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A SPACE–TIME VARYING COEFFICIENT MODEL: THE EQUITY
OF SERVICE ACCESSIBILITY1
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Research in examining the equity of service accessibility has emerged as
economic and social equity advocates recognized that where people live influ-
ences their opportunities for economic development, access to quality health
care and political participation. In this research paper service accessibility eq-
uity is concerned with where and when services have been and are accessed
by different groups of people, identified by location or underlying socioeco-
nomic variables. Using new statistical methods for modeling spatial-temporal
data, this paper estimates demographic association patterns to financial ser-
vice accessibility varying over a large geographic area (Georgia) and over
a period of 13 years. The underlying model is a space–time varying coeffi-
cient model including both separable space and time varying coefficients and
space–time interaction terms. The model is extended to a multilevel response
where the varying coefficients account for both the within- and between-
variability. We introduce an inference procedure for assessing the shape of
the varying regression coefficients using confidence bands.

1. Introduction.

“A home is more than a shelter—when located in a community with resources and
amenities it is a critical determinant of opportunity.” [Blackwell and Fox (2004)]

Service accessibility equity is the study of systematic disparities in a popula-
tion’s access to services that are considered fundamental in fostering economic
development, improving wellness and enhancing the general quality of life of a
population within a given geographic area. Examples of such services are health
care, education, healthy food, financial services and others. Accessibility is mea-
sured as utilization-scaled travel cost of a community U to the nearby sites in
a service network consisting of multiple service sites geographically distributed:
S = {s1, . . . , sn}. A common utilization measure is the population rate within the
community and its surroundings [Marsh and Schilling (1994)]. In this paper the
utilization is measured as the population rate divided by the service rate to account
for the service availability for each population unit.
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One challenge in measuring service accessibility is defining the travel cost for
the residents in a community to access the sites in the service network. In the
research works so far, the travel cost is calculated as the average or minimum dis-
tance between the centroid of the region U and the nearby sites in the service
network [Lovett et al. (2002); Talen (1997); Talen (2001)]. However, communi-
ties occupy uneven geographic areas varying in size, and, therefore, their sim-
plified representation by their centroids is restrictive. In this research paper, we
instead represent a community by a sample of locations in the neighborhood U ,
u1, . . . , uB ∈ U , and compute the street-network distances from these sample lo-
cations to the service network. Furthermore, the travel cost at each sample location
ub is measured as a summary of the travel distances, {d(ub, si)}i=1,...,n.

Combining the two ideas discussed above, utilization-adjustment of the travel
cost and representation of a community by a series of sample spatial points, we
evaluate the accessibility of a neighborhood to a service network in year t using

Y(U, t) = 1

B

B∑

b=1

(C(ub, t)
βW(ub, t)),(1.1)

where C(ub, t) is the travel cost at the sample location ub measured as the av-
erage street-network distance to the closest Q service sites available at time t

(in our study, Q = 3), W(ub, t) is the utilization adjustment factor at location ub

and β is a distance utility parameter. We estimate β by robust linear regression:
log(W(ub, t)) ∼ − log(C(ub, t)).

Dividing the geographic space into contiguous spatial units Us , s = 1, . . . , S,
where each spatial unit corresponds to a neighborhood (e.g., census tract), the ac-
cessibility measure (utilization-adjusted travel cost) varies across the geographic
space and time; Y(Us, t) = Y(s, t) defines the space–time varying accessibility
process. Moreover, there are multiple providers in the service network, the acces-
sibility process has an intrinsic multilevel structure. Under this multilevel structure,
let Yp(s, t) be the accessibility of the community Us to the sites of the pth provider
for p = 1, . . . ,P , where P is the number of service providers.

This research paper focuses on measuring and estimating spatial-temporal pat-
terns in the association between demographic variables (including race, ethnicity
and income) and service accessibility. Specific questions that will be addressed
within this study are as follows: Is service accessibility equitable across population
groups varying in ethnicity and income? Do service distribution inequities vary
across regions and time? Are there service providers that provide a more equitable
distribution of their services than others? What is the most common demographic
feature associated with inequities?

To evaluate the equity of service accessibility with respect to various popula-
tion groups over a period of time and within a large geographic space, we propose
to estimate the space–time varying association of the accessibility measure jointly
over a series of demographic variables. In this context, weak associations or the
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absence of systematic disparities in service access are interpreted as service ac-
cessibility equity. One challenge of this association analysis is simultaneous esti-
mation of the association patterns since the goal is to assess both the equity with
respect to various ethnicity and race demographic variables controlling for income
and the equity with respect to income controlling for ethnicity and race. A sec-
ond challenge is that services are delivered within a multilevel network - multiple
providers which deliver across multiple service sites.

Many existing studies have analyzed service accessibility for different groups
of people identified by underlying socioeconomic variables, but they are limited
to small geographic areas and to only one year of data [Graves (2003); Larson
(2003); Powell et al. (2007); Small and McDermott (2006); Talen (2001); Talen
and Anselin (1998); Zenk et al. (2005)]. Commonly employed statistical proce-
dures include regression methods assuming independence between service sites.
Exploratory studies rely on graphical diagnostics but not on statistical inference,
which can be used to make informed decisions. Although the methods applied to
the existing studies have usefulness for some research questions, a spatial-temporal
multivariate analysis of data with a multilevel structure requires new statistical
methods which are rigorous, take into account the dependence in the data, and
implementable, apply to real data complexity.

To this end, we introduce a space–time (multilevel) model which allows esti-
mation of space–time varying association patterns of a set of functional predictors
(e.g., demographic variables) to a functional response, in our case study, the ac-
cessibility process. The modeling procedure introduced in this paper falls under a
more general framework: varying-coefficient models. These models have been ap-
plied to longitudinal data to estimate time-dependent effects on a response variable
[Assuncao (2003); Fan and Zhang (2000); Hastie and Tibshirani (1993); Hoover
et al. (1998); Huang, Wu and Zhou (2002); Wu and Liang (2004); Zhang (2004)].
Waller et al. (2007) review existing models to explore space-varying regressions
and propose a Bayesian procedure. Gelfand et al. (2003) briefly mention the ex-
tension of their proposed Bayesian space-varying model to separable space–time
varying coefficient models with a warning on its computational challenges. Space–
time separability greatly simplifies the problem by reducing the computational ef-
fort; however, it is a restrictive assumption since it implies that dependence atten-
uates in a multiplicative/additive manner across space and time. Therefore, exten-
sion of the Bayesian varying coefficient model to more complex modeling (e.g.,
space–time interaction) requires expensive computations which may be prohibitive
for densely sampled spatial domains.

