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CHANGE-POINT MODEL ON NONHOMOGENEOUS POISSON
PROCESSES WITH APPLICATION IN COPY NUMBER PROFILING

BY NEXT-GENERATION DNA SEQUENCING1

BY JEREMY J. SHEN AND NANCY R. ZHANG

Stanford University

We propose a flexible change-point model for inhomogeneous Poisson
Processes, which arise naturally from next-generation DNA sequencing, and
derive score and generalized likelihood statistics for shifts in intensity func-
tions. We construct a modified Bayesian information criterion (mBIC) to
guide model selection, and point-wise approximate Bayesian confidence in-
tervals for assessing the confidence in the segmentation. The model is applied
to DNA Copy Number profiling with sequencing data and evaluated on sim-
ulated spike-in and real data sets.

1. Introduction. For a biological sample, the DNA copy number of a ge-
nomic region is the number of copies of the DNA in that region within the genome
of the sample, relative to either a single control sample or a pool of population ref-
erence samples. DNA Copy Number Variants (CNVs) are genomic regions where
copy number differs among individuals. Such variation in copy number constitutes
a common type of population-level genetic polymorphism. See Khaja et al. (2007),
Redon et al. (2006), Conrad et al. (2006) and McCarroll et al. (2006) for detailed
discussions on CNV in the human population.

On another front, the genomes of tumor cells often undergo somatic structural
mutations such as deletions and duplications that affect copy number. This re-
sults in copy number differences between tumor cells and normal cells within the
same individual. These changes are often termed Copy Number Aberrations or
Copy Number Alternations (CNA). There is significant scientific interest in finding
CNVs in normal individuals and CNAs in tumors, both of which entail locating the
boundaries of the regions in the genome that have undergone copy number change
(i.e., the breakpoints), and estimating the copy numbers within these regions. In
this article, we use next-generation sequencing data for copy number estimation.

Microarrays have become a commonly used platform for high-throughput mea-
surement of copy number. There are many computational methods that estimate
copy number using the relative amount of DNA hybridization to an array. See Lai
et al. (2005), Willenbrock and Fridlyand (2005) and Zhang (2010) for a general
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review of existing methods for array-based data. However, the precision of break-
point estimates with array-based technology is limited by its ability to measure
genomic distances between probes, which currently averages about 1000 bases
(1 Kb) on most arrays. Hence, the lower limit in the length of detectable CNV
events is about 1 Kb. With sequencing capacity growing and its cost dropping dra-
matically, massively parallel sequencing is now an appealing method for measur-
ing DNA copy number. In these newer sequencing technologies, a large number
of short reads (36–100 bp) are sequenced in parallel from the fragmentation of
sample DNA. Then each read is mapped to a reference genome. The basic ratio-
nale is that coverage, defined as the number of reads mapped to a region of the
reference genome, reflects the copy number of that region in the sample, but with
many systematic biases and much variability across the genome. Campbell et al.
(2008) was one of the first to use genome-wide sequencing to detect CNA events.
The reader is also referred to Medvedev, Stanciu and Brudno (2009) for a review
of recent studies in CNV/CNA detection using sequencing data. More details of
the data, with an illustrative example (Figure 2), are given in Section 2.

In the shift from array-based to sequencing-based copy number profiling, the
main statistical challenge arises from the fundamental change in the type of data
observed. Array-based data are represented by a large but fixed number of con-
tinuous valued random variables that are approximately normal after appropriate
preprocessing, and CNV/CNA signals based on array data can be modeled as shifts
in mean. Sequencing-based data, as we will discuss further in Section 2, are real-
izations of point processes, where CNV/CNA signals are represented by shifts in
intensity of the process. While one can apply a normal approximation to the large
number of discrete events in sequencing data, hence translating the problem into
the familiar array-based setting, this approach is inefficient and imprecise. A more
direct model of the point process is preferred. This type of data calls for a new
statistical model, new test statistics, and, due to the quick growth of sequencing
capacity, new and highly efficient computing implementation.

In copy number profiling it is important to assess the confidence in the esti-
mated copy numbers. With the exception of Lai, Xing and Zhang (2007), existing
segmentation methods, both for array data and for sequencing data, give a hard
segmentation and do not quantify the uncertainty in their change-point estimates.
Some methods, such as Olshen et al. (2004) and Wang et al. (2005), provide confi-
dence assessments for the called CNV or CNA regions, in the form of false discov-
ery rates or p-values, thus inherently casting the problem in a hypothesis testing
framework. However, for the analysis of complex regions with nested changes,
such as those in tumor data, confidence intervals on the copy number, from an es-
timation perspective, are often more useful. Intuitively, the copy number estimate
is less reliable for a region near a change point than for a region far away from
any change points. Also, copy number estimates are more reliable for regions with
high coverage than for regions with low coverage, since coverage directly affects
the number of observations used for estimation. This latter point makes confidence
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intervals particularly important for interpretation of results derived from short read
sequencing data, where coverage can be highly uneven across the genome. In this
paper, we take a Bayesian approach with noninformative priors to compute point-
wise confidence intervals, as described in Section 4.

