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Genetical genomics experiments have now been routinely conducted to
measure both the genetic markers and gene expression data on the same sub-
jects. The gene expression levels are often treated as quantitative traits and are
subject to standard genetic analysis in order to identify the gene expression
quantitative loci (eQTL). However, the genetic architecture for many gene
expressions may be complex, and poorly estimated genetic architecture may
compromise the inferences of the dependency structures of the genes at the
transcriptional level. In this paper we introduce a sparse conditional Gaus-
sian graphical model for studying the conditional independent relationships
among a set of gene expressions adjusting for possible genetic effects where
the gene expressions are modeled with seemingly unrelated regressions. We
present an efficient coordinate descent algorithm to obtain the penalized esti-
mation of both the regression coefficients and the sparse concentration matrix.
The corresponding graph can be used to determine the conditional indepen-
dence among a group of genes while adjusting for shared genetic effects. Sim-
ulation experiments and asymptotic convergence rates and sparsistency are
used to justify our proposed methods. By sparsistency, we mean the property
that all parameters that are zero are actually estimated as zero with probabil-
ity tending to one. We apply our methods to the analysis of a yeast eQTL data
set and demonstrate that the conditional Gaussian graphical model leads to a
more interpretable gene network than a standard Gaussian graphical model
based on gene expression data alone.

1. Introduction. Genetical genomics experiments have now been routinely
conducted to measure both the genetic variants and the gene expression data on
the same subjects. Such data have provided important insights into gene expres-
sion regulations in both model organisms and humans [Brem and Kruglyak (2005),
Schadt et al. (2003), Cheung and Spielman (2002)]. Gene expression levels are
treated as quantitative traits and are subject to standard genetic analysis in order
to identify the gene expression quantitative loci (eQTL). However, the genetic ar-
chitecture for many gene expressions may be complex due to possible multiple
genetic effects and gene–gene interactions, and poorly estimated genetic archi-
tecture may compromise the inferences of the dependency structures of genes at

Received March 2010; revised June 2011.
1Supported in part by NIH R01ES009911 and R01CA127334.
Key words and phrases. eQTL, Gaussian graphical model, regularization, genetic networks,

seemingly unrelated regression.

2630

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS494
http://www.imstat.org


A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL 2631

the transcriptional level [Neto et al. (2010)]. For a given gene, typical analysis of
such eQTL data is to identify the genetic loci or single nucleotide polymorphisms
(SNPs) that are linked or associated with the expression level of this gene. De-
pending on the locations of the eQTLs or the SNPs, they are often classified as
distal trans-linked loci or proximal cis-linked loci [Kendziorski and Wang (2003),
Kendziorski et al. (2006)]. Although such a single gene analysis can be effective
in identifying the associated genetic variants, gene expressions of many genes are
in fact highly correlated due to either shared genetic variants or other unmeasured
common regulators. One important biological problem is to study the conditional
independence among these genes at the expression level.

eQTL data provide important information about gene regulation and have been
employed to infer regulatory relationships among genes [Zhu et al. (2004), Bing
and Hoeschele (2005), Chen, Emmert-Streib and Storey (2007)]. Gene expression
data have been used for inferring the genetic regulatory networks, for example,
in the framework of Gaussian graphical models (GGM) [Schäfer and Strimmer
(2005), Segal et al. (2005), Li and Gui (2006), Peng, Zhou and Zhu (2009)]. Graph-
ical models use graphs to represent dependencies among stochastic variables. In
particular, the GGM assumes that the multivariate vector follows a multivariate
normal distribution with a particular structure of the inverse of the covariance ma-
trix, called the concentration matrix. For such Gaussian graphical models, it is
usually assumed that the patterns of variation in expression for a given gene can
be predicted by those of a small subset of other genes. This assumption leads to
sparsity (i.e., many zeros) in the concentration matrix and reduces the problem to
well-known neighborhood selection or covariance selection problems [Dempster
(1972), Meinshausen and Bühlmann (2006)]. In such a concentration graph mod-
eling framework, the key idea is to use partial correlation as a measure of the inde-
pendence of any two genes, rendering it straightforward to distinguish direct from
indirect interactions. Due to high-dimensionality of the problem, regularization
methods have been developed to estimate the sparse concentration matrix where
a sparsity penalty function such as the L1 penalty or SCAD penalty is often used
on the concentration matrix [Li and Gui (2006), Friedman, Hastie and Tibshirani
(2008), Fan, Feng and Wu (2009)]. Among these methods, the coordinate descent
algorithm of Friedman, Hastie and Tibshirani (2008), named glasso, provides a
computationally efficient method for performing the Lasso-regularized estimation
of the sparse concentration matrix.

Although the standard GGMs can be used to infer the conditional dependency
structures using gene expression data alone from eQTL experiments, such models
ignore the effects of genetic variants on the means of the expressions, which can
compromise the estimate of the concentration matrix, leading to both false pos-
itive and false negative identifications of the edges of the Gaussian graphs. For
example, if two genes are both regulated by the same genetic variants, at the gene
expression level, there should not be any dependency of these two genes. However,
without adjusting for the genetic effects on gene expressions, a link between these
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two genes is likely to be inferred. For eQTL data, we are interested in identifying
the conditional dependency among a set of genes after removing the effects from
shared regulations by the markers. Such a graph can truly reflect gene regulation
at the expression level.

