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Modern, powerful techniques for the residual analysis of spatial-
temporal point process models are reviewed and compared. These methods
are applied to California earthquake forecast models used in the Collabora-
tory for the Study of Earthquake Predictability (CSEP). Assessments of these
earthquake forecasting models have previously been performed using simple,
low-power means such as the L-test and N-test. We instead propose residual
methods based on rescaling, thinning, superposition, weighted K-functions
and deviance residuals. Rescaled residuals can be useful for assessing the
overall fit of a model, but as with thinning and superposition, rescaling is gen-
erally impractical when the conditional intensity λ is volatile. While residual
thinning and superposition may be useful for identifying spatial locations
where a model fits poorly, these methods have limited power when the mod-
eled conditional intensity assumes extremely low or high values somewhere
in the observation region, and this is commonly the case for earthquake fore-
casting models. A recently proposed hybrid method of thinning and super-
position, called super-thinning, is a more powerful alternative. The weighted
K-function is powerful for evaluating the degree of clustering or inhibition in
a model. Competing models are also compared using pixel-based approaches,
such as Pearson residuals and deviance residuals. The different residual anal-
ysis techniques are demonstrated using the CSEP models and are used to
highlight certain deficiencies in the models, such as the overprediction of
seismicity in inter-fault zones for the model proposed by Helmstetter, Kagan
and Jackson [Seismological Research Letters 78 (2007) 78–86], the underpre-
diction of the model proposed by Kagan, Jackson and Rong [Seismological
Research Letters 78 (2007) 94–98] in forecasting seismicity around the Im-
perial, Laguna Salada, and Panamint clusters, and the underprediction of the
model proposed by Shen, Jackson and Kagan [Seismological Research Let-
ters 78 (2007) 116–120] in forecasting seismicity around the Laguna Salada,
Baja, and Panamint clusters.
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1. Introduction. Recent statistical developments in the assessment of space–
time point process models have resulted in new, powerful model evaluation tools.
These tools include residual point process methods such as thinning, superposi-
tion and rescaling, comparative quadrat methods such as Pearson residuals and
deviance residuals, and weighted second-order statistics for assessing particular
features of a model such as its background rate or the degree of spatial clustering.

Unfortunately, these methods have not yet become widely used in seismology.
Indeed, recent efforts to assess and compare different space–time models for earth-
quake occurrences have led to developments such as the Regional Earthquake
Likelihood Models (RELM) project [Field (2007)] and its successor, the Collab-
oratory for the Study of Earthquake Predictability (CSEP) [Jordan (2006)]. The
RELM project was initiated to create a variety of earthquake forecast models for
seismic hazard assessment in California. Unlike previous projects that were ad-
dressing earthquake forecast modeling for seismic hazard assessment, the RELM
participants decided to develop a multitude of competing forecasting models and
to rigorously and prospectively test their performance in a dedicated testing center
[Schorlemmer and Gerstenberger (2007)]. With the end of the RELM project, the
forecast models became available and the development of the testing center was
done within the scope of CSEP. CSEP inherited not only all models developed
for RELM and is testing them for the previously defined period of 5 years, but
also a suite of forecast performance tests that was developed during the RELM
project. In RELM, a community consensus was reached that all models will be
tested with these tests [Jackson and Kagan (1999), Schorlemmer et al. (2007)].
The tests include the Number or N-Test that compares the total forecasted rate
with the observation, the Likelihood or L-Test that assesses the quality of a fore-
cast in the likelihood space, and the Likelihood-Ratio or R-Test that compares the
performance of two forecast models. However, over time several drawbacks of
these tests were discovered [Schorlemmer et al. (2010)] and the need for more and
powerful tests became clear to better discern between closely competing models.
The N-test and L-test simply compare the quantiles of the total numbers of events
in each bin or likelihood within each bin to those expected under the given model,
and the resulting low-power tests are typically unable to discern significant lack of
fit unless the overall rate of the model fits extremely poorly. Further, even when
the tests do reject a model, they do not typically indicate where or when the model
fits poorly, or how it could be improved.

The purpose of the current paper is to review modern model evaluation tech-
niques for space–time point processes and to demonstrate their use and practical-
ity on earthquake forecasting models for California. The RELM project represents
an ideal test case for this purpose, as a variety of relevant, competing space–time
models are included, and these models yield genuinely prospective forecasts of
earthquake rates based solely on prior data. The rates are specified per bins which
are spatial-magnitude-temporal volumes (called pixels in the statistical domain).
These bins have been predefined in a community consensus process in order to
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have the model forecast rates in the exact same bins. The models’ forecasts trans-
late into strongly different estimates of seismic hazard. Its accurate estimation is
important for seismic hazard assessment, urban planning, disaster preparation ef-
forts and in the pricing of earthquake insurance premiums [Bolt (2006)], so distin-
guishing among competing models is an extremely important task.

In Section 2 we describe a group of earthquake forecast models to be evaluated,
along with the observed earthquake occurrences used to assess the fit of the mod-
els. The methods currently used by seismologists for model evaluation are briefly
reviewed in Section 3. Pixel-based residuals for model comparison are discussed
in Section 4. In Section 5 weighted second-order statistics, primarily the weighted
K-function, are investigated. Section 6 reviews various residual methods based
on rescaling, thinning and superposition, and introduces and applies the method
of super-thinning. Section 7 summarizes some of the benefits and weaknesses of
these tools.

