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IMPROVING SEQUENCE-BASED GENOTYPE CALLS WITH
LINKAGE DISEQUILIBRIUM AND PEDIGREE INFORMATION1

BY BAIYU ZHOU AND ALICE S. WHITTEMORE

Stanford University

Whole and targeted sequencing of human genomes is a promising, in-
creasingly feasible tool for discovering genetic contributions to risk of com-
plex diseases. A key step is calling an individual’s genotype from the mul-
tiple aligned short read sequences of his DNA, each of which is subject to
nucleotide read error. Current methods are designed to call genotypes sepa-
rately at each locus from the sequence data of unrelated individuals. Here we
propose likelihood-based methods that improve calling accuracy by exploit-
ing two features of sequence data. The first is the linkage disequilibrium (LD)
between nearby SNPs. The second is the Mendelian pedigree information
available when related individuals are sequenced. In both cases the likelihood
involves the probabilities of read variant counts given genotypes, summed
over the unobserved genotypes. Parameters governing the prior genotype dis-
tribution and the read error rates can be estimated either from the sequence
data itself or from external reference data. We use simulations and synthetic
read data based on the 1000 Genomes Project to evaluate the performance of
the proposed methods. An R-program to apply the methods to small families
is freely available at http://med.stanford.edu/epidemiology/PHGC/.

1. Introduction. The cost of DNA sequencing has decreased by orders of
magnitude, and further decreases will make it possible to sequence the entire hu-
man genome in hundreds or thousands of individuals [Bentley et al. (2008), Drma-
nac et al. (2010), McKernan et al. (2009)]. The resulting comprehensive genomic
analyses will provide powerful tools for discovering the genetic variation underly-
ing complex traits. Much of this variation consists of single nucleotide polymor-
phisms (SNPs), which occur with great frequency on the human genome. Each
of our paired chromosomes contains one of two nucleotides or alleles at each of
its SNP loci. Current sequencing technologies provide comprehensive evaluation
of an individual’s alleles at all SNPs in a specific genomic region by using his
DNA to produce tens of millions of short nucleotide sequences called reads that
range from 30 to 350 base pairs in length. The nucleotide sequence of each read
is then aligned to that of a haploid reference genome. Each locus on the refer-
ence genome is thus represented by a variable number n of reads called the read
depth, and a count can be taken of the number of reads scored with the variant
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FIG. 1. Alignment of n reads at a specific locus to a reference haplotype, and calls of nucleotides
(R = reference allele, V = variant) at the locus. The V at read 2 indicates a SNP or a read error.

(nonreference) nucleotide (Figure 1). In the absence of sequencing error, the reads
for an individual homozygous at the locus would contain either all reference or
all variant nucleotides. In contrast, the reads for an individual heterozygous at the
locus would contain roughly half variants and half reference alleles, with binomial
variability due to the random sampling of his two homologous alleles. In both in-
stances, calling the correct genotype from his sequence reads is complicated by
errors in base calling and sequence alignment. Because of the binomial variability
across the reads of heterozygotes, such errors are more difficult to detect and cor-
rect for heterozygous individuals than for homozygotes. It is well established that
the resulting genotyping errors can lead to increased type I error and decreased
power in genetic studies [Gordon et al. (2002), Clayton et al. (2005)].

Several methods have been developed to infer a genotype from the number of
variants among the aligned reads for an individual at a specific locus [Li et al.
(2008), Bansal et al. (2010), Martin et al. (2010), see Nielsen et al. (2011) for a
review]. The approach of Li et al. (2008) calls the genotype for each individual
separately, using fixed prespecified values for genotype and nucleotide read error
probabilities. This approach has been criticized on the grounds that the specified
parameters may be inappropriate for any given individual [Bansal et al. (2010),
Martin et al. (2010)]. Instead, Martin et al. (2010) use the sequence data in a sample
of individuals from a given racial/ethnic population to estimate allele frequencies
and nucleotide read error rates, and show that this strategy can improve genotype
call accuracy.
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Both these approaches consider each locus separately, ignoring linkage dise-
quilibrium (LD) among nearby SNP loci, and both are designed for application to
unrelated individuals, not families. Two SNPs exhibit LD when their minor alleles
(those with population frequencies ≤ 0.5) are correlated in the chromosomes of
the population. SNPs whose squared correlation coefficients are close to one are
said to be tightly linked or in high LD. We shall show that for multiple SNPs in
tight LD, genotype calling accuracy can be improved by exploiting the genotype
constraints imposed by the LD. For example, if two tightly linked loci have reads
of different depths or reads with different error rates, the genotypes at one locus
can help determine the genotypes at the other. We also shall show that the accu-
racy for sequenced family members can be improved by exploiting the genotype
constraints imposed by Mendelian inheritance. The prospects for improvement are
strengthened by the success of methods for calling genotypes from the intensities
produced by SNP microarray chips: accuracy can be improved by modeling both
SNP LD [Yu et al. (2009)] and Mendelian inheritance [Sabatti and Lange (2008),
Lin et al. (2008)].

We begin by describing a likelihood-based algorithm for calling genotypes at
multiple loci in a region of high LD, either in sequenced individuals or sequenced
family members. We then apply the methods to data from simulations and the 1000
Genomes Project. We conclude with a brief discussion.

2. Methods. We wish to call the genotypes of sequenced individuals in each
of I unrelated families for a set of M SNPs in a given chromosomal region, with
unrelated individuals corresponding to ‘families’ of size one. We code an individ-
ual’s genotype for a SNP according to the number g = 0,1 or 2 of minor SNP
alleles he inherits from his parents, where, for example, g = 1 indicates he re-
ceived the minor SNP allele from one parent but not the other. We wish to infer
this genotype using the count y of variants observed in n reads at the SNP, where
for definiteness we assume that the variant is the minor allele of the SNP. The
number of variant reads at a SNP locus depends on the individual’s true genotype,
the number of reads (read depth), and the nucleotide error rate of the reads at the
locus.