In this paper we introduce a sparse conditional Gaussian graphical model
(cGGM) that simultaneously identifies the genetic variants associated with gene
expressions and constructs a sparse Gaussian graphical model based on eQTL data.
Different from the standard GGMs that assume constant means, the cGGM allows
the means to depend on covariates or genetic markers. We consider a set of re-
gressions of gene expression in which both regression coefficients and the error
concentration matrix have many zeros. Zeros in regression coefficients arise when
each gene expression only depends on a very small set of genetic markers; zeros in
the concentration matrix arise since the gene regulatory network and therefore the
corresponding concentration matrix is sparse. This approach is similar in spirit to
the seemingly unrelated regression (SUR) model of Zellner (1962) in order to im-
prove the estimation efficiency of the effects of genetic variants on gene expression
by considering the residual correlations of the gene expression of many genes. In
the analysis of eQTL data, we expect sparseness in both the regression coefficients
and also the concentration matrix. We propose to develop a regularized estima-
tion procedure to simultaneously select the SNPs associated with gene expression
levels and to estimate the sparse concentration matrix. Different from the original
SUR model of Zellner (1962) that focuses on improving the estimation efficiency
of the regression coefficients, we focus more on estimating the sparse concentra-
tion matrix adjusting for the effects of the SNPs on mean expression levels. We
develop an efficient coordinate descent algorithm to obtain the penalized estimates
and present the asymptotic results to justify our estimates.

In the next sections we first present the formulation of the cGGM for both
the mean gene expression levels and the concentration matrix. We then present
an efficient coordinate descent algorithm to perform the regularized estimation of
the regression coefficients and concentration matrix. Simulation experiments and
asymptotic theory are used to justify our proposed methods. We apply the methods
to an analysis of a yeast eQTL data set. We conclude the paper with a brief discus-
sion. All the proofs are given in the supplementary material [Yin and Li (2011)].

2. The sparse cGGM and penalized likelihood estimation.

2.1. The sparse conditional Gaussian graphical model. Suppose we have n

independent observations from a population of a vector (y′,x′), where y is a p × 1
random vector of gene expression levels of p genes and x is a q × 1 vector of
the numerically-coded SNP genotype data for q SNPs. Furthermore, suppose that
conditioning on x, y follows a multivariate normal distribution,

y|x ∼ N (�x,�),(1)



A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL 2633

where � is a p × q coefficient matrix for the means and the covariance matrix �

does not depend on x. We are interested in both the effects of the SNPs on gene
expressions � and the conditional independence structure of y adjusting for the
effects of x, that is, the Gaussian graphical model for y = (y1, . . . ,yp) conditional
on x. In applications of gene expression data analysis, we are more interested in
the concentration matrix � = �−1 after their shared genetic regulators are ac-
counted for. It has a nice interpretation in the Gaussian graphical model, as the
(i, j)-element is directly related to the partial correlation between the ith and j th
components of y after their potential joint genetic regulators are adjusted. In the
Gaussian graphical model with undirected graph (V ,E), vertices V correspond to
components of the vector y and edges E = {eij ,1 ≤ i, j ≤ p} indicate the condi-
tional dependence among different components of y. The edge eij between yi and
yj exists if and only if θij �= 0, where θij is the (i, j)-element of �. We emphasize
that in the graph representation of the random variable y, the nodes include only
the genes and the markers are not part of the graph. We call this the sparse condi-
tional Gaussian graph model (cGGM) of the genes. Hence, of particular interest is
to identify zero entries in the concentration matrix. Note that instead of assuming
a constant mean as in the standard GGM, model (1) allows heterogeneous means.

In eQTL experiments, each row of � and the concentration matrix � are ex-
pected to be sparse and our goal is to simultaneously learn the Gaussian graphi-
cal model as defined by the � matrix and to identify the genetic variants associ-
ated with gene expressions � based on n independent observations of (y′

i ,x′
i), i =

1, . . . , n. From now on, we use yi to denote the vector of gene expression levels of
the p genes and xi to denote the vector of the genotype codes of the q SNPs for
the ith observation unless otherwise specified. Finally, let X = (x′

1, . . . ,x′
n) be the

genotype matrix and x̄ = 1/n
∑n

i=1 xi .

2.2. Penalized likelihood estimation. Suppose that we have n independent ob-
servation (y′

i ,x′
i) from the cGGM (1). Let CY = 1/n

∑n
i=1 yiy′

i , CYX = 1/n ×∑n
i=1 yix′

i and CX = 1/n
∑n

i=1 xix′
i . Then the negative of the logarithm of the

likelihood function corresponding to the cGGM model can be written as

l(�) = − log det� + tr{CY � − CYX�′� − �C′
YX� + �CX�′�},

where � = (�,�) represents the associated parameters in the cGGM.
The Hessian matrix of the negative log-likelihood function l(�) is

Hl(�) =
(

�−1 ⊗ �−1 −2CYX ⊗ Ip + 2(�CX) ⊗ Ip

−2C′
YX ⊗ Ip + 2(CX�′) ⊗ Ip 2CX ⊗ �

)
(see Proposition 1 in the supplementary material [Yin and Li (2011)], Section 3).
In addition, l(�) is a bi-convex function of � and �. In words, this means that
for any fixed �, l(�) is a convex function of �, and for any �, l(�) is a convex
function of �. When n > max(p, q), the global minimizer of l(�) is given by{

�̃−1 = CY − CYXC−1
X C′

YX,

�̃ = CYXC−1
X .
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Under the penalized likelihood framework, the estimate of the � and � in model
(1) is the solution to the following optimization problem:

min
{

pl(�) ≡ − log det� + tr(S��) + λ
∑
s,t

pen1(γst ) + ρ
∑
t,t ′

pen2(θtt ′)
}
,(2)

where pen1(·) and pen2(·) denote the generic penalty functions, γst is the st th
element of the � matrix and θtt ′ is the t t ′th element of the � matrix, and

S� = 1

n

n∑
i=1

(yi − �xi )(yi − �xi )
′

= CY − CYX�′ − �C′
YX + �CX�′.