Our methodological contribution is three-fold. First, we propose a space–time
varying coefficient model that takes into account the interaction between time and
space in a computationally efficient manner. To overcome the computational com-
plexity due to operations with a large dependence matrix, we use a low-rank ap-
proximation to the space–time coefficient processes using radial basis of func-
tions [Ruppert, Wand and Carroll (2003)]; this approach enables estimation of the
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space–time varying coefficient model for densely observed space and/or time do-
mains.

Second, we extend this model to multilevel data, resulting in a multilevel vary-
ing coefficient model. A few recent works have considered the study of multilevel
functional models [Baladandayuthapani et al. (2008); Crainiceanu, Staicu and Di
(2009); Di et al. (2009); Morris and Carroll (2006); Morris et al. (2003); Rice and
Wu (2001); Staicu, Crainiceanu and Carroll (2010); Wu and Zhang (2002)]. In the
related research, models of multilevel functional data have been applied to func-
tional responses where the predictor is a fixed variate, commonly time, and, more
recently, they have been extended to functional predictors but scalar responses. In
this paper, the multilevel functional model applies to both functional response and
functional predictors and it extends to the more difficult setting when the func-
tionality is with respect to space and time. Challenges in estimating such a com-
plex model include nonidentifiability and computational efficiency. We overcome
the identifiability problem by using a knots-based kernel decomposition with a
different set of knots across the model coefficients. We use penalized splines for
computational efficiency in adapting to the smoothness in the space–time varying
coefficients [Ruppert, Wand and Carroll (2003)].

Third, we introduce an inference procedure to assess the shape of the space–
time varying coefficients. Generally, a common approach for identifying the shape
of a regression function is hypothesis testing. However, for our model, hypothe-
sis testing will require multiple tests for deciding whether its shape is nonlinear,
linear or constant as a function of space or/and time. In this paper, we discuss an
inference procedure for assessing the shape of the varying regression coefficients
using confidence bands.

The rest of the paper is organized as follows. In Sections 2 and 3 we present
the space–time varying coefficient model as well as its extension to multilevel data
along with the estimation and inference procedures. In Section 4 we present the
application of the models introduced in this paper to evaluate the equity of financial
service accessibility in Georgia. We first describe the data resources followed by
the discussion of our results and findings. Section 5 concludes the paper. Some
technical details are deferred to the supplemental material [Serban (2011)], which
also provides complemental graphical descriptions of our analysis of the equity of
service accessibility.

2. Space–time varying coefficient model.

2.1. The model. In this section we introduce a space–time varying coeffi-
cient model for estimating the relationships between the accessibility process
and a series of demographic variables varying in time and space. The observed
data are (Yij , {Xr,ij , r = 1, . . . ,R}), where Yij = Y(ti, sj ) is the response vari-
able and Xr,ij = Xr(ti, sj ) a set of covariates observed at location sj = (sj1, sj2),
j = 1, . . . , S, and time ti , i = 1, . . . , T , such that E[Yij |X] = γ1(ti, sj )X1,ij +· · ·+
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γR(ti, sj )XR,ij where γr(t, s) for r = 1, . . . ,R are smooth coefficient functions.
Note that not all covariates need to vary in both time and space; the modeling
procedure allows for various predictor forms (scalar, varying in time, varying in
space or both). For example, in our model implementation we take X1,ij = 1 and,
therefore, γ1(s, t) is the intercept coefficient.

In this paper we decompose the regression coefficients into separable space and
time global effects along with space–time deviations from the global effects which
are intrinsically local and account for the interaction between space and time:

γr(t, s) = αr(t) + βr(s) +
Mr∑

m=1

Nr∑

n=1

νr,mnKtemp
(∣∣t − κ(T )

m

∣∣)Ksp

(∥∥s − κ(S)
n

∥∥)
.

We decompose the global coefficient functions using the radial spline basis
[Ruppert, Wand and Carroll (2003)],

αr(t) = τr,0 + τr,1t +
Mr∑

m=1

ur,mKtemp
(∣∣t − κ(T )

m

∣∣),(2.1)

βr(s1, s2) = δr,0 + δr,11s1 + δr,12s2 +
Nr∑

n=1

vr,nKsp

(∥∥s − κ(S)
n

∥∥)
.(2.2)

In these decompositions Ktemp(t) is a temporal kernel whereas κ
(T )
m , m =

1, . . . ,Mr , are knots covering the time domain, and Ksp(s) is a spatial kernel

whereas κ
(S)
n , n = 1, . . . ,Nr , are knots covering the space domain.

Importantly, although the kernel of the space–time interaction coefficient is sep-
arable in time and space, the decomposition is not. One advantage of using this
kernel decomposition is that it allows decomposition of the design matrix as a
Kronecker product, which, in turn, will ease the computations in the estimation
procedure. We derive the Kronecker product decomposition in the Supplemental
Material 1 of this paper.

In the semiparametric literature a common kernel function is the radial spline
kernel function defined for d-dimensional domains [Nychka and Saltzman (1998)].
Bivariate smoothing based on radial basis functions has the advantage of be-
ing rotational invariant, which is important in geographical smoothing. For two-
dimensional domains, the function Ksp(·) could be replaced by any other covari-
ance function [Cressie (1993)], for example, the Matérn covariance function.