Calling genotypes from such read data involves three steps: (1) development
of models for the distribution of unobserved genotypes (the prior genotype distri-
bution) and for the conditional distributions of read variants given genotypes and
read depth; (2) estimation of the model parameters θ by the method of maximum
likelihood; and (3) calling genotypes as the modes of the posterior distribution of
genotypes, with θ replaced by the maximum likelihood estimate θ̂ .

Step 1. Model development. To describe the likelihood of the observed read
data for one family, let θ = (π ,α), where π denotes the parameters in the prior
distribution of genotypes (or diploid haplotypes) and α denotes the error parame-
ters in the conditional distribution of read variant counts given genotypes and read
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depth. We assume negligible probability of recombination among the M SNPs in
the meioses connecting family members. That is, we assume the region containing
the M SNPs is inherited as a single multi-allelic locus with H ‘alleles’ labeled
1,2, . . . ,H , where H = 2M is the number of possible haplotypes in the popu-
lation. Thus, each individual carries one of the H(H − 1)/2 possible haplotype
pairs (h,h′),1 ≤ h ≤ h′ ≤ H , called diploid haplotypes. His genotype for SNP m

is gm = xmh + xmh′ , where xmh = 1 if haplotype h contains the minor allele at
locus m, and zero otherwise. His genotypes for the M SNPs form a column vector
g = (g1, . . . , gM)T of minor allele counts. Similarly, the individual’s read and vari-
ant data form column vectors n = (n1, . . . , nM)T and y = (y1, . . . , yM)T of counts
of reads and variants, respectively, at each the M loci.

The model has the form

L(θ) = Pr(Y|N,R; θ) = ∑
G

Pr(G|R,π)

S∏
s=1

Pr(ys |ns,gs;α),(1)

where Y = (y1,y2, . . . ,yS) and N = (n1,n2, . . . ,nS) are the M × S matrices of
minor allele and read counts, respectively, for the S sequenced family members.
Also, the summation is taken over all possible values for the M × S genotype
matrix G = (g1,g2, . . . ,gS) that are consistent with the members’ relationship R.
The prior genotype probabilities Pr(G|R;π) for the S family members depend on
their relationship R and on the parameters π governing the probabilities of the
unrelated family founders’ genotypes. To simplify the notation, we model these
probabilities assuming independence of haplotypes within pedigree founders [i.e.,
Hardy–Weinberg (HW) diploid haplotype frequencies] and across founders (i.e.,
random mating). However, departures from these assumptions can be handled by
more general modeling of the family genotype probabilities Pr(G|R;π) in (1).

To model an individual’s read variant counts at the M loci, we assume that,
conditioned on his underlying genotype and total number of reads, the read variant
counts ym are independent and follow the binomial model of Li et al. (2008), Kim
et al. (2010), and Martin et al. (2010). This model gives the probability of a variant
count for an individual with genotype gm at locus m in terms of a nucleotide error
rate αm, defined as the probability that a read yields an incorrect allele at locus m.
Specifically,

P(ym|nm,gm = 0;αm) =
(

nm

ym

)
αym

m (1 − αm)nm−ym,

P (ym|nm,gm = 1;αm) =
(

nm

ym

)(
1

2

)nm

,(2)

P(ym|nm,gm = 2;αm) =
(

nm

ym

)
(1 − αm)ym(αm)nm−ym.

Like previous work [Li et al. (2008), Bansal et al. (2010), Martin et al. (2010)],
this model assumes a single error probability for an individual’s reads at a SNP
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regardless of his actual genotype, an assumption that can be relaxed by introduc-
ing allele-specific error parameters. The model also assumes that read errors are
independent both within the reads at a single SNP and across the reads at different
SNPs. The latter assumption is tenable provided the SNPs of an inferred diploid
haplotype are at least half a kilobase apart and thus unlikely to have overlapping
reads.

Step 2. Likelihood maximization. We seek a value θ̂ to maximize the likelihood
L(θ) = ∏I

i=1 Li(θ) for all the families, with Li(θ) given by (1). Finding θ̂ can
be facilitated in two ways. First, we can compute the joint genotype probabilities
of sequenced family members in terms of their possible patterns of allele sharing
due to its inheritance from a common ancestor, called Identity-By-Descent (IBD)
sharing. That is, we can write Pr(G|R;π) = ∑

φ Pr(φ|R)Pr(G|φ;π), where φ de-
notes an IBD configuration class for the members, and the summation is taken
over all classes consistent with the members’ relationship R [Thompson (1974),
Whittemore and Halpern (1994)]. Second, we can use the EM algorithm [Demp-
ster, Laird, and Rubin (1977)], with the unobserved genotypes treated as missing
data. The EM algorithm is useful because, according to the model (1)–(2), the
complete data likelihood factors as a term involving the genotype parameters π
times a term involving the nucleotide error rates α = (α1, . . . , αM). The Appendix
contains brief descriptions of these procedures.

Step 3. Genotype calling. Finally, we use the model (1)–(2) and its parameter
estimate θ̂ to call the genotypes for the ith family as the mode of the posterior
distribution

Pr(Gi |Ni ,Yi; θ̂) = Pr(Gi |π̂)Pr(Yi |Ni ,Gi; α̂)∑
G Pr(G|π̂)Pr(Yi |Ni ,G; α̂)

.

We have implemented the above procedures in the R programs PedGC (uses pedi-
gree information), HapGC (uses LD information), and PedHapGC (uses both),
which are freely available at http://med.stanford.edu/epidemiology/PHGC/.