2. CSEP earthquake forecast models and earthquake occurrence catalogs.
CSEP expanded and now collects and evaluates space–time earthquake forecasts
for different regions around the world, including California, Japan, New Zealand,
Italy, the Northwest Pacific, the Southwest Pacific and the entire globe. The fore-
casts are evaluated in testing centers in Japan, Switzerland, New Zealand and the
United States. The U.S. testing center is located at the Southern California Earth-
quake Center (SCEC) and hosts forecast experiments for California, the Northwest
and Southwest Pacific, and the global experiments. We have chosen to apply a va-
riety of measures to assess the fit of a collection of the California forecast models
currently being tested at SCEC.

The forecast models are arranged in classes according to their forecast time
period: five-year, three-month and one-day. There are two types of forecasts, rate-
based and alarm-based. Within the five-year group are a set of rate-based models
developed as part of the RELM project. In this paper we evaluate the RELM project
rate-based one-day and five-year models, and will be ignoring the three-month
models due to their very recent introduction to the CSEP testing center.

All CSEP forecasts are grid-based, providing a forecast in each spatial-
magnitude bin within a given time window. For the one-day models, each bin is
of size 0.1◦ longitude (lon) by 0.1◦ latitude (lat) by 0.1 units magnitude for earth-
quake magnitudes ranging from 3.95 to 8.95. For magnitudes 8.95–10, there is a
single bin of size 0.1◦ by 0.1◦ by 1.05 units of magnitude. The RELM forecasts
are identical, except with a lower magnitude bound of 4.95 instead of 3.95. For
each bin, an expected number of earthquakes in the forecast period is forecasted.

There are five models in the RELM project that are considered mainshock+
aftershock models. These models forecast both mainshocks and aftershocks with a
single forecast for a period of five years. Models proposed in Helmstetter, Kagan
and Jackson (2007) and Kagan, Jackson and Rong (2007), which we will call mod-
els A and B, respectively, base their forecasts exclusively on previous seismicity.
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The model proposed in Shen, Jackson and Kagan (2007), denoted model C here, is
based on other geodetic or geological data. All RELM models are five-year fore-
casts, beginning 1 January 2006, 00:00 UTC and ending 1 January 2011, 00:00
UTC. CSEP is also testing two one-day forecast models: The Epidemic-Type Af-
tershock Sequences (ETAS) model [Zhuang, Ogata and Vere-Jones (2004), Ogata
and Zhuang (2006)] and the Short-Term Earthquake Probabilities (STEP) model
[Gerstenberger et al. (2005)] since September of 2007. Both of these models pro-
duce forecasts based exclusively on prior seismicity.

CSEP evaluates the RELM models using a lower magnitude cutoff of 4.95. Be-
cause there are so few earthquakes of magnitude 4.95 and higher in the catalog
over the observed period we use a lower magnitude cutoff of 3.95 instead. The
forecasts for models A, B and C were extrapolated using each model’s fitted mag-
nitude distribution. Models A and B assume the magnitude distribution follows a
tapered Gutenberg–Richter law [Gutenberg and Richter (1944)] with a b-value of
0.95 and a corner magnitude of 8.0. Model C uses a b-value of 0.975 and the same
corner magnitude. Model A adjusts the magnitude distribution in a small region in
northern California influenced by geothermal activity (122.9◦W < lon < 122.7◦W
and 38.7◦N < lat < 38.9◦N) by using a b-value of 1.94 instead of 0.95.

Earthquake catalogs containing the estimated earthquake hypocenter locations
and magnitudes were obtained from the Advanced National Seismic System
(ANSS). From 1 January 2006 to 1 September 2009 there were 142 shallow earth-
quakes with a magnitude of 3.95 or larger which occurred in RELM’s spatial-
temporal window (see Figure 1). Note that each RELM model does not necessar-
ily produce a forecasted seismicity rate for every pixel in the space–time region.

FIG. 1. Locations of earthquakes with magnitude M ≥ 3.95 in the RELM testing region.
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Hence, each model essentially has its own relevant spatial-temporal observation
region, and thus we may have different numbers of observed earthquakes corre-
sponding to different models. For instance, all 142 recorded earthquakes from 1
January 2006 to 1 September 2009 corresponded to pixels where model A made
forecasts, but only 81 corresponded to pixels where model B made forecasts, and
86 where model C made forecasts. 85 earthquakes of magnitude 3.95 or greater
occurred since 1 September of 2007, all of which corresponded to forecasts made
by ETAS but only 83 of which corresponded to forecasts made by STEP.

3. L-test and N-test. CSEP initially implemented two numerical summary
tests, called the Likelihood-test (L-test) and the Number-test (N-test), to evaluate
the fit of the earthquake forecast models they collect. A full description of these
methods can be found in Schorlemmer et al. (2007). These goodness-of-fit tests are
similar to other numerical goodness-of-fit summaries such as the Akaike Informa-
tion Criterion [Akaike (1974)] and the Bayesian Information Criterion [Schwarz
(1978)] in that they provide a score for the overall fit of the model without indicat-
ing where the model may be fitting poorly.