Here ρ and λ are the two tuning parameters that control the sparsity of the sparse
cGGM. We consider in this paper both the Lasso or L1 penalty function pen(x) =
|x| [Tibshirani (1996)] and the adaptive Lasso penalty function pen(x) = |x|/|x̃|γ
for some γ > 0 and any consistent estimate of x, denoted by x̃ [Zou (2006)]. In
this paper we use γ = 0.5.

2.3. An efficient coordinate descent algorithm for the sparse cGGM. We
present an algorithm for the optimization problem (2) with Lasso penalty func-
tion for pen1(·) and pen2(·). A similar algorithm can be developed for the adaptive
Lasso penalty with simple modifications. Under this penalty function, the objective
function is then

max{log det� − tr(S��) − λ‖�‖1 − ρ‖�‖1}.(3)

The subgradient equation for maximization of the log-likelihood (3) with respect
to � is

�−1 − S� − ρ
 = 0,(4)

where 
ij ∈ sgn(�ij ). If � is known, Banerjee, El Ghaoui and d’Aspremont
(2008) and Friedman, Hastie and Tibshirani (2008) have cast the optimization
problem (3) as a block-wise coordinate descent algorithm, which can be formu-
lated as p iterative Lasso problems. Before we proceed, we first introduce some
notation to better represent the algorithm. Let W be the estimate of �. We partition
W and S� as

W =
(

W11 w12

w

12 w22

)
, S� =

(
S11 s12

s

12 s22

)
.

Banerjee, El Ghaoui and d’Aspremont (2008) show that the solution for w12 satis-
fies

w12 = arg min
y

(yT W−1
11 y :‖y − s12‖∞ ≤ ρ),
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which by convex duality is equivalent to solving the dual problem

β̂ = arg min
β

(
1

2
‖W1/2

11 β − b‖2 + ρ‖β‖1

)
,(5)

where b = W−1/2
11 s12. Then the solution for w12 can be obtained via the solution of

the Lasso problem and through the relation w12 = W11β . The estimate for � can
also be updated in this block-wise manner very efficiently through the relationship
W� = I [Friedman, Hastie and Tibshirani (2008)].

After we finish an updating cycle for �, we can proceed to update the estimate
of �. Since the object function of our penalized log-likelihood is quadratic in �

given �, we can use a direct coordinate descent algorithm to get the penalized
estimate of �. For the (i, j )th entry of �, γij , note that for an arbitrary q × p ma-
trix A, ∂ tr(�A)/∂γij = aji = e′

j Aei , where ej and ei are the corresponding base
vector with q and p dimensions. So the derivative of the penalized log-likelihood
function (3)with respect to γij is

2e′
j (CX�′�)ei + λ sgn(γij ) − 2e′

j (C
′
YX�)ei,(6)

where function sgn is defined as

sgn(t) =
⎧⎨
⎩

1, if t > 0,
0, if t = 0, and
−1, if t < 0.

Setting equation (6) to zero, we get the updating formula for γij :

γ̂ij = sgn(gij )
(|gij | − λ)+

2(e′
j CXej )(e

′
i�ei)

,(7)

where gij = 2{e′
j (C

′
YX�)ei + (e′

j CXej )(e
′
i�ei)γ̃ij −e′

j (CX�̃′�)ei} and �̃, γ̃ij are
the estimates in the last step of the iteration.

Taking these two updating steps together, we have the following coordinate
descent-based regularization algorithm to fit the sparse cGGM:

The Coordinate Descent Algorithm for the sparse cGGM.

(1) Start with � = CYXC−1
X and W = CY − CYXC−1

X C′
YX + ρI . If CX is not

invertible, use � = 0 and W = CY + ρI instead.
(2) For each j = 1,2, . . . , p, solve the Lasso problem (5) under the current

estimate of �. Fill in the corresponding row and column of W using w12 = W11β̂ .
Update �̂.

(3) For each i = 1,2, . . . , p, and j = 1,2, . . . , q update each entry γ̂ij in �̂

using the formula (7), under the current estimate for �.
(4) Repeat step (2) and step (3) until convergence.
(5) Output the estimate �̂, Ŵ and �̂.
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The adaptive version of the algorithm can be derived in the same steps with
adaptive penalty parameters and is omitted here. Note that when � = 0, this algo-
rithm simply reduces to the glasso or the adaptive glasso (aglasso) algorithm of
Friedman, Hastie and Tibshirani (2008). A similar algorithm was used in Rothman,
Levina and Zhu (2010) for sparse multivariate regressions. Proposition 2 in the
supplementary material [Yin and Li (2011)] proves that the above iterative algo-
rithm for minimizing pl(�) with respective to � and � converges to a stationary
point of pl(�).

While the iterative algorithm reaches a stationary point of pl(�), it is not guar-
anteed to reach the global minimum. Since the objective function of the optimiza-
tion problem (2) is not always convex in (�,�), it is convex in either � or �

with the other fixed. There are potentially many stationary points due to the high-
dimensional nature of the parameter space. We also note a few straightforward
properties of the iterative procedure, namely, that each iteration monotonically
decreases the penalized negative log-likelihood and the order of minimization is
unimportant. Finally, the computational complexity of this algorithm is O(pq)

plus the complexity of the glasso.

2.4. Tuning parameter selection. The tuning parameters ρ and λ in the penal-
ized likelihood formulation (2) determine the sparsity of the cGGM and have to
be tuned. Since we focus on estimating the sparse precision matrix and the sparse
regression coefficients, we use the Bayesian information criterion (BIC) to choose
these two parameters. The BIC is defined as

BIC(�̂, �̂) = −n log(|�̂|) + n tr(�̂S
�̂
) + log(n)(sn/2 + pn + kn),

where pn is the dimension of y, sn is the number of nonzero off-diagonal elements
of �̂ and kn is the number of nonzero elements of �̂. The BIC has been shown to
perform well for selecting the tuning parameter of the penalized likelihood estima-
tor [Wang, Li and Tsai (2007)] and has been applied for tuning parameter selection
for GGMs [Peng, Zhou and Zhu (2009)].