Knots for one-dimensional spaces are commonly set to the sample quantiles of
the observation points, whereas knots for two-dimensional spaces are commonly
selected using the space-filling algorithm [Nychka and Saltzman (1998)], which
is based on minimax design, or k-nearest neighbor clustering algorithms. In this
paper we implement these standard methods to select the number of knots.
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2.2. Estimation. We choose a method for estimating the model described in
the previous section from among several candidate procedures. One modeling ap-
proach is smoothing splines [Wahba (1990)], which assumes that the number of
knots is equal to the number of observation design points (Mr = T and Nr = S)
and controls the smoothness of the coefficient by penalizing the influence of the co-
efficients ur,m,m = 1, . . . ,Mr , and vr,n, n = 1, . . . ,Nr , using a penalty function.
One primary drawback of this estimation procedure is its computational aspect.
A less computational approach is regression splines [Wahba (1990)], in which a
small number of knots are used (Mr � T and Nr � S). This reduces to selec-
tion of the optimal numbers of knots, which can be computationally expensive in
the context of our model since it requires solving a multidimensional optimiza-
tion problem. The smoothness levels of the regression functions differ from one
covariate to another and, therefore, we need to optimally identify (Mr,Nr)s for
r = 1, . . . ,R. In addition, this approach introduces modeling bias.

An alternative approach to optimal knots selection is to assume equal number
of spatial knots (Nr = N for r = 1, . . . ,R) and equal number of temporal knots
(Mr = M for r = 1, . . . ,R) with N and M sufficiently large such that the modeling
bias is small [Li and Ruppert (2008)], but, similarly to smoothing splines, impose
constraints on the coefficients ur,m, vr,n, and νr,nm as follows:

M∑

m=1

u2
r,m ≤ C(T )

r ,

N∑

n=1

v2
r,n ≤ C(S)

r ,

M∑

m=1

N∑

n=1

ν2
r,mn ≤ Cr

or, equivalently, estimate the coefficients using penalized regression

‖h(Yk,ij ) − γ1(ti, sj )X1,ij − · · · − γr(ti, sj )Xr,ij‖2

+
R∑

r=1

{
λ(T )

r uru′
r + λ(S)

r vrv′
r + λrνrν

′
r

}
,

where

ur = (ur,1, . . . , ur,N), vr = (vr,1, . . . , vr,M) and

νr = {νr,nm}n=1,...,N,m=1,...,M.

Moreover, the parameters λ
(T )
r , λ

(S)
r and λr are penalties controlling the smooth-

ness level of the regression coefficients. This approach is often referred to as pe-
nalized splines [Ruppert, Wand and Carroll (2003)]. Consequently, selection of the
number of knots reduces to selection of the penalty parameters, which, in turn, is
a multidimensional optimization problem.

In the semiparametric regression literature the problem of selecting the penal-
ties, and implicitly of the the number of knots, is overcome by solving an equiv-
alent mixed effects regression problem where ur , vr and νr are random effects,
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specifically, ur ∼ N(0, (σ
(T )
r )2In), vr ∼ N(0, (σ

(S)
r )2Im) and νr ∼ N(0, σ 2

r Inm).
Under the mixed effects model, the penalties are

λ(T )
r = σ 2

ε

(σ
(T )
r )2

, λ(S)
r = σ 2

ε

(σ
(S)
r )2

and λr = σ 2
ε

σ 2
r

.

We therefore estimate the model parameters using a mixed effects model to cir-
cumvent the difficulty of selecting the penalty parameters, or, implicitly, the num-
ber of knots.

Based on the mixed-effects model formulation, denote the vector of the fixed
effects

� = [ τ1,0 τ1,1 δ1,0 δ1,11 δ1,12 · · · τR,0 τR,1 δR,0 δR,11 δR,12 ]

with identifiability constraints δr,0 = 0 for r = 1, . . . ,R. The vector of random
effects is

U = [ u1 v1 ν1 · · · uR vR νR ] .

The corresponding design matrices X and Z are

X = [ X1(ti, sj ) · · · XR(ti, sj ) ]i=1,...,T ,j=1,...,S

with Xr (ti , sj ) = Xr(ti, sj ) [ 1 ti 1 s1j s2j ] ,

Z = [ Z1(ti, sj ) · · · ZR(ti, sj ) ]i=1,...,T ,j=1,...,S

with Zr (ti , sj ) = Xr(ti, sj )
[
Ktemp

(∣∣ti − κ
(T )
m

∣∣) Ksp

(∥∥si − κ
(S)
n

∥∥)

Ktemp
(∣∣ti − κ

(T )
m

∣∣) Ksp

(∥∥si − κ
(S)
n

∥∥) ]
.

The model in the matrix form becomes E[Y |X ] = X � + Z U, which is equivalent
to a linear mixed model.

2.3. Inference. In this section we discuss alternative methods for making in-
ference on the shape of the regression coefficients entering the space–time varying
coefficient model described in Section 2.1. Specifically, we discuss a procedure for
evaluating the shape (constant vs. linear vs. nonlinear) of the temporal and spatial
global coefficients and a procedure for testing the significance of the space–time
interaction.

Shape evaluation. In this section we discuss a novel procedure for shape evalu-
ation of the temporal regression coefficients. A similar procedure applies to spatial
regression coefficients. Specifically, each temporal regression coefficient can take
various shapes, for example, constant [α(t) = τ0], linear [α(t) = τ0 + τ1t] or non-
linear.

In varying-coefficient models, the common procedure for assessing the shape of
the coefficients is hypothesis testing. For example, the hypothesis test for linearity
is equivalent to H0 :σ 2

u = 0 vs. Ha :σ 2
u > 0 where σ 2

u is the variance of the random
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effects um under the mixed effects model. The common approach is a likelihood
ratio testing (LRT) procedure. Crainiceanu et al. (2005) developed a LRT by taking
advantage of the existing research in hypothesis testing for zero variance in linear
mixed-effects (LME) models. Liang, Wu and Carroll (2003) tested for linearity of
nonparametric functions using a Crámer–von Mises statistic.

Although there are several competitive approaches for testing for linearity of the
regression coefficients, because we need to test sequential hypotheses to decide
about the shape of a coefficient and because we often have a large number of
predictors that enter the space–time varying coefficient model, we instead propose
identifying the shape of the coefficients using simultaneous confidence bands. If
CBγ is a 1 − γ confidence band for the coefficient α(t), then P(α(t) ∈ CBγ , t ∈
T ) ≥ 1 − γ where T is the time domain. The derivation of the joint confidence
bands is presented in the Supplemental Material 2 of this paper.

Many authors have noted that using confidence intervals has a series of advan-
tages over the conventional hypothesis testing [Sim and Reid (1999)]. Confidence
intervals cannot only be used to test a hypothesis, but also to provide additional
information on the variability of an observed sample statistic and on its probable
relationship to the value of this statistic in the population from which the sample
was drawn.

Figure 1 depicts examples of three different one-dimensional shapes along with
their confidence bands (CB). We define “constant” shape if there exists a constant
line that falls within the confidence bands. Similarly, we define “linear” shape if
there exists a linear function that falls within the confidence bands. When search-
ing for a line L within the confidence bands, it suffices to search for linear func-
tions between the convex hull of the upper level of the confidence band and the
convex hull of the lower level of the confidence band. Although the coverage of
the shape test hypothesis is maintained when using confidence bands, the power
may be reduced, as we point out in the simulation study included in Supplemental
Material 4.

FIG. 1. Examples of nonlinear, linear, constant effects.
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According to the result below, accepting the null hypothesis at a significance
level γ is equivalent to finding at least one null shape function in the set of all
possible functions in the (1 − γ ) confidence band.

PROPOSITION 1. Denote �c = {α(t) :α(t) = c, c ∈ R} (the set of all real
constant functions). The rejection rule of the hypothesis test for constant shape
(H0 :α(t) ∈ �c) becomes

�c ∩ CBγ = ∅ where P
(
α(t) ∈ CBγ

) = 1 − γ.

Using this rejection rule, the type I error is equal to γ .

This proposition follows from the classical result on the equivalence of confi-
dence intervals and hypothesis testing in Lehmann (1997).

Space–time interaction. In our modeling approach, in order to account for the
space–time interaction, we introduce an additional term in γr(t, s) specified by a
set of effects νr = {νr,nm}n=1,...,N,m=1,...,M . The testing procedure for space–time
interaction of the regression coefficient for the r th predictor reduces to

H0 :σνr = 0 vs. H0 :σνr > 0.

The null hypothesis implies that the association between the r th predictor and the
response is separable in time and space.

Although there are several approaches for testing the null hypothesis of zero
variance component in linear mixed effects models, hypothesis tests that apply un-
der multiple variance components have been investigated only recently. To test for
space–time interaction under a multiple predictor model, we therefore use the ap-
proximations to the finite sample null distribution of the RLRT statistic in Greven
et al. (2008).

3. Multilevel varying coefficient model. In this section we discuss the ex-
tension of the varying-coefficient model in Section 2 to data with an intrinsic mul-
tilevel structure.

3.1. The model. The observed data for the pth category (e.g., service provider)
for p = 1, . . . ,P are (Yp,ij ,Xr,ij ), where Yp,ij = Yp(ti, sj ) is a generalized re-
sponse variable and Xr,ij = Xr(ti, sj ) the r th covariate observed at location sj =
(sj1, sj2) and time ti with E[Yp,ij |X] = γ1p(ti, sj )X1,ij + · · · + γRp(ti, sj )XR,ij

where γrp(t, s) for r = 1, . . . ,R are smooth coefficient functions. In our appli-
cation, {Yp,ij }i=1,...,T ,j=1,...,S are the measures of service accessibility to the pth
service provider sites.

To assess the association deviations of each of the kth group of processes from
the global association pattern, we further decompose the regression coefficients as
follows:

γrp(ti , sj ) = γr(ti, sj ) + ηrp(ti, sj ),(3.1)
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where γr(t, s) specifies the global association patterns and ηrp(ti, sj ) specifies the
group-specific deviations from the global association patterns. We further assume
that the global effects γr(t, s) take an additive form

γr(t, s) = αr(t) + βr(s),

where the time- and space-varying regression coefficients follow the decomposi-
tion in (2.1). We also assume that the group-specific regression coefficients are
decomposed according to

ηrp(t, s) = αrp(t) + βrp(s) +
M∑

m=1

N∑

n=1

νr,p,nmKtemp
(
t − κ(T )

p,m

)
Ksp

(
s − κ(S)

p,n

)
,

where αrp(t) and βrp(s) are decomposed using the radial spline basis similarly

to the formulas in (2.1). We denote κ
(T )
p,m, m = 1, . . . ,M , the temporal knots

used in the decomposition of the time-varying regression coefficient and κ
(S)
p,n,

n = 1, . . . ,N , the spatial knots used in the decomposition of the space-varying
regression coefficient for the pth service provider. For example, the decomposi-
tion of the regression coefficient αrp(t) is

αrp(t) = τrp,0 + τrp,1t +
M∑

m=1

urp,mKtemp
(∣∣t − κ(T )

p,m

∣∣).

3.2. Estimation. Similar to the varying coefficient model in Section 2, we es-
timate the parameters in the multilevel varying coefficient model using the mixed
effects model equivalence, resulting in a multilevel mixed effects model.

For the multilevel model, we need to impose a series of constraints on the fixed
effects and on the selection of the temporal and spatial knots. For r = 1, . . . ,R,

P∑

p=1

τrp,0 = 0 and
P∑

p=1

τrp,1 = 0,

P∑

p=1

δrp,0 = 0,

P∑

p=1

δrp,1 = 0 and
P∑

p=1

δrp,12 = 0.

PROPOSITION 2. If the temporal and spatial knots are selected such that
∣∣κ(T )

m1,p
− κ

(T )
m2,p

′
∣∣ > d(T )

for any m1,m2 ∈ {1, . . . ,M}, and for any p,p′ = 0,1, . . . ,P (p 
= p′),
∥∥κ(S)

n1,p
− κ

(S)
n2,p

′
∥∥ > d(S)

for any n1, n2 ∈ {1, . . . ,N}, and for any p,p′ = 0,1, . . . ,P (p 
= p′),
where d(T ) and d(S) are away from zero, then the model parameters in the multi-
level model decomposition in Section 3.1 are identifiable.
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The proof of this proposition is provided in Supplemental Material 3 of this
paper.

3.3. Inference. Since making inference under the multilevel model presented
in the previous section implies making inference over all groups jointly, we need
to correct for multiplicity. For instance, given that we need to evaluate the shape of
the temporal global effects in the decomposition of the time-varying coefficients
corresponding to the r th predictor, αrp(t) for p = 1, . . . ,P , we test multiple hy-
potheses [e.g., H0p :αrp(t) constant] simultaneously. For a small number of groups
(P small), we can modify the approach discussed in Section 2.3 to account for the
joint inference. Consequently, we estimate joint confidence bands:

P(αrp ∈ CBrp,p = 1, . . . ,P ) ≥ 1 − ρ

by correcting the confidence level of individual confidence bands for multiple in-
ference using a Bonferroni correction; that is, estimate 1 −ρ/P confidence bands.
Under the classical definition of the type I error for joint inference, we find that the
test using 1 − ρ joint confidence bands is ρ,

type I error =
P∑

p=1

PrHrp(�const ∩ CBrp = ∅) ≤ ρ.

Note that this correction will provide overly conservative confidence band esti-
mates when P is large.

4. Case study: The equity of financial services. We proceed with the appli-
cation of the varying coefficient models to assess whether there are systematic dis-
parities in the service accessibility with respect to various demographic variables.
We focus on the equity of financial service accessibility in the state of Georgia over
a period of 13 years, 1996–2008. We start with a description of the accessibility
data followed by a brief exploratory analysis of the demographic variables. We
continue with the presentation of the findings from the application of the varying
coefficient models.

4.1. Accessibility data. The site location data in this study were acquired
from the Federal Deposit Insurance Corporation (FDIC). In our study we use
data starting from 1996 to 2008. We geocoded the site location addresses us-
ing ArcGIS (ESRI) to obtain the service point locations in the service network:

S = {s1, . . . , sn} (n = 2,849 for Georgia).
In service research the distance between a service site and its customers is com-

monly evaluated using the Euclidean or the Manhattan distance between the cen-
troid of the neighborhood and the location of the closest service site. GIS road
network data allows including more realistic route distances. For example, Talen
(1997, 2001) uses the street-network distance to compute the distance between
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the centroid of the neighborhood and the site location. Lovett et al. (2002) use
road distance and travel time by car. We acquired highway data for the whole U.S.
(courtesy of the GIS Center at Georgia Institute of Technology) as well as a TIGER
street-detailed network for Georgia and we took the average of the travel distances
computed using both networks to obtain the distances d(ub, si; t) for b = 1, . . . ,B

sample locations within a community and s1, . . . , sn service sites. Notably, none of
the two networks provide highly accurate travel distances; therefore, the average
over the distances computed using the two networks will provide more robust dis-
tance estimates. Finally, the travel cost C(ub, t) is computed as the average over
the smallest three distances in {d(ub, si; t), i = 1, . . . , n}.

Last, we obtain the utilization adjustment weights using the population counts
acquired from the Environmental Systems Research Institute (ESRI). We use ker-
nel smoothing [Diggle (1985)] to estimate the rate of point spatial processes. Us-
ing this approach, we obtain the population and service rate estimates at the sam-
ple locations, P(ub, t), b = 1, . . . ,B and R(ub, t), b = 1, . . . ,B , in year t . Fur-
ther, we compute the utilization weights using W(ub, t) = P(ub, t)/R(ub, t), b =
1, . . . ,B , and along with the travel cost C(ub, t), we can finally obtain the ac-
cessibility measure at the community level using equation (1.1). We apply this
estimation procedure for all communities in Georgia and obtain the accessibility
process Y(Us, t) for s = 1, . . . , S (S = 1,624) and t = 1996, . . . ,2008. In this re-
search, census tracts are used as proxy for communities. According to the Census
Bureau, census tracts are delineated with local input and intended to represent
neighborhoods.

REMARK. Since the accessibility measure is an adjusted travel cost, we inter-
pret it as follows. Large values of the travel cost or large values of the measure
correspond to low accessibility to the service network. Therefore, if the measure
values are, for example, increasing, the access to service is decreasing. Moreover,
if the association of a demographic variable to the proposed measure is high, we
infer that there is low accessibility with respect to the demographic variable.

In the following discussion, we contrast “horizontal equity” [Figure 2(a), (b)]
measured using the travel cost without adjusting for the “utilization” of a service
operation [in equation (1.1), W(u, t) = 1 for any location u and time point t] to
“vertical equity” [Figure 2(c), (d)] which accounts for the expected utilization of a
service.

Although difficult to assess visually, there are more extensive areas with lower
(unadjusted) travel cost in 2008 than in 1996 in Georgia. On the other hand, the
access to financial services is slightly lower in 2008 than in 1996 for highly popu-
lated regions, more specifically, Atlanta (see Supplemental Material 6 for the travel
cost maps of metropolitan Atlanta). The primary reason for this contrast is that the
increase in the number of new financial sites has a lower slope than the popula-
tion growth in highly populated regions in Georgia. Consequently, these regions
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FIG. 2. (a) Logtravel cost—1996; (b) Log travel cost—2008; (c) Log accessibility—1996; and
(d) Log accessibility—2008.

have weaker access compared to low density population areas, although the travel
cost is small. These findings point to potential business opportunities for financial
service providers.

This comparison between travel cost without and with utilization-adjustment
motivates the need for correcting the travel cost for the expected utilization of a
service. In our subsequent analysis, we will only focus on the utilization-adjusted
travel cost.

4.2. Demographics data. In this study the demographic variables used to pre-
dict service accessibility include median household income, race and ethnicity data
which are acquired from the Environmental Systems Research Institute (ESRI).
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The description of the methodology employed to obtain the demographic estimates
at the census tract level is provided in Supplemental Material 5 of this paper. One
has to bear in mind that the demographic estimates are measured with error which,
in turn, will impact the estimates of the association between accessibility and the
demographic variables.

Since the boundaries of census tracts are updated by the Census Bureau ev-
ery ten years, our data set includes a change of boundaries. The Census Bureau
provides the so-called “relationship files” to document the revisions of the 1990
to 2000 census tract boundaries. We map the data collected before 1999 to 2000
boundaries using the information in these relationship files.

Figure 3 shows the income level on the log scale and the percentages of Black,
Hispanic and White populations for the last year of demographic data in this

FIG. 3. Demographic variables in Georgia.
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TABLE 1
Correlation between demographic variables

Income White Black Hispanic

1.00 0.18 −0.27 0.37
0.18 1.00 −0.98 −0.01

−0.27 −0.98 1.00 −0.16
0.37 −0.01 −0.16 1.00

study. We do not show the plot of Asian percentages since overall in Georgia
(except a small area in Atlanta) the percentage of Asian population is very low
(close to zero). Contrasting the plots displaying the percentage of Black and
White populations, we note that areas of high Black population have low White
population and vice versa, pointing to significant segregation between black and
white populations in Georgia. Indeed, the correlation is as high as −0.98, which
suggests high collinearity between these two variables. At the same time, the
collinearity between any other two demographic variables is low (see Table 1).
Since there is high collinearity only between White and Black populations, we fit
the varying coefficient models separately for {income, Hispanic, White} and for
{income, Hispanic, Black}.

4.3. Varying coefficient model: Motivation, results and findings. In this paper
we introduce a framework for studying the equity of service accessibility for differ-
ent groups of people identified by location or underlying socioeconomic variables.
The data consist of a series of maps characterizing the access to financial services
and a series of maps describing the demographic composition at the neighborhood
level varying in time. The objective is to assess geographically-varying association
patterns between accessibility and demographic variables over a period of several
years.

Simple visual inspection of a large number of maps (13 for the accessibility
measure and 13 × 4 for four demographic variables) observed over a large ge-
ographic space goes beyond feasibility. Moreover, the existing models will only
allow partial understanding of the dynamics in the equity of service accessibility.
For example, space-varying coefficient models provide a one-year snapshot of the
equity in service accessibility but will neither explain how it has changed over time
nor account for the interaction between space and time associations. To model the
space–time dynamics in the association between accessibility and socioeconomic
variables jointly, we therefore apply the space–time varying coefficient model in
Section 2.

In the application of the space–time varying coefficient model to the data in
this study, we selected a small number of temporal basis functions (M = 7) since
we have a small number of time points; the space–time varying coefficients do
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not change significantly for various values of M . However, the estimated space–
time varying coefficients vary with the number of spatial basis functions, N . For
small N , the space-varying coefficients are smooth. Ruppert (2002) empirically
suggests that after a minimum number of knots has been reached, the model-
ing bias is small. Therefore, we can control the modeling bias by using a large
enough N ; in our application N can be as large as S = 1,624. In contrast, the larger
N is, the more expensive the computation is. Consequently, we need to select N

for an optimal trade-off between modeling bias and computational feasibility. To
select N , we used a residual-based analysis suggested by Wood (2006).

When interpreting the varying regression coefficients, one has to bear in mind
that large values of the accessibility measure (population-adjusted travel cost) cor-
respond to weak access to financial services. Moreover, significant association be-
tween accessibility and a demographic variable suggests that access to financial
services is driven in part by the presence or the absence of the population group
identified by the corresponding variable.

In this section we summarize our findings based on Figures 4, 5, 6 and 7, which
include the following:

(1) The time-varying coefficients for income, % of Black population, % of His-
panic population and % of White population.

(2) The space-varying association patterns for the four demographic covariates
in 2008 calculated from γ (2008, s) = α(2008) + β(s) + Interaction(2008, s).

(3) The point locations of inequities with respect to the four demographic co-
variates in 2008.

The output figures summarize the space–time relationships between accessibil-
ity and the socioeconomic variables considered in this study. We highlight that
without a rigorous modeling procedure, we cannot evaluate the significance of
the associations to service accessibility. Therefore, using the space–time varying
model is important not only for estimation of these associations but also for infer-
ence about their significance as described below.

We define locations of inequity with respect to income to be the spatial units s

such that γincome(2008, s) is statistically significantly positive (positive correlation
between income and utilization-adjusted travel cost). We also define locations of
inequity with respect to race/ethnicity (percentage of Black, Hispanic and White
populations) to be the spatial units s such that γethnicity(2008, s) is statistically
significantly negative (negative correlation between percentage and utilization-
adjusted travel cost). Statistical significance of the coefficients is derived from the
simultaneous confidence bands of the spatial coefficients. Specifically, the coeffi-
cient at location s is statistically significantly positive with 95% significance level
if the lower bound of the confidence interval at s is positive and it is statistically
significantly negative if the upper bound of the confidence interval at s is negative.

The time-varying coefficients corresponding to each demographic covariate and
their confidence bands are in Figure 4(a)–(d) and Figure 6(a)–(d). Using the ap-
proach for evaluating the shape of the varying coefficients in Section 2.3, we infer
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FIG. 4. Georgia: The time-varying coefficients (a)–(d) and the spatial relationship pattern in 2008
for four demographic covariates—income, percentage of Black, Hispanic and White populations.

that at the significance level of 95%, the time-varying coefficients for income are
nonlinear, for the % of Black and Hispanic populations are linear whereas for the
% of White population are constant. All space-varying coefficients are nonlinear.



A SPACE–TIME VARYING COEFFICIENT MODEL 2041

FIG. 5. Georgia: Inequity locations in 2008 with respect to (wrt) four demographic covariates—in-
come, percentage of Black, Hispanic and White populations.

We also evaluate the significance of the interaction terms for all four demo-
graphic variables. We apply the testing procedure for the space–time interaction
term described in Section 2.3. The p-values are provided in Table 2. For all four de-
mographic variables, the space–time interaction terms are highly significant, which
implies that the space–time interactions in the association patterns are statistically
significant; this suggests that the interaction term has a significant contribution to
the spatial association patterns. Therefore, using a varying coefficient model with
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FIG. 6. Atlanta: The time-varying coefficients (a)–(d) and the spatial relationship pattern in 2008
for four demographic covariates—income, percentage of Black, Hispanic and White populations.

a space–time interaction term significantly contributes to a more accurate associa-
tion analysis.

Time-varying association patterns. Following the inference procedure for shape
evaluation, we infer that over the past 13 years in the state of Georgia, the asso-
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FIG. 7. Atlanta: Inequity locations in 2008 with respect to (wrt) four demographic covariates—in-
come, percentage of Black, Hispanic and White populations.

ciation between the access to financial services and two demographic variables,
income and the percentage of Hispanic population, has strengthened over time
with a brief decrease in the last years, whereas the association between the access
to financial services and the percentage of Black population has weakened. This
suggests that access to financial services has become more and more dependent on
the income level of the residents in a community and whether they are of Hispanic
descent but less dependent on the race of the population.
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TABLE 2
P -values for testing the significance of the space–time interaction in the varying coefficients for

four demographic variables.

Covariate Income % of Black % of Hispanic % of White

p-value 0.0018 0.0009 ≈0 ≈0

Importantly, we cannot make inference about the magnitude of the association
patterns since the constants for the temporal and spatial coefficients, τ0 and δ0, are
nonidentifiable. For inference on the level and the direction (negative or positive)
of the service accessibility association we need to investigate the space-varying
association year by year as discussed below.

Space-varying association patterns. Controlling for race and ethnicity, the asso-
ciation between access to financial services and income level varies throughout the
state of Georgia, with primarily weak positive association in the north but negative
association in the south [Figure 4(e)]. This pattern is consistent with the income
map in Figure 3(a); the income is consistently low in south and middle Georgia ex-
cept for a few urban areas. This suggests that regions with low income population
tend to also have lower access to financial services regardless of race and ethnic-
ity. Moreover, there are only a few locations with statistically significant positive
association between income and utilization-adjusted travel cost [Figure 5(a)]. This
implies that although south Georgia consists primarily of low income population
whereas north Georgia is more mixed with higher income population than south,
financial services are present in both.

The map of the Black population percentage is not as uniform as its association
to accessibility; there is a high density of the Black population in south Atlanta
and in mid to south Georgia but not in the north [Figure 3(b)]. On the other hand,
there are several locations with statistically significant inequities as shown in Fig-
ure 5(b), although the association of the % of Black population to financial service
access is weak in Georgia except for the upper north. Most of these locations are
in urban areas. We therefore conclude that the inequities in access to financial ser-
vices with respect to the Black population are present but low throughout Georgia.

The association between travel cost and the % of Hispanic population is neither
uniformly positive nor high [Figure 4(g)]. Areas of high Hispanic density pop-
ulation have low but statistically significantly positive association [Figure 5(c)].
This indicates that the presence of financial services decreases with the increase in
Hispanic population.

In contrast, the association for White population is consistently weak through-
out Georgia, although the White population density is high in most of Georgia
except in the middle [Figure 3(d)]. Moreover, there are much fewer inequity lo-
cations than for Black and Hispanic populations and most are in rural areas [Fig-
ure 5(b)–(d)].
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Since Atlanta is the largest city in Georgia with mixed income population and
with a high percentage of Black, Hispanic and White populations, we applied the
modeling procedures proposed in this paper to evaluate potential inequities in the
Atlanta area and its surroundings.

The only time-varying coefficient that changes its shape in comparison to Geor-
gia is for the White population; it has a nonlinear shape. There is an increase in
the impact of the % of White population on the access to services (equivalently, a
decrease in the impact on the travel cost) up to 2000 followed by a slower decrease
thereafter.

Significant inequities in the Atlanta area are with respect to income and the
Black population. The association of the % of Black population to service access
is negative and strong in many communities in south and north Atlanta, implying
significant inequities even after controlling for the income level. However, the as-
sociation map does not fully overlap with the density of the Black population; that
is, while South Atlanta has a large Black population [Figure 4(b), Supplemental
Material 6], most inequities are in North Atlanta.

There is a positive association between income and access to financial services
in south Atlanta, an area with a predominantly low income population [Figure 4(a),
Supplemental Material 6]. Moreover, there is a weak association in north Atlanta
and negative association in the east and west borders (possibly over-served areas).
Therefore, when comparing the association map and its statistical significance to
the map of the per capita income [Figure 4(a), Supplemental Material 6], we con-
clude that many communities with low and median income in central Atlanta have
low access to financial services, as there is a statistically significant association
between utilization-adjusted travel cost and income in these communities.

The association pattern for the % of Hispanic and % of White population is
largely negative, with just a few communities with statistically significant posi-
tive association, although both population groups are well represented in Atlanta
[Figure 4(c), (d), Supplemental Material 6], indicating insignificant inequities with
respect to the Hispanic and White populations in Atlanta.

4.4. Multilevel varying coefficient model: Motivation, results and findings.
Since monopoly is not common in service distribution, there is an intrinsic mul-
tilevel structure to service accessibility. At a higher level, we estimate the associ-
ation to service accessibility over all service providers, whereas at a lower level,
we estimate the deviations from the overall patterns associated with each service
provider in the network. One simple approach would be to apply the space–time
varying coefficient model to the accessibility measure computed for each service
provider separately. However, this approach only takes into account the variability
within the network of each service provider but not the variability between ser-
vice providers; in other words, this simple approach does not allow estimating the
deviations from the between-providers association patterns. The multilevel vary-
ing coefficient model in Section 3 estimates both overall space–time association
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patterns and the deviations from the overall pattern corresponding to each service
provider.

In this section we discuss the association accessibility patterns to five financial
service providers: Bank of America (BoA), Branch Banking and Trust Company
(BB&T), Regions Bank, SunTrust Bank and Wachovia (Wells Fargo since 2008).
In Supplemental Material 7 of this paper, we include the corresponding associ-
ation patterns derived from the application of the multilevel space–time varying
coefficient models.

All five banks are in the top 10 largest banks in the U.S., with a variety of fi-
nancial services including retail and commercial banking, mortgages, insurance
products, trust services and securities brokerage. SunTrust and Regions banks are
mainly based in southern states, BB&T is a national bank, whereas BoA and Wa-
chovia are national banks with international subsidiaries. Although Bank of Amer-
ica has dominated the financial service market for many years, due to mergers and
acquisitions, SunTrust Bank and Wachovia (Wells Fargo since 2008) Bank now
dominate the market. The only bank that has not increased the number of brunches
in Georgia and, in fact, has closed some of them, is Bank of America.

Time-varying association patterns. Following the inference procedure for shape
evaluation, we infer that the time-varying deviations from overall association pat-
terns denoted in this paper by ηrp(ti, sj ), where r is the index for the service
provider and p is the predictor index, are all approximately zero (not statistically
significant) except for the deviation coefficients corresponding to income. There-
fore, over the past 13 years in the state of Georgia, the association between the
access to financial services and income is positive and has strengthened for BB&T
and Bank of America beyond the global upward trend, indicating stronger associ-
ation between service access and the income level in 2008 as compared to 1996.
The income deviation coefficient for Wachovia is decreasing over time but nega-
tive, implying a decrease in association with respect to income. Finally, there are
not significant systematic disparities in the provider-specific deviations from the
overall association patterns for the ethnicity and race demographic variables.

Space-varying association patterns. The lowest association between service ac-
cess and the four demographic variables is for Bank of America, Regions and Wa-
chovia. The accessibility association patterns for these three banks do not deviate
significantly from the global trends. The association of the percentage of Black and
White populations to service accessibility is approximately zero, whereas the as-
sociation to the percentage of Hispanic population is weak with mixed association
throughout Georgia.

In urban and rural Georgia, the association between the access to BB&T ser-
vices and the income level is highly positive, whereas the association for the % of
Black and Hispanic populations is consistently weak and for the % of White pop-
ulation is approximately zero. Notably, the most significant inequities in 2008 for
BB&T are with respect to income and they have increased over the 13 year period.
For SunTrust, the service accessibility association to income is strong in south
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Georgia. There is weaker association in urban areas than in rural areas. Moreover,
the association of the % of Black and Hispanic populations is weak.

The most significant inequities in Atlanta are with respect to income—high as-
sociation between income and service accessibility for Bank of America and Re-
gions in south Atlanta, for BB&T and SunTrust throughout Atlanta. There are con-
trasting association patterns for north and south Atlanta which also differ in their
demographic decomposition. Generally, the accessibility association is low for the
White population after controlling for income; this suggests equitable accessibility
to financial services for the White population.

5. Final considerations. The methodological contributions described in this
paper are twofold. First, we introduce a framework for the study of the equity of
service accessibility across population groups with various demographic charac-
teristics. This study allows characterization of the geographically varying equity
patterns over a period of several years. Second, we investigate spatio-temporal esti-
mation methods, which use the underlying structure of varying coefficient models.
The first model estimates space–time varying association to a response variable
(e.g., accessibility measure) of a series of predictors (e.g., demographic variables)
jointly. The second model extends the first model to a response variable with a
multilevel structure. Because of the complexity of the model parameters, we pro-
pose a simplified inference procedure based on confidence bands which allows
evaluation of the shape of the varying coefficients.

We note that different service accessibility measures will provide different ac-
cessibility maps, and, therefore, different conclusions will be drawn for the study
of service accessibility equity. In this paper, the underlying measure is defined as
the utilization-adjusted travel cost; in Section 4.1 we compared the accessibility
maps with and without correction for utilization and we concluded that the two
measures will provide different perspectives in the equity of service accessibility,
primarily for areas with low density population. A comparison study of accessibil-
ity measures is beyond the scope of this paper.

From the analysis of service accessibility using the space–time varying coeffi-
cient model, we identified significant but low inequities in some regions of Georgia
with respect to income after controlling for race and ethnicity, and with respect to
Black and Hispanic populations after controlling for income. These inequities have
increased over time. The most predominant inequities in Atlanta are for Black pop-
ulation, although they have decreased over time. The association between income
and service access is largely positive in Atlanta, suggesting potential inequities
with respect to income as well. After accounting for service utilization, there are
more significant inequities in urban areas than in rural areas; this may be due to
the fact that the population in rural areas is more homogeneous.

In the analysis of service accessibility using the multilevel space–time model,
we found for Georgia, and particularly for Atlanta, that the deviations from the
between-provider association patterns are very insightful. Specifically, we learn,
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for example, that income-driven inequities for BB&T are significantly stronger
when contrasted to the overall association to accessibility, whereas for other ser-
vice providers, for example, Bank of America and Wachovia (Wells Fargo), there
are not significant deviations from the between-providers association patterns.

Importantly, one challenge in space–time varying coefficient model estimation
is whether an assumed pattern in a multiple predictor model can actually be re-
covered. For this, we conducted a simulation study with two predictors. The as-
sociation patterns for both predictors are nonseparable in space and time, a more
realistic simulation framework. For this simulation, the estimated coefficients are
accurately estimated. We also evaluated the coverage and the power of the shape
evaluation procedure discussed in Section 2.3. The power is lower for the time-
varying components than for the space-varying ones; in this simulation study, the
number of spatial points is S = 300, whereas the number of time points is T = 15,
which may lead to lower accuracy in the shape evaluation of the varying coeffi-
cients. Moreover, the power depends on how smooth and close to the null hypoth-
esis the shape function is.

We note that different service accessibility measures will provide different ac-
cessibility maps, and, therefore, different conclusions will be drawn for the study
of service accessibility equity. In this paper the underlying measure is defined as
the utilization-adjusted travel cost; in Section 4.1 we compared the accessibility
maps with and without correction for utilization and we concluded that the two
measures will provide different perspectives in the equity of service accessibility.
A comparison study of various accessibility measures is beyond the scope of this
paper.

One limitation of the study of service accessibility equity for large geographic
regions (e.g., the US) using the space-varying coefficient models introduced in
this paper is the computational aspect. Although we have reduced the estimation
of multiple space–time varying coefficients with different smoothing levels to a
simple mixed effects model, the estimation problem remains computationally in-
tensive. A large geographic space requires a large number of knots, which in turn
results in a model with a large number of random effects. In addition, because
of the model decomposition into separable and nonseparable space–time coeffi-
cients, the number of variance components is large even for a small number of
predictors (e.g., for three predictors in our study, we have a total of 12 variance
components for the simple varying coefficient model but as many as 42 for the
multilevel model). Ongoing research focuses on overcoming these challenges by
using a backfitting estimation algorithm in the presence of multiple predictors.
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SUPPLEMENTARY MATERIAL

Supplemental Material (DOI: 10.1214/11-AOAS473SUPP; .pdf). The supple-
mental materials accompanying this paper are divided into seven sections:

Supplement 1. Varying-coefficient model—Decomposition of the design ma-
trix under the tensor-product decomposition of the space–time varying coefficients.

Supplement 2. Varying-coefficient model—Derivation of the confidence bands
for the space and time varying coefficients.

Supplement 3. Varying-coefficient model—A simulation study under multiple
predictors.

Supplement 4. Varying-coefficient model—Proof of Proposition 2.
Supplement 5. Case study—Description of ESRI data.
Supplement 6. Case study—Accessibility maps for Atlanta area.
Supplement 7. Case study—Results and maps for the provider-level accessibil-

ity analysis.
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