The L-test, described in Schorlemmer et al. (2007), works by first simulating
some fixed number s of realizations from the forecast model. The log-likelihood
(�) is computed for the observed earthquake catalog (�obs) and each simulation (�j ,
for j = 1,2, . . . , s). The quantile score, γ , is defined as the fraction of simulated
likelihoods that are less than the observed catalog likelihood:

γ =
∑s

j=1 1{�j<�obs}
s

,

where 1 denotes the indicator function. If γ is close to zero, then the model is
considered to be inconsistent with the data, and can be rejected. Otherwise, the
model is not rejected and further tests are necessary.

The N-test is similar to the L-test, except that the quantile score examined is in-
stead the fraction of simulations that contain fewer points than the actual observed
number of points in the catalog, Nobs. That is,

δ =
∑s

j=1 1{Nj<Nobs}
s

,

where Nj is the number of points in the j th simulation of the model. With the
N-test, the model is rejected if δ is close to 0 or 1. If a model is underpredicting or
overpredicting the total number of earthquakes, then δ ∼ 1 or 0, respectively, and
the model will likely be rejected with the N-test.

Table 1 shows results for the L- and N-test for selected models. The L-test would
lead to rejection of models A, B, C and STEP as seen by the very low γ scores.
The ETAS model would not be rejected based on the γ score alone, requiring
the application of the N-test for a final decision. At the 5% level of significance,
the δ scores indicate that the STEP model is underpredicting the total number
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TABLE 1
Results of the L and N-test. Listed are the observed log-likelihoods, �obs, the L-test γ scores, the

observed number of events, Nobs and the N-test δ scores. δ scores that are bold-faced are significant
at the 5% level leading to rejection of the forecast

Model �obs γ Nobs δ

Mainshock+Aftershock

A. Helmstetter −22881.46 0.000 142 0.000
B. Kagan −10765.43 0.008 81 0.001
C. Shen −10265.20 0.002 86 0.043

Daily

ETAS −387.69 1.00 85 0.00
STEP −50.43 0.00 83 0.99

of earthquakes, while models A, B, C and ETAS are significantly overpredicting
earthquake rates.

Unfortunately, in practice, both statistics γ and δ test essentially the same thing,
namely, the agreement between the observed and modeled total number of points.
Indeed, for a typical model, the likelihood for a given simulated earthquake catalog
depends critically on the number of points in the simulation.

4. Pixel-based methods. Baddeley et al. (2005) introduced methods for
residual analysis of purely spatial point processes, based on comparing the total
number of points within predetermined bins to the number forecast by the model.
Such methods extend readily to the spatial-temporal case, and are quite natural for
evaluating the CSEP forecasts since the models are constrained to have a constant
conditional intensity within prespecified bins. The differences between observed
and expected numbers of events within bins can be standardized in various ways,
as described in what follows.

4.1. Preliminaries. Earthquake occurrence times and locations are typically
modeled as space–time point processes, with the estimated epicenter or hypocenter
of each earthquake representing its spatial location. Along with each observation,
one may also record several marks which may be used in the model to help fore-
cast future events; an important example of a mark is the magnitude of the event.
Space–time point process models are often characterized by their associated con-
ditional intensity, λ(t,x), that is, the infinitesimal rate at which one expects points
to occur around time t and location x, given full information on the occurrences
of points prior to time t , and given the marks and possibly other covariate infor-
mation observed before time t . Note that due to the lack of a natural ordering of
points in the plane, purely spatial point processes are typically characterized by
their Papangelou intensities [Papangelou (1972)], which may be thought of as the
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limiting rate at which points are expected to accumulate within balls centered at
location x given what other points have occurred at all locations outside of these
balls, as the size of the balls shrink to zero. For a review of point processes and
conditional intensities, see Daley and Vere-Jones (2003).

An aggregate conditional intensity is derived for each spatial bin for all models
by summing the forecast rates over all magnitude bins and then dividing the sum
by the area of each pixel. Since we are evaluating the five-year models A, B and C
after only 44 of the 60 months of the forecast period have elapsed, their conditional
intensities are scaled by a factor of 44/60.

4.2. Raw and Pearson residuals. Consider a model λ̂(t, x, y) for the condi-
tional intensity at any time t and location (x, y). Raw residuals may be defined
following Baddeley et al. (2005) as simply the number of observed points minus
the number of expected points in each pixel, that is,

R(Bi) = N(Bi) −
∫
Bi

λ̂(t, x, y) dt dx dy,(1)

where N(Bi) is the number of points in bin i. Note that Baddeley et al. (2005)
consider only the case of purely spatial point processes characterized by their Pa-
pangelou intensities; Zhuang (2006) showed that one may nevertheless extend the
definition to the spatial-temporal case using the conventional conditional intensity
as in (1).

One may wish to rescale the raw residuals in such a way that they have mean 0
and variance approximately equal to 1. The Pearson residuals are defined as

RP(Bi) = ∑
(tj ,xj ,yj )∈Bi

1√
λ̂(tj , xj , yj )

−
∫
Bi

√
λ̂(t, x, y) dt dx dy

for all λ̂(ti , xi, yi) > 0. These are analogous to the Pearson residuals in Poisson
log-linear regression.