Special cases. When genotypes are called separately for each SNP and we as-
sume HW genotype frequencies and random mating for family founders, the prior
genotype parameter π equals the vector of HW SNP minor allele frequencies
(MAFs) at the SNPs. For this case and for unrelated individuals, the model (1)–(2)
agrees with that used in the genotype calling method of Martin et al. (2010), im-
plemented in the software package SeqEM.

For simultaneous calls at M = 2 SNPs, the H = 2M = 4 possible haplo-
types have a multinomial population distribution with parameter π = (π1, π2, π3),
where π4 = 1 − ∑3

m=1 πm. Here we have ordered the four haplotypes as follows:
(1) A1A2; (2) A1B2; (3) B1A2; and (4) B1B2, where Am and Bm represent the
minor and major alleles, respectively, at SNP locus m.

3. Simulation results. We used simulations to evaluate the gains associated
with exploiting LD and pedigree information. We first computed error rates for

http://med.stanford.edu/epidemiology/PHGC/
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genotypes obtained separately at a single SNP but jointly for family members
using the model (1)–(2). We compared these error rates with those obtained as-
suming genotype independence within families, as implemented in the software
package SeqEM [Martin et al. (2010)]. To do so, we generated 1000 data sets,
each comprising 100 families containing one of three sets of sequenced members:
parent/offspring trios, sib pairs, and first-cousin pairs. We generated genotypes us-
ing the IBD configuration classes described in the Appendix, Part A, with various
HW MAFs. Given genotypes, we generated read depths and variant counts inde-
pendently across subjects. The read depths were taken as positive Poisson variables
whose means were μ = 10 or μ = 30, and the variant counts were generated as bi-
nomial variables according to (2), with read error rates of 0.5%, 5%, and 10%. In
practice, read depths may exhibit extra-Poisson variability across individuals and
across SNPs within an individual. However, this additional variability is unlikely
to affect the summary performance statistics reported here, since the calling meth-
ods under consideration are all based on models that condition on the observed
read counts.

Table 1 shows the overall percentages of genotype errors when the data were an-
alyzed using PedGC and SeqEM. Also shown in parentheses are the percentages
of errors among individuals whose true genotypes at the SNP are heterozygote
and homozygote. Several observations are noteworthy. First, as expected, accu-
racy increases with decreasing read error rates and increasing read depth. Second,
genotype errors are more common among heterozygote genotypes than homozy-
gous ones, consistent with the greater difficulty in calling heterozygotes noted in
the Introduction. Third, the error rate among heterozygotes has relatively little
impact on the overall error rate, since genotypes that are heterozygous for rare
variants comprise a small fraction of the population. Nevertheless, as noted in the
Discussion, both types of error can impair one’s ability to distinguish heterozygote
from normal homozygote individuals with the accuracy needed for good power
in association studies. Fourth, larger MAFs are associated with increased accu-
racy among heterozygotes but decreased accuracy among homozygotes, and thus
decreased overall accuracy. Finally, PedGC consistently improves the error rate
among both heterozygotes and homozygotes, and thus consistently improves the
overall error rate.

To evaluate gains in accuracy from incorporating LD information, we also gen-
erated read data for M = 2 loci in high LD, and specified the HW haplotype fre-
quency parameter π = (π1, π2, π3) in terms of the SNP MAFs p1,p2 and their cor-
relation coefficient r . In each of 1000 replications, we generated two-locus diploid
haplotypes for 100 unrelated individuals and 100 first-cousin pairs, as described
in the Appendix, Part A. Read depths were taken to be positive Poisson variables
distributed independently across the two loci and across individuals, and variant
counts and read errors were generated independently, as described above. Read
error parameters αm were allowed to differ at the two loci. Tables 2A and 2B give
results for the following: (A) unrelated individuals and (B) first-cousins. The table
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TABLE 1
Genotype error ratesa (%) for single SNP

Read error rate (%)

0.5 5.0 10.0

MAFb (%) PedGCc SeqEMd PedGC SeqEM PedGC SeqEM

Trios
read depth = 10

0.1 0.01 (3.67/0.01) 0.02 (8.05/0.01) 0.06 (20.70/0.02) 0.09 (30.97/0.03) 0.10 (35.76/0.03) 0.16 (54.06/0.05)

1.0 0.08 (3.10/0.02) 0.15 (6.13/0.03) 0.39 (13.97/0.09) 0.57 (22.30/0.14) 0.72 (27.83/0.17) 1.05 (41.43/0.23)

10.0 0.51 (2.07/0.17) 0.81 (3.13/0.30) 2.01 (7.32/0.85) 2.86 (10.06/1.28) 4.02 (14.86/1.63) 5.37 (18.97/2.37)

read depth = 30
0.1 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.00 (0.68/0.00) 0.01 (1.36/0.00) 0.01 (4.70/0.00) 0.02 (7.13/0.01)

1.0 0.00 (0.00/0.00) 0.00 (0.01/0.00) 0.01 (0.34/0.00) 0.02 (0.65/0.01) 0.06 (2.26/0.01) 0.10 (3.63/0.04)

10.0 0.00 (0.01/0.00) 0.00 (0.01/0.00) 0.05 (0.20/0.02) 0.09 (0.32/0.03) 0.30 (0.99/0.15) 0.46 (1.48/0.24)

Sib pairs
read depth = 10

0.1 0.01 (5.99/0.01) 0.02 (8.71/0.01) 0.06 (21.05/0.02) 0.09 (28.57/0.03) 0.13 (43.23/0.05) 0.18 (58.62/0.07)

1.0 0.10 (3.89/0.03) 0.14 (5.43/0.03) 0.46 (16.88/0.13) 0.60 (22.70/0.16) 0.84 (30.80/0.23) 1.08 (42.17/0.25)

