
The Annals of Applied Statistics
2012, Vol. 6, No. 2, 497–520
DOI: 10.1214/11-AOAS526
© Institute of Mathematical Statistics, 2012

A BAYESIAN MODEL AVERAGING APPROACH FOR
OBSERVATIONAL GENE EXPRESSION STUDIES

BY XI KATHY ZHOU1, FEI LIU2 AND ANDREW J. DANNENBERG3

Weill Medical College of Cornell University, IBM Watson Research Center and
Weill Medical College of Cornell University

Identifying differentially expressed (DE) genes associated with a sample
characteristic is the primary objective of many microarray studies. As more
and more studies are carried out with observational rather than well controlled
experimental samples, it becomes important to evaluate and properly control
the impact of sample heterogeneity on DE gene finding. Typical methods for
identifying DE genes require ranking all the genes according to a preselected
statistic based on a single model for two or more group comparisons, with or
without adjustment for other covariates. Such single model approaches un-
avoidably result in model misspecification, which can lead to increased error
due to bias for some genes and reduced efficiency for the others. We evaluated
the impact of model misspecification from such approaches on detecting DE
genes and identified parameters that affect the magnitude of impact. To prop-
erly control for sample heterogeneity and to provide a flexible and coherent
framework for identifying simultaneously DE genes associated with a sin-
gle or multiple sample characteristics and/or their interactions, we proposed
a Bayesian model averaging approach which corrects the model misspecifi-
cation by averaging over model space formed by all relevant covariates. An
empirical approach is suggested for specifying prior model probabilities. We
demonstrated through simulated microarray data that this approach resulted
in improved performance in DE gene identification compared to the single
model approaches. The flexibility of this approach is demonstrated through
our analysis of data from two observational microarray studies.

1. Introduction. In recent years, as the rapid advances in biotechnology have
markedly driven down the cost of microarray experiments, more and more large
scale studies are carried out with heterogeneous samples, conveniently collected
from subjects of different phenotypic characteristics and exposure histories. Such
microarray studies are considered observational rather than experimental in na-
ture [Potter (2003)] because the effects of confounding or correlation in covariates
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need to be properly handled. The sample complexity of such studies presents both
opportunities and challenges to the analysis. Considering the differential gene ex-
pression studies, with multifaceted sample characteristics, one may explore more
complex questions that are not possible with a more homogeneous sample such as
the identification of differentially expressed (DE) genes associated with not just
one sample characteristic but multiple characteristics and/or their interactions. For
example, Boyle et al. (2010) investigated DE genes associated with smoking as
well as smoking × gender interaction. In another study involving smokers and
never smokers [Carolan et al. (2008)], microarray data were obtained for an unbal-
anced lung airway epithelium sample involving different tissue sites from subjects
of different gender, age and ethnicity. An interesting question is to identify DE
genes associated with either a single or multiple sample characteristics. To address
these questions, one needs to quantify the strength of association between the ex-
pression of each gene and a set of sample characteristics. This differs from the
gene set enrichment analysis [Efron and Tibshirani (2007); Efron (2010)], where
the interest is to quantify the strength of association between a set of genes and a
single sample characteristic. Direct application of currently available approaches
to these questions does not provide a coherent solution and has clear limitations.

Methods for identifying DE genes are typically based on the ranking of statis-
tics for between group differences associated with one sample characteristic (also
known as a factor or a covariate), such as the t-, F -statistics, their nonparamet-
ric counterparts, their modified forms, or the Bayesian versions [see Jeffery, Hig-
gins and Culhane (2006) for an excellent review of the various approaches]. These
methods are suited for well controlled experiments. Their lack of control for con-
founding factors attracts increasing concern when applied to observational mi-
croarray studies [Potter (2003); Webb et al. (2007); Troester, Millikan and Perou
(2009)]. With observational samples, the results may be confounded by a variety
of sample characteristics, such as age, sex, genetic profile, exposure and treatment
history, etc., which can lead to an increased number of false discoveries. Recent
studies by Scheid and Spang (2007) and Leek and Storey (2007) suggested that
hidden traces of unknown confounders may exist in DE gene studies and that
ranking statistics need to be adjusted accordingly. To account for the effects of
possible confounders, several approaches have been adapted from traditional ob-
servational studies and applied to microarray data [Smyth (2004); Hummel, Meis-
ter and Mansmann (2008)], including adjustment via multiple regression on known
confounders or on surrogate variables for unknown confounders [Leek and Storey
(2007)], or via a matched study design [Heller, Manduchi and Small (2009)].

Regardless of covariate adjustment, the aforementioned approaches rank the
genes based on the effect sizes estimated using the same model, that is, a model
with the same structure and same set of covariates, for all genes. Such a single
model approach can be problematic for high-dimensional microarray data because
different genes may be involved in different biological processes and their expres-
sion may be affected by different sets of covariates. More specifically, as shown in
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Section 2, such an approach leads to model misspecification for a certain propor-
tion of the genes and does not offer the same level of accuracy and efficiency for
the effect size estimation for genes under investigation.

To avoid model misspecification in microarray data analysis, an ideal solution
could be to apply different models to different sets of genes whereby each model
contains only the set of covariates relevant to the genes it is describing. Identi-
fying appropriate models for different sets of genes can be challenging because
model uncertainty makes it difficult to identify a single best model. The Bayesian
model averaging (BMA) approach offers an attractive alternative solution to this
problem. Hoeting et al. (1999) provides a review of this approach in more tradi-
tional settings. In recent years, BMA approaches have been developed to handle
various problems involving high throughput genetic data. For example, they were
used to improve the assessment of candidate gene effects in the genome-wide as-
sociation studies [Wu et al. (2010); Xu, Craiu and Sun (2011)] and to improve
sample classification using gene expression microarray data [Yeung, Bumgarner
and Raftery (2005)]. They have also been shown to improve the DE gene detec-
tion in settings where the microarray data involved two different distributional
assumptions [Sebastiani, Xie and Ramoni (2006)] or were from different sources
[Conlon, Song and Liu (2006)]. All these approaches are computationally expen-
sive, as MCMC simulation is used to obtain estimates of model parameters. In this
study, we propose a BMA approach for observational microarray studies based on
linear regression models. It does not require MCMC simulations for estimating
model parameters and offers a flexible and coherent framework to identify simul-
taneously DE genes associated with a single factor, multiple factors and/or their
interactions.