Both STEP and model C have several pixels with forecasted conditional inten-
sities of 0, which complicates the standardization of the corresponding residuals
for these two models. Pearson residuals were obtained for each of the remaining
models. For instance, Figure 2 shows that the largest Pearson residual for model B
is 2.817 located in a pixel in Mexico, just south of the California border near the
Imperial Valley fault zone (lon ≈ 115.3◦W and lat ≈ 32.4◦N), which is the loca-
tion of a large cluster of earthquakes. Another very large residual for model B can
be seen just above the San Bernardino and Inyo county border near the Panamint
Valley fault zone (lon ≈ 117.0◦W and lat ≈ 36.0◦N). This is also the location of
the largest ETAS Pearson residual (2.221). The largest Pearson residual for model
A (4.068) is located at a small earthquake cluster near the Peterson Mountain fault
northwest of Reno, Nevada (lon ≈ 199.9◦W and lat ≈ 39.5◦N).

Note that when spatial-temporal bins are very small and/or the estimated condi-
tional intensity in some bins is very low, as in this example, the raw and especially
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FIG. 2. Pearson residuals for model B. The maximum observed Pearson residual is 2.817.

the standardized residuals are highly skewed. In such cases, the residuals in such
pixels where points happen to occur tend to dominate, and the skew may compli-
cate the analysis. Indeed, Pearson residuals fail to provide much useful information
about the model’s fit in the other pixels where earthquakes did not happen to oc-
cur, and graphical displays of the Pearson residuals tend to highlight little more
than the locations of the earthquakes themselves. Therefore, while Pearson and
raw residuals may help to identify individual bins containing earthquakes that re-
quire an adjustment in their forecasted rates, Pearson and raw residuals generally
fail to identify other locations where the models may fit relatively well or poorly.

4.3. Deviance residuals. A useful method for comparing models is using the
deviance residuals proposed by Wong and Schoenberg (2009), in analogy with
deviances defined for generalized linear models in the regression framework. As
with Pearson residuals, S is divided into evenly spaced bins, and the differences
between the log-likelihoods within each bin for the two competing models are
examined. Given two models for the conditional intensity, λ̂1 and λ̂2, the deviance
residual in each bin, Bi , of λ̂1 against λ̂2 is given by

RD(Bi) = ∑
i : (ti ,xi ,yi )∈Bi

log (λ̂1(ti , xi, yi)) −
∫
Bi

λ̂1(t, x, y) dt dx dy

−
( ∑

i : (ti ,xi ,yi )∈Bi

log (λ̂2(ti, xi, yi)) −
∫
Bi

λ̂2(t, x, y) dt dx dy

)
.
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FIG. 3. Left panel (a): deviance residuals for model A versus B. Sum of deviance residuals is
84.393. Right panel (b): close-up of deviance residuals for model A versus B near the Imperial fault.

Positive residuals imply that the model λ̂1 fits better in the given pixel and neg-
ative residuals imply that λ̂2 provides better fit. By simply taking the sum of the
deviance residuals,

∑
i RD(Bi), we obtain a log-likelihood ratio score, giving us

an overall impression of the improvement in fit from the better fitting model. If
λ̂1 or λ̂2 is estimated, then one may use this estimate in computing the deviance
residuals, and similarly if λ̂1 or λ̂2 is given, that is, not estimated, then one would
simply use this given model in computing the residuals.

Figure 3(a) shows the deviance residuals for model A versus model B. Model A
outperforms model B in almost all locations where earthquakes actually occurred,
and, in particular, model A forecasts the Imperial earthquake cluster and another
cluster near the Laguna Salada and Yuha Wells faults just north of the California–
Mexico border (lon ≈ 116.0◦W and lat ≈ 32.7◦N) much better than model B. The
pixel with the largest residual, highlighted in Figure 3(b), is located in the Imperial
cluster. Model B seems to fit better in several selected areas, mostly regions close
to known faults but where earthquakes did not happen to occur in the time span
considered. In most locations, however, including the vast majority of locations far
from seismicity, model A offers better fit, as model B tends to overpredict events
in these locations more than model A. Overall, the log-likelihood ratio score is
84.393, indicating a significant improvement from model A compared to model B.

Results are largely similar for model A versus model C, as seen in Figure 4(a),
with model A forecasting the rate at all observed earthquake clusters, including a
cluster at the extreme southern end of the observation region on the Baja, Mexico
peninsula (lon ≈ 116.3W and lat ≈ 31.8N), more accurately than model C. Over-
all, model A offers substantial improvement over model C with a likelihood ratio
score of 86.427. Residuals for model B versus model C can be seen in Figure 4(b).
Model C forecasts the rate near the Imperial cluster better, and model B forecasts
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FIG. 4. Left panel (a): deviance residuals for model A versus C. Sum of deviance residuals is
86.427. Right panel (b): deviance residuals for model B versus C. Sum of deviance residuals is
−7.468.

more accurately around the Laguna Salada cluster. There are vast regions where
model B outperforms model C and vice versa. Overall, model C fits slightly bet-
ter than model B, with a likelihood ratio score of −7.468. Deviance residuals for
ETAS versus STEP (not shown) reveal that the ETAS model performs somewhat
better for this data set overall, with a log-likelihood ratio score of 76.261, provid-
ing substantially more accurate forecasts in nearly all locations, especially where
earthquakes occur.