10.0 0.66 (2.60/0.24) 0.79 (3.07/0.29) 2.44 (8.53/1.18) 2.85 (10.18/1.25) 4.71 (16.57/2.10) 5.44 (19.21/2.41)

read depth = 30
0.1 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.00 (0.26/0.00) 0.00 (1.05/0.00) 0.01 (5.97/0.01) 0.02 (7.27/0.01)

1.0 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.01 (0.46/0.00) 0.01 (0.64/0.01) 0.08 (2.64/0.03) 0.12 (4.00/0.04)

10.0 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.07 (0.26/0.03) 0.08 (0.29/0.04) 0.39 (1.28/0.19) 0.44 (1.45/0.22)
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TABLE 1
(Continued)

Read error rate (%)

0.5 5.0 10.0

MAFb (%) PedGCc SeqEMd PedGC SeqEM PedGC SeqEM

First-cousin pairs
read depth = 10

0.1 0.02 (8.05/0.01) 0.03 (10.12/0.01) 0.10 (30.97/0.04) 0.11 (33.33/0.04) 0.17 (49.35/0.07) 0.18 (53.98/0.08)

1.0 0.13 (5.52/0.03) 0.14 (6.12/0.03) 0.55 (22.74/0.14) 0.57 (23.59/0.14) 0.99 (40.85/0.23) 1.01 (42.63/0.23)

10.0 0.80 (3.09/0.30) 0.81 (3.36/0.34) 2.79 (10.16/1.21) 2.84 (10.95/1.37) 5.37 (18.59/2.70) 5.43 (20.31/2.73)

read depth = 30
0.1 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.00 (1.02/0.00) 0.01 (1.28/0.00) 0.02 (6.54/0.01) 0.02 (7.30/0.01)

1.0 0.00 (0.02/0.00) 0.00 (0.03/0.00) 0.01 (0.64/0.01) 0.02 (0.67/0.01) 0.10 (4.08/0.03) 0.11 (4.10/0.03)

10.0 0.01 (0.02/0.00) 0.01 (0.02/0.00) 0.09 (0.33/0.05) 0.09 (0.35/0.05) 0.44 (1.41/0.24) 0.45 (1.55/0.25)

aPercent incorrect genotype calls among sequenced members of 100 families of each type, averaged over 1000 replications. Numbers in parenthesis give
percent incorrect calls among heterozygote/homozygote genotypes.
bMinor allele frequency.
cUses individuals’ familial relationships.
dTreats individuals as unrelated.
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TABLE 2A
Error ratesa (%) for genotypes of SNP pairs in unrelated individuals

Unrelated individuals

MAFb (%) Read error rate (%) SNP1 SNP2

SNP1 SNP2 SNP1 SNP2 r2 HapGCc SeqEMd HapGC SeqEM

read depth = 10
1.0 1.0 5.0 5.0 0.9 0.19 (7.11/0.05) 0.60 (22.61/0.15) 0.18 (7.23/0.04) 0.60 (22.41/0.15)

0.8 0.24 (8.58/0.07) 0.62 (24.10/0.15) 0.26 (9.98/0.07) 0.63 (24.31/0.16)

0.6 0.30 (11.45/0.08) 0.61 (22.25/0.17) 0.29 (11.00/0.08) 0.60 (21.48/0.18)

1.0 5.0 0.9 0.07 (2.98/0.01) 0.20 (7.49/0.05) 0.14 (5.21/0.04) 0.59 (22.80/0.14)

0.8 0.09 (3.68/0.02) 0.21 (7.76/0.05) 0.20 (7.19/0.06) 0.63 (23.48/0.16)

0.6 0.11 (4.54/0.02) 0.20 (7.46/0.05) 0.29 (11.01/0.07) 0.61 (24.00/0.14)

read depth = 30
1.0 1.0 5.0 5.0 0.9 0.01 (0.20/0.00) 0.02 (0.90/0.01) 0.00 (0.17/0.00) 0.01 (0.57/0.01)

0.8 0.01 (0.15/0.00) 0.02 (0.88/0.01) 0.00 (0.15/0.00) 0.02 (0.95/0.01)

0.6 0.01 (0.33/0.00) 0.02 (0.66/0.01) 0.01 (0.32/0.00) 0.02 (0.72/0.00)

1.0 5.0 0.9 0.00 (0.02/0.00) 0.00 (0.05/0.00) 0.00 (0.20/0.00) 0.02 (0.83/0.01)

0.8 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.01 (0.32/0.00) 0.02 (0.80/0.01)

0.6 0.00 (0.02/0.00) 0.00 (0.02/0.00) 0.01 (0.44/0.00) 0.02 (0.96/0.01)
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TABLE 2B
Error ratesa (%) for genotypes of SNP pairs in first-cousin pairs

First-cousin pairs

MAFb (%)
Read error

rate (%) SNP1 SNP2

SNP1 SNP2 SNP1 SNP2 r2 PedHapGCe PedGCf SeqEM PedHapGC PedGC SeqEM

read depth = 10
1.0 1.0 5.0 5.0 0.9 0.16 (6.26/0.04) 0.55 (20.73/0.14) 0.59 (22.82/0.14) 0.19 (6.92/0.05) 0.54 (20.26/0.14) 0.58 (22.20/0.14)

0.8 0.21 (8.28/0.05) 0.56 (21.40/0.15) 0.61 (23.82/0.15) 0.23 (8.75/0.06) 0.56 (21.72/0.14) 0.61 (24.20/0.14)

0.6 0.29 (11.57/0.07) 0.57 (21.76/0.14) 0.61 (23.99/0.14) 0.30 (11.51/0.07) 0.58 (21.86/0.15) 0.62 (24.12/0.15)

1.0 5.0 0.9 0.07 (2.85/0.01) 0.20 (7.87/0.05) 0.22 (8.77/0.05) 0.15 (5.32/0.04) 0.59 (20.98/0.17) 0.63 (23.43/0.16)