In the next section we discuss limitations of single model approaches. In partic-
ular, we evaluate the impact of model misspecification from such approaches on
DE gene finding. We also identify parameters that affect the magnitude of impact.
In Section 3 we propose to find DE genes with a BMA approach that properly
controls for sample heterogeneity and model uncertainty. In Section 4 we compare
the performances of ranking statistics based on a simple model, a complex model
and the BMA approach in simulated microarray studies. Section 5 concludes with
applications of BMA to two existing microarray data sets. Our analysis supports
the utility of the BMA method as a useful tool for capturing and quantifying the
complex relationship between gene expression patterns and sample characteristics
in observational microarray studies.

2. Limitation of the single model approaches. In this section we consider
a general framework to describe gene expression variations in microarrays. Under
this framework, we argue that the single model approaches to DE gene detection
are overly simplified and subjected to the impact of model misspecification, for ex-
ample, the omission of relevant covariates when a simple model is used and the in-
clusion of irrelevant covariates when a complex model is used. The consequences
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of such model misspecification have been discussed extensively in the linear re-
gression setting [Rao (1971, 1973); Rosenberg and Levy (1972)]. The implication
of these results, however, has not been fully investigated in DE gene studies. In
this section we evaluate the consequences of model misspecification from the sin-
gle model approaches on performance measures often used in DE gene studies,
including the false discovery rate (FDR) and sensitivity. We conclude this section
with a summary of the main results.

2.1. Notation. We consider an observational microarray study which aims to
identify DE genes associated with different values of a factor X1, for example,
cigarette smoking exposure. Expression profiles of J genes are obtained for n

subjects with different values of X1. Without loss of generality, a typical model
for identifying X1 related DE genes can be written as

yij = β0j + β1j x1i + · · · + βkjxki + ηij(2.1)

or

yij = α0j + α1j x1i + · · · + αkjxki + α(k+1)j x(k+1)i + εij ,(2.2)

where yij is the normalized and typically log-transformed expression level of gene
j in subject i; x1i is the factor level for X1 in subject i; x2i , . . . , xki are levels for
other factors, denoted by X2, . . . ,Xk , that affect the expression of all the genes, for
example, experimental parameters involved in the microarray experiments; x(k+1)i

is the level of a potential confounding factor Xk+1, for example, gender, age, race,
alcohol exposure, etc.; ηij and εij denote normally distributed random errors.

To identify DE genes related to X1, p-values based on t-statistic of estimate of
either β1j or α1j can be used as the ranking statistics. If model (2.1) is used, the
relevant t-statistic for gene j is tM1,1j = β̂1j /sd(β̂1j ), where β̂1j is the least square
estimate of β1j . If model (2.2) is used, the t-statistic for gene j is calculated as
tM2,1j = α̂1j /sd(α̂1j ). It can be shown that the two statistics are related as follows:

tM1,1j = S1·23···k
S1·23···k+1

tM2,1j + S−2
k+1·1···kbk+1,1e

T
k+1Yj

sd(β̂1j )
,(2.3)

where S2
k+1·1···k , bk+1 and ek+1 are the residual sum of squares, least square param-

eter estimates and residual, respectively, from the following auxiliary regression
equation:

Xk+1 = Xbk+1 + ek+1,(2.4)

where X = (X1, . . . ,Xk). S2
1·23···k.k+1 is the residual sum of squares for the auxil-

iary regression with X1 as the outcome and X2, . . . ,Xk+1 as the covariates.
For an observational microarray study, such single model approach with or with-

out covariate adjustment has an intrinsic limitation, that is, neither model can be
the true model for all the genes. For the aforementioned hypothetical microarray
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study, model (2.1) is the true model only for genes not related to Xk+1 (Xk+1
null genes, or M1 genes), and model (2.2) is the true model only for genes related
to Xk+1 (Xk+1 DE genes, or M2 genes). Based on these considerations, a multi-
model approach that uses p-values of tM1,1· to rank the M1 genes and p-values of
tM2,1· to rank the M2 genes is preferable.

The performance difference between the single model and the multi-model ap-
proaches can be compared by utilizing the relationship between the two t-statistics.
Let F1(t) and F2(t) be the density distributions of the ranking statistics tM1,1· and
tM2,1·, respectively. Under the multi-model approach, the density distribution of
the ranking statistics can be written as

F(t) = (1 − f )F1(t) + f F2(t),

where f is the proportion of M2 genes. F1(t) and F2(t) can further be written as

F1(t) = (1 − p1)F10(t) + p1F11(t),

F2(t) = (1 − p2)F20(t) + p2F21(t),

where p1 and p2 are the proportions of DE genes in M1 and M2 genes, F·0(t) and
F·1(t) are distributions of the test statistic for the null and DE genes, respectively.
For a given cutoff c > 0, the false discovery rate and sensitivity can be calculated
as

FDR(c) = (1 − f )(1 − p1)[1 − F10(c)]
(1 − f )[1 − F1(c)] + f [1 − F2(c)]

(2.5)

+ f (1 − p2)[1 − F20(c)]
(1 − f )[1 − F1(c)] + f [1 − F2(c)]

and

S(c) = 2(1 − f )p1[1 − F11(c)] + 2fp2[1 − F21(c)].
We discuss the impact of the two single model approaches on the FDR and sensi-
tivity separately.

2.2. Single model without covariate adjustment. When model (2.1) is used,
the FDR can be written as

FDRM1(c) = (1 − f )(1 − p1)[1 − F10(c)]
(1 − f )[1 − F1(c)] + f [1 − F

M1
2 (c)]

+ f (1 − p2)[1 − F
M1
20 (c)]

(1 − f )[1 − F1(c)] + f [1 − F
M1
2 (c)] .

The sensitivity can be written as

SM1(c) = 2(1 − f )p1[1 − F11(c)] + 2fp2[1 − F
M1
21 (c)].
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Superscript M1 is used to denote that the distribution of t-statistic is derived from
model (2.1), which is misspecified for the M2 genes because of omitting relevant
covariate Xk+1.

Omission of relevant covariate leads to bias in the model parameter estimates
[Rao (1971)]. Specifically, the bias can be written as

Bias(β̂1j ) = E(S−2
k+1·1···kbk+1,1e

T
k+1Yj ) = αk+1,j · bk+1,1,(2.6)

where bk+1,1.23···k is the least square estimate of the parameter associated with X1
in the auxiliary regression (2.4). Therefore, we have for the M2 gene j

E(tM1,1j ) ≈ S1·23···k
S1·23···k+1

[
E(tM2,1j ) + bk+1,1αk+1

σ2j /S1·23···k+1

]
.