3. Theoretical properties. Sections 4 and 5 in the supplementary material
[Yin and Li (2011)] state and prove theoretical properties of the proposed penalized
estimates of the sparse cGGM: its asymptotic distribution, the oracle properties
when p and q are fixed as n → ∞ and the convergence rates and sparsistency of
the estimators when p = pn and q = qn diverge as n → ∞. By sparsistency, we
mean the property that all parameters that are zero are actually estimated as zero
with probability tending to one [Lam and Fan (2009)].

We observe that the asymptotic bias for �̂ is at the same rate as Lam and Fan
(2009) for sparse GGMs, which is (pn + sn)/n multiplied by a logarithm factor
logpn, and goes to zero as long as (pn + sn)/n is at a rate of O{(logpn)

−k} with
some k > 1. The total square errors for �̂ are at least of rate kn/n since each of the
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kn nonzero elements can be estimated with rate n−1/2. The price we pay for high-
dimensionality is a logarithmic factor log(pnqn). The estimate �̂ is consistent as
long as kn/n is at a rate of O{(logpn + logqn)

−l} with some l > 1.

4. Monte Carlo simulations. In this section we present results from Monte
Carlo simulations to examine the performance of the proposed estimates and to
compare it with the glasso procedure for estimating the Gaussian graphical models
using only the gene expression data. We also compare the cGGM with a modified
version of the neighborhood selection procedure of Meinshausen and Bühlmann
(2006), where each gene is regressed on other genes and also the genetic markers
using the Lasso regression, and a link is defined between gene i and j if gene i is
selected for gene j and gene j is also selected by gene i. We call this procedure the
multiple Lasso (mLasso). Note that the mLasso does not provide an estimate of the
concentration matrix. For adaptive procedures, the MLEs of both the regression
coefficients and the concentration matrix were used for the weights when p < n

and q < n. For each simulated data set, we chose the tuning parameters ρ and λ

based on the BIC.
To compare the performance of different estimators for the concentration ma-

trix, we used the quadratic loss function

LOSS(�, �̂) = tr(�−1�̂ − I )2,

where �̂ is an estimate of the true concentration matrix �. We also compared
‖
‖∞, |||
|||∞, ‖
‖ and ‖
‖F , where 
 = � − �̂ is the difference between the
true concentration matrix and its estimate, ‖A‖ = max{‖Ax‖/‖x‖, x ∈ Rp,x �= 0}
is the operator or spectral norm of a matrix A, ‖A‖∞ is the element-wise l∞
norm of a matrix A, |||A|||∞ = max1≤i≤p

∑q
j=1 |aij | for A = (aij )p×q is the matrix

l∞ norm of a matrix A, and ‖A‖F is the Frobenius norm, which is the square-
root of the sum of the squares of the entries of A. In order to compare how
different methods recover the true graphical structures, we considered the Ham-
ming distance between the estimated and the true concentration matrix, defined
as DIST(�, �̂) = ∑

i,j |I (θij �= 0) − I (θ̂ij �= 0)|, where θij is the (i, j)th entry of
� and I (·) is the indicator function. Finally, we considered the specificity (SPE),
sensitivity(SEN) and Matthews correlation coefficient (MCC) scores, which are
defined as follows:

SPE = TN

TN + FP
, SEN = TP

TP + FN
,

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

,

where TP, TN, FP and FN are the numbers of true positives, true negatives, false
positives and false negatives in identifying the nonzero elements in the concentra-
tion matrix. Here we consider the nonzero entry in a sparse concentration matrix
as “positive.”
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4.1. Models for concentration matrix and generation of data. In the follow-
ing simulations, we considered a general sparse concentration matrix, where we
randomly generated a link (i.e., nonzero elements in the concentration matrix, in-
dicated by δij ) between variables i and j with a success probability proportional
to 1/p. Similar to the simulation setup of Li and Gui (2006), Fan, Feng and Wu
(2009) and Peng, Zhou and Zhu (2009), for each link, the corresponding entry in
the concentration matrix is generated uniformly over [−1,−0.5] ∪ [0.5,1]. Then
for each row, every entry except the diagonal one is divided by the sum of the
absolute value of the off-diagonal entries multiplied by 1.5. Finally, the matrix is
symmetrized and the diagonal entries are fixed at 1. To generate the p × q coeffi-
cient matrix � = (γij ), we first generated a p×q sparse indicator matrix 
 = (δij ),
where δij = 1 with a probability proportional to 1/q . If δij = 1, we generated γij

from Unif([vm,1]∪[−1,−vm]), where vm is the minimum absolute nonzero value
of � generated.

After � and � were generated, we generated the marker genotypes X =
(X1, . . . ,Xq) by assuming Xi ∼ Bernoulli(1, 1

2), for i = 1, . . . , q . Finally, given
x, we generated y the multivariate normal distribution Y |X ∼ N (�X,�). For a
given model and a given simulation, we generated a data set of n i.i.d. random
vectors (X,Y ). The simulations were repeated 50 times.

4.2. Simulation results when p < n and q < n. We first consider the setting
when the sample size n is larger than the number of genes p and the number of
genetic markers q . In particular, the following three models were considered:

Model 1: (p, q,n) = (100,100,250), where pr(θij �= 0) = 2/p, pr(�ij �= 0) =
3/q;

Model 2: (p, q,n) = (50,50,250), where pr(θij �= 0) = 2/p, pr(�ij �= 0) =
4/q;

Model 3: (p, q,n) = (25,10,250), where pr(θij �= 0) = 2/p, pr(�ij �= 0) =
3.5/q .