0.8 0.09 (3.63/0.02) 0.20 (7.69/0.05) 0.21 (8.37/0.05) 0.18 (6.51/0.06) 0.57 (21.55/0.15) 0.62 (23.99/0.15)

0.6 0.11 (4.42/0.02) 0.20 (7.56/0.05) 0.21 (8.39/0.05) 0.29 (10.35/0.08) 0.58 (22.02/0.15) 0.62 (24.31/0.15)

read depth = 30
1.0 1.0 5.0 5.0 0.9 0.01 (0.20/0.001) 0.01 (0.57/0.01) 0.02 (0.67/0.01) 0.00 (0.10/0.00) 0.02 (0.68/0.01) 0.02 (0.78/0.01)

0.8 0.01 (0.24/0.003) 0.02 (0.74/0.01) 0.02 (0.79/0.01) 0.00 (0.17/0.00) 0.02 (0.57/0.01) 0.02 (0.67/0.01)

0.6 0.01 (0.24/0.002) 0.02 (0.52/0.01) 0.02 (0.66/0.01) 0.01 (0.39/0.00) 0.02 (0.66/0.01) 0.02 (0.74/0.01)

1.0 5.0 0.9 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.00 (0.00/0.00) 0.01 (0.14/0.00) 0.02 (0.59/0.01) 0.02 (0.71/0.01)

0.8 0.00 (0.00/0.00) 0.00 (0.02/0.00) 0.00 (0.05/0.00) 0.01 (0.36/0.00) 0.03 (1.11/0.01) 0.03 (1.19/0.01)

0.6 0.00 (0.00/0.00) 0.00 (0.05/0.00) 0.00 (0.07/0.00) 0.01 (0.50/0.00) 0.02 (0.78/0.01) 0.02 (0.81/0.01)

aPercent incorrect genotype calls among 100 families, averaged over 1000 replications.
bMinor allele frequency; each SNP has MAF = 1%.
cUses SNP LD.
dTreats locus genotypes as independent and family members as unrelated.
eUses LD and familial relationships.
fUses familial relationships.
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shows that pedigree and LD information improves heterozygote- and homozygote-
specific genotype call accuracy for linked loci in both unrelated individuals and
families. Accuracy gains are particularly large for SNPs that are tightly linked to
another SNP with lower read error rates. Accuracy gains diminish with decreasing
LD between the loci, and with increasing read depth.

The data for Tables 1, 2A and 2B were generated assuming HW frequencies and
random mating in family founders. To evaluate the impact on genotype calling of
departures from these assumptions, we also evaluated the performance of the call-
ing methods as applied to data generated with departures from these assumptions.
Specifically, we generated pedigree founder genotypes with excess homozygity
as well as excess heterozygosity, and with various levels of assortative mating. We
found little change in the accuracy gains for HapGC and PedGC relative to SeqEM
(data not shown).

4. Application to 1000 genomes data. The 1000 genomes project is an in-
ternational research initiative to catalogue human genetic variants by sequencing
at least one thousand subjects representing different racial/ethnic groups. In a pub-
licly available data from a pilot phase, exomic sequencing has identified some
15 million variants, more than half of which were previously unknown [The 1000
Genomes Project Consortium (2010)]. To illustrate the LD- and pedigree-based
methods as applied to the haplotypes of family members from a Caucasian popula-
tion, we focused on a randomly chosen 274 kb region from position 17,345,389 to
position 17,619,118 on chromosome 21, for which 1000 SNPs were found among
the 283 Caucasian subjects. We chose a region of this length to allow enough SNPs
to evaluate the methods across a broad range of SNP MAFs and pairwise SNP cor-
relation coefficients. We chose a region containing 1000 SNPs to allow evaluation
of the methods over a broad range of variant frequencies and pairs of SNP corre-
lation coefficients. Figure 2 shows the distribution of MAFs for these 1000 SNPs,
as obtained from the set of 2 × 283 = 586 phased Caucasian haplotypes.

We used these 586 haplotypes to generate diploid hapotypes for 100 families
containing one of three sets of sequenced members: parent–offspring trios, sib
pairs, and first-cousin pairs. To do so, we randomly and independently sampled
with replacement from the 583 haplotypes to obtain diploid haplotypes for fam-
ily members, using the distribution of IBD configuration classes specific for their
genetic relationships (see the Appendix, Part A for details). Then, given an indi-
vidual’s diploid haplotype, we generated read depths and read errors independently
across the 1000 SNPs. Read depths were generated as independent positive Pois-
son variables. Read errors were generated according to the model (2), with SNP-
specific read error rates αm obtained by sampling from the uniform distribution on
the interval [0.001, 0.1].

Data analysis using HapGC or PedHapGC involves calling the genotypes for
all SNPs in a region in three steps. In step 1, PedGC is used to call separately the
genotypes at each SNP. In step 2, these genotypes are used to estimate correlation
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FIG. 2. Histogram of minor allele frequencies of the 1000 SNPs identified in a 274 kb region of
chromosome 21 among 283 Caucasian participants in the 1000 Genomes Project.

coefficients for all pairs of SNPs in the region. In step 3, SNP-specific genotypes
are again called simultaneously with a second SNP chosen to have low estimated
read error rate and high correlation coefficient with the targeted SNP. For step 1,
we used PedGC to call genotypes separately for each of the 1000 SNPs in the cho-
sen region, using I = 5,25,50, and all 100 families, and then implemented steps 2
and 3. Table 3 shows genotype error rates averaged over the 1000 SNPs, using
various read depths and numbers of families. PedGC produced lower genotyping
error than SeqEM for both heterozygotes and homozygotes. The gain in accuracy
increased with increasing numbers of families, up to I = 25 families, with little
increase thereafter. These increases reflect increased precision of estimates for the
parameters π governing joint family genotypes. As expected, overall genotyping
errors declined sharply with increasing read depth. For n = 30 reads, the genotyp-
ing error rate was one or two orders of magnitude lower than the rate for n = 5
reads.