It is known that S2
1·23···k.k+1 ≤ S2

1·23···k .
For the M2 DE genes, because tM1,1j can be greater or less than tM2,1j de-

pending on the values of α1 and Bias(β̂1), F
M1
21 (t) is unlikely to be systematically

different from F21(t) and results in great changes in sensitivity.
However, for the M2 null genes, the above results indicate E|tM1,1j | ≥

E|tM2,1j |, that is, the distribution of tM2,1j for the M2 null genes moves away

from zero. Hence, 1 − F
M1
20 (c) ≥ 1 − F20(c). Let a and b be the denominator

and numerator of FDR(c) as written in (2.5), respectively. Let δ be the difference
between the numerators of FDRM1(c) and FDR(c), that is,

δ = f (1 − p2){[1 − F
M1
20 (c)] − [1 − F20(c)]},

and δ′ be the difference between the denominators of the two FDRs,

δ′ = f (1 − p2){[1 − F
M1
20 (c)] − [1 − F20(c)]}

+ fp2{[1 − F
M1
21 (c)] − [1 − F21(c)]}.

As discussed above, [1−F
M1
21 (c)] is comparable to [1−F21(c)] because the bias is

unlikely to lead to systematic difference between F
M1
21 (t) and F21(t). Additionally,

p2 generally is much smaller than 1 − p2 in microarrays. Therefore, δ′ ≈ δ and
FDRM1(c) can be approximated by (b + δ)/(a + δ). Since (b + δ)/(a + δ) ≥ b/a

for any a > b > 0 and δ ≥ 0, this indicates FDRM1(c) ≥ FDR(c), that is, increased
FDR with this single model approach.

2.3. Single model with covariate adjustment. When model (2.2) is used, the
FDR and sensitivity at a given cutoff can be written as

FDRM2(c) = (1 − f )(1 − p1)[1 − F
M2
10 (c)]

(1 − f )[1 − F
M2
1 (c)] + f [1 − F2(c)]

+ f (1 − p2)[1 − F20(c)]
(1 − f )[1 − F

M2
1 (c)] + f [1 − F2(c)]
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and

SM2(c) = 2(1 − f )p1[1 − F
M2
11 (c)] + 2fp2[1 − F21(c)],

due to the potential change in the distributions of test statistics for the M1 genes.
The relationship of the two t-statistics can be written as

tM2,1j = S1·23···k+1

S1·23···k
tM1,1j + S−2

k+1·1···kbk+1,1e
T
k+1Yj

sd(α̂1j )
.

It is known that, with the inclusion of an irrelevant covariate, model (2.2) does
not result in a biased parameter estimate for the M1 genes. However, since
sd(β̂1j ) ≤ sd(α̂1j ) in general, E(|tM1,1|) ≥ E(|tM2,1|) for M1 DE genes. There-

fore, the distribution F
M2
11 (t) moves toward 0 and results in SM2(c) ≤ S(c), that

is, reduced sensitivity in detecting DE genes in M1 genes. As |tM1,1| in general
is likely to be greater than |tM2,1|, FM2

10 also shrinks toward 0. It is likely that
FDRM2(c) will be comparable to FDRM1(c). Hence, reduced sensitivity in detect-
ing DE genes in M1 genes will be the main consequence resulted from applying
the complex model for all the genes.

2.4. Summary. The above results suggested that the single model approaches
with or without covariate adjustment can lead to inferior performance. It is ex-
pected that the impact on FDR and sensitivity could be greater if more Xk+1-like
covariates exist in the sample. These results will be further demonstrated in the
simulation study. The above discussion also suggested that the performance for
DE gene detection can be improved by applying the correct model for the right
sets of genes. Yet, such knowledge is commonly not available beforehand. In the
following section, we propose a BMA approach as a practical substitute for the
multi-model approach for DE gene detection that takes into account both sample
heterogeneity and model uncertainty.

3. A Bayesian model averaging approach. In this section we discuss an effi-
cient Bayesian model averaging approach to identifying DE genes associated with
a covariate of interest. The methodology proposed in this paper is closely related
to methods discussed in Liang et al. (2008) and we largely follow their notation.
Consider a series of possible models for describing the expression pattern of each
gene. Let γ = (γ1, . . . , γK) be a binary vector of length K , with each element
indicating the inclusion status of the kth covariate in the model, that is,

γk =
{

0, if βk = 0,
1, if βk �= 0.

Each model in the model space can then be labeled by γ , namely, Mγ . For gene
j , j = 1, . . . , J , the model can be written as

Mγ j : Yj = αγ j 1n + Xγ βγ j + N(0, φ−1
γ j In),
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where αγ j is the intercept term; Xγ is the submatrix of X consisting of columns
associated with nonzero γk ; βγ j and φγ j are parameters under this model.

The marginal posterior inclusion probability for variable Xk and gene j , is then
defined as

Pkj = P(γkj �= 0|Yj ) = ∑
γ

1γkj=1 × P(Mγ j |Yj ),(3.1)

which is the sum of posterior probabilities of all models that include the covariate
of interest. It quantifies the strength of association between covariate Xk and the
expression level of the j th gene and can be used to rank the DE genes.

The posterior model probability for Mγ j can be calculated based on Bayes
factors of pairs of models, for example,

P(Mγ j |Yj ) = p(Mγ j )BF(Mγ j : M0j )∑
γ ′ p(Mγ ′j )BF(Mγ ′j : M0j )

,(3.2)

where p(Mγ j ) is the prior model probability for genes measured in the microarray
experiment and the Bayes factor BF(Mγ j : M0j ) is defined as

BF(Mγ j : M0j ) = f (Yj |Mγ j )

f (Yj |M0j )
,

that is, the ratio of marginal likelihood under Mγ j and the base model, M0j .
Here the null model (i.e., the model with only the intercept term) is used as the
base model. For Mγ j , the marginal likelihood is obtained by integrating out the
model parameters from the joint posterior probability

f (Yj |Mγ j ) =
∫

f (Yj |�γ j )π(�γ j |Mγ j ) d�γ j ,

where �γ j = (αγ j ,βγ j , φγ j ), and π(�γ j |Mγ j ) is the prior of model parameters
under Mγ j .

