected mines. Similar methods of detecting
structure in noisy pictures are a prominent area of research in image recognition.

This process can be used to fit nonparametric curves to point patterns with just
two limitations on the nature of the curves. The limitations are that the curves must
not intersect, and that they must be “sufficiently” smooth (i.e., there must be no
acute angles in the discretization of the fibres). The smoothness property is desir-
able to identify smooth curves rather than complex structures. The nonintersection
property may be less desirable but, at some computational cost, the model could
be generalized to allow each fibre to integrate a different field of orientations.

We do not make use of a deterministic algorithm (such as the EM-algorithm)
to fit the fibres, and our approach is not highly sensitive to the choice of starting
parameters. Therefore, it can be used to provide interval estimates for various pa-
rameters. One of the most sensitive parameters fixed in the algorithm is σ 2

disp which
governs the deviation of points from the fibres. If chosen too large, the result will
be too few fibres with a sizeable error in their locations. If chosen too small, fibre
clusters may be split into multiple parallel smaller clusters. Our experience is that
the algorithm is reasonably robust to changes in other parameters.

One strength of our model is that it fits the noise-signal and cluster allocations
implicitly, in contrast to other cases where the clustering may need to be predeter-
mined. The advantage is that we can produce reliability estimates for these clus-
tering and noise allocations and explore more potential clustering configurations,
and hence more fibre structures.

A limitation of our model arises from the constraints on the similarity of fibres.
Fibres are assumed to be of the same width (the displacement of points from the
fibres is independent of the fibre), and have the same mean points per unit fibre
length. These are not always reasonable assumptions, as is evidenced by the earth-
quake data set. We could extend the model to allow parameters σ 2

disp and η to take
different values for each fibre in order to eliminate this issue. A further extension
would be to include isotropic clusters of points which do not fit well to the “fibre”
model.

The complexity of the model, considering the infinite dimensionality of the field
of orientations, raises the question of whether or not the Markov chain adequately
explores the sample space. Our examples indicate that, while the sample space of
fields of orientations is not explored particularly well, the space of fibre configura-
tions is well explored and the field of orientations varies enough to explore a wide
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space of fibre configurations. However, as the density of fibres increases, so the
MCMC algorithm requires longer runtime in order to overcome these issues.

Note that while our model performs as well as other available techniques on the
basic data sets, it demonstrates significantly better performance on the fingerprint
data where a large number of dense fibre clusters account for most of the data.

It is necessary to bear in mind the ramifications of edge effects in the model
and subsequently the MCMC algorithm. As we are sampling from a bounded sub-
set W ⊆ R

2, the omission of potential points just outside W induces a bias on
distance-related measures. The field of orientations will have a bias at the edge
favoring orientations parallel to the sides of a rectangular window W . Fibres are
created by sampling a random reference point from the field and integrating the
field of orientations from that point. However, the reference point cannot be sam-
pled from outside W , and fibres that extend past the boundary of W are typically
terminated on the border as no field of orientations is available past that point.
Also, the model for the displacement of points from fibres does not account for
edge effects. Most of these algorithmic biases would be significantly decreased
by creating a border around W and completing the analysis over the whole area.
However, this would come at an additional computational cost.

We have commented in passing on the phenomenon of curvature bias and its ef-
fects on the estimation of parameters, and we note this as a fruitful area for future
research. Further research possibilities include the fitting of two-dimensional sur-
faces in 3 dimensions. Then new geometric issues need to be taken into account;
for example, it is not the case that a generic field of tangent planes can be devel-
oped into a fibration by surfaces. It is hoped to investigate this problem in further
work.
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