We present the simulation results in Table 1. Clearly, cGGM provided better
estimates (in terms of the defined LOSS function and the four metrics of “close-
ness” of the estimated and true matrices) of the concentration matrix over glasso
for all three models considered in all measurements. This is expected since glasso
assumes a constant mean of the multivariate vector, which is not a misspecified
model. We also observed that the adaptive cGGM and adaptive glasso both re-
sulted in better estimates of the concentration matrix, although the improvements
were minimal. This may be due to the fact that the MLEs of the concentration ma-
trix when p is relatively large do not provide very informative weights in the L1
penalty functions.

In terms of graph structure selection, we first observed that different values of
the tuning parameter ρ for the penalty on the mean parameters resulted in differ-
ent identifications of the nonzero elements in the concentration matrix, indicating
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TABLE 1
Comparison of the performances of the cGGM, adaptive cGGM (acGGM), graphical Lasso

(glasso), adaptive graphical Lasso (aglasso) and a modified neighborhood selection procedure
using multiple Lasso (mLasso) for models 1–3 when p < n based on 50 replications, where n is the

sample size, p is the number of genes and q is the number of markers. For each measurement,
mean is given based on 50 replications. Simulation standard errors are given

in the supplementary material [Yin and Li (2011)]

Estimation of � Graph selection

Method LOSS ‖�‖∞ |||�|||∞ ‖�‖ ‖�‖F DIST SPE SEN MCC

Model 1: (p, q,n) = (100,100,250), pr(θij �= 0) = 2/p, pr(�ij �= 0) = 3/q

cGGM 10.73 0.33 1.17 0.67 3.18 279.56 0.99 0.48 0.56
acGGM 10.29 0.31 1.17 0.66 3.01 313.48 0.99 0.42 0.50
glasso 19.17 0.69 1.89 1.12 5.19 596.12 0.97 0.24 0.21
aglasso 17.93 0.69 1.89 1.11 4.98 541.32 0.97 0.32 0.28
mLasso – – – – – 309.50 0.99 0.38 0.48

Model 2: (p, q,n) = (50,50,250), pr(θij �= 0) = 2/p, pr(�ij �= 0) = 4/q

cGGM 5.15 0.37 1.30 0.72 2.36 106.88 0.98 0.69 0.66
acGGM 4.62 0.29 1.14 0.63 1.97 83.20 0.99 0.66 0.71
glasso 13.95 0.75 2.12 1.20 4.57 391.84 0.87 0.37 0.18
aglasso 13.15 0.74 2.11 1.19 4.4 389.00 0.87 0.49 0.25
mLasso – – – – – 185.68 0.95 0.60 0.48

Model 3: (p, q,n) = (25,10,250), pr(θij �= 0) = 2/p, pr(�ij �= 0) = 3.5/q

cGGM 1.70 0.24 0.90 0.52 1.21 67.08 0.91 0.76 0.62
acGGM 1.58 0.22 0.87 0.49 1.12 56.36 0.94 0.72 0.65
glasso 5.97 0.65 1.99 1.12 2.77 315.84 0.43 0.73 0.12
aglasso 6.05 0.65 1.98 1.12 2.78 264.30 0.54 0.65 0.14
mLasso – – – – – 111.28 0.84 0.68 0.44

that the regression parameters in the means indeed had effects on estimating the
concentration matrix. Table 1 shows that for all three models, the cGGM or the
adaptive cGGM resulted in higher sensitivities, specificities and MCCs than the
glasso or the adaptive glasso. We observed that glasso often resulted in much
denser graphs than the real graphs. This is partially due to the fact that some of the
links identified by glasso can be explained by shared common genetic variants. By
assuming constant means, in order to compensate for the model misspecification,
glasso tends to identify many nonzero elements in the concentration matrix and
result in larger Hamming distance between the estimate and the true concentration
matrix. The results indicate that by simultaneously considering the effects of the
covariates on the means, we can reduce both false positives and false negatives in
identifying the nonzero elements of the concentration matrix.

The modified neighborhood selection procedure using multiple Lasso accounts
for the genetic effects in modeling the relationship among the genes. It performed
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better than glasso or adaptive glasso in graph structure selection, but worse than
the cGGM or the adaptive cGGM. This procedure, however, did not provide an
estimate of the concentration matrix.

4.3. Simulation results when p > n. In this section we consider the setting
when p > n and simulate data from the following three models with values of n,
p and q specified as follows:

Model 4: (p, q,n) = (1000,200,250), pr(�ij �= 0) = 1.5/p, pr(�ij �= 0) =
20/q;

Model 5: (p, q,n) = (800,200,250), pr(�ij �= 0) = 1.5/p, pr(�ij �= 0) =
25/q;

Model 6: (p, q,n) = (400,200,150), pr(�ij �= 0) = 2.5/p, pr(�ij �= 0) =
20/q .

Note that for all three models, the graph structure is very sparse due to the large
number of genes considered.

Since in this setting we did not have consistent estimates of � or �, we did not
consider the adaptive cGGM or adaptive glasso in our comparisons. Instead, we
compared the performance of cGGM, glasso and the modified neighborhood se-
lection procedure using multiple Lasso in terms of estimation of the concentration
matrix and graph structure selection. The performances over 50 replications are
reported in Table 2 for the optimal tuning parameters chosen by the BICs. For all
three models, we observed much improved estimates of the concentration matrix
from the proposed cGGM as reflected by both smaller L2 loss functions and differ-
ent norms of the difference between the true and estimated concentration matrices.
The mLasso procedure did not provide estimates of the concentration matrix.

In terms of graph structure selection, since glasso does not adjust for poten-
tial effects of genetic markers on gene expressions, it resulted in many wrong
identifications and much lower sensitivities and smaller MCCs than the cGGM.
Compared to the modified neighborhood selection using multiple Lasso, estimates
from the cGGM have smaller Hamming distance and larger MCC than mLasso. In
general, we observed that when p is larger than the sample size, the sensitivities
from all three procedures are much lower than the settings when the sample size
is larger. For models 5 and 6, mLasso gave higher sensitivities but lower speci-
ficities than cGGM or glasso. This indicates that recovering the graph structure in
a high-dimensional setting is statistically difficult. However, the specificities are
in general very high, agreeing with our theoretical sparsistency result of the esti-
mates.