To determine the Bayes factor, proper priors, π(�γ j |Mγ j ), are needed. We
utilized the Zellner–Siow prior for model parameters [Zellner and Siow (1980)] in
our study. Liang et al. (2008) have shown that this prior resolves several consis-
tency issues associated with fixed g-priors while retaining several attractive prop-
erties such as adaptivity, good shrinkage properties, robustness to the misspecifi-
cation of g and fast marginal likelihood calculation. When comparing two nested
models as in our case, a flat prior is placed on common coefficients, (αγ j , φγ j ),
where π(αγ j , φγ j |Mγ j ) ∝ 1/φγ j , and a Cauchy prior on the remaining parame-
ters, βγ j . The multivariate Cauchy prior can then be represented as a mixture of
g-priors with an Inv-gamma(1/2, n/2) prior on g, that is,

π(βγ j |φγ j , Mγ j ) ∝
∫

N

(
βγ j |0,

g

φγ j

(XT
γ Xγ )−1

)
π(g)dg,
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with

π(g) =
√

n/2

�(1/2)
g−3/2e−n/(2g).

The Bayes factor in equation (3.2) can be written in closed form as

BF(Mγ j : M0j ) =
∫ ∞

0
(1 + g)(n−1−ργ j )/2

× [1 + (1 − R2
γ j )g]−(n−1)/2π(g)dg,

where ργ j denotes the number of covariates included in Mγ j and R2
γ j is the

ordinary coefficient of determination of this model. This quantity can be obtained
through direct numerical integration or through the Laplace approximation.

In addition to the prior π(�γ j |Mγ j ) on model parameters, one must also
choose a prior on the models themselves, which relates directly to multiplicity.
Scott and Berger (2010) discussed several prior model probability choices re-
garding their effects on multiplicity-control for multiple models in a conventional
Bayesian model selection/averaging setting involving one outcome variable. With
the high throughput data, typically, the prior model probabilities should reflect our
prior belief about the distribution of the models among the genes in the transcrip-
tome, which can be difficult to quantify. A uniform prior assumed equal proba-
bilities of the models can be problematic when thousands of genes are evaluated
simultaneously because it puts an unrealistically low weight to the null model.
When the resulting posterior model probabilities are used to estimate the poste-
rior expected FDR (peFDR) [Newton et al. (2004)], great underestimation can
occur [Sartor et al. (2006); Cao et al. (2009)]. Correctly estimating FDR under the
Bayesian framework remains an active research field [Efron (2008)]. Recent dis-
cussions and attempts have largely been focused on statistics derived from single
model approaches [Müller, Parmigiani and Rice (2007); Cao and Zhang (2010)]. In
our case, proper control for multiplicity derived from multiple genes and multiple
models becomes even more challenging.

We believe that the prior should lead to a reasonably well calibrated posterior
model probability that measures the model’s ability for describing the data. We
propose an empirical approach to obtain estimates for the prior model probabili-
ties, p(Mγ j ), under the assumption that the prior probabilities of a given model
are the same across genes, that is, p(Mγ j ) = p(Mγ ). We first estimate the pro-
portion of DE genes described by a nonnull model γ , ωγ , using Bayes factors.
Since BF(Mγ : M0) > c, c ≥ 1 suggests evidence against the null model [Kass
and Raftery (1995)], we can estimate ωγ as follows:

ωγ = 1

J

∑
j

1[BF(Mγ j : M0j )=max(BFj )] · 1[BF(Mγ j : M0j )>c],
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where BFj is a vector of null-based Bayes factors for gene j . Therefore, ωγ rep-
resents the proportion of genes for which model γ is the best model in terms of
Bayes factors. Given that Bayes factors based on the Zellner–Siow prior are consis-
tent for model selection whether or not the true model is null [Liang et al. (2008)],
this estimator is a consistent estimator of the proportion of genes expressing in a
pattern specified by the model. In our simulation studies, we found that fixing c at
1 resulted in ωγ being close to the truth in most settings. Second, we argue that
if the prior model probabilities, p(Mγ ), result in the equality between the over-
all peFDR under Mγ and 1 − ωγ , reasonable calibration of the posterior model
probabilities can be achieved. This suggests the following relationship between
p(Mγ ) and ωγ , that is,

ωγ = 1

J

∑
j

BF(Mγ j : M0j )p(Mγ )∑
γ ′ BF(Mγ ′j : M0j )p(Mγ ′)

.

Hence, p(Mγ ) can be obtained by iteratively updating the following equation:

p(l)(Mγ ) =
∑

j 1[BF(Mγ j : M0j )=max(BFj )] · 1[BF(Mγ j : M0j )>c]∑
j [BF(Mγ j : M0j )/

∑
γ ′ BF(Mγ ′j : M0j )p(l−1)(Mγ ′)]

under the constraint
∑

γ p(l)(Mγ ) = 1, where l denotes the iteration step. In our
experience, 30 iterations were adequate to result in convergence. At present stage,
theoretical justification for this prior choice for multiplicity control is still lacking.
We resort to the simulation study to show that this prior choice led to improved per-
formance in both the ranking of the genes and in direct FDR estimation compared
with the uniform prior.

4. Simulation study. Simulation studies were designed to compare the single
model approaches with and without covariate adjustment and the “gold standard”
multiple-model approach with the correct covariate adjustments, as well as the
performance of BMA over single-model approaches when a multi-model approach
is appropriate. Bias and efficiency in each approach and sensitivity to the choice
of prior on the set of models also will be discussed.