5. Weighted second-order statistics. A common model assessment tool used
for detecting clustering or inhibition in a point process is Ripley’s K-function
[Ripley (1981)], defined as the average number of points within r of any given
point divided by the overall rate λ, and is typically estimated via

K̂(r) = AN−2
∑

i<j,‖xi−xj‖<r

s(xi ,xj ),

where A is the area of the observation region, N is the total number of observed
points, and s(xi ,xj )

−1 is the proportion of area of the ball centered at xi and
passing through xj that falls within the observation region [see Ripley (1981),
Cressie (1993)]. For a homogeneous Poisson process in R2, K(r) = πr2, Besag
(1977) suggested a variance stabilized version of the K-function, called the L-
function, given by L(r) = √

K(r)/π .
The null hypothesis for most second-order tests such as Ripley’s K-function

is that the point process is a homogeneous Poisson process. Stark (1997) argues
that this is a poor null hypothesis for the case of earthquake occurrences because
a homogeneous Poisson model fits so poorly to actual data. Adelfio and Schoen-
berg (2009) described a variety of weighted analogues of second-order tests that
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are useful when the null hypothesis in question is more general. Most useful
among these is the weighted analogue of Ripley’s K-function, first introduced by
Baddeley, Møller and Waagepetersen (2000). They discussed the case where the
null model λ̂0, can be any inhomogeneous Poisson process, and this was extended
by Veen and Schoenberg (2005) to the case of non-Poisson processes as well. The
weighted K-function is useful for testing the degree of clustering in the model,
and was used by Veen and Schoenberg (2005) to assess a spatial point process
model fitted to Southern California earthquake data. The standard estimate of the
weighted K-function is given by

KW(r) = b∫
S λ̂0(x) dx

∑
i

λ̂0(xi )
−1

∑
j 	=i

λ̂0(xj )
−11{|xj−xi |≤r},

where b =min(λ̂), 1 is the indicator function, and λ̂0(xi ) is the conditional intensity
at point xi under the null hypothesis. Edge-corrected modifications can also be
used, especially when the observed space is irregular. Guan (2009) proposed a
local empirical K-function which can assess lack-of-fit in subsets of S and can be
compared to the weighted K-function applied globally to S. Here, we apply the
weighted K-function globally to derive an overall impression of each model’s lack
of fit.

As with Ripley’s K-function, under the null hypothesis, for a spatial point pro-
cess with intensity λ0, KW(r) = πr2 [Veen and Schoenberg (2005)]. To obtain a
centered and standardized version, one can also transform the weighted K-function
into a weighted L-function as before, and plot LW(r) − r = √

KW(r)/π − r ver-
sus r .

Space–time versions of the L-function have been proposed, but for the purpose
of examining, in particular, the range and degree of purely spatial clustering in
each model, it seems preferable to apply the purely spatial weighted L-function
previously described, after first integrating the conditional intensities of the ETAS
and STEP models over time. Figure 5 shows the estimated centered weighted L-
functions for the five models considered here, along with 95% confidence bounds
based on the normal approximation in Veen and Schoenberg (2005), who showed
that asymptotically, the distribution of the weighted K-function should generally
obey

KW(r) ∼ N

(
πr2,

2πr2A

[∫S λ̂0(x) dx]2

)
.(2)

The catalog of observed earthquakes is significantly more clustered than would be
expected according to model A, especially within distances of 0.2 degrees of longi-
tude/latitude, or approximately 22.2 km. However, at distances greater than 0.3◦,
or approximately 33.3 km, the observed data exhibit greater inhibition than one
would expect according to model A. This suggests that model A is underpredicting
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FIG. 5. Estimated centered weighted L-function (solid curve) and 95% confidence bands (dashed
curves). Top-left panel: (a) model A. Top-center panel: (b) model B. Top-right panel: (c) model C.
Bottom-left panel: (d) ETAS. Bottom-right panel: (e) STEP.

the degree of clustering in the observed seismicity and may be generally underpre-
dicting the seismicity rate within highly active seismic areas, and may be overpre-
dicting seismicity elsewhere. Results are similar for model B and the ETAS model.
The estimated L-function for model C shows significantly more clustering of the
(weighted) seismicity than one would expect within distances of 0.4◦ or 44.4 km,
that is, model C is significantly underpredicting the degree of clustering within
this range, but seems consistent with the data outside of this range. The estimated
L-function shows clear discrepancies between the STEP model and the data, as
the (weighted) seismicity is significantly more clustered than one would expect
according to the model at both small and large distances. These results are not sur-
prising considering that STEP tends to underpredict seismicity overall: according
to the STEP forecasts, one would expect only 63 earthquakes in total during the
period in which 85 occurred. By contrast, ETAS tends to overpredict the overall
rate, forecasting more than 114 earthquakes in this same period.