5. Analysis of yeast eQTL data. To demonstrate the proposed methods, we
present results from the analysis of a data set generated by Brem and Kruglyak
(2005). In this experiment, 112 yeast segregants, one from each tetrad, were grown
from a cross involving parental strains BY4716 and wild isolate RM11-1a. RNA
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TABLE 2
Comparison of the performances of the cGGM, the graphical Lasso (glasso) and a modified

neighbor selection using multiple lasso (mLasso) model 4 ∼ model 6 when p > n based on 50
replications, where n is the sample size, p is the number of genes and q is the number of markers.

For each measurement, mean is given based on 50 replications. Simulation standard errors are
given in the supplementary material [Yin and Li (2011)]

Estimation of � Graph selection

Method LOSS ‖�‖∞ |||�|||∞ ‖�‖ ‖�‖F DIST SPE SEN MCC

Model 4: (p, q,n) = (1000,200,250), pr(�ij �= 0) = 1.5/p, pr(�ij �= 0) = 20/q

cGGM 164.22 0.59 1.81 0.97 13.48 2,414.28 1.00 0.31 0.47
glasso 257.12 0.71 2.86 1.31 19.82 23,746.98 0.98 0.08 0.02
mLasso – – – – – 3,886.96 1.00 0.12 0.16

Model 5: (p, q,n) = (800,200,250), pr(�ij �= 0) = 1.5/p, pr(�ij �= 0) = 25/q

cGGM 142.30 0.75 2.30 1.20 12.82 2,341.28 1.00 0.21 0.34
glasso 219.33 0.76 2.97 1.40 18.39 20,871.44 0.97 0.07 0.02
mLasso – – – – – 23,750.04 0.96 0.61 0.19

Model 6: (p, q,n) = (400,200,250), pr(�ij �= 0) = 2.5/p, pr(�ij �= 0) = 20/q

cGGM 48.73 0.44 1.55 0.77 6.86 2,044.52 1.00 0.05 0.21
glasso 87.32 0.69 2.72 1.22 11.01 9,258.92 0.95 0.03 −0.01
mLasso – – – – – 2,967.30 0.99 0.08 0.10

was isolated and cDNA was hybridized to microarrays in the presence of the same
BY reference material. Each array assayed 6,216 yeast genes. Genotyping was
performed using GeneChip Yeast Genome S98 microarrays on all 112 F1 segre-
gants. These 112 segregants were individually genotyped at 2,956 marker posi-
tions. Since many of these markers are in high linkage disequilibrium, we com-
bined the markers into 585 blocks where the markers within a block differed by at
most 1 sample. For each block, we chose the marker that had the least number of
missing values as the representative marker.

Due to small sample size and limited perturbation to the biological system, it is
not possible to construct a gene network for all 6,216 genes. We instead focused
our analysis on two sets of genes that are biologically relevant: the first set of 54
genes that belong to the yeast MAPK signaling pathway provided by the KEGG
database [Kanehisa et al. (2010)], another set of 1,207 genes of the protein–protein
interaction (PPI) network obtained from a previously compiled set by Steffen et al.
(2002) combined with protein physical interactions deposited in the Munich Infor-
mation center for Protein Sequences (MIPS). Since the available eQTL data are
based on observational data, given limited sample size and limited perturbation to
the cells from the genotypes, it is statistically not feasible to learn directed graph
structures among these genes. Instead, for each of these two data sets, our goal is
to construct a conditional independent network among these genes at the expres-
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sion levels based on the sparse conditional Gaussian graphical model in order to
remove the false links by conditioning on the genetic marker information. Such
graphs can be interpreted as a projection of true signaling or a protein interaction
network into the gene space [Brazhnik, de la Fuente and Mendes (2002), Kontos
(2009)].

5.1. Results from the cGGM analysis of 54 MAPK pathway genes. The yeast
genome encodes multiple MAP kinase orthologs, where Fus3 mediates cellular re-
sponse to peptide pheromones, Kss1 permits adjustment to nutrient-limiting con-
ditions and Hog1 is necessary for survival under hyperosmotic conditions. Last,
Slt2/Mpk1 is required for repair of injuries to the cell wall. A schematic plot of
this pathway is presented in Figure 1. Note that this graph only presents our cur-
rent knowledge about the MAPK signaling pathway. Since several genes such as
Ste20, Ste12 and Ste7 appear at multiple nodes, this graph cannot be treated as the
“true graph” for evaluating or comparing different methods. In addition, although
some of the links are directed, this graph does not meet the statistical definition
of either a directed or undirected graph. Rather than trying to recover the MAPK
pathway structure, we chose this set of 54 genes on the MAPK pathway to make
sure that these genes are potentially dependent at the expression level.

For each of the 54 genes, we first performed a linear regression analysis for the
gene expression level using each of the 585 markers and selected those markers
with a p-value of 0.01 or smaller. We observed a total of 839 such associations
between the 585 markers and 54 genes, indicating strong effects of genetic variants
on expression levels. We further selected 188 markers associated with the gene
expression levels of at least two out of the 54 genes, resulting in a total of 702

FIG. 1. The yeast MAPK pathway from the KEGG database http://www.genome.jp/kegg/pathway/
sce/sce04011.html.

http://www.genome.jp/kegg/pathway/sce/sce04011.html
http://www.genome.jp/kegg/pathway/sce/sce04011.html
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such associations. In addition, many genes are associated with multiple markers
[see Figure 2(a)]. This indicates that many pairs of genes are regulated by some
common genetic variants, which, when not taken into account, can lead to false
links of genes at the expression level.