4.1. Simulation of microarray data. The microarray data were simulated to
mimic an observational study for identifying genes associated with a binary vari-
able, for example, the smoking status (s), in a sample with two potential con-
founders, gender (g) and heavy alcohol drinking (d) which are also binary. A de-
tailed data generation scheme for the subject characteristics is provided in Zhou,
Liu and Dannenberg (2012). Marginally, half of the subjects are assumed to be
females, smokers or heavy drinkers. We also assume complex correlation among
these covariates. First, s is correlated with both g and d . Specifically, in smokers,
75% are males and 80% are heavy drinkers; while in nonsmokers, 25% are males
and 20% are heavy drinkers. Second, g is also correlated with d . Specifically, 75%
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of male subjects are heavy drinkers, while 25% of females are heavy drinkers. Pro-
portions of subjects in groups defined by categories of the covariates are provided
in Zhou, Liu and Dannenberg (2012). Each microarray data set consists of the ex-
pression of 10,000 genes from n subjects. Gene expression for each subject was
simulated based on the following model:

yij = β1j si + β2j gi + β3j di + εij ,

where β.j takes either 0 or nonzero values generated from normal distributions
with variances generated following procedures similar to that described by Smyth
(2004). Detailed procedures for generating the simulated microarray data are pro-
vided in Zhou, Liu and Dannenberg (2012). Each simulation setting was character-
ized by values of the following parameters: fs , fg and fd , the proportion of genes
affected by smoking (s), gender (g) or heavy drinking (d), respectively, and n,
the sample size. Both moderate and relatively large sample sizes were considered,
n = 40 and n = 80. For each setting, we simulated 10 microarray data sets. The
reported results were averaged over the results obtained for each data set.

4.2. Performance of the single model approaches. In this section we compare
the performances of three single model approaches that differed by covariate ad-
justment, that is, without covariate adjustment (SM1), with adjustment to g and
d (SM2), and with adjustment to surrogate variables of g and d (SVA) [Leek and
Storey (2007)], and that of the gold standard multi-model approach (MM) where
the DE genes were fit with their respective true models, that is, the adjustment for
g and/or d is applied only to genes truly affected by g and/or d . The sensitivity
and FDR corresponding to the ranking statistic, p-value of s, were obtained for
each method. To show the interplay of bias and efficiency on these performance
measures, we also quantified the contribution to these measures from genes not
associated with g and d , denoted as g0d0 genes.

Table 1 shows the performance difference between the single and multi-model
approaches among top ranked genes identified with a p-value cutoff of 0.001. We
can see that, as discussed in Section 2, SM1 led to large increase in total FDR
compared to MM. The magnitude of difference increased with the sample size,
the proportion of the genes associated with the confounder and the number of the
confounders. On the other hand, the difference in FDR contributed from the g0d0
genes remained small. Hence, the results suggested that bias in effect estimation
among genes associated with the confounders was the main cause for the FDR in-
crease. SM2 and SVA showed slightly greater FDR compared to MM. This increase
came mainly from g0d0 genes and suggested that the effects of the efficiency loss
could have a negative impact on the total FDR, particularly in small sample size
settings. A more notable limitation of SM2 and SVA was the loss of sensitivity.
Compared to MM, the magnitude of sensitivity loss increased slightly with sample
size and the number of confounders.
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TABLE 1
False discovery rate (FDR) and sensitivity (S), in %, among the top smoking related genes identified
with a p-value cutoff of 0.001 using ranking statistics based on the single model approach without

covariate adjustment (SM1), the single model approach with covariate adjustment (SM2), the
surrogate variable analysis approach (SVA) and the “gold standard” multi-model approach (MM).

FDR and sensitivity arising from g0d0 genes (i.e., genes not associated with d and g) were
included. Microarray data sets were simulated based on various settings defined by proportion of

genes associated with each covariate: fs , fg , fd , and the sample size n

Methods n = 40 n = 80

FDRg0d0 FDRtotal Sg0d0 Stotal FDRg0d0 FDRtotal Sg0d0 Stotal

fs = 0.10, fg = 0.05, fd = 0
SM1 4.2 6.5 14.1 14.9 2.3 8.2 28.5 30.2
SM2 6.1 6.5 10.0 10.4 2.2 2.5 23.1 24.3
SVA 6.2 6.7 9.3 9.7 2.2 2.3 22.7 24.0
MM 4.4 4.8 14.1 14.5 2.4 2.6 28.5 29.7

fs = 0.05, fg = 0.10, fd = 0
SM1 8.5 18.0 12.9 14.5 3.6 22.9 26.6 29.8
SM2 10.5 11.7 9.4 10.6 5.1 5.7 21.0 23.4
SVA 10.3 11.6 9.0 10.2 5.4 6.2 20.7 23.1
MM 9.5 9.5 12.9 14.1 4.5 5.0 26.6 29.0

fs = 0.1, fg = 0.05, fd = 0.05
SM1 4.1 8.5 13.4 15.0 2.6 12.8 26.4 29.5
SM2 6.8 7.4 8.4 9.3 3.0 3.2 19.9 22.1
SVA 7.1 8.0 8.2 9.1 2.9 3.1 19.3 21.5
MM 4.4 4.9 13.4 14.3 3.0 3.1 26.4 28.8

fs = 0.05, fg = 0.10, fd = 0.10
SM1 4.7 19.4 12.6 15.7 3.4 36.9 25.1 31.3
SM2 9.9 12.6 7.9 9.6 4.5 6.1 18.4 22.6
SVA 10.7 13.1 7.7 9.4 4.6 6.0 18.0 22.4
MM 5.9 8.2 12.6 14.4 5.4 6.5 25.1 29.6

4.3. Performance of the BMA approach. In this section we examine the per-
formance of the proposed BMA approach in comparison with the single model
and the gold standard multi-model approaches. To evaluate the effects of prior
choice on the performance of the BMA approach, we considered three prior model
probability choices: the proposed empirical prior obtained using the two step ap-
proach (BMA1), the uniform prior (BMA2), and the true proportion of genes for
each model (BMA3). The posterior inclusion probability of s was used as the rank-
ing statistics. The number of genes identified by each methods at 5% FDR were
compared in Table 2. We can see that the BMA approaches had greater power in de-
tecting DE genes compared to the SM approaches in general and the performance
came close to that of the MM approach. In fact, in all the simulated settings, the
BMA approaches, particularly BMA1 and BMA3, showed sensitivity close to the
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TABLE 2
Power of different methods for identifying genes differentially expressed between smokers and

nonsmokers at 5% FDR under different simulation settings

fs fg fd SM1 SM2 SVA BMA1 BMA2 BMA3 MM

n = 40
0.10 0.05 0 139 96 83 145 119 149 155
0.10 0.05 0.05 126 80 72 137 124 137 150
0.05 0.10 0 42 31 31 51 46 52 52
0.05 0.10 0.10 46 30 26 56 49 57 58
n = 80
0.10 0.05 0 286 294 290 346 335 344 356
0.10 0.05 0.05 239 250 248 317 308 318 334
0.05 0.10 0 94 113 110 147 135 146 152
0.05 0.10 0.10 82 108 106 145 138 142 147

MM approach for a given FDR threshold and greater than the single model ap-
proaches. Figure 1 showed the magnitude of performance difference in two repre-
sentative settings. The BMA approaches appeared to be relatively insensitive to the
choice of prior model probabilities for gene ranking.