The proposed methods are based on a simple and flexible inhomogeneous Pois-
son Process model for sequenced reads. We derive the score and generalized likeli-
hood ratio statistics for this model to detect regions where the read intensity shifts
in the target sample, as compared to a reference. We construct a modified Bayes
information criterion (mBIC) to select the appropriate number of change points
and propose Bayesian point-wise confidence intervals as a way to assess the confi-
dence in the copy number estimates. As a proof of concept, we apply seqCBS, our
sequencing-based CNV/CNA detection algorithm, to a number of actual data sets
and found it to have good concordance with array-based results. We also conduct
a spike-in study and compare the proposed method to SegSeq, a method proposed
by Chiang et al. (2009).

The methods developed in this paper have been implemented in an open-
source R-package, SeqCBS, available from CRAN http://cran.r-project.org/web/
packages/seqCBS/index.html.

2. Data and existing methods. In a general next-generation genome se-
quencing/resequencing pipeline, shown in Figure 1, the DNA in the sample is ran-
domly fragmented, and a short sequence of the ends of the fragments is “read”
by the sequencer. After the bases in the reads are called, the reads are mapped
to the reference genome. There are many different approaches to the preparation
of the DNA library prior to the sequencing step, some involving amplification by
polymerase chain reaction, which lead to different distribution of reads along the
reference genome. When a region of the genome is duplicated, fragments from
this region have a higher representation, and thus its clones are more likely to be
read by the sequencer. Hence, when mapped to reference genome, this duplicated
region has a higher read intensity. Similarly, a deletion manifests as a decrease
in read intensity. Since reads are contiguous fixed length sequences, it suffices to
keep track of the reference mapping location of one of the bases within the read.
Customarily, the reference mapping location of the 5′ end of the read is stored and
reported. This yields a point process with the reference genome as the event space.

As noted in previous studies, sequencing coverage is dependent on characteris-
tics of the local DNA sequence, and fluctuates even when there are no changes in
copy number, as shown in Dohm et al. (2008). Just as adjusting for probe-effects
is important for interpretation of microarray data, adjusting for these baseline fluc-
tuations in depth of coverage is important for sequencing data. The bottom panels
of Figure 3 show the varying depth of coverage for Chromosomes 8 and 11 in the
sequencing of a normal human sample, HCC1954. Many factors cause the inho-
mogeneity of depth of coverage. For example, regions of the genome that contain
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FIG. 1. Overview of sequencing pipeline.

more G/C bases are typically more difficult to fragment in an experiment. This re-
sults in lower depth of coverage in such regions. Some regions of the genome are
highly repetitive. It is challenging to map reads from repetitive regions correctly
onto the reference genome and, hence, some of the reads are inevitably discarded
as unmappable, resulting in loss of coverage in that region, even though no ac-
tual deletion has occurred. Some ongoing efforts on the analysis of sequencing
data involve modeling the effects of measurable quantities, such as GC content
and mappability, on baseline depth. Cheung et al. (2011) demonstrated that read
counts in sequencing are highly dependent on GC content and mappability, and
discussed a method to account for such systematic biases. Benjamini and Speed
(2011) investigated the relationship between GC content and read count on the Il-
lumina sequencing platform with a single position model, and identified a family
of unimodal curves that describes the effect of GC content on read count. We take
the approach of empirically controlling for the baseline fluctuations by comparing
the sample of interest to a control sample that was prepared and sequenced by the
same protocol. In the context of tumor CNA detection, the control is preferably a
matched normal sample, for it eliminates the discovery of germline copy number
variants and allows one to focus on somatic CNA regions of the specific tumor
genome. If a perfectly matched sample is not possible, a carefully chosen control
or a pool of controls, with sequencing performed on the same platform with the
same experimental protocol, would work for our method as well since almost all
of the normal human genome are identical.
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FIG. 2. Illustration of paired Poisson Processes and p(t).

As a simple and illustrative example of the data, we generated points according
to a nonhomogeneous Poisson Process. Figure 2 shows the point processes and
the underlying p(t) function, defined as the probability that a read at genomic
position t is from the case/tumor sample, conditional on the existence of a read at
position t . The model is discussed in more detail in Section 3. The y-values for the
points are jittered for graphical clarity.

Existing methods on CNV and CNA detection with sequencing data generally
follow the change-point paradigm, which is natural since copy number changes
reflect actual breakpoints along chromosomes. Chiang et al. (2009) proposed the
algorithm SegSeq that segments the genomes of a tumor and a matched normal
sample by using a sliding fixed size window, reducing the data to the ratio of read
counts for each window. Xie and Tammi (2009) proposed CNV-seq that detects
CNV regions between two individuals based on binning the read counts and then
applying methods developed for array data. Yoon et al. (2009) designed a method
named Event-Wise Testing (EWT) that detects CNV events using a fixed-window
scan on the GC content adjusted read counts. Ivakhno et al. (2010) proposed a
method called CNAseg that uses read counts in windows of predefined size, and
discovers CNV using a Hidden Markov Model segmentation. As for single sample
CNV detection method, Boeva et al. (2011) constructed a computational algorithm
that normalizes read counts by GC content and estimates the absolute copy num-
ber.