We applied our proposed cGGM on this set of 54 genes and 188 markers
and used the BIC to choose the tuning parameters. The BIC selected λ = 0.28
and ρ = 0.54. With these tuning parameters, the cGGM procedure selected 188
nonzero elements of the concentration matrix and therefore 94 links among these
54 genes. In addition, under the cGGM model, 677 elements of the regression co-
efficients � are not zero, indicating the SNPs have important effects on the gene
expression levels of these genes. The numbers of SNPs associated with the gene
expressions range from 0 to 17 with a mean number of 4. Figure 2(b) shows the
undirected graph for 43 linked genes on the MAPK pathway based on the esti-
mated sparse concentration matrix from the cGGM. This undirected graph con-
structed based on the cGGM can indeed recover lots of links among the 54 genes
on this pathway. For example, the kinase Fus3 is linked to its downstream genes
Dig1, Ste12 and Fus1. The cGGM model also recovered most of the links to Ste20,
including Bni1, Ste11, Ste12, Ste5 and Ste7. Ste20 is also linked to Cdc42 through
Bni1. Clearly, most of the links in the upper part of the MAPK signaling pathway
were recovered by cGGM. This part of the pathway mediates cellular response to
peptide pheromones. Similarly, the kinase Slt2/Mpk1 is linked to its downstream
genes Swi4 and Rlm1. Three other genes on this second layer of the pathway,
Fks1, Rho1 and Bck1, are also closed linked. These linked genes are related to cell
response to hypotonic shock.

As a comparison, we applied the glasso to the gene expression of these 54 genes
without adjusting the effects of genetic markers on gene expressions and summa-
rized the results in Table 3. The optimal tuning parameter λ = 0.145 was selected
based on the BIC, which resulted in selection of 341 edges among the 54 genes
(i.e., 682 nonzero elements of the concentration matrix), including all 94 links se-
lected by the cGGM. The difference of the estimated graph structures between the
cGGM and glasso can be at least partially explained by the genetic variants asso-
ciated with the expression levels of multiple genes. Among these 247 edges that
were identified by only the glasso, 41 pairs of genes were associated with at least
one genetic variant. The cGGM adjusted the genetic effects on gene expression and
therefore did not identify these edges at the expression levels. Another reason is
that the glasso assumes a constant mean vector for gene expression, which clearly
misspecified the model and led to the selection of more links.

We also compared the graph identified by the modified neighborhood selection
procedure of using multiple Lasso. Specifically, each gene was regressed on all
other genes and 188 markers using the Lasso. Again, the BIC was used for select-
ing the tuning parameter. This procedure identified a total of 45 links among the
54 genes. In addition, a total of 33 associations between the SNPs and gene ex-
pressions were identified. Among these 45 links, 36 were identified by the cGGM
and 45 were identified by glasso.



2644 J. YIN AND H. LI

(a)

(b)

FIG. 2. Analysis of yeast MAPK pathway. (a) Association between 188 markers and 54 genes in the
MAPK pathway based on simple regression analysis. Black color indicates significant association at
p-value < 0.01. (b) The undirected graph of 43 genes constructed based on the cGGM.
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TABLE 3
Comparison of the links identified by the cGGM, modified neighborhood selection using multiple

Lasso (mLasso), the graphical Lasso (glasso) for the genes of the MAPK pathway and genes of the
protein–protein interaction (PPI) network. Shown in the table is the number of links that were
identified by the procedure indexed by row but were not identified by the procedure indexed by

column due to sharing of at least one common genetic marker

cGGM mLasso

MAPK pathway (PPI network)

cGGM – 0 (0)

mLasso 10 (218) –

glasso 41 (1,569) 2 (66)

Table 4 shows a summary of the degrees of the graphs estimated by these three
procedures. It is clear that glasso resulted in a much denser graph than the neigh-
borhood selection and cGGM, and the mLasso tends to select few links.

5.2. Results from the cGGM analysis of 1,207 genes on yeast PPI network.
We next applied the cGGM to the yeast protein–protein interaction network data
obtained from a previously compiled set by Steffen et al. (2002) combined with
protein physical interactions deposited in MIPS. We further selected 1,207 genes
with variance greater than 0.05. Based on the most recent yeast protein–protein
interaction database BioGRID [Stark et al. (2011)], there are a total of 7,619 links
among these 1,207 genes. The BIC chose λ = 0.34 and ρ = 0.43, which resulted
in selection of 12,036 links out of a total of 727,821 possible links, which gives
a sparsity of 1.65%. Results from comparisons with the two other procedures are

TABLE 4
Summary of degrees of the graphs constructed by three different methods: cGGM, the graphical

Lasso (glasso) and a modified neighborhood selection using multiple Lasso (mLasso), for the genes
of the MAPK pathway and genes of the protein–protein interaction (PPI) network

MAPK pathway PPI network

Method Min Max Mean Median Min Max Mean Median

cGGM 0 11 3.48 3 0 57 19.94 21
glasso 5 19 12.63 13 5 60 31.46 32
mLasso 0 6 1.67 1 0 12 3.18 3
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shown in Table 3. The glasso without adjusting for the effects of genetic mark-
ers resulted in a total of 18,987 edges with an optimal tuning parameter λ = 0.22.
There were 9,854 links that were selected by both procedures. Again glasso se-
lected a lot more links than the cGGM; among the links that were identified by the
glasso only, 1,569 pairs are associated with at least one common genetic marker
(see Table 3), further explaining that some of the links identified by gene expres-
sion data alone can be due to shared comment genetic variants.