Besides providing proper ranking of the gene, it is often useful to estimate the
FDR of the finding and quantifying the proportion of DE genes in the transcrip-
tome. Therefore, we also evaluated how well the FDR could be estimated based
on the ranking statistics. For the p-value based approach, FDR and the propor-
tion of DE genes were estimated using the approach by Storey (2002) and Storey

(a) (b)

FIG. 1. Sensitivity vs. FDR curves in two simulation settings. (a) fs = 0.1, fg = 0.05, fd = 0,
n = 40. (b) fs = 0.05, fg = 0.1, fd = 0.1, n = 80.
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(a) (b)

FIG. 2. Estimated FDR vs. true FDR in two simulation settings. (a) fs = 0.1, fg = 0.05, fd = 0,
n = 40. (b) fs = 0.05, fg = 0.1, fd = 0.1, n = 80.

and Tibshirani (2003). For the Bayesian model averaging approach, the peFDR
was directly estimated based on the posterior inclusion probability [Newton et al.
(2004)], that is,

peFDRk(p) = ∑
j

(1 − Pkj ) · 1[Pkj≤p]
/∑

j

1[Pkj≤p],

where 0 < p ≤ 1 and Pkj is the posterior inclusion probability of variable k for
gene j . Figure 2 shows the estimated FDR vs. the true FDR in two representa-
tive settings. We can see that using p-values from SM1 in studies with confounder
associated genes, the estimated FDR was smaller than the true FDR. The mag-
nitude of underestimation increased with the sample size and the proportion of
the confounder associated genes. On the other hand, the FDR estimated using p-
values from SM2, SVA or MM was very close to the true FDR. The accuracy of
the peFDR, as observed by other researchers, appeared to be sensitive to the prior
choice. peFDR obtained based on BMA2, the Bayesian model averaging approach
with uniform prior can greatly underestimate the FDR. peFDR obtained based on
BMA1 showed improved accuracy in FDR estimation. The results from our sim-
ulation also suggest that the peFDR based on BMA1 are close to true FDR in all
simulated settings. BMA3 appeared to result in peFDR that slightly overestimated
the FDR. Level of sensitivity of the BMA1 approach to the choice of c and model
space misspecification can be found in Zhou, Liu and Dannenberg (2012).

We also carried out two additional sensitivity analyses related to the BMA ap-
proaches using the simulated microarray data [see Zhou, Liu and Dannenberg
(2012) for detail]. First, we investigated the sensitivity of the performance of the
empirical BMA approach to the choice of the cutoff c. The results suggest that
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the BMA approach with empirical prior is relatively robust in gene ranking with
respect to the value of c. Second, we investigated the performance of the BMA
approach to the misspecification of model space, that is, omission of an important
covariate d . As expected, there is a decrease in ranking performance, but the BMA
approach still outperforms all the single model approaches. It is possible to avoid
the performance loss due to omission of important covariates by introducing the
surrogate variables [Leek and Storey (2007)] into the models. However, including
the surrogate variables in the BMA approach is not a trivial extension due to model
uncertainty, and it is definitely an interesting future research topic.

5. Application to the observational micorarray data sets. We applied the
BMA approach to two smoking related observational microarray studies. Through
the application, we intended to demonstrate the complex relationship between the
gene expression pattern and sample characteristics and the flexibility of the BMA
approach in capturing and quantifying such relation in a unified and coherent
framework.

5.1. Microarray study of airway epithelium samples. The first data set
(GSE10006) came from a study with a total of 87 current and never smokers
[Carolan et al. (2008)]. The microarray analyses were carried out on airway epithe-
lium samples from these subjects. The data were preprocessed with the Affymetrix
MAS method. After excluding gene probe sets whose expression measurements
were deemed absent or marginal among all subjects, the remaining data con-
sisted of expression profiles of 44,085 probe sets of genes from the Affymetrix
HGU133plus2 chip for each subject. Among these probe sets, 34,614 were anno-
tated for probing the expression of 17,690 genes. About half of these genes were
probed by multiple probes. To eliminate the potential dependence issue, average
expression measurements were obtained for genes with multiple probe sets. We
analyzed the expression data of the 17,690 genes from 60 healthy subjects. Indi-
viduals with known lung disease were excluded. Besides smoking status, informa-
tion on age, gender, race and site of the tissue was available. The samples were
heavily unbalanced, the proportion of smokers was greater in female participants
than in males (86% vs. 57%), the proportion of large airway samples was slightly
larger in females than in males (57% vs. 46%), and the proportion of caucasian
participants was larger in females compared to males (43% vs. 37%).

With five covariates, a total of 25 models were included in the model space.
Interaction terms were ignored. The BMA approach allowed for simultaneous as-
sessment of the association between the gene expression and each of the sample
characteristics, and straightforward estimation of both the total proportion of the
DE genes in the transcriptome and the proportion of DE genes associated with
each covariate based on Bayes factors. The application showed a complex picture
of the expression pattern in the epithelium microarray study. A total of 69% of
the genes were estimated to be differentially expressed. The estimated proportions
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FIG. 3. Gene expression intensities for the top 20 genes associated with each of the four covari-
ates (smoking, gender, site and race) identified by using BMA1. Labels along the x-axis show the
characteristics of a sample subgroup. From top to bottom, the label represents categories of race
(Others vs. White; O vs. W), site (Large airway vs. Small airway; L vs. S), gender (Male vs. Female;
M vs. F) and smoking status (Non-Smoker vs. Smoker; NS vs. S). For example “OLMNS” indicates
the subgroup with the following characteristics: Other races (i.e., nonwhite), Large airway sample,
Male, Non-Smoker.

of DE genes for association with smoking, site, gender, race and age were 19%,
34%, 6%, 6% and 4%, respectively. By controlling the peFDR at 5%, we iden-
tified a number of DE genes associated with smoking (928), site (3089), gender
(73), race (33) and age (7). The complex expression patterns were illustrated in
Figure 3 where we show the expression pattern of the top 20 genes associated with
smoking, gender, site and race, respectively.