To evaluate the gains from exploiting LD, we also implemented steps 2 and 3
of the preceding paragraph. Specifically, we used the family genotype calls for all
SNPs in the 274 kb region (Table 3) to calculate correlation coefficients for each
of the 499,500 pairs of SNPs. We then selected for each SNP another maximally
correlated SNP, and called the pair simultaneously. When based on the read data
and 2-locus diploid haplotypes (called from step 1) of the cousin pairs of Table 3,
the PedHapGC calls had error rates of 2.80%, 0.80%, and 0.03% for read depths
of 5, 10, and 30, respectively. In comparison to the single locus calls of PedGC, the
genotype error rates were reduced by 44%, 60%, and 70%, respectively. Compared
to SeqEM, the reductions were 48%, 62%, and 73%, respectively. These findings
support the simulation results, suggesting that simultaneous exploitation of LD and
pedigree relationships can have a significant impact on calling accuracy.
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TABLE 3
Genotype error ratesa (%) for 1000 SNPsb called separately, using 1000 genomes data

Number I of familiesc

5 25 50 100Read
depth PedGC SeqEM PedGC SeqEM PedGC SeqEM PedGC SeqEM

Parent–offspring trios
5 5.61 (27.48/2.04) 7.58 (34.72/2.96) 4.73 (20.61/2.06) 5.82 (24.28/2.64) 4.44 (19.42/1.87) 5.42 (22.57/2.52) 4.40 (19.23/1.87) 5.35 (22.61/2.44)

10 1.98 (9.46/0.99) 2.64 (13.85/1.25) 1.60 (6.57/0.82) 2.34 (8.81/1.17) 1.63 (6.59/0.75) 2.19 (8.88/1.07) 1.58 (6.79/0.71) 2.13 (9.06/1.00)

30 0.09 (0.37/0.06) 0.12 (0.42/0.06) 0.07 (0.18/0.02) 0.12 (0.34/0.04) 0.07 (0.20/0.03) 0.11 (0.35/0.04) 0.06 (0.24/0.03) 0.10 (0.37/0.04)

Sib pairs
5 6.36 (28.14//2.67) 7.38 (34.64/2.77) 5.16 (21.62/2.25) 5.95 (25.45/2.51) 5.07 (20.42/2.38) 5.55 (24.06/2.43) 4.95 (19.90/2.44) 5.35 (23.04/2.49)

10 2.42 (10.99/0.97) 3.16 (15.00/1.15) 2.02 (8.18/0.93) 2.28 (8.62/1.16) 1.93 (7.60/0.95) 2.16 (8.57/1.05) 1.89 (7.64/0.93) 2.10 (8.78/0.98)

30 0.10 (0.34/0.05) 0.18 (0.62/0.10) 0.08 (0.32/0.04) 0.09 (0.36/0.04) 0.08 (0.31/0.04) 0.09 (3.54/0.05) 0.07 (0.30/0.04) 0.09 (0.35/0.04)

First-cousin pairs
5 6.44 (33.32/2.20) 6.87 (34.18/2.54) 5.42 (23.56/2.17) 5.98 (24.97/2.57) 5.14 (22.20/2.15) 5.59 (23.20/2.50) 5.02 (21.40/2.26) 5.37 (22.62/2.46)

10 2.48 (12.51/0.89) 2.80 (13.68/1.07) 2.10 (9.06/0.85) 2.26 (9.08/1.03) 2.01 (8.63/0.85) 2.20 (9.00/1.00) 1.98 (8.46/0.89) 2.10 (8.84/0.97)

30 0.12 (0.43/0.06) 0.12 (0.43/0.07) 0.12 (0.47/0.05) 0.13 (0.48/0.06) 0.09 (0.37/0.04) 0.10 (0.37/0.05) 0.10 (0.40/0.04) 0.11 (0.43/0.05)

aPercent incorrect genotype calls among all 1000SI calls for 1000 SNPs in S sequenced members of I families; read error rates randomly chosen from
[0.001, 0.1]. Numbers in parenthesis give percent incorrect calls among heterozygotes/homozygotes.
bSNPs lie in a 274 kb region of chromosome 21.
cSee the Appendix, Part A for description of how diploid haplotypes of sequenced family members were obtained.
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The previous paragraphs describe the simultaneous call of genotypes for each
of a pair of SNPs in LD. In some applications, it may be more appropriate to call
an individual’s entire diploid haplotype for the SNPs of interest. To evaluate such
haplotype calling, we attempted to call the diploid haplotypes of the 100 first-
cousin pairs created for Table 3. Specifically, we focused on their diploid 3-locus
haplotypes for a specific set of three SNPs in the 274 kb region having MAFs of
28%, 31%, and 12%, and pairwise correlation coefficients of 0.97, 0.94, and 0.92.
There were six distinct haplotypes among the 283 Caucasian subjects. We gener-
ated 1000 replications of read data for each of the 100 pairs of first-cousins, with
nucleotide read error rates again randomly sampled from a uniform distribution
on the interval [0.001, 0.1]. The diploid haplotype error rates using PedHapGC
were 2.0%, 0.4%, and 0.02% for read depths of 5, 10, and 30, respectively, lower
than the SNP-specific genotype error rates for 100 first-cousin pairs shown in Ta-
ble 3. These results suggest that diploid haplotypes for three SNPs can be called
accurately. However, the computational burden involved in accommodating many
possible diploid haplotypes precludes using LD information for more than a few
SNPs.