These existing methods approach this statistical problem by binning or impos-
ing fixed local windows. Some methods utilize the log ratio of read counts in the
bin or window as a test statistic, thereby reducing the data to the familiar repre-
sentation of array-based CNV/CNA detection, with Ivakhno et al. (2010) being an
exception in that it uses the difference in tumor-normal window read counts in their
HMM segmentation. There are a number of downsides to the binning or local win-
dow approach. First, due to the inhomogeneity of reads, certain bins will receive
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much larger number of reads overall than other bins, and the optimal window size
varies across the genome. If the number of reads in a bin is not large enough, the
normal approximations that are employed in many of these methods break down.
Second, by binning or fixed-size window sliding, the estimated CNV/CNA bound-
aries can be imprecise if the actual breakpoints are not close to the bin or window
boundary. This problem can be somewhat mitigated by refining the boundary after
the change point is called, as done in SegSeq. In this paper, we propose a unified
model, one that detects the change points, estimates their locations, and assesses
their uncertainties simultaneously.

To illustrate and evaluate our method, we apply it to real and spiked-in data
based on a pair of NCI-60 tumor/normal cell lines, HCC1954 and BL1954. The
data for these samples were produced and investigated by Chiang et al. (2009). The
whole-genome shotgun sequencing was performed on the Illumina platform and
the reads are 36 bp long. After read and mapping quality exclusions, 7.72 million
and 6.65 million reads were used for the tumor (HCC1954) and normal (BL1954)
samples, respectively. Newer sequencing platforms produce much more massive
data sets.

3. A change-point model on two nonhomogeneous Poisson processes. We
start with a statistical model for the sequenced reads. Let {Xt |t ≤ T } and {Yt |t ≤
T } be the number of reads whose first base maps to the left of base location t of
a given chromosome for the case and control samples, respectively. We can view
these count processes as realizations of two nonhomogeneous Poisson processes
(NHPP), one each for the case and control samples,

{Xt } ∼ NHPP(μt ),
(1)

{Yt } ∼ NHPP(λt ).

The scale t is in base pairs. The scenario where two or more reads are mapped to
the same genomic position is allowed by letting μt and λt take values larger than 1
and assuming that the observed process is binned at the integers. We propose a
change-point model on the conditional probability of an event at position t being
from {Xt }, given that there is such an event from either {Xt } or {Yt }, namely,

p(t) = μt

μt + λt

= pk if tk ≤ t < tk+1, k = 1, . . . ,K.(2)

An example of data according to this model is shown in Figure 2. The change-
point model assumption can be equivalently expressed as

μt = λtf (t),

where f (t) = p(t)/[1 − p(t)] is piecewise constant with change points {tk}. Of
course, we require the collection of change points to lie within the observation
window:

0 = t0 < t1 < · · · < tK+1 = T .
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This model does not force the overall intensity of case and control reads to be
the same. The intensity function λt reflects the inhomogeneity of the control reads.
One interpretation of the model is that, apart from constant shifts, the fluctuation
of coverage in the case sample is the same as that in the control sample. This
is reasonable if the case and control samples are prepared and sequenced by the
same laboratory protocol and mapped by the same procedure, as we discussed in
Section 2. The model would not be valid if the intensity functions for samples have
significant differences caused by nonmatching protocols or experimental biases.

Let {U1, . . . ,Um1}, {V1, . . . , Vm2} be the event locations for processes {Xt } and
{Yt }, respectively. That is, U and V are the mapped positions of the reads from the
case and control samples. Let m = m1 + m2 be the total number of reads from the
case and control samples combined. We combine the read positions from the case
and control processes and keep them ordered in the genome position, obtaining
combined read positions W1, . . . ,Wm and indicators of whether each event is a
realization of the case process or the control process Z1, . . . ,Zm:

Zi =
{ 1, if Wi ∈ {U1, . . . ,Um1},

0, if Wi ∈ {V1, . . . , Vm2}.(3)

For any read i in the combined process, we will sometimes use the term “success”
to mean that Zi = 1, that is, that the read is from the case process. Notice that
the collection of change-point locations that can be inferred with the data is pre-
cisely {W1, . . . ,Wm}, since we do not have data points to make inference in favor
of or against any change points in between observations. This means that estimat-
ing the copy number between two genome positions is equivalent to doing so for
the closest pair of reads that span the two genome positions of interest. Namely,
there is a one-to-one correspondence between the set of possible change points
on {W1, . . . ,Wm} and the set of change points {1 = τ0 < τ1 < · · · < τK+1 = m}
defined on the indices {1, . . . ,m} through the following:

{τk = j} ⇐⇒ {tk = Wj }.
The above statement can be made formal through the equivariance principle.

Consider the sample space [0, T ] of any change point, any monotonically increas-
ing function φ : [0, T ] → [0, T ], and its natural vector extension φ̄(c1, . . . , cn) =
(φ(c1), . . . , φ(cn)).

DEFINITION 1. A change-point estimator τ̂ is monotone transform equiv-
ariant if for all monotonically increasing functions φ : [0, T ] → [0, T ], we have
τ̂ (φ̄(U), φ̄(V )) = φ̄(τ̂ (U,V )).

The following theorem shows that any breakpoint estimator τ̂ (U,V ) satisfying
the equivariance condition can be decomposed into a simpler form.
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THEOREM 1. Let τ̂ (U,V ), which takes values in W , be an estimator of the
breakpoints. Then τ̂ is monotone transform equivariant if and only if τ̂ (U,V ) =
W

K̂
, where K̂ = f (Z) taking integer values {1, . . . ,m} does not depend on W .