The results also revealed complex roles of some of these DE genes which were
strongly associated with multiple sample characteristics. For example, among the
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top 928 smoking related DE genes, 343, 18 and 6 of them were also identified as
hits for association with tissue site, gender and race, respectively. Additionally,
there were 25 genes identified as hits for association with three or more sample
characteristics, mostly smoking, site and gender. The BMA approach allows for
assessing jointly genes’ association with multiple sample characteristics. For ex-
ample, the joint posterior inclusion probability of smoking, site and gender can
be obtained by summing over the posterior probabilities of models containing all
three covariates. peFDR can then be derived similarly using this posterior inclu-
sion probability. The analysis identified 6 genes, NRARP, TMEM178, UGT1A@,
UGT1A1, UGT1A3 and UGT1A6, as hits for joint association with the three char-
acteristics at 5% peFDR. The existence of such genes suggested a connection
between tobacco smoking and the functions of these genes which were partly re-
vealed through their association with the phenotype of the subjects from whom
samples were obtained. Results from such analysis offer additional important in-
formation that is useful for generating new hypotheses and insights into the effects
of tobacco smoke on the transcriptome.

As discussed in the previous sections, given the existence of genes associated
with various sample characteristics, single model approaches were subjected to the
effects of increased bias or reduced power in unbalanced study design. For the ep-
ithelium microarray data, we saw large differences in gene rankings derived from
the BMA approach and the three single model approaches. Among the top 1000
smoking related DE genes identified by each method, the agreement was merely
19.7% among all four methods. Specifically, the SVA approach produced gene lists
that were vastly different from the gene lists produced by the other approaches,
where more than half of the top 1000 genes had ranks beyond 1000 by the other
three methods [see the Venn diagram in Zhou, Liu and Dannenberg (2012)]. Care-
ful examination of the gene lists produced by the SVA approach suggested possible
effects of overfitting as the SVA approach adjusted for a total of 10 surrogate vari-
ables for each gene. The agreement was about 56% for the SM1, SM2 and BMA1
approaches, that is, 56% were ranked within the top 1000 by all three methods. The
agreement between BMA1 and each of the single model approaches (SM1, SM2 and
SVA) was 85%, 64% and 35%, respectively. These differences were driven by the
genes whose expression patterns were not properly captured by the single model.
The higher agreement between results from BMA1 and SM1 reflects the fact that
a large proportion of the smoking related DE genes are associated with smoking
only.

5.2. Microarray study of oral mucosa samples. The second data set came
from a study with a total of 79 age and gender matched healthy smokers and
never smokers [Boyle et al. (2010)]. The microarray analyses were carried out
on oral mucosa samples obtained from these subjects through buccal biopsies. The
preprocessed microarray data consisted of 24,103 probe sets of genes from the
Affymetrix HGU133plus2 chip for each subject. Among these probe sets, 22,004
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were annotated for probing the expression of 12,911 genes. About 43% of these
genes were probed by multiple probe sets. To eliminate the potential dependence
issue, average expression measurements again were obtained for these genes. The
analysis was carried for the expression data of the 12,911 genes. For subjects re-
cruited for this study, information regarding age, gender and smoking status was
available.

The study samples were balanced in terms of gender between smokers and non-
smokers. Therefore, single model approaches with or without adjustment for gen-
der would provide similar results. However, one interesting biological question
was whether there were genes affected by smoking differently between the males
and females. In this context, direct application of the single model approach could
lead to confusing results. For example, at 5% estimated FDR, the single model
without adjustment for the interaction term resulted in 944 hits for association with
smoking, while the model adjusted for both gender and gender × smoking inter-
action led to the identification of only 1 gene as hits for association with smoking
and no genes were identified as hits for smoking × gender interaction. Such large
difference in DE gene assessment between different models is difficult to reconcile
and interpret under the single model framework. Yet, such difference can be ex-
pected if there are genes associated with the interaction because the two variables,
smoking and smoking × gender interaction, are correlated. Joint testing of the ef-
fects of smoking and smoking × gender interaction led to the identification of 311
DE genes with the likelihood ratio test. However, this method can not quantify the
relative contribution from the two variables. We therefore applied the BMA ap-
proach to these data to illustrate the flexibility and usefulness of this approach to
handle possible interaction effects.

In this application, the model space consists of a total of 16 models including
the null model, three models with smoking and/or gender as main effects only and
12 models for different patterns that could arise from interaction between smoking
and gender. For the oral mucosa data, our analysis estimated that about 22.5%
of the genes are differentially expressed, in which about 12.3%, 1.5% and 8.6%
were associated with smoking, gender and smoking × gender interaction, respec-
tively. Controlling the peFDR at 5%, our approach identified a total of 414 genes as
hits associated with smoking through either the main effect, the interaction effect
or both. Specifically, 222 of these genes were associated with smoking primarily
through the main effect, 2 were associated with smoking primarily through the in-
teraction effect, while for the rest of these genes various degrees of association
were contributed from the interaction term.

By comparing the smoking related DE genes identified by the single model
approaches and the BMA approach, we noted that the difference was mainly from
genes that were over/under expressed in only one subgroup of the subjects, female
smokers. Neither the model with smoking status as the only covariate nor the full
model adjusted for both the gender and the smoking × gender interaction were
able to adequately capture the strength of association for this group of genes and
properly rank them due to either increased bias or decreased power. Table 3 showed
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TABLE 3
Posterior inclusion probabilities of a single covariate, s (for smoking), g (for gender), or s × g interaction, and a composite of covariates, s and/or

s × g interaction (denoted as s|s × g), obtained under BMA1, for a list of DE genes associated with s primarily through s × g interaction. Also shown
are the ranks of these genes based on the strength of association with the covariate/s under different methods (Rmethod

covariate/s )

GSymbol Cytoband Ps Pg Ps×g Ps|s×g RSM1
s RSM2

s RBMA1
s RSM2

s×g RBMA1
s×g RSM2

s|s×g RBMA1
s|s×g

CEACAM7 19q13.2 0.042 0.003 0.969 0.998 205 3366 6703 96 1 66 39
CD177 19q13.2 0.035 0.006 0.933 0.962 1156 6912 8041 327 2 523 191
MARK1 1q41 0.061 0.004 0.928 0.985 485 9489 4967 6 3 83 122
GTF2A2 15q22.2 0.055 0.005 0.904 0.953 997 6777 5367 260 4 425 214
PLA2G2A 1p35 0.092 0.008 0.878 0.963 643 3677 3636 805 5 375 189
AKR1B10 7q33 0.062 0.008 0.875 0.931 1128 5915 4929 608 6 618 278
THYN1 11q25 0.020 0.033 0.869 0.885 3123 10,582 12,884 522 7 1583 384
BMS1 10q11.21 0.117 0.008 0.861 0.970 502 3142 3017 774 8 278 169
CLIC2 Xq28 0.079 0.029 0.858 0.934 910 3395 4095 1929 9 686 265
PRDX5 11q13 0.059 0.061 0.854 0.908 1266 3128 5065 3370 10 1004 331
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the posterior inclusion probabilities and ranks based on different approaches for a
few of these genes. A large difference in the rankings by different methods can be
seen.