When available, the haplotypes of a reference panel from the same population as
that under study can be used in HapGC to specify the parameters π governing the
diploid haplotypes probabilities, rather than estimating them from the sequenced
data at hand. Simulations suggest that specification of π yields reasonable results
even when the specified values deviate from their actual values in the population
of interest. For example, when inferring haplotypes from 100 pairs of first-cousins,
incorrect assignment of equal HW frequencies to the haplotypes gave mean haplo-
type errors of 3.4%, 1.1%, and 0.1% for read depths of 5, 10, and 30, respectively.
Comparison to the results of the previous paragraph suggests that the loss in accu-
racy improvement is not substantial.

Finally, we examined the trade-off between providing more reads to key indi-
viduals versus spreading fewer reads across the key individuals and their relatives.
This trade-off was motivated by the results in Table 3 showing that read depth is an
important determinant of genotype call accuracy, but that the number of sequenced
families and individuals plays a lesser role. When multiple family members can be
sequenced and the budget accommodates a fixed total number of reads, a practical
design question concerns the relative merits of sequencing fewer family members
with greater read depth vs sequencing more members with lower depth. We ad-
dressed this question in the context of genotyping sib pairs at a single locus. That
is, we compared the genotype accuracy associated with sequencing 50 sib pairs
with 10 reads per person (1000 reads in total) to that associated with sequencing
50 sibs and their parents, with 5 reads per person (also 1000 reads in total). Ta-
ble 4 shows the genotype error rates for SNPs with MAFs ranging from 0.001
to 0.2. For small MAFs, both strategies yielded similar genotyping accuracy. But
for larger MAFs, sequencing fewer members with greater depth performed bet-
ter. These results suggest that little is gained from genotyping additional family
members unless their genotypes contribute independently to the study objectives.
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TABLE 4
Genotype error ratesa (%) for sib pairs with and without parental genotypingb

MAFc (%)
Read error
rate (%) 0.1 1.0 10.0 20.0

Sibs only (10 reads per person)
1.0 0.00 (68.83/0.00) 0.66 (31.72/0.01) 1.58 (5.48/0.72) 2.34 (3.19/1.93)

5.0 0.12 (67.97/0.01) 1.02 (52.26/0.02) 3.73 (16.62/0.86) 5.18 (8.99/3.38)

Sibs and parents (5 reads per person)
1.0 0.00 (43.82/0.00) 0.62 (31.36/0.01) 3.65 (15.37/1.12) 5.75 (10.50/3.51)

5.0 0.14 (77.77/0.00) 1.19 (57.91/0.02) 6.87 (31.57/1.45) 9.84 (19.31/5.48)

aPercent incorrect genotype calls; read error rates randomly chosen from [0.001, 0.1]. Numbers in
parenthesis give percent incorrect calls among heterozygotes/homozygotes.
bFor a given total number of reads.
cMinor allele frequency.

5. Discussion. We have presented a likelihood-based approach to calling
genotypes and haplotypes of sequenced family members. Simulations and applica-
tion to 1000 Genomes data show that LD and pedigree information can be used to
improve the accuracy of called genotypes for individuals who are heterozygous for
rare variants, as well as for homozygous individuals, who typically constitute the
majority of subjects. However, there are limits to the gains achieved using pedigree
information: for example, the simulations suggest that, for a given total number of
reads, greater calling accuracy is achieved by allocating all reads to those individ-
uals whose phenotypes contribute to the study goals than by allocating some reads
to additional ancillary family members. As expected from the greater difficulty of
calling heterozygotes than homozygotes, error rates are considerably higher in het-
erozygotes than homozygotes. But because most individuals are homozygous for
the normal SNP allele, genotype errors in these individuals dominate the overall
error rate.

A few notes about the strengths and limitations of the proposed methods are
warranted. The methods do not require external specification of genotype frequen-
cies, LD measures, or nucleotide read error probabilities. In particular, HapGC
and PedHapGC can be implemented with the sequence data at hand without data
from an external reference panel as needed by hidden Markov LD models. How-
ever, this flexibility comes at a price: although the methods put no constraints on
the number of SNPs called jointly, in practice, the number of haplotypes increases
exponentially with the number of SNPs in LD, and the computation involved in
parameter estimation becomes demanding for more than a few SNPs. We suggest
using the LD of two or three SNPs, as a trade-off between computational efficiency
and accuracy gain. The alternative is to use externally-derived haplotype frequen-
cies; limited simulations (data not shown) suggest that this can be advantageous
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provided the haplotype frequencies do not deviate substantially from those in the
population under study.

The model presented in equations (1) and (2) involves several assumptions, in-
cluding HW genotype frequencies and random mating for family founders, and
symmetric read error probabilities. None of these assumptions is central to the
model; they can be relaxed by including additional parameters. Typically the num-
ber of families or unrelated individuals sequenced is large, so estimates of these
additional parameters would be stable. However, while calling SNP genotypes in
targeted regions is apt to be feasible, the computational burden could be limiting
for whole genome sequencing of many individuals. Thus, it is encouraging that
the simulations showed gains in calling accuracy for the proposed methods even
in the presence of moderate departures from the assumptions. An advantage of the
current approach is that it is not necessary to distinguish misalignment errors from
erroneous nucleotide calls, as the nucleotide read error probabilities αm include
both sources of error. Thus, the assumption of independence of read errors across
loci is reasonable provided the loci are more than a few hundred kilobases apart.

While the simulations presented here show clear accuracy gains from using LD
and pedigree information, more complete evidence would derive from actual rather
than simulated read data for subjects whose DNA had also been sequenced using
a costly and highly accurate method (the gold standard). Then any problems and
trouble spots associated with, say, heterogeneity across regions in depth coverage
and error rate could be examined empirically. However, we do not expect such
heterogeneity issues to affect the relative performance of the methods considered,
because they all allow region-specific estimation of error rates. If there are compu-
tational constraints on the number of error rates in need of estimation, it may prove
useful to regress them on characteristics predictive of accuracy, such as deviations
from HW frequencies, aberrant LD patterns, or low read depth. These issues will
be examined in future work.