PROOF. For ease of notation, we let φ̄(W) = (φ(W1), . . . , φ(Wm)) be the nat-
ural extension of φ. Suppose τ̂ (U,V ) = W

K̂
, where K̂ = f (Z). Note that Z is in-

variant to all monotone transformations of the arrival times, hence so is K̂ . There-
fore, φ(τ̂ (U,V )) = φ(W

K̂
) = (φ̄(W))

K̂
= τ̂ (φ̄(U), φ̄(V )).

In the other direction, since τ̂ ∈ W and (U,V ) contain the same information as
(W,Z), we must have τ̂ (U,V ) = W

K̂(W,Z)
. Suppose that K̂(W,Z) depend on W

in a nontrivial way but τ̂ satisfies the monotone transform equivariance condition.
This means that there exist W ′ 	= W such that K̂(W,Z) 	= K̂(W ′,Z). But since W

and W ′ are both increasing finite sequences on [0, T ] with the same number of
elements, we must have some φ(·) that φ̄(W) = W ′. Note that (W ′,Z) induces
(U ′,V ′) = (φ̄(U), φ̄(V )). However, τ̂ (φ̄(U), φ̄(V )) = τ̂ (U ′,V ′) = W ′

K̂(W ′,Z)
=

φ(W
K̂(W ′,Z)

) 	= φ(W
K̂(W,Z)

) = φ(τ̂ (U,V )). Hence, the equivariance property

holds if and only if K̂ is only a function of Z. �

Theorem 1 implies that any breakpoint estimation procedure, that is, monotone
transform equivariant uses the estimator K̂ of integer breakpoints based on Z, and
that the actual read position W merely serves as a genomic scale lookup table.
Hence, we can define our change-point model on the indices {1, . . . ,m} for the
read counts, and use the conditional likelihood which depends only on {Zi} but
not on the event positions {W1, . . . ,Wm}:

p(j) = pk if τk ≤ j < τk+1.(4)

For the rest of this section, we will exclusively work with equation (4). The
mapping positions {W1, . . . ,Wm} will re-enter our analysis when we compute con-
fidence intervals for the copy number estimates, in Section 4. Our statistical prob-
lem is hence two-fold. First, given K , we need to estimate the change points {τk}.
Second, we need a method to select model complexity, as dictated by K .

We start by considering the following simplified problem: Given a single inter-
val spanning reads i to j in the combined process, we want to test whether the
success probability inside this interval, pij , is different from the overall success
probability, p. The null model H0 states that pij = p. We derive two statistics to
test this hypothesis. The first is adopted from the conditional score statistic for
a general exponential family model where the signal is represented by a kernel
function, as discussed in Rabinowitz (1994),

Sij =
m∑

k=1

(Zk − p̂)

(
1i≤k≤j − 1

m

m∑
k=1

1i≤k≤j

)
= ∑

i≤k≤j

Zk − p̂(j − i + 1),(5)
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where p̂ = ∑
Zk/m. This statistic is simply the difference between the number of

observed and expected case events under the null model. Its variance at the null is

σ̂ 2
ij = Var(Sij ) =

(
1 − j − i + 1

m

)
(j − i + 1)p(1 − p)

and is used to standardize Sij for comparison between regions of different sizes.
The standardized score statistic Tij = Sij /σij is intuitive and simple, and would
be approximately standard normal if j − i were large. However, the normal ap-
proximation is not accurate if the number of reads that map to the region is low.
To attain higher accuracy for regions with low read count, observe that

∑
i≤k≤j Zk

is a binomial random variable, and use an exact binomial generalized likelihood
ratio (GLR) statistic,

�ij = sup
p0,pij

l1(p0,pij ) − sup
p

l0(p),

where the null model with one overall success probability parameter p is compared
with the alternative model with one parameter pij for inside the [i, j ] interval and
another parameter p0 for outside the interval. From the binomial log-likelihood
function one obtains

�ij = ∑
k∈[i,j ]

{
Zk log

(
p̂ij

p̂

)
+ (1 − Zk) log

(
1 − p̂ij

1 − p̂

)}

+ ∑
k /∈[i,j ]

{
Zk log

(
p̂0

p̂

)
+ (1 − Zk) log

(
1 − p̂0

1 − p̂

)}
,

where p̂, p̂0, p̂ij are maximum likelihood estimates of success probabilities

p̂ =
m∑

k=1

Zk/m,

p̂ij = ∑
k∈[i,j ]

Zk/(j − i + 1),

p̂0 = ∑
k /∈[i,j ]

Zk/(m − j + i − 1).