The modified neighborhood selection procedure mLasso identified only 1,917
edges with λ = 0.42, out of which 1,750 were identified by the cGGM and 1,916
were identified by the glasso. There was a common set of 1,749 links that were
identified by all three procedures. A summary of the degrees of the graphs esti-
mated by these three procedures is given in Table 4. We observe that the glasso
gave a much denser graph than the other two procedures, agreeing with what we
observed in simulation studies.

If we treat the PPI of the BioGRID database as the true network among these
genes, the true positive rates from cGGM, glasso and the modified neighborhood
selection procedure were 0.067, 0.071 and 0.019, respectively, and the false pos-
itive rates were 0.016, 0.026 and 0.0025, respectively. The MCC scores from
cGGM, glasso and the modified neighborhood selection procedure were 0.041,
0.030 and 0.033, respectively. One reason for having low true positive rates is that
many of the protein–protein interactions cannot be reflected at the gene expres-
sion level. Figure 3(a) shows the histogram of the correlations of genes that are
linked on the BioGRID PPI network, indicating that many linked gene pairs have
very small marginal correlations. The Gaussian graphical models are not able to
recover these links. Figure 3 plots (b)–(d) show the marginal correlations of the
genes pairs that were identified by cGGM, glasso and mGlasso, clearly indicating
that the linked genes identified by the cGGM have higher marginal correlations. In
contrast, some linked genes identified by glasso have quite small marginal correla-
tions. Another reason is that the PPI represents the marginal pair-wise interactions
among the proteins rather than the conditional interactions.

6. Conclusions and discussion. We have presented a sparse conditional
Gaussian graphical model for estimating the sparse gene expression network based
on eQTL data in order to account for genetic effects on gene expressions. Since ge-
netic variants are associated with expression levels of many genes, it is important
to consider such heterogeneity in estimating the gene expression networks using
the Gaussian graphical models. We have demonstrated by simulation studies that
the proposed sparse cGGM can estimate the underlying gene expression networks
more accurately than the standard GGM. For the yeast eQTL data set we analyzed,
the standard Gaussian graphical model without adjusting for possible genetic ef-
fects on gene expressions identified many possible false links that result in very
dense graphs and make the interpretation of the resulting networks difficult. On
the other hand, our proposed cGGM resulted in a much sparser and biologically
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(a) (b)

(c) (d)

FIG. 3. Histograms of marginal correlations for pairs of linked genes based on BioGRID (a) and
linked genes identified by cGGM (b), glasso (c) and a modified neighborhood selection procedure
(mLasso) (d).

more interpretable network. We expect similarly good performance on data from
other published sources, such as from Schadt et al. (2003) and Cheung and Spiel-
man (2002).

Due to the limits of the gene expression data, one should not expect to recover
completely the true signaling networks since many dependencies among these
genes can be observed only at the protein or metabolite level. In any global bio-
chemical network such signaling network or protein interaction network, genes do
not interact directly with other genes; instead, gene induction or repression oc-
curs through the activation of certain proteins, which are products of certain genes
[Brazhnik, de la Fuente and Mendes (2002), Kontos (2009)]. Similarly, gene tran-
scription can also be affected by protein-metabolite complexes. Despite these limi-
tations of the gene expression, it is still useful to abstract the actions of proteins and
metabolites and represent genes acting on other genes in a gene network [Kontos
(2009)]. This gene network is what we aim to learn based on the proposed cGGM.
As we observed from our analysis of the yeast eQTL data, such graphs or gene
networks constructed from the cGGM can indeed explain the data and provide cer-
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tain biological insights into gene interactions. Such graphs can be interpreted as
a projection of true signaling or protein interaction network into the gene space
[Brazhnik, de la Fuente and Mendes (2002), Kontos (2009)].

We have focused in this paper on estimating the sparse conditional Gaussian
graphical model for gene expression data by adjusting for the genetic effects on
gene expressions. However, we expect that by explicitly modeling the covariance
structure among the gene expressions, we should also improve the identification
of the genetic variants associated with the gene expressions [Rothman, Levina
and Zhu (2010)]. This is in fact the original motivation of the SUR models pro-
posed by Zellner (1962). It would be interesting to investigate theoretically as to
how modeling the concentration matrix can lead to improvement in estimation and
identification of the genetic variants associated with the gene expression traits.

We used the Gaussian graphical models for studying the conditional indepen-
dence among genes at the transcriptional level. Such undirected graphs do not
provide information on causal dependency. Data from genetic genomics experi-
ments have been proposed to construct the gene networks represented by directed
causal graphs. For example, Liu, De La Feunte and Hoeschele (2008) and Bing
and Hoeschele (2005) used structural equation modeling and a genetic algorithm
to construct causal genetic networks among genetic loci and gene expressions.
Chaibub Neto et al. (2010) developed an efficient Markov chain Monte Carlo algo-
rithm for joint inference of causal network and genetic architecture for correlated
phenotypes. Although genetical genomics data can indeed provide opportunity for
inferring the causal networks at the transcriptional level, these causal graphical
model-based approaches can often only handle a small number of transcripts be-
cause the number of possible directed graphs is super-exponential in the number
of genes considered [Chickering, Heckerman and Meek (2004)]. Regularization
methods may provide alternative approaches to joint modeling of genetic effects
on gene expressions and causal graphs among genes at the expression level.
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SUPPLEMENTARY MATERIAL

Supplemental materials for “A sparse conditional Gaussian graphical
model for analysis of genetical genomics data” (DOI: 10.1214/11-
AOAS494SUPP; .pdf). The online supplemental materials include the simulation
standard errors of Tables 1 and 2, two propositions on the Hessian matrix of the
likelihood function and the convergence of the algorithm and the theoretical prop-
erties of the proposed penalized estimates of the sparse cGGM: its asymptotic
distribution, the oracle properties when p and q are fixed as n → ∞ and the con-
vergence rates and sparsistency of the estimators when p = pn and q = qn diverge
as n → ∞. All the proofs are also given in the supplemental materials.
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