6. Residual point process methods. As shown in Section 4.2, when the
spatial-temporal pixels are small, the distribution of raw and Pearson residuals tend
to be highly skewed, and this limits their utility. When pixels are larger, however,
a drawback of pixel-based residuals is that considerable information is lost in ag-
gregating over the pixels. Instead, one may wish to examine the extent to which the



RESIDUAL ANALYSIS FOR EARTHQUAKE FORECAST MODELS 2561

data and model agree, without relying on such aggregation. One way to perform
such an assessment is to transform the points of the process, by rescaling, thin-
ning, superposition or superthinning, to form a new point process that should be a
homogeneous Poisson process if and only if the model used to govern this trans-
formation is correct. The residual points can then be assessed for inhomogeneity
as a means of evaluating the goodness of fit of the underlying model.

6.1. Rescaled residuals. Meyer (1971) observed that the temporal coordi-
nates of a multivariate point process can be rescaled according to the integrated
conditional intensity in order to form a sequence of stationary Poisson pro-
cesses. For a space–time point process, one may thus rescale one axis, for ex-
ample, the x-axis, moving each observation (ti, xi, yi) to the new rescaled position
(ti,

∫ xi

0 λ̂(t, x, y) dx, yi), and assess the space–time homogeneity of the resulting
process. This sort of method was used by Ogata (1988) for model evaluation for
the purely temporal case and by Schoenberg (2003) for the spatial-temporal case.
The spatial homogeneity of these residual points may be assessed, for instance
using Ripley’s K-function.

If λ is spatially volatile, the transformed space bounding the rescaled resid-
uals can be highly irregular, which makes it difficult to detect uniformity using
the K-function. In this case, one can rescale the points along a different axis as in
Schoenberg (1999) and see if there is any improvement. Unfortunately, most CSEP
forecast models have volatile conditional intensities, resulting in a highly irregular
boundary regardless of which axis is chosen for rescaling. In such cases, the K-
function is dominated by boundary effects and has little power to detect excessive
clustering or inhibition in the residuals. Figure 6 shows the rescaled residuals for
models B and C, which had the most well behaved of the rescaled residuals for
the five models we considered. There is significant clustering in both the vertically
and horizontally rescaled residuals for all five models, apparently due to clustering
in the observations not adequately accounted for by the models, the most notice-
able of which is the very large Imperial cluster. One must be somewhat cautious,
however, in interpreting rescaled residuals, because patterns observed in the points
in the rescaled coordinates may be difficult to interpret.

6.2. Thinned residuals. Thinned residuals are a modification to the simulation
techniques used by Lewis and Shedler (1979) and Ogata (1981), and, as shown in
Schoenberg (2003), are useful for assessing the spatial fit of a space–time point
process model and revealing locations where the model is fitting poorly. Unlike
rescaled residuals, thinned residuals have the advantage that the coordinates of
the points are not transformed and, thus, the resulting residuals may be easier to
interpret. To obtain thinned residuals, each point (ti, xi, yi) is kept independently
with probability

b

λ̂(ti , xi, yi)
,
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FIG. 6. Rescaled residuals and transformed space for models B and C. (a): vertically rescaled
residuals for model B. (b): estimated centered L-function for vertically rescaled residuals (solid line)
and middle 95% ranges of estimated centered L-functions for 1,000 simulated homogeneous Poisson
processes (dashed lines). (c): horizontally rescaled residuals for model B. (d): estimated centered
L-function for horizontally rescaled residuals (solid line) and middle 95% ranges of estimated cen-
tered L-functions for 1,000 simulated homogeneous Poisson processes (dashed lines). (e): vertically
rescaled residuals for model C. (f): estimated centered L-function for vertically rescaled residuals
(solid line) and middle 95% ranges of estimated centered L-functions for 1,000 simulated homoge-
neous Poisson processes (dashed lines). (g): horizontally rescaled residuals for model B. (h): esti-
mated centered L-function for horizontally rescaled residuals (solid line) and middle 95% ranges of
estimated centered L-functions for 1,000 simulated homogeneous Poisson processes (dashed lines).

where b = inf{λ̂(t, x, y) : (t, x, y) ∈ S} is the infimum of the estimated intensity
over the entire observed space–time window, S. The remaining points, called
thinned residual points, should be homogeneous Poisson with rate b if and only
if the fitted model for λ is correct [Schoenberg (2003)]. For this method to have
sufficient power, several realizations of thinned residuals can be collected, each re-
alization being tested for uniformity using the K-function, and then all K-functions
may be examined together to get the best overall assessment of the model’s fit.

When applied to the CSEP earthquake forecasts, b tends to be so small that
thinning results in very few points (often zero) being retained. One can instead
obtain approximate thinned residuals by forcing the thinning procedure to keep,
on average, a certain number, k, of points by keeping each point with probability

k
/(

λ̂(ti , xi, yi)

N(S)∑
i=1

λ̂(ti , xi, yi)
−1

)

as in Schoenberg (2003).
Typical examples of approximate thinned residuals for the five models we con-

sider, using k = 25,15,15,25 and 25 for models A, B, C, ETAS and STEP, re-
spectively, are shown in Figure 7. Excessive clustering or inhibition in the residual
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FIG. 7. One realization of thinned residuals for each of the five models considered (nearby points
are plotted with different symbols so they can be differentiated). Top-left panel (a): model A (k = 25).
Top-center panel (b): model B (k = 15). Top-right panel (c): model C (k = 15). Bottom-left panel (d):
ETAS (k = 25). Bottom-right panel (e): STEP (k = 25).