The GLR and score statistics allow us to measure how distinct a specific inter-
val [i, j ] is compared to the entire chromosome. For the more general problem in
which (i, j) is not given but only one such pair exists, we compute the statistic
for all unique pairs of (i, j) to find the most significantly distinct interval. This
operation is O(m2) and to improve efficiency, we have implemented a search-
refinement scheme called Iterative Grid Scan in our software. It works by identify-
ing larger interesting intervals on a coarse grid and then iteratively improving the
interval boundary estimates. The computational complexity is roughly O(m logm)

and hence scales easily. A similar idea was studied in Walther (2010).
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In the general model with multiple unknown change points, one could theoret-
ically estimate all change points simultaneously by searching through all possible
combinations of {τ̂k}. But this is a combinatorial problem where even the best dy-
namic programming solution [Bellman (1961); Bai and Perron (2003); Lavielle
(2005)] would not scale well for a data set containing millions of reads. Thus, we
adapted Circular Binary Segmentation [Olshen et al. (2004); Venkatraman and Ol-
shen (2007)] to our change-point model as a greedy alternative. In short, we find
the most significant region (i, j) over the entire chromosome, which divides the
chromosome in to 3 regions (or two, if one of the change points lies on the edge).
Then we further scan each of the regions, yielding a candidate subinterval in each
region. At each step, we add the most significant change point(s) over all of the
regions to the collection of change-point calls.

Model complexity grows as we introduce more change points. This brings us
to the issue of model selection: We need a method to choose an appropriate num-
ber of change points K . Zhang and Siegmund (2007) proposed a solution to this
problem for Gaussian change-point models with shifts in mean. Like the Gaus-
sian model, the Poisson change-point model has irregularities that make classic
measures such as the AIC and the BIC inappropriate. An extension of Zhang and
Siegmund (2007) gives a Modified Bayes Information Criterion (mBIC) for our
model, derived as a large sample approximation to the Bayes Factor in the spirit of
Schwarz (1978):

mBIC(K) = log
(supp(t),τ L(p(t), τ )

supp L(p)

)
− 1

2

K∑
k=0

log(τ̂k+1 − τ̂k)

+ 1

2
log(m) − K log(m′),

where m′ is the number of unique values in {W1, . . . ,Wm}.
The first term of mBIC is the generalized log-likelihood ratio for the model

with K change points versus the null model with no change points. In our con-
text, K ideally reflects the number of biological breakpoints that yield the copy
number variants. The remaining terms can be interpreted as a “penalty” for model
complexity. These penalty terms differ from the penalty term in the classic BIC
of Schwarz (1978) due to nondifferentiability of the likelihood function in the
change-point parameters {τk}, and also due to the fact that the range of values for
{τk} grow with the number of observations m. For more details on the interpreta-
tion of the terms in the mBIC, see Zhang and Siegmund (2007). Finally, we report
the segmentation with K̂ = arg maxK mBIC(K) change points.

4. Approximate Bayesian confidence intervals. As noted in the Introduc-
tion, it is particularly important for sequencing data to assess the uncertainty in
the relative read intensity function at each genomic position. We approach this
problem by constructing approximate Bayesian confidence intervals.
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Suppose Z1, . . . ,Zm are independent realizations of Bernoulli random variables
with success probabilities {pt }. Consider first the one change-point model (which
can be seen as a local part of a multiple change-point model), where

pt =
{

p0, if t ≤ τ,

p1, if t > τ.

Without loss of generality, we may take τ ∈ {1,2, . . . ,m}. Assume a uniform prior
for τ on this discrete set. Let St be the number of successes up to and including
the t th realization,

St = ∑
1≤i≤t

Zi.

Our goal is to construct confidence bands for pt at each t ∈ {1,2, . . . ,m}. As-
sume a Beta(α,β) prior for p0 and p1. If we knew τ , then the posterior distribution
of p0 and p1 is

f (p0| 
Z,τ = τ ∗) ∝ f (p0)f (Sτ∗ |p0)

∼ Beta(α,β) · Binom(Sτ∗; τ ∗,p0)

∼ Beta(α + Sτ∗, β + τ ∗ − Sτ∗),

f (p1| 
Z,τ = τ ∗) ∝ f (p1)f (Sm − Sτ∗ |p1)

∼ Beta(α + Sm − Sτ∗, β + m − τ ∗ − Sm + Sτ∗).

Now, without knowing the actual τ ∗, we compute the posterior distribution of pt

as

f (pt | 
Z) =
m∑

i=1

f (pt , τ = i| 
Z)

=
m∑

i=1

f (pt |τ = i, 
Z) · f (τ = i| 
Z).

As before, the first part of the summation term is a beta distribution,

f (pt |τ = i, 
Z) =
{

Beta(α + Si, β + i − Si), if t ≤ i,

Beta(α + Sm − Si, β + m − i − Sm + Si), if t > i,

and for the second term, we define the likelihood of the change point at i as Li =
f ( 
Z|τ = i) and observe that with the uniform prior on τ ,

f (τ = i| 
Z) ∝ Li/m ∝ Li,

where

Li =
∫ ∏

1≤j≤i

p
Zj

0 (1 − p0)
1−Zj dP0 ·

∫ ∏
i<j≤m

p
Zj

1 (1 − p1)
1−Zj dP1,(6)
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and dP0 and dP1 are with respect to the prior distributions of p0 and p1. With
Beta(α,β) priors on p0 and p1, we can find the closed form expression of Li :

Li =
∫ ∏

1≤j≤i

p
Zj

0 (1 − p0)
1−Zj dP0 ·

∫ ∏
i<j≤m

p
Zj

1 (1 − p1)
1−Zj dP1

= 1

B(α,β)

∫
p

Si

0 (1 − p0)
i−Sipα−1

0 (1 − p0)
β−1 dp0

× 1

B(α,β)

∫
p

Sm−Si

1 (1 − p1)
m−i−Sm+Sipα−1

1 (1 − p1)
β−1 dp1

(7)

= B(α + Si, β + i − Si)B(α + Sm − Si, β + m − i − Sm + Si)

B(α,β)2

= 	(α + Si)	(β + i − Si)

	(α + β + i)

× 	(α + Sm − Si)	(β + m − i − Sm + Si)

	(α + β + m − i)

	(α + β)2

	(α)2	(β)2 .