6. Discussion. In the past decade, microarray technology has greatly in-
creased our ability to simultaneously interrogate the expression of tens of thou-
sands of genes. Use of this technology has contributed to an improved understand-
ing of the molecular basis of various diseases. As one of the primary tools for such
studies, methods for finding DE genes have also been refined over time. Various
approaches have been proposed to deal with multiple issues in microarray data.
Yet, from the modeling perspective, many approaches have ignored sample het-
erogeneity, its impact on the analysis results, and the great opportunity it presents.
Since Potter (2003) discussed the need for controlling bias and confounding in
observational microarray studies, it has been increasingly recognized that the lack
of control for sample heterogeneity could be a barrier to the reproducibility of
the study findings. In two editorials [Webb et al. (2007); Troester, Millikan and
Perou (2009)], improved data analysis methods and better study design have been
considered crucial for advancing the field of cancer epidemiology with microar-
ray technology. In particular, Troester, Millikan and Perou (2009) discussed the
potential of model selection strategies in the process. Nevertheless, there remain
obstacles to fully appreciate the effect of complex sample characteristics on DE
gene detection and the value of improving upon current approaches.

In this paper, we proposed a novel concept for high throughput data analysis
involving a heterogeneous sample, that is, a multi-model handling is intrinsically
needed. We presented the theoretical framework that explains why basing infer-
ences on a single model could be problematic in observational microarray studies.
The problem arises from the inadequacy of using a single model to describe the
complex expression pattern of genes among a heterogeneous sample, which can
result in increased number of false discoveries due to bias when a simple model is
used or increased random error due to reduced efficiency when a complex model
is used. Such effects of model misspecification are hard to avoid because of the
existence of genes being affected by different sets of sample characteristics and/or
their interactions. We showed through simulation that the single model approaches
have inferior performance in DE gene finding in comparison with a multi-model
approach should we know the right model for the right set of genes. The magni-
tude of effects on false discovery depends on the study design, specific biological
system and the mechanism underlying expression variation.

We proposed to use the BMA approach to improve our ability to identify DE
genes. This approach utilizes the Zellner–Siow prior for model parameters. The
consistency property of this prior is important, as it allows for obtaining a consis-
tent estimate of the distribution of the genes in the model space using Bayes fac-
tors. Another choice could be the hyper-g/n prior proposed in Liang et al. (2008).
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We proposed to use an iterative procedure to obtain the prior model probabili-
ties so that the estimated distribution of the genes among the model space based
on posterior model probabilities matches the estimate based on the Bayes factors.
These prior choices allow the efficient computation of the Bayes factors and the
posterior inclusion probabilities that does not rely on a MCMC simulation. Our
simulation study demonstrated that this approach performed almost as well as the
gold standard multi-model approach with true models and better than the single
model approaches in gene ranking. The ranking performance was relatively insen-
sitive to a wide range of choice for prior model probabilities. However, accuracy
of the FDR directly estimated from the posterior model/inclusion probabilities was
sensitive to the prior choice. Our simulation study showed that the proposed empir-
ical prior model probability allowed for reasonably good calibration of posterior
model/inclusion probabilities for multiplicity and the estimated FDR was close to
the true FDR in settings with moderate to large sample size. In the rare case of a
small study with a heterogeneous sample, care needs to be taken when using the
empirical prior because the small sample size property of the Zellner–Siow prior
is less certain. Nevertheless, it should be pointed out that multiplicity control in
the Bayesian modeling framework remains a challenging and active research area.
Further studies on the theoretical aspects of the prior choice for multiplicity con-
trol across the multiple genes and multiple models are needed. The current BMA
approach is developed under the M-complete assumption, that is, the model space
contains the true model. Should unknown confounders exist, it is possible to cap-
ture the latent confounding factors by introducing the surrogate variables [Leek
and Storey (2007)]. We note, however, it would be unwise to directly incorporate
the surrogate variables, currently constructed based on residuals derived from a
single model fit of the data, into the proposed BMA approaches. Our work relies
on the assumption of linear regression models with normal errors, which may be
violated in practice. This calls for new approaches that are robust to the normality
assumption, which is likely to be particularly useful for studies with small sam-
ple sizes. For the analysis of conventional data with one outcome variable, robust
Bayesian model selection/averaging approaches have been suggested, for exam-
ple, the approach by Gottardo and Raftery (2009). Extending such ideas to the
observational microarray studies represents an interesting future direction.

Finally, through the application of the BMA approach to an observational mir-
coarray study with unbalanced study design and one with balanced study design,
we showed that complex expression patterns did exist when study samples were
heterogeneous. Previous research has demonstrated the complexities of underly-
ing biological mechanisms for gene expression variation. Genes affected by sev-
eral common factors, such as age [Tan et al. (2008)], gender [Delongchamp et al.
(2005); Yang et al. (2006); Tan et al. (2008)], smoking [Spira et al. (2004)] and
drinking alcohol [Lewohl et al. (2001)], have been found in different tissue sam-
ples. Our study showed that such complexity interfered with the DE gene detec-
tion. Notably, the BMA approach was able to avoid missing important genes whose
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expression patterns were not adequately captured by a single model approach. As
an added value, the BMA approach is found to be a flexible tool that allows for
more comprehensive characterization of the association between gene expression
and the characteristics of the subjects from whom the samples were obtained. All
these can be done within a unified and coherent framework.
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SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian model averaging approach for observational
gene expression studies” (DOI: 10.1214/11-AOAS526SUPP; .pdf). Detailed de-
scription of the simulation setup and simulation procedure and additional results
from the simulation study and application to the airway epithelium microarray
study are provided.
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