In conclusion, even when nucleotide read error rates are low, the genotype-
calling improvements obtained using LD and pedigree information can be impor-
tant determinants of statistical power to detect associations between disease and
very rare alleles with only moderate effect sizes using thousands of study subjects.
For example, the impact of misclassification error on the power of a test for variant-
disease association in a case–control study can be inferred from the seminal work
of Bross (1954). As applied to a case–control study of carriage of a rare variant,
the author describes estimation bias and power loss when cases and controls have
the same probabilities of missing a variant carrier, and the same probabilities of
falsely detecting one. Under these nondifferential error assumptions (which seem
reasonable for the current sequencing problem), Bross (1954) provides expressions
for the proportional increase in sample size needed to achieve the same power the
study would provide in the absence of measurement error. His calculations show
that incorrectly detecting a variant carrier has more serious adverse consequences
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TABLE A.1
Probability of genotypes (g1, g2) for a pair of individuals at a SNP with minor allele frequency

p = 1 − q , conditional on the number φ of alleles they share IBDa

(g1,g2) Pr(g1,g2|φ = 0) Pr(g1,g2|φ = 1) Pr(g1,g2|φ = 2)

(0,0) q4 q3 q2

(0,1) or (1,0) 4pq3 2pq2 0
(0,2) or (2,0) 2p2q2 0 0
(1,1) 4p2q2 p2q + pq2 2pq

(1,2) or (2,1) 4p3q 2p2q 0
(2,2) p4 p3 p2

Total 1 1 1

aIdentity-by-descent.

for power than does missing such an individual. Nevertheless, when the null hy-
pothesis is rejected, both types of errors can lead to serious bias in estimates of
variant effect size.

APPENDIX

A. Using IBD relationships to compute family genotype probabilities and gen-
erate family genotypes. A set of alleles of family members at a given locus is
Identical-by-Descent (IBD) if all the alleles are inherited from a common ancestor.
The set is IBD-distinct if no two alleles are IBD. The joint genotype probabilities
for any given set S of pedigree members can be computed using the IBD config-
uration classes (ICCs) described by Thompson (1974), or the inheritance vectors
described by Kruglyak et al. (1996). Loosely speaking, an ICC specifies which
subsets of the members’ 2S alleles are IBD. For example, the set of six alleles of
a noninbred parent/offspring trio has just one ICC, that in which the four parental
alleles are IBD-distinct, and the offspring shares exactly one allele with each par-
ent. As another example, any pair of individuals has one of three possible ICCs,
depending on whether they share 0, 1, or 2 alleles IBD, with 2, 3, or 4 IBD-distinct
alleles, respectively. The ICC probabilities for an arbitrary noninbred set of rela-
tives with a given relationship R can be computed using one of several software
packages [e.g., GENEHUNTER, described by Kruglyak et al. (1996)]. For a set
of loci in a chromosomal region for which there is negligible probability of mei-
otic recombination within a family, the diploid haplotype probabilities for a family
with a given ICC φ are obtained by independently assigning a haplotype to each
of its IBD-distinct alleles [see Whittemore and Halpern (1994)]. Table A.1 shows
probabilities of the genotypes at a single locus for any pair of relatives, based on
their three possible ICCs.

B. Using the EM algorithm to maximize the likelihood function L(θ) of equation
(1). As described by Dempster, Laird, and Rubin (1977), the algorithm involves it-
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erative applications of an expectation (E) step and a maximization (M) step, start-
ing with an initial parameter value θ 0 = (π 0, α0). (Here we used HW genotype
frequencies obtained from a MAF of 0.2 for π0 and a read error rate of 0.01 for
α0.) At iteration t , the E step computes the expectations of the family genotypes
(or diploid haplotypes), given the read data and the current parameter value θ t−1.
Then θ t−1 is updated to θ t by maximizing the complete data likelihood, given by∏

i

Pr(Gi, Yi |Ni,R; θ) = ∏
i

Pr(Gi |R;π)
∏
i

Pr(Yi |Gi,Ni;α),(A.1)

with unobserved genotypes Gi replaced by their conditional expectations, calcu-
lated using the IBD configurations described in the Appendix, Part A. These two
steps are repeated until the relative difference between estimates θt−1 and θt differ
by no more than a prespecified small amount (here we used |θt−1−θt |

θt−1
≤ 10−8). If

the procedure produced a parameter on the boundary of the parameter space lead-
ing to a local maximum, we randomly selected another initial parameter and reran
the algorithm.

We illustrate the procedure as applied to a set of I noninbred parent–offspring
trios. We assume random parental mating and a single read nucleotide error prob-
ability α. In this case we can parameterize as θ = (π0, π2, α), where πg is the
probability that a parent carries g copies of the variant allele, g = 0,1,2, and
π1 = 1−π0 −π2. The first factor on the right side of (A.1) is a data-dependent con-
stant times the term

∏2
g=0 π

xg
g , where xg is the total number of parents with geno-

type g, with x0 +x1 +x2 = 2I . The second factor is proportional to αu(1−α)n+−u,
where n+ is the total number of reads among homozygous individuals (those with
g = 0 or g = 2), and u is the number of incorrect reads among these individuals
(i.e., variant reads for those with g = 0 or nonvariant reads for those with g = 2).
Thus, the E-step involves computing the expectations of x0, x2, n+, and u, con-
ditional on θ t−1, the total number of reads, and the total number of variant reads.
The M-step involves setting πt

g
= E[xg]/2I, g = 0,2, and αt = u/n+.
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