Hence, we can compute, without knowing the actual value of τ ,

f (pt | 
Z) ∝
m∑

i=1

f (pt |τ = i, 
Z) · Li

Lτ̂

where τ̂ = arg max
i

Li.(8)

Observe that the posterior distribution is a mixture of Beta(·, ·) distributions. In
theory, we could compute weights wi = Li/Lτ̂ for all positions i and then numer-
ically compute (α

2 ,1 − α
2 ) quantiles of the posterior beta mixture distribution to

obtain the Bayesian confidence intervals. However, in practice, one can approxi-
mate the sum in (8) by

f (pt | 
Z) ≈ 1∑
wi>ε wi

[ ∑
wi>ε

wif (pt |τ = i, 
Z)

]
,

for some small ε > 0, hence ignoring the highly unlikely locations for the change
points. Empirically, we use ε = 10−4. It is easy to see that the sequence of log
likelihood ratios for alternative change points, log Li

Lτ
, form random walks with

negative drift as i moves away from the true change point τ [Hinkley (1970)]. The
negative drift depends on the true p0, p1 and is larger in absolute magnitude when
the difference between p0 and p1 is larger. With τ unknown, since P(|τ̂ − τ | ≤ δ)

can be made arbitrarily close to 1 for δ = o(m), one can make the same random
walk construction for log(Li/Lτ̂ ) bounded away by δ from τ̂ , as done in Cobb
(1978). This implies that, for any ε > 0, one may find a constant cε,p0,p1 such that
for any i at least cε,p0,p1 steps away from τ̂ , wi < ε with probability approaching 1.
Hence, it is reasonable to use a small cutoff to produce a close approximation to
the posterior distribution.
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The extension of this construction to multiple change points is straightforward.
It entails augmenting the mixture components of one change point with that of its
neighboring change points. This gives a computationally efficient way of approx-
imating the Bayesian confidence interval using, typically, a few hundred mixture
components, which has been implemented in seqCBS. There is also an extensive
body of literature on constructing confidence intervals and confidence sets for esti-
mators of the change point τ . We refer interested readers to Siegmund (1988b) for
discussion and efficiency comparison of various confidence sets in change-point
problems.

5. Results. We first applied the proposed method to a matched pair of tu-
mor and normal NCI-60 cell lines, HCC1954 and BL1954. Chiang et al. (2009)
conducted the sequencing of these samples using the Illumina platform. For
comparison with array-based copy number profiles on the same samples, we
obtained array data on HCC1954 and BL1954 from the NCI-60 database at
http://www.sanger.ac.uk/genetics/CGP/NCI60/. We applied the CBS algorithm
[Olshen et al. (2004), Venkatraman and Olshen (2007)] with modified BIC stop-
ping algorithm [Zhang and Siegmund (2007)] to estimate relative copy numbers
based on the array data.

Figure 3 shows the copy number profiles estimated from the array data (top)
and from the sequencing data by seqCBS (middle), for two representative chromo-
somes where there appears to be a number of copy number alternation events. The
bottom plots show the baseline λ(t) function estimated by smoothing the binned
counts of the normal sample sequencing data. There is clearly inhomogeneity in
the rate function. The points for the top plots are normalized log ratios for the
intensities of each probe on the array, whereas those for the middle plots are log
ratios of binned counts for the tumor and normal samples. Note that the binned
counts for the sequencing data are only for illustrative purposes, as the proposed
method operates on the point processes directly, which are difficult to visualize at
the whole-chromosome scale. The piecewise constant lines indicate the estimated
log relative copy numbers and the change-point locations. Note that after adjusting
for overall number of read differences between the two samples, the relative copy
number is estimated by p̂(t)/(1 − p̂(t)), where p̂(t) is the MLE estimate of the
success probability of the segment into which t falls.

The shape of the profile and overall locations for most change-point calls are
common between the array and sequencing data. That is, CBS and SeqCBS applied
on data generated from two distinct platforms generally agree. It is interesting that
in the regions where a large number of CNA events seem to have occurred, our
proposed method with sequencing is able to identify shorter and more pronounced
CNA events. It also appears that the CNA calls based on sequencing are smoother
in the sense that small magnitude shifts in array-based results, such as the change
points after 102 Mb of Chromosome 11, are ignored by seqCBS. Similar obser-
vations can be made with results on other chromosomes as well. Since we do not

http://www.sanger.ac.uk/genetics/CGP/NCI60/
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(a) (b)

FIG. 3. Comparison of seqCBS and array-based CN profiling. (a) HCC/BL1954 Chr 8, array, se-
qCBS, baseline read intensity. (b) HCC/BL1954 Chr 11, array, seqCBS, baseline read intensity.

know the ground truth in these tumor samples, it is hard to assess in more detail the
performance of the estimates. Detailed spike-in simulation studies in the next sec-
tion give a systematic view of the accuracy of the proposed method, as compared
to the current standard approach.

Figure 4 is an example illustrating the approximate Bayesian confidence inter-
val estimates around two CNA events on Chromosome 8 of HCC1954. This is not
a typical example among the change-point calls. Typically, the signal differences
are stronger and, hence, the confidence bands are narrower with little ambiguity re-
gion. The actual locations of mapped reads are shown as tick marks, with ticks at
the bottom of the plot representing control reads, and ticks at the top representing
case reads. The estimated relative copy numbers and their point-wise approximate
Bayesian confidence intervals are shown as black and grey lines, respectively. One
can see that the width of the confidence intervals depends not only on the num-
ber of reads in the segment, but also on the distance from the position of interest
to the called change points, and that the confidence intervals are not necessarily
symmetric around the estimated copy number.
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FIG. 4. Bayesian CI, HCC1954 Chr 8. The solid black line is the estimated copy number, light gray
lines are 95% confidence intervals. The actual locations of the case and control reads are shown as
tick marks at the top and bottom of the plot, respectively.

6. Performance assessment. To assess the performance of the proposed
method more precisely, we conducted a spike-in simulation study. We empirically
estimated the underlying inhomogeneous rate function λ(t) by kernel smoothing
of the read counts from the normal sample, BL1954, in Chiang et al. (2009). The
simulated tumor rate function μ(t) is then constructed by spiking into λ(t) seg-
ments of single copy gain/loss. Since the length of the CNA events influences
their ease of detection, we considered a range of different signal lengths. Each
simulated case sample contains 50 changed segments. We compared seqCBS to
SegSeq, which is one of the more popular available algorithms. For seqCBS, we
used mBIC to determine appropriate model complexity. We used SegSeq with its
default parameters. A change-point call was deemed true if it was within 100 reads
of a true spike-in change point, after using a matching algorithm implemented in
the R package clue by Hornik (2005, 2010) to find minimal-distance pairing
between the called change points and the true change points. Performance was
evaluated by recall and precision, defined respectively as the proportion of true
signals called by the method and the proportion of signals called that are true. The
simulation was repeated multiple times to reduce the variance in the performance
measures.

Figure 5 summarizes the performance comparison at default settings for a num-
ber of spike-in signal lengths. The horizontal lines are mean recall and precision
rates for the methods. We see that SeqCBS, used with either the score test statistic
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FIG. 5. Recall and precision of seqCBS & SegSeq.

or the GLR statistic, offers significant improvement over the existing method in
both precision and recall. The performances of the score and GLR statistics are
very similar, as their recall and precision curves almost overlap. The improvement
in precision can be largely attributed to the fact that mBIC provides a good estimate
of model complexity, as can be seen in Figure 6(a).

We studied the performance sensitivity on tuning parameters. SegSeq allows
three tuning parameters: local window size (W), number of false positive candi-
dates for initialization (A), and number of false positive segments for termina-
tion (B). The proposed method has a step size parameter (G) that controls the
trade-off between speed and accuracy in our Iterative Grid Scan component, and
hence influences performance. We varied these parameters and recorded the per-

(a) (b)

FIG. 6. Model complexity and timing by seqCBS & SegSeq. (a) Model complexity comparison.
(b) Timing comparison.
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TABLE 1
Performance measures and tuning parameters. SegSeq: W = fixed local window size (default 500),

A = number of false positive candidates for initialization (default 1000), B = number of false
positive segments for termination (default 10). SeqCBS: Scr = score statistic, Bin = GLR statistic,

G = IGS power step size (default 10); N/A values indicate program failures

Log mean breakpoint length
Length 2.49 2.68 2.91 3.10 3.18 3.29 3.51 3.73 3.95

Recall
SegSeq
Default 0.066 0.146 0.394 0.514 0.464 0.476 0.502 0.438 0.424
W250 0.23 0.422 0.67 0.662 0.59 0.654 0.64 0.564 0.516
W750 NA NA 0.148 0.206 0.248 0.36 0.408 0.384 0.346
A500 NA 0.148 0.394 0.514 0.464 0.476 0.502 0.438 0.424
A2000 NA 0.146 0.394 0.514 0.464 0.476 0.502 0.438 0.424
B25 NA 0.182 0.404 0.532 0.484 0.502 0.506 0.452 0.458
B5 NA 0.126 0.382 0.476 0.432 0.442 0.476 0.428 0.364

SeqCBS
Scr-Def 0.49 0.714 0.95 0.988 0.95 0.936 0.968 0.878 0.782
Bin-Def 0.492 0.718 0.948 0.99 0.956 0.936 0.968 0.876 0.81
Scr-G5 0.496 0.71 0.922 0.99 0.956 0.956 0.978 0.922 0.844
Bin-G5 0.496 0.712 0.928 0.99 0.958 0.962 0.98 0.946 0.844
Scr-G15 0.494 0.708 0.926 0.974 0.942 0.938 0.968 0.89 0.736
Bin-G15 0.496 0.716 0.93 0.976 0.946 0.96 0.972 0.91 0.748

Precision
SegSeq
Default 0.049 0.105 0.235 0.305 0.284 0.263 0.276 0.237 0.255
W250 0.174 0.317 0.490 0.472 0.467 0.478 0.442 0.405 0.399
W750 NA NA 0.107 0.137 0.165 0.227 0.242 0.232 0.212
A500 NA 0.097 0.235 0.305 0.284 0.263 0.276 0.237 0.255
A2000 NA 0.101 0.235 0.305 0.284 0.263 0.276 0.237 0.255
B25 NA 0.101 0.203 0.278 0.254 0.243 0.246 0.219 0.240
B5 NA 0.104 0.278 0.361 0.323 0.308 0.327 0.295 0.271

SeqCBS
Scr-Def 0.980 0.997 0.985 0.988 0.985 0.944 0.968 0.878 0.839
Bin-Def 0.984 0.997 0.988 0.990 0.992 0.947 0.968 0.876 0.884
Scr-G5 0.984 0.997 0.956 0.990 0.992 0.980 0.994 0.945 0.942
Bin-G5 0.984 0.994 0.959 0.990 0.994 0.990 0.996 0.977 0.942
Scr-G15 0.980 0.994 0.953 0.944 0.961 0.949 0.964 0.876 0.710
Bin-G15 0.984 0.994 0.953 0.946 0.973 0.984 0.972 0.910 0.733

formance measures in Table 1. It appears that local window size (W) is an im-
portant tuning parameter for SegSeq, and in scenarios with relatively short signal
length, a smaller W = 250 provides significant improvement in its performance.
This echoes with our previous discussion that methods using a single fixed win-
dow size would perform less well when the signals are not of the corresponding
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length. Some of the parameter combinations for SegSeq result in program running
errors in some scenarios, and are marked as NA. The step size parameter (G) in
SeqCBS, in constrast, controls the rate at which coarse segment candidates are
refined and the rate at which the program descends into searching smaller local
change points, rather than defining a fixed window size. A smaller step size typ-
ically yields slightly better performance. However, the proposed method is not
nearly as sensitive to its tuning parameters. We also conducted a timing experi-
ment to provide the reader with a sense of the required computational resources
to derive the solution. Our proposed method compares favorably with SegSeq as
seen in Figure 6(b). The GLR statistic is slightly more complex to compute than
the score statistic, as is reflected in the timing experiment. However, copy number
profiling is inherently a highly parallelizable computing problem: one may dis-
tribute the task for each chromosome among a multi-CPU computing grid, hence
dramatically reducing the amount of time required for this analysis.

7. Discussion. We proposed an approach based on nonhomogeneous Poisson
Processes to directly model next-generation DNA sequencing data, and formulated
a change-point model to conduct copy number profiling. The model yields simple
score and generalized likelihood ratio statistics, as well as a modified Bayes infor-
mation criterion for model selection. The proposed method has been applied to real
sequencing data and its performance compares favorably to an existing method in
a spike-in simulation study.

Statistical inference, in the form of confidence estimates, is very important for
sequencing-based data, since, unlike arrays, the effective sample size (i.e., cover-
age) for estimating copy number varies substantially across the genome. In this
paper, we derived a procedure to compute Bayesian confidence intervals on the
estimated copy number. Other types of inference, such as p-values or confidence
intervals on the estimated change points, may also be useful. Siegmund (1988b)
compares different types of confidence intervals on the change points, and the
methods there can be directly applied to this problem. The reader is referred to
Rabinowitz (1994) and Siegmund (1988a) for existing methods on significance
evaluation.

Some sequencing experiments produce paired end reads, where two short reads
are performed on the two ends of a longer fragment of DNA. The pairing informa-
tion can be quite useful in the profiling of structural genomic changes. It will be
important to extend the approach in this paper to handle this more complex data
type.

A limitation of the proposed method and the existing methods is that they do
not handle allele-specific copy number variants. It is possible to extend our model
to accommodate this need. With deep sequencing, one may assess whether each
loci in a CNV is heterozygous, and estimate the degree to which each allele con-
tributes to the gain or loss of copy number, by considering the number of reads
covering the locus with the major allele versus those with the minor allele. This is
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particularly helpful for detecting deletion. Furthermore, in the context of assessing
the allele-specific copy number, existing SNP arrays have the advantage that the
assay targets specific sites for that problem, whereas to obtain sufficient evidence
of allele-specific copy number variants with sequencing, a much greater cover-
age would be required since the overwhelming majority of reads would land in
nonallelic genomic regions. Spatial models that borrow information across adja-
cent variant sites, such as Chen, Xing and Zhang (2011) and Olshen et al. (2011),
would be helpful for improving power.

Recently, there has been increased attention to the problem of simultaneous
segmentation of multiple samples [Lipson et al. (2006); Shah et al. (2007); Zhang
et al. (2010); Siegmund, Yakir and Zhang (2011)]. One may also wish to extend
this method to the multi-sample setting, where in addition to modeling challenges,
one also needs to address more sources of systematic biases, such as batch effects
and carry-over problems.

Computational challenges remain in this field. With sequencing capacity grow-
ing at record speed, even basic operations on the data set are resource-consuming.
It is pertinent to develop faster and more parallelizable solutions to the copy num-
ber profiling problem.
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