process, compared with what would be expected from a homogeneous Poisson pro-
cess with overall rate k, indicates lack of fit. To test the residuals for homogeneity,
one may apply the weighted K-function to the residuals, with λ̂0(xi ) = k for all
points xi . This is equivalent to using the unweighted version of the K-function
on the residuals, except that here the overall rate is k, whereas with the conven-
tional unweighted K-function, the overall rate is typically estimated as N(S)/|S|.
The estimated centered weighted L-functions for each model, along with the 95%-
confidence bands based on 2, are shown in Figure 8. Models A and STEP most
noticeably fail to thin out the small cluster near the Peterson Mountain fault north-
west of Reno, Nevada, and another small cluster in northern California that occurs
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FIG. 8. Estimated centered weighted L-function (solid line) for one realization of super-thinned
residuals and 95% bounds (dashed lines). Top-left panel (a): model A (λ̂0 = 0.296). Top-center
panel (b): model B (λ̂0 = 0.406). Top-right panel (c): model C (λ̂0 = 0.394). Bottom-left panel (d):
ETAS (λ̂0 = 0.296). Bottom-right panel (e): STEP (λ̂0 = 0.296).

approximately 35 kilometers south of the Battle Creek fault (lon ≈ 122.7◦W and
lat ≈ 40.2◦N). This residual clustering is significant, as shown by the weighted
L-functions in Figures 8(a) and (e). Model B has trouble forecasting the Impe-
rial cluster, as evidenced by the significant clustering at distances up to 0.6◦. The
residuals for both models C and ETAS appear to be closer to uniformly distributed
throughout the space, though further investigation of several realizations of thinned
residuals reveals that model C has trouble thinning out the Baja, California cluster,
which leads to some significant clustering in the residuals at very small distances.
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6.3. Superposition. Superposition is a residual analysis technique similar to
thinned residuals, but instead of removing points, one simulates new points to
be added to the data and examines the result for uniformity. This procedure was
proposed by Brémaud (1981), but examples of its use have been elusive. Points
are simulated at each location (t, x, y) according to a Cox process with intensity
c − λ̂(ti , xi, yi), where c = supS{λ̂(t, x, y)}. As with thinning and rescaling, if the
model for λ is correct, the union of the superimposed residuals and observed points
will be homogeneous Poisson. Any patterns of inhomogeneity in the residuals aid
us in identifying spots where the model fits poorly.

Superposition helps solve one of the biggest disadvantages of thinned residuals:
the lack of information on the goodness of fit of the model in locations where no
events occur. However, if c is large, then there is a possibility that too many points
will be simulated, meaning that the behavior of the K-function will be primarily
influenced by simulated points rather than actually observed data points. For mod-
els A and STEP, for example, simulated points comprise ≥ 99% of the total points
after superposition. For models C and ETAS, simulated points comprise ≥ 90% of
the superposed residual points. See Figure 9 for an example of superposed residu-
als for model C. Since the test for uniformity is based almost entirely on the sim-
ulated points, which are by construction approximately homogeneous for large c,
the test has low power for model evaluation in such situations.

A realization of superposed residuals for model B can be seen in Figure 10,
along with the corresponding centered weighted L-function as a test for homo-
geneity of the residuals. 95%-confidence bands for the L-function are constructed
under the null hypothesis λ̂0(xi ) = c for all points xi . The superposed residuals
are significantly more clustered than would be expected, up to distances of 0.4◦,

FIG. 9. Superposed residuals for model C. Simulated points make up 90.7% of all points.
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FIG. 10. Superposed residuals for model B. Left panel (a): one realization of superposed residuals
(circles = observed earthquakes; plus signs = simulated points). Right panel (b): estimated centered
weighted L-function for superposed residuals (solid line) and 95%-confidence bounds (dashed lines).

or approximately 44.4 km. This is likely the result of the underprediction of the
seismicity rate in the Imperial cluster. One also observes significantly more in-
hibition in the superposed residuals than would be expected at distances greater
than 0.5◦, or approximately 55.5 km. This inhibition can most likely be attributed
to the model’s overprediction of the seismicity rate in areas devoid of earthquakes,
which can be seen in the portions of Figure 10(a) in various regions lacking both
simulated and observed points.

6.4. Super-thinning. A more powerful approach than thinning or superposi-
tion individually is a hybrid approach where one thins in areas of high intensity
and superposes simulated points in areas of low intensity, resulting in a homoge-
neous point process if the model for λ used in the thinning and superposition is
correct. The benefit of this method, called super-thinning by Clements, Schoen-
berg and Veen (2010), is that the user may specify the overall rate of the resulting
residual point process, Z, so that it contains neither too few or too many points.

In super-thinning, one first keeps each observed point (t, x, y) in the cata-
log independently with probability min{1, k/λ̂(t, x, y)} and subsequently super-
poses points generated according to a simulated Cox process with rate max{0, k −
λ̂(t, x, y)}. The result is a homogeneous Poisson process with rate k if and only
if the model λ̂ for the conditional intensity is correct [Clements, Schoenberg and
Veen (2010)] and, hence, the resulting super-thinned residuals can be assessed for
homogeneity as a way of evaluating the model. In particular, any clustering or
inhibition in the residual points indicates a lack of fit.

In the application to earthquake forecasts, a natural choice for k is the total
number of expected earthquakes according to each forecast. Figure 11 shows one
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FIG. 11. One realization of super-thinned residuals for the five models considered
(circles = observed earthquakes; plus signs = simulated points). Top-left panel (a): model A
(k = 2.76). Top-center panel (b): model B (k = 2.95). Top-right panel (c): model C (k = 2.73).
Bottom-left panel (d): ETAS (k = 1.35). Bottom-right panel (e): STEP (k = 0.75).

realization of super-thinned residuals for each model, and Figure 12 shows the
estimated centered weighted L-functions for the corresponding residuals, with
λ̂0(xi ) = k for all points xi , along with 95%-confidence bands. Model A appears
to fit rather well overall, with some significant clustering in the residuals at very
small distances (from 0◦ to 0.1◦) most likely attributable to the same small clusters
that remained in the thinned residuals. However, the L-function in Figure 12(a) re-
veals that there is somewhat more inhibition in the residual process than we would
expect. This is likely attributable to model A’s overprediction of the seismicity
rate especially in inter-fault zones. The super-thinned residuals for model B con-
tain a few significant clusters (Imperial, Laguna Salada and Panamint) and some
slight inhibition due to overprediction of seismicity in two regions devoid of any



2568 R. A. CLEMENTS, F. P. SCHOENBERG AND D. SCHORLEMMER

FIG. 12. Estimated centered weighted L-function (solid line) and 95% bands (dashed lines) for
the super-thinned residuals in Figure 11. Top-left panel (a): model A (λ̂0 = 2.76). Top-center
panel (b): model B (λ̂0 = 2.95). Top-right panel (c): model C (λ̂0 = 2.73). Bottom-left panel (d):
ETAS (λ̂0 = 1.35). Bottom-right panel (e): STEP (λ̂0 = 0.75).

simulated points or retained earthquakes: the San Diego-Imperial County areas
and the Los Angeles–San Bernardino areas. There is also significant clustering for
model C up to distances of 0.2◦, particularly the Laguna Salada, Baja and Panamint
clusters. The ETAS residuals contain significant clustering at distances up to 0.1◦,
and this is largely attributable to the Imperial cluster and to clusters in Peterson
Mountain and the Mt. Konocti area near Clearlake, California at lon ≈ 122.1◦W
and lat ≈ 38.8◦N. The STEP residuals exhibit significant clustering at distances up
to 0.4◦, with obvious clustering at Imperial, Peterson Mountain, Battle Creek, Mt.
Konocti and the Mendocino fault zone off the coast of Northwest California.

7. Summary. A litany of residual analysis methods for spatial point processes
can be implemented to assess the fit and reveal weaknesses in point process mod-
els, and many of these methods provide more reliable estimates of the overall fit
and more detailed information than the L-test and N-test. Rescaled residuals can
assist in the evaluation of the overall spatial fit, but are not easily interpretable due
to the transformed spatial window. Thinned residuals are much more easily inter-
pretable, but suffer from variability in the thinned residual point pattern and low
power if b is too small. Superposition is similar to thinning in that it also suffers
from sampling variability and low power in the case of a very large supremum of λ̂.
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Super-thinning appears to be a promising alternative, but, like superposition, may
have low power if the modeled intensity is extremely volatile. Deviance residuals
and weighted second-order statistics appear to be quite powerful, especially for
comparisons of competing models.

Clearly, the availability of a larger number of observed earthquakes in the tests
would lead to more detailed and more meaningful results, and this suggests further
decreasing the lower magnitude threshold. However, considerations of catalog in-
completeness at lower magnitudes, as well as the fact that not all forecast models
in the study are capable of forecasting small events and their spatial-temporal fluc-
tuations, lead to limits on how low one may place the lower magnitude threshold
for the catalog. Indeed, lowering the threshold requires stronger time-dependence
of the models to account for the short-term fluctuations of microseismicity. Due
to these considerations, CSEP sets the lower magnitude threshold in most cases to
3.95 for the time-varying models like STEP and ETAS.

Overall, model A seems to be overpredicting seismicity at the time of test-
ing, but this may change once the forecast period is complete if there is a greater
amount of seismic activity. Models B and C appear to be significantly underpre-
dicting seismicity in many locations, and unless the seismic activity in these re-
gions slows down considerably, these models will continue to underpredict for the
remainder of the forecast period. The spatial distribution of model A is quite ac-
curate, coupling forecasts of high conditional intensity in areas along active faults
with very low intensity forecasts in areas adjacent to these faults which typically
are devoid of earthquakes. Models B and C have smooth spatial distributions yield-
ing erroneously high forecasts at distances far from any faults.

The question of what choice of k is optimal in thinning or super-thinning re-
mains open for future research. Ideally, k should be chosen such that a poorly
fitting model is rejected with high probability, while a “correct” or satisfactorily
fitting model is rejected with low probability (i.e., the Type I error probability, α, is
small). When thinning, we lose information when points are removed, so we pre-
fer to keep as many points as possible, while keeping α low. With super-thinning,
we would also ideally want to retain many of the original points while simulat-
ing few points, so that any assessment of the homogeneity of the residuals is not
highly dependent on the simulations. Simulation and theoretical studies are needed
in the future to compare the power of these goodness-of-fit measures under various
hypotheses.
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