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1. Introduction. An earlier version of Professor Singpurwalla’s paper (which
we refer to as “Singpurwalla”) has served as the springboard to our own investiga-
tion of the issue of deployments of Improvised Explosive Devices, or other obsta-
cles with a large cost to overcome, which may be placed stochastically, or by an
adversarial agent, or both.

Rather than a decision-theoretic treatment, we consider a method based in part
on social network analytical methods, namely, that the deployment pattern of IEDs
induces a subgraph on a full road network, and that the deployment on any given
road is unknown to anyone traversing the graph until arriving there, though there
may be prior information on the likelihood of a deployment.

The full treatment, as acknowledged in Singpurwalla, is illustrated by Thomas
and Fienberg (2011); here, we give a brief overview of our method and how it
compares with Singpurwalla’s approach.

2. Canadian traveler problems and network transition times. Many anal-
yses of social networks assume that the shortest path between two individuals
governs properties of their inter-relationship, and this has led to many metrics con-
structed using geodesic distance to approximate the importance of an individual
[Freeman (1979)]. If the streets were empty of traffic, a driver on the roads will
think the same way, taking the route that minimizes travel time. This is not neces-
sarily the case when the state of the roads is uncertain, such as with traffic or con-
struction, but is nicely encapsulated in the “Canadian Traveler Problem” formula-
tion [Andreatta and Romeo (1988); Bar-Noy and Schieber (1991); Papadimitriou
and Yannakakis (1991)]: a road may be impassable because, with some probabil-
ity, there is an obstacle that cannot be traversed without waiting (in the eponymous
case, a heavy snow fall). If the probabilities are known in advance, but the ac-
tual states of the roads are not known until reached, then an optimal route can be
calculated either through exact solution or simulation, by solving for the distribu-
tion of travel times along any particular route, simulating the blockages given their
propensities.

Given that all roads have some probability of a blockage, IED deployment or
otherwise, we can evaluate a road’s importance for travel by comparing the average
travel time if the road is active to that when the road is blocked, given a source
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and destination. The effective difference in travel times is then a measure of the
importance of the road to that travel.

Figure 1 of Singpurwalla gives three potential paths between a source A and
a destination (sink) /, along which the traveler may move. If a road’s state (in
this case, a bridge’s state) is discovered once one of its connecting intersections is
reached, then this will influence the traveler as they move through the system. For
this map, the traveler would know immediately whether bridge 9 was traversable;
the only choice would then be if the route CDEI, or the route CDEFGHI, are
shorter than the direct route CI, though the risk remains. If either of these routes
is shorter when unblocked, it is the traveler’s decision to try the shorter route, with
the risk of having to turn back, or take the certain path without learning additional
information.

3. Additional covariates. Singpurwalla’s approach includes covariates in the
likelihood for IED deployments on particular stretches of road in the standard fash-
ion of a logistic regression. Examples include “local” characteristics like the prox-
imity to a center of commerce or worship, or the nature of the road itself, such
as its construction, capacity, and length, as well as circumstances particular to the
timing of any particular attack, like the time of day or the weather.

For purely exploratory modeling, we can also consider the role of any road in
relation to the rest of the system of roads; for example, if there are three parallel
routes of equal length that a traveler can take, the likelihood that any one of these
routes will be blocked will go down, all else being equal.

As we mentioned, social network analysts typically use measures of “centrality”
on a graph to elicit information about the role of a node or an edge on the network,
often deriving these from the role of shortest paths on the network. In this case, we
can include the importance of a road in the system by considering how the road
affects the Canadian Traveler: calculating the average additional travel that would
be necessary if the road were closed, rather than open, when the traveler does not
learn this until and unless they arrive at one of its endpoints. Because this measures
the importance of a road as a conduit between two points, we have christened this
quantity Canadian Betweenