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Acute respiratory diseases are transmitted over networks of social con-
tacts. Large-scale simulation models are used to predict epidemic dynamics
and evaluate the impact of various interventions, but the contact behavior in
these models is based on simplistic and strong assumptions which are not
informed by survey data. These assumptions are also used for estimating
transmission measures such as the basic reproductive number and secondary
attack rates. Development of methodology to infer contact networks from sur-
vey data could improve these models and estimation methods. We contribute
to this area by developing a model of within-household social contacts and
using it to analyze the Belgian POLYMOD data set, which contains detailed
diaries of social contacts in a 24-hour period. We model dependency in con-
tact behavior through a latent variable indicating which household members
are at home. We estimate age-specific probabilities of being at home and age-
specific probabilities of contact conditional on two members being at home.
Our results differ from the standard random mixing assumption. In addition,
we find that the probability that all members contact each other on a given day
is fairly low: 0.49 for households with two 0–5 year olds and two 19–35 year
olds, and 0.36 for households with two 12–18 year olds and two 36+ year
olds. We find higher contact rates in households with 2–3 members, helping
explain the higher influenza secondary attack rates found in households of
this size.

1. Introduction. Acute infectious diseases such as influenza are spread over
networks of social contacts. The 2009 pandemic influenza A (H1N1) virus has
spread to 214 countries and caused over 18,000 deaths [WHO (2010)], and a global
avian influenza pandemic continues to pose a real and dangerous threat. Large-
scale simulation models are used to predict the spread of the epidemic and eval-
uate intervention strategies, but these models are based on simplistic and strong
assumptions about human interactions. [See Halloran et al. (2008), Germann et
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al. (2006), Longini et al. (2005), and Ferguson et al. (2006).] For example, they
assume random mixing within homes, schools, workplaces, and communities, but
these social network patterns are not estimated from surveys of contact behavior.
Eubank et al. (2004) implement a more detailed agent-based simulation model
based on transportation data and activity surveys, but again the model is not in-
formed by contact surveys. As Mossong et al. (2008) stated in their analysis of the
data motivating our methods, “Researchers often rely on a priori contact assump-
tions with little or no empirical basis.”

These basic assumptions are also used in estimating key transmission param-
eters. One such parameter is the basic reproductive number (R0), the expected
number of secondary infections generated by a single infectious individual in a
completely susceptible population [Anderson and May (1991)]. Estimating R0 for
acute infectious diseases commonly assumes random contacts by age group. Goey-
vaerts et al. (2009) and Wallinga, Teunis and Kretschmar (2006) use contact data
to inform the age-based contact rates used to estimate R0, but other network struc-
tures are not taken into account. Davoudi et al. (2009) took a new and important
step by incorporating the degree distribution in their estimation of R0 for influenza,
where the degree is the number of contacts each person makes. Random mixing
within households is also assumed when estimating secondary attack rates within
households—for example, in Longini et al. (1988), Halloran et al. (2007), and
Yang, Longini and Halloran (2007). Britton and O’Neill (2002) assume random
mixing in their Bayesian method to estimate the mean of the infectious period, the
infection rate, and the probability of social contact. Demeris and O’Neill (2005)
develop a Bayesian method which imputes the graph of contacts between indi-
viduals from final outcome data. They assume random mixing (within group and
between group) and separate within-group and between-group infection rates.

Network structures such as clustering, transitivity, and variation in degree are
known to play a role in disease transmission [e.g., Hethcote and Yorke (1984),
Miller (2008), and Keeling and Eames (2005)]. However, the impact of these struc-
tures on transmission models is still an open area of exploration. We can improve
existing influenza simulation models by collecting survey data on social contact
behavior, developing methodology to infer the contact network from survey data,
assessing the impact of network structures on disease spread, and finally, inte-
grating the important structures into the simulation models. Parameter estimation
procedures can be improved by the same process.

We contribute to the second step in this process by developing a parametric
model to estimate within-household contact networks from diaries of social con-
tacts and analyzing the POLYMOD data from Belgium. In the diaries respondents
reported on their contacts to other household members, but not on contacts between
other members. This network sampling design is called egocentric. Egocentric data
includes information on respondents and people contacted, as well as numbers and
characteristics of contacts, but the identities of the people contacted are not col-
lected. With such data, the probability distribution of the entire network may be
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inferred if we assume that the probability of contact depends only on individual-
level attributes, or if explicit assumptions regarding dependence are made. We take
the latter approach in this paper. Koehly, Goodreau and Morris (2004) discuss the
use of conditional log-linear models to analyze egocentric data. Handcock and
Gile (2007, 2010) develop a conceptual framework for inference of network pa-
rameters from sampled data under a variety of sampling designs. As egocentric
data is commonly and easily collected from networks, our work is applicable to
network inference in other settings.

A number of dependencies may exist in the contact network. For example, tran-
sitivity may be present: that is, if two household members contact the same third
member, they are more likely to contact each other. Our observed egocentric data
contain limited information about dependencies in contact behavior: for example,
they do not contain information about transitivity. However, our data set includes
a household age roster for each respondent, so some information on dependency
is available. We observed that some respondents contact no household members,
but those who contact any household members are likely to contact all or most of
them. Thus, the raw data suggest that if a respondent contacts at least one house-
hold member, then the probability of contacting other members is increased. We
hypothesize that some respondents were away from home on the day they filled out
the contact diary (which was mailed to them in advance). We model a latent vari-
able indicating which household members are at home on a given day, thus build-
ing dependency into our network. We assume that no contacts occur to household
members who are away from home on a given day. We estimate age-specific proba-
bilities of being at home as well as age-specific probabilities of contact conditional
on both household members being at home. We test whether contact behavior dif-
fers on weekdays versus weekends, during the Easter holiday period versus the
nonholiday period, and in small (<4) versus large (≥4) households. We prove
identifiability of our model and use simulated data to assess conditions for weak
identifiability.

2. Data. Our data comes from the POLYMOD study, a survey in eight Eu-
ropean countries of social contact behavior. Mossong et al. (2008) perform de-
scriptive analyses of this data set and analyze mixing patterns by age. We use
the Belgian data, which was collected from 750 respondents during March–May
2006. Hens et al. (2009) perform a detailed analysis of the Belgian POLYMOD
data using association rules and classification trees. Participants were recruited by
random digit dialing on fixed telephone lines. Respondents were selected to rep-
resent the urban/rural divide in Belgium and the populations of the three main re-
gions (Flemish, Walloon, and Brussels). Children were oversampled, as they play
an important role in infectious disease spread. By design, 10% of the sample falls
in each of the child age groups (0–4, 5–9, 10–14, and 15–19) and 6% in each of
the adult age groups (20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59,
60–64, 65+). Survey participants were assigned two randomly selected days (one
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weekday and one weekend day) and were asked to record their social contacts be-
tween 5 a.m. and 5 a.m. the following morning. Each received a paper diary and
recorded sociodemographic information of self and household, and characteristics
of all contacts made during the day. A contact was defined to be either a physical
contact or a two-way conversation of at least three words in the physical presence
of another person. Age and sex of the person contacted were recorded, but no other
identifying information on the contacted individual was collected.

Respondents did not record whether contacted individuals were household
members or not. However, they did record the ages of all household members in
the demographic section of the survey. In addition, respondents recorded age and
sex of each person contacted, recorded frequency of contact with that person, and
checked off all locations where that person was contacted on the day of the sur-
vey (home, work, school, transport, leisure, and/or other). We assume that contacts
which occurred “at home,” were reported as “daily or almost daily,” and whose age
matches one of the reported ages of household members, were indeed contacts to
that member. For each household we observe a partial contact network: we have
information on ties between the respondent and all other members, but not on con-
tacts between other members. By design, only one respondent per household was
surveyed.

Participants also recorded the date of the diary. Roughly half of respondents
(381 of 750) filled out the first day of their diary during the two-week Easter holi-
day period (April 3–17), during which schools were closed. Nearly three quarters
(545 of 750) filled out the second day of their diary during this holiday period, and
over half (365 of 750) filled out both days during the holiday period.

Table 1 shows the household size distribution of our data set. Most households
are size 2, 3, or 4. To give the reader a sense of the diversity in age composition in
the data set, we display the age composition distribution in Table 2 for households
of size four only. We have divided survey respondents and their household mem-
bers into the following five categories: 0–5, 6–11, 12–18, 19–35, and 36+, because
we believe these age groups are likely to exhibit different contact behavior. For ex-
ample, 0–5 year olds are not yet in school in Belgium and require high levels of
contact with their parents, 6–11 year olds are in primary school, and teenagers
are even more independent than 6–11 year olds so may spend less time at home,
etc. Note that some age compositions are represented by only one or two respon-
dents in the survey. Of course, additional age compositions exist in the data set for
households with sizes other than four, so there is a great deal of diversity. As we

TABLE 1
Household size distribution in the POLYMOD data from Belgium

Household size 1 2 3 4 5 6 7 9 12
Number of observations 75 157 195 213 83 23 2 2 1
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TABLE 2
Age composition of households of size four in the Belgian POLYMOD survey

Age category
Number of
respondents0–5 6–11 12–18 19–35 36+

0 0 0 0 4 1
0 0 0 1 3 1
0 0 0 2 2 35
0 0 0 3 1 1
0 0 0 4 0 1
0 0 1 1 2 23
0 0 1 2 1 1
0 0 2 0 2 40
0 0 3 0 1 2
0 1 0 0 3 1
0 1 0 1 2 1
0 1 1 1 1 2
0 1 2 0 1 1
0 1 1 0 2 17
0 1 2 0 1 1
0 2 0 0 2 16
0 2 0 1 1 8
0 2 0 2 0 4
1 0 1 0 2 1
1 1 0 0 2 6
1 1 0 1 1 8
1 1 0 2 0 12
2 0 0 0 2 2
2 0 0 1 1 12
2 0 0 2 0 16

Each row depicts a specific age composition by showing the number of members in
each age category. The rightmost column of the table shows the number of respon-
dents in households of that age composition in the POLYMOD study in Belgium.

are modeling household contact networks, we restrict our attention to respondents
in households with two or more members (n = 675).

Figure 1 shows a subset of the data: households of size four with two 0–5 year
olds and two 19–59 year olds. We have marked the respondent in red. For display
purposes we have assumed the two children are exchangeable and the two adults
are exchangeable. Child respondents are likely to report making all three possi-
ble contacts, and adult respondents are also likely to report having contacted all
three other household members. The next most likely report is two out of three
contacts. Finally, two child respondents reported contacting no one. This seems
strange as the children are 0–5 years old, but we hypothesize that they were not
at home on the day of the survey. The paper diary mailed to respondents could be
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FIG. 1. Subset of observed data: households with two 0–5 year olds and two 19–59 year olds;
respondent in red. Lines indicate reported contact.

filled out anywhere, and a parent or other guardian filled out the survey for child
respondents. We examined several types of household age compositions and al-
ways found a subset of respondents to report no household contacts. Overall, 16%
of respondents report no household contacts, yet those who report at least one
contact contacted an average of 88% of their household members. This suggests
a dependency in contact behavior: if at least one household member is contacted,
then others are more likely to be contacted.

Figure 2 shows an example of how the observed data compare to the true, com-
plete network. We develop a model to infer the probability distribution of the com-
plete network, based on partial observations of the network.

3. Methods. In this section we present a model for the contact network and
develop inference for it based on the incomplete information available in the ego-
centric data. The model for the contact network is of primary scientific interest.

3.1. A latent variable model. Our inspection of the observed data revealed that
some respondents reported no “at home” contacts to other household members on
the day of the survey. This may occur because the respondent was not actually at

FIG. 2. Example of a true network and the observed portion from the POLYMOD study. In the plot
of the observed portion, the respondent is red, solid lines indicate observed contacts, and the dashed
line shows the observed noncontact.
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home on the day of the survey, or because he/she was at home but made no social
contacts at home. Our data do not directly distinguish between a respondent being
away from home versus being at home but not contacting any household members.
We use a latent variable model to tease apart these two phenomena.

For a household of size k, let Z denote a random matrix representing the at
home contact network. We represent Z by a k by k sociomatrix, where

Zij =
{

1, if there is a contact between person i and person j ,
0, otherwise.

Let H be a Bernoulli random vector of length k, indicating whether each household
member is home or not. We assume that the elements of H are independent, that is,
the absence of one household member does not influence whether another house-
hold member is also absent. If H is unobserved, we can express the likelihood of
Z by the Law of Total Probability as follows:

P(Z = z) = ∑
h∈H

P(Z = z|H = h)P (H = h).(3.1)

Above, H represents the space of all possible “at home” vectors H. We now add
some assumptions about the distributions of H and Z|H.

We assume that Hi ∼ Bernoulli(pv), where v is the age category of house-
hold member i. We parametrize the distribution of Z|H by assuming that contacts
Zij |(Hi = 1,Hj = 1) are independent Bernoulli random variables whose proba-
bility parameters depend only on the age categories of household members i and j .
We define prs as the probability of contact between a member of age category r

with a member of age category s, conditional on both of them being at home. So
Zij |(Hi = 1,Hj = 1) ∼ Bern(prs), where r is the age category of member i and s

is the age category of member j . We assume contacts are symmetric, so prs = psr .
We will model only at-home contacts between household members, so Zij is zero
when either Hi = 0 or Hj = 0. Thus, we assume that the only dependence in con-
tacts between members comes from whether the members are at home or not.

The Bernoulli assumptions allow us to collapse contacts into counts by age
groups. Although our outcome of interest is the sociomatrix, we observe only a
single row of the sociomatrix for each household. Under our model assumptions,
a sufficient statistic for the contribution of each household is a vector W, with
elements Ws = the number of contacts observed from the respondent to household
members in age group s, for s ∈ {1, . . . ,5}. Let n = (n1, n2, n3, n4, n5) denote the
number of nonrespondent household members in each age category. Then ns −
Ws is the number of members in age category s who were not contacted by the
respondent.

With a slight abuse of notation, we will still use H to denote home/away status,
but the elements will be counts rather than indicators. Now let Hv be the number
of nonrespondent household members in age category v who are at home rather
than the home/away status of member v. The new H has length 5 regardless of



ESTIMATING WITHIN-HOUSEHOLD CONTACT NETWORKS 1823

household size. Then Hv follows independent binomial distributions with param-
eters nv and pv , where nv is the number of nonrespondent household members
in age category v, and pv is the probability of a person in age category v being
at home. In addition, let R denote the home/away status of the respondent, with
R = 1 if the respondent is home, and R = 0 otherwise. Since respondents were
mailed a paper diary in advance of their survey date and returned it by mail, and
since some respondents did not list any household contacts in their diary, the “at
home” status of the respondent is unobserved. The latent variables of interest are
H and R.

Under these assumptions the likelihood contribution for a respondent in age
category j is

P(W = w) = P(W = w|R = 0)(1 − pj ) + P(W = w|R = 1)pj .(3.2)

Above, P(W = w|R = 0) = 1 if w = (0,0,0,0,0) and zero if ws > 0 for at
least one s ∈ {1,2,3,4,5}. If the respondent is at home, it follows from our as-
sumptions that contacts to other household members are independent, so we can
rewrite the second term as follows:

P(W = w|R = 1)pj =
5∏

s=1

P(Ws = ws |R = 1)pj .(3.3)

Household members who had reported contact with the respondent were neces-
sarily at home. Those without reported contact could have been away from home,
or could have been at home but not contacted. By applying the Law of Total Prob-
ability again, conditioning on the home/away status of nonrespondent household
members, (3.3) becomes

pj

n1∑
h1=0

n2∑
h2=0

· · ·
n5∑

h5=0

5∏
s=1

P(Ws = ws |Hs = hs)P (Hs = hs).(3.4)

By applying our distributional assumptions, this term becomes

pj

n1∑
h1=w1

n2∑
h2=w2

· · ·
n5∑

h5=w5

5∏
s=1

(
hs

ws

)
p

ws

js (1 − pjs)
hs−ws

(3.5)

×
(

ns

hs

)
phs

s (1 − ps)
ns−hs .

We assume that households are independent, so the likelihood of the entire data
set is the product of the likelihood contributions of all respondents. Note that the
parameters ns are determined by the data and differ for different respondents.

To aid in understanding, we provide an example for the reader.
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EXAMPLE 3.1. Suppose the respondent is in age group 1, and has two house-
hold members, one in age group 2 and one in age group 4, and suppose the respon-
dent reports no contacts to household members on the day of the survey. Then,
W = (0,0,0,0,0) ≡ 0 and n = (0,1,0,1,0). The likelihood contribution for this
respondent is

P(W = 0) = P(W = 0|R = 0)(1 − p1) + P(W = 0|R = 1)p1

= 1 − p1 + p1
(
P(W = 0|H = 0)P (H = 0)

+ P
(
W = 0|H = (0,1,0,0,0)

)
P

(
H = (0,1,0,0,0)

)
+ P

(
W = 0|H = (0,0,0,1,0)

)
P

(
H = (0,0,0,1,0)

)
+ P

(
W = 0|H = (0,1,0,1,0)

)
P

(
H = (0,1,0,1,0)

))
by the Law of Total Probability, the independence of H and R, and the fact that
P(W = 0|R = 0) = 1. Next we apply the distributional assumptions on P(W|H)

and P(H) to obtain

= 1 − p1 + p1
(
(1 − p2)(1 − p4) + (1 − p12)p2(1 − p4)

+ (1 − p14)(1 − p2)p4 + (1 − p12)(1 − p14)p2p4
)
.

Through algebra we can see that this is equivalent to (3.2).

3.2. Maximum likelihood estimation. By maximizing the likelihood we esti-
mate the probability parameters prs and pv for r, s, v ∈ {1,2,3,4,5}. We note that
a Bayesian approach would also be appropriate for our question of interest, as we
expect contact probabilities within households to be high, particularly when one of
the members is a young child. We chose not to use a Bayesian approach because
we prefer not to increase the subjectivity of our results.

Optimization was performed in R version 2.8 with the optim function [R De-
velopment Core Team (2010)]. We used the BFGS method, a quasi-Newton
method published simultaneously by Broyden (1970), Fletcher (1970), Golfarb
(1970), and Shanno (1970). The optim function estimates the Hessian of the log
likelihood at the MLE, so providing an estimate of the observed Fisher informa-
tion matrix which one can invert to compute confidence intervals. However, some
parameter estimates were on the boundary of the parameter space, so we com-
puted confidence intervals by a nonparametric bootstrap, as described by Efron
and Tibshirani (1993), instead of by inverting the Fisher information matrix. We
used 1,000 bootstrap iterations. In one case, both lower and upper bounds of the
interval were estimated to be 1 since all data points supported a parameter estimate
of 1. Since the bootstrap fails as an estimate of uncertainty in this case, we omit
the lower bound of this interval. R code used for estimation is included in the sup-
plementary material [Potter et al. (2011c)]. Network graphs were produced with
statnet software [Handcock et al. (2003)].
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3.3. Identifiability of the latent variable model. Since we are estimating a la-
tent variable from a data set with structurally missing data, it is not immediately
apparent that our parameters are identifiable. According to Silvey (1975), a param-
eter is identifiable if distinct values of the parameter vector give distinct probability
distributions on the sample space. We prove identifiability of our parameter vector
in the Appendix. It is possible that the identifiability is only “weak.” Identifiabil-
ity guarantees that the parameter can be determined with an infinite amount of
data, but “weak identifiability” means that even very large data sets do not contain
enough information to precisely estimate the parameter [Bolker (2008)]. Because
we are using partially observed network data to estimate 20 parameters, five of
which correspond to a latent variable, it is not immediately obvious that our data
set is large and diverse enough to disentangle the “at home” probabilities from the
conditional contact probabilities. We perform a simulation study to assess whether
data sets with the same size and distribution of household age compositions as ours
contain enough information to estimate our parameters.

3.4. Model selection. We investigated three effects which could help to model
contact behavior. First, contact probabilities may vary with household size, as peo-
ple in large households may be less likely to contact all other members than those
in small households. We also tested for differences during the Easter holiday and
a nonholiday period, and between weekend days and weekdays. Because we are
performing three statistical tests, we applied Bonferroni’s correction for multiple
testing: we use a critical value of α = 0.05/3 = 0.017 instead of α = 0.05 [Abdi
(2007)].

Let prs,small denote the conditional probability of contact between household
members in age groups r and s for households with 2–3 members, and prs,large
denote the conditional probability of contact between household members in age
groups r and s for households with four or more members. Similarly, let ps,small
and ps,large be the probabilities of a member in age category s being at home in
small and large households. Let �0 be the subspace in which we have restricted
parameters for small households to be equal to those for large households: that
is, prs,small = prs,large and ps,small = ps,large for r, s ∈ {1,2,3,4,5}. We are in-
terested in testing whether p ∈ �0 or p ∈ � \ �0. Because three of the param-
eter estimates are on the boundary of the space (p0–5,0–5 = 1,p6–11,6–11 = 1,
and p6–11,12–18 = 1), the conditions for the classical likelihood ratio test using
Wilk’s (1938) theorem do not hold. However, when estimation was performed
separately for small and large households, we found p0–5,0–5 = 1,p6–11,6–11 = 1,
and p6–11,12–18 = 1 for both small and large households. In both cases, there is not
enough variability in the data to compute a confidence interval, suggesting that the
true value is close to 1 for both small and large households. These parameters are
estimated with sample sizes ranging from 29–34, and the data is consistent with
a parameter value of 1. For this reason we considered it unnecessary to test for a
household effect for these three parameters. Instead, we assumed that these three
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parameters were equal for small and large households, and tested whether any of
the other 17 parameters differed for small versus large households. This permits
us to do a classical likelihood ratio test, in which the test statistic is compared to a
chi-square distribution with 17 degrees of freedom. Our test statistic was 37.4 with
a p-value of 0.003, so we concluded that one or more of the parameters differs for
small versus large households. While the estimated “at home” probabilities were
similar for small and large households, nearly all conditional contact probability
estimates were larger in small households than in large households. We chose not
to include a household size effect in our final model, as some cell counts were too
small to obtain reasonable estimates. The separate estimates for small and large
households are included in the supplementary material [Potter et al. (2011a)].

We used the same method to assess whether contact behavior differed on the
weekend versus on a weekday. Here, only one parameter estimate was on the
boundary of the space. Our likelihood ratio test statistic was 23.3, which when
compared to a chi-square distribution with 19 degrees of freedom gives a p-value
of 0.22. Thus, we found no evidence that contact behavior differed over the week-
end versus on a weekday.

Similarly, we tested the null hypothesis that the parameters were the same dur-
ing the two-week Easter holiday period as during a nonholiday period against the
alternative that one or more probability parameters could differ between the holi-
day and the nonholiday. Since our test statistic was 53.3 with a p-value < 0.001,
we concluded that within-household contact behavior in Belgium is different dur-
ing the Easter holiday period than during a nonholiday period. However, we did
not see a systematic, meaningful, and substantive pattern explaining the differ-
ence. For this reason, we chose not to include a holiday effect in our final model.
The separate holiday and nonholiday estimates are included in the supplementary
material [Potter et al. (2011a)].

4. Results.

4.1. Parameter estimates. Table 3 shows maximum likelihood estimates for
the probability of contact between two members, conditional on them both being
at home. Table 4 shows estimates of the probability of members being at home on
a given day. We see that contact probabilities are quite high from young children
to all age groups, and decrease slightly as the ages of both members increase.

Our 20 parameters and our distributional assumptions determine the probability
distribution of within-household contact networks for any household of a specified
size and age composition. Figure 3 shows the estimated probability distribution
of contact networks for households with two 0–5 year olds and two 19–35 year
olds. The probability of the first network depicted is the probability that all house-
hold members are at home times the probability that all contacts between them
occur. Other network probabilities are computed similarly. Confidence intervals
were computed by performing this deterministic computation 1,000 times, using
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TABLE 3
Conditional contact probability estimates with 95% bootstrap confidence intervals

Age
category 0–5 6–11 12–18 19–35 36+
0–5 1.00 0.90 0.67 0.99 0.96

[–, 1.00] [0.76, 0.99] [0.24, 0.99] [0.93, 1.00] [0.86, 1.00]

6–11 1.00 1.00 0.96 0.91
[0.86, 1.00] [0.89, 1.00] [0.88, 1.00] [0.82, 0.98]

12–18 0.88 0.65 0.91
[0.74, 0.99] [0.48, 0.81] [0.85, 0.97]

19–35 0.80 0.83
[0.65, 0.94] [0.75, 0.90]

36+ 0.89
[0.81, 0.97]

TABLE 4
Estimated probabilities of being at home with 95% bootstrap confidence intervals

Age
category 0–5 6–11 12–18 19–35 36+
Probability 0.90 0.92 0.89 0.90 0.92

[0.86, 0.95] [0.88, 0.98] [0.84, 0.94] [0.86, 0.94] [0.89, 0.95]

FIG. 3. Estimated probability distribution of contact networks, households with two 0–5 year olds
and two 19–35 year olds, with 95% confidence intervals. Members at home are shown in blue; those
away from home are shown in white. Only networks with probability > 0.02 are depicted.
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FIG. 4. Estimated probability distribution of contact networks, households with two 12–18 year
olds and two 36+ year olds, with 95% confidence intervals. Members at home are shown in blue;
those away from home are shown in white. Only networks with probability > 0.02 are depicted.

the parameter estimates obtained from the 1,000 bootstrap re-samples of our data
set.

The “at-home” status of each member is indicated by color: blue members are at
home and white members are away from home. According to our model, the most
likely network includes all possible contacts, which fits with our understanding of
social behavior. This network is estimated to have a 49% chance of occurring on a
given day in this type of household. The second most likely network shows one of
the adults away from home, but all other contacts occurring. The third most likely
network, with probability 12%, has all members at home, and all contacts except
the one between the two adults occurring.

Figure 4 shows the estimated probability distribution for contact networks with
two 12–18 and two 36+ year olds. As with the younger household type, the most
likely network is the one in which all contacts occur, but its estimated probability
is 0.36, rather than 0.49. As teenagers are more independent than children under 5,
this seems reasonable. The second most likely network is one in which all members
are at home, but one of the child-adult contacts does not occur, and the third most
likely network has one teenager away from home, but all other contacts occurring.
These estimates are also reasonable given our understanding of social behavior.

The dependency in our model can be seen by studying Figures 3 and 4. Net-
works which would be equally likely under an independence assumption have
different estimated probabilities under our assumptions. For example, Figure 5
shows two possible contact networks and their probabilities computed under our
model for a household with two 0–5 year olds and two 19–35 year olds. Under a
random mixing assumption these two networks would have the same probability
since they have the same numbers of child–child ties and adult–adult ties. An inde-
pendence model which has age-specific contact probabilities but no latent variable
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FIG. 5. Illustration of dependency in our model. Under random mixing or under an independence
model with age-specific contact probabilities but no latent variable, the two networks below would
have the same probability.

effect would also assign the same probabilities to these two networks. Yet under
our model, one of them has probability 0.15, and the other has probability 0. Thus,
our assumptions give rise to a process very different from random mixing. The
latent variable in our model creates dependencies which would not be captured in
a model with only age-specific mixing probabilities.

4.2. Model validity and weak identifiability. Our results suggest that our al-
gorithm has succeeded at uncovering the parameter values and disentangled the
home/away process from the contact process for our data set. However, it is pos-
sible that the identifiability is only weak. In this section we show results from a
validity check evaluating our model and perform simulations to assess weak iden-
tifiability.

To check the validity of our model, we compare our estimates of “at home”
probabilities to the percentage of respondents who report any contacts to house-
hold members. Since respondents are randomly sampled, these percentages are
unbiased estimates of the probability of a person having at least one contact to an-
other household member at home. The probability of being at home is greater than
or equal to the probability of contacting at least one household member at home,
since the latter event implies the former.

Table 5 compares MLEs of the probability of being at home to the estimated
probability of being at home and contacting at least one household member. For
4 of 5 age groups, the estimated probability of being at home is greater than the
estimated proportion of people contacting any household members at home, as
we expect. The difference is statistically significant only for the oldest age group.
For 6–11 year olds, the direction of the difference is opposite of what we expect,
but the statistically insignificant difference is small enough not to raise concern.
Although the probability of being at home is necessarily greater than or equal to
the probability of contacting anyone at home, we expect these probabilities to be
close. Our validity check indicates that our model is producing reasonable results.

We performed a simulation study to assess whether data sets with the same size
and distribution of household age compositions as ours contain enough informa-
tion to estimate our parameters. The simulation procedure was as follows:
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TABLE 5
Validity check, all households

Age Estimated probability % of respondents with
category of being at home any at home contacts

0–5 0.90 [0.86, 0.95] 0.89 [0.83, 0.96]
6–11 0.92 [0.88, 0.98] 0.93 [0.87, 0.98]
12–18 0.89 [0.84, 0.94] 0.88 [0.81, 0.94]
19–35 0.90 [0.86, 0.94] 0.82 [0.75, 0.89]
36+ 0.92 [0.89, 0.95] 0.80 [0.75, 0.85]

1. Choose values for the five “at home” probabilities and the 15 conditional con-
tact probabilities.

2. Simulate 500 data sets with the same size and distribution of household age
compositions as ours from the model using these parameters.

3. For each simulated data set, compute maximum likelihood estimates of the pa-
rameters.

4. Compute the mean of the MLEs over the 500 simulations and compare to the
true value.

We performed simulations for two different sets of parameter values. First we
set the conditional contact probabilities equal to our estimated contact probabil-
ities, but we varied the “at home” probabilities in our simulation to test whether
the method could detect the variation. (Recall that all of our estimated “at home”
probabilities were near 0.90.) We chose the values 1.0, 0.9, 0.8, 0.7, and 0.6 for “at
home” probabilities of the five age groups. Our results in Tables 6 and 7 indicate
that the estimation procedure does a good job of uncovering the true “at home”
probabilities, and a fair job of uncovering the conditional contact probabilities.
The accuracy of the conditional contact probability estimates is highest when the
two age groups have a high probability of being at home. These estimates are most
accurate when one of the age groups is 0–5, whose probability of being at home is

TABLE 6
At home probabilities used for simulations, mean estimated at home probabilities

over 500 simulations, and 2.5% and 97.5% quantiles of the estimates

Age Truth Mean of estimates 95% quantile interval

0–5 1 1.00 [1.00, 1.00]
6–11 0.9 0.93 [0.87, 0.98]
12–18 0.8 0.85 [0.77, 0.92]
19–35 0.7 0.73 [0.68, 0.79]
36+ 0.6 0.61 [0.57, 0.64]
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TABLE 7
Conditional contact probabilities used for simulations, mean estimated at home

probabilities over 500 simulations, and 2.5% and 97.5% quantiles of the estimates

Age 1 Age 2 Truth Mean of estimates 95% quantile interval

0–5 0–5 1.00 1.00 [1.00, 1.00]
6–11 0.90 0.89 [0.78, 1.00]
12–18 0.67 0.67 [0.32, 0.99]
19–35 0.99 0.96 [0.86, 1.00]
36+ 0.96 0.93 [0.81, 1.00]

6–11 6–11 1.00 0.94 [0.79, 1.00]
12–18 1.00 0.93 [0.78, 1.00]
19–35 0.96 0.89 [0.76, 1.00]
36+ 0.91 0.83 [0.72, 0.94]

12–18 12–18 0.88 0.80 [0.63, 0.98]
19–35 0.65 0.59 [0.41, 0.78]
36+ 0.91 0.80 [0.71, 0.87]

19–35 19–35 0.80 0.75 [0.56, 0.99]
36+ 0.83 0.74 [0.64, 0.82]

36+ 36+ 0.89 1.00 [0.99, 1.00]

one, and least accurate when one of the age groups is 36+, who have the smallest
probability (0.60) of being at home. Since our estimated “at home” probabilities
from the actual data are all near 0.90, our conditional contact probability estimates
are probably fairly accurate.

Our data set contains fairly high reported rates of contact. A data set with lower
contact rates may not provide enough information to distinguish household mem-
bers being away from home versus not being contacted. To investigate this, we
performed a second simulation for which we reduced contact probabilities to ob-
tain empirical data sets with households in which some respondents are home but
don’t contact any other members. Our results, given in the supplementary mate-
rial [Potter et al. (2011b)], show that in this type of data set the procedure does
not work as well. The “at home” probabilities are underestimated, and the contact
probabilities are overestimated.

5. Discussion. In this paper we infer the structure of within-household con-
tact networks, which are a key component for models of epidemic spread. We
show how to infer the probability distribution of the complete within-household
contact network from individual-level data from one respondent per household in
a random sample of households. By modeling the unobserved event that some
members may be away from home on a given day, we incorporate dependency in
contact behavior, resulting in a process different from random mixing. We also
find the probability of all household members contacting each other on a given
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day to be substantially less than one. These two findings indicate that contact be-
havior reported in surveys is different from the contact patterns generally used for
epidemic models and estimation methods. Our finding that contact probabilities
are higher in households with 2–3 members than in households with 4+ members
helps to explain the higher transmission rates found by Cauchemez et al. (2009) in
households with 2–3 members than in larger households.

The contact probability matrices show that contact between any two members
is highly likely if both members are at home. All probabilities are over 50%, and
most range from 90–100%. In any size household, 0–5 year olds are highly likely
to contact other young children and adults, as we might expect. The contact proba-
bility is lowest between teenagers in any size household, as we might also expect.
Our model succeeded at disentangling the contact process from the home/away
process, and the estimated probabilities of being at home are all close to 90%.

The plots of the probability distribution of the contact network show that the
complete network—in which all possible contacts occur—is the most likely. How-
ever, the probability of this network is lower than one might expect. We estimate
this probability to be 0.49 in households with two 0–5 year olds and two 19–35
year olds, and 0.36 in households with two 12–18 year olds and two 36+ year olds.
The dependency in contact behavior arising from our model is apparent in these
plots.

We have made some strong assumptions for our model. First, we have assumed
that the only dependence in ties arises from household members being away from
home. Our data suggest that there is indeed an “away from home” effect on contact
behavior, but other dependencies are likely to exist. For example, one parent con-
tacting a child may reduce the probability that the other parent contacts the child,
if one parent has more child care responsibilities. In addition, our assumption that
the events of members being at home or away from home are independent is quite
strong. Family members are likely to travel together, and in a household with small
children, if one parent is away from home, the other is probably more likely to be
at home. Furthermore, we assumed that contacts occur independently, conditional
on members being at home. In fact, contact between two family members may in-
fluence their behavior with others, conditional on all of them being at home. We
have also assumed that contact behavior does not change when a household mem-
ber is away, other than the removal of contacts to that member. In fact, it is possible
that contact density tends to increase when some members are away, violating this
assumption. Our data do not contain information to estimate these other potential
dependencies. We have estimated one dependency in contact behavior, informed
by the data and by a reasonable social theory. Our model is a simplification of
the true underlying process, and further data is required to estimate additional de-
pendencies and assess whether our model captures the network structures relevant
to the disease transmission process. We recommend collecting complete network
data to analyze these patterns.
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Finally, we have assumed that contacts depend on the age categories of the two
members. This assumption is realistic, as evidenced by our different contact proba-
bility estimates in the matrices. However, contacts could also depend on gender. In
particular, mothers may be more likely to contact children than fathers. Although
our data set contains the gender of each respondent and of all contacts, it does not
contain the gender of each household member. For this reason, including gender
as a predictor is not straightforward.

Our predictions could be improved by collecting additional data. We recom-
mend asking respondents whether they were at home on the day of the survey,
whether contacted persons were household members, and whether each household
member was at home on the survey day. It could also be useful to collect the gender
of each household member. Based on our recommendation, the next implementa-
tion of POLYMOD in Belgium, as well as similar studies in Vietnam and Thai-
land, ask respondents to identify whether contacted people are household members
[Horby et al. (2011)]. In addition, we recommend collection of complete network
data to validate our results and improve understanding of within-household contact
behavior.

Our method can be used in other settings to infer networks from egocentric data.
For example, our method could be used to infer household contact networks in
cultures with larger household sizes than commonly found in Belgium. A study of
household economic networks in a Malawian village found a mean household size
of 9, rather than 3.24 as in our Belgian data set [Potter and Handcock (2010)]. Our
method could also be used to infer within-classroom networks or within-workplace
networks from the POLYMOD data.

We have demonstrated that this method works reasonably well for small net-
works. As the network size increases, the proportion of the network reported by
a single respondent decreases, but identifiability of the parameter vector depends
on the number of age categories. As long as there is an adequate number of re-
spondents in each age category, the parameter vector remains identifiable as net-
work size increases. Computation time is an issue because the number of hidden
configurations increases at a faster rate than network size. The number of hid-
den configurations depends on the number of age categories, the network size,
the distribution of household age compositions, the number of respondents, and
the number of reported contacts. Computation is still feasible for household net-
works with up to 10 members and for larger sizes if the number of age categories
is reduced. Classroom, workplace, or daycare networks could be modeled with a
single age category. With a single age category, estimation for networks with up to
50 members is feasible.

Our method requires a single respondent per network, a common sampling de-
sign for household studies. If multiple respondents per network are observed, their
reports will not be independent, so the joint likelihood is not the product of the
marginal likelihoods as we assumed. The independence assumption is reasonable
for inference of small networks when respondents have been sampled at random



1834 G. E. POTTER ET AL.

from an entire country as in the POLYMOD study. For inference of much larger
networks, with hundreds or thousands of members, it would be more convenient
to sample multiple members per network and develop an inference technique ac-
counting for the dependence in contact reports.

We have developed a model to infer complete within-household contact net-
works from egocentric data. Although our results are from a single survey, they
are broadly relevant to epidemic models. Our model incorporates dependency in
contact behavior by estimating a latent variable indicating which household mem-
bers are at home, and our inferred contact structure departs from the standard ran-
dom mixing assumption. In addition, we find higher contact probabilities in house-
holds with 2–3 members than in larger households. This should also be taken into
account when estimating transmission parameters from household-level data. Fi-
nally, many epidemic models assume that all household members contact each
other on a given day, but we find that the probability of all possible contacts oc-
curring is actually fairly small. Estimation of contact probabilities and of disease
transmission probabilities is often confounded, since disease outcomes are col-
lected but detailed information about contact behavior is not. By shedding light on
the contact structure, our work can help disentangle the contact process from the
transmission process. Our findings can be used to improve epidemic models and
estimation methods. As future work, we propose integrating our findings into these
models and performing simulation studies to evaluate their impact on results.

APPENDIX: PROOF OF IDENTIFIABILITY

THEOREM A.1 (Identifiability). The latent variable model described in Sec-
tion 3.1 is identifiable.

PROOF. To see that our model is identifiable, suppose for the sake of contra-
diction that two different sets of probability parameters produce the same proba-
bility distribution. Assuming that the two probability distributions are equal, we
will show that the parameterizations must be identical, which is a contradiction.

We will denote the two different probability parameter vectors pA and pB ,
so the elements of pA which are the at home indicators are denoted pj,A for
j ∈ {1, . . . ,5}, and the contact probabilities are denoted prs,A for r, s ∈ {1, . . . ,5}.
The elements of pB have analogous notation. Recall that the observations used
to estimate our model parameters represent households of diverse sizes and age
compositions. With an infinite amount of data, any type of household may be rep-
resented in the data set. Therefore, a household containing only two members, both
in age category k, may be in the data set. Our observed outcome is the presence or
absence of contact to the other member. Keeping our notation from the description
of the likelihood, the observed outcome is denoted wk and is equal to either zero
or 1. (The other elements of w are zero since there are no household members in
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the other age categories.) Using our formula for the likelihood and the assumption
that probability distributions are equal under parameterizations A and B , we have

P(wk = 1|pA) = p2
k,Apkk,A = P(wk = 1|pB) = p2

k,Bpkk,B.(A.1)

We want to show that the corresponding elements of pA and pB are equal. For
this, we will need information from a different household, one which contains three
members in age category k. For this household, the sufficient statistic is again wk ,
which can now take on the values 0, 1, or 2. Under our assumptions,

P(wk = 2|pA) = p3
k,Ap2

kk,A = P(wk = 2|pB) = p3
k,Bp2

kk,B.(A.2)

Dividing (A.2) by (A.1), we obtain

pk,Apkk,A = pk,Bpkk,B.(A.3)

Now dividing (A.1) by (A.3) yields

pk,A = pk,B.(A.4)

Thus, we have shown that the “at home” probability parameters are the same
under parameterizations pA and pB . To see that the conditional contact probabili-
ties are also equal, consider a household containing two members in age categories
r and s, and suppose the respondent is in age category r . Our sufficient statistic is
denoted ws , which can take on values 0 or 1. We have

P(ws = 1|pA) = ps,Apr,Aprs,A = P(ws = 1|pB) = ps,Bpr,Bprs,B .(A.5)

Since we have already proven that ps,A = ps,B for all age categories s, it follows
that prs,A = prs,B . Thus, the parameter vectors pA and pB are identical. Since we
have contradicted our assumption that they were distinct, we have proven that our
model is identifiable. �

SUPPLEMENTARY MATERIAL

Supplement A: Contact network parameters estimated separately for the
holiday period versus the nonholiday period, and for 2–3 member households
versus 4+ member households (DOI: 10.1214/11-AOAS474SUPPA; .pdf). We
present parameter estimates computed separately for respondents who reported
during the Easter holiday period and during a nonholiday period. Next we report
parameters estimated separately for households with 2–3 members and those with
4+ members.

Supplement B: Results from simulation study exploring weak identifia-
bility (DOI: 10.1214/11-AOAS474SUPPB; .pdf). We present simulation results
evaluating weak identifiability of our parameters in data sets with low within-
household contact rates and low at-home probabilities.

http://dx.doi.org/10.1214/11-AOAS474SUPPA
http://dx.doi.org/10.1214/11-AOAS474SUPPB
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Supplement C: R code used for estimation, bootstrapping, and simula-
tion in “Estimating within-household contact networks from egocentric data”
(DOI: 10.1214/11-AOAS474SUPPC; .pdf). This supplement includes R code used
to perform estimation, bootstrap confidence intervals, and perform a simulation
study assessing weak identifiability in households with low contact rates and low
probabilities of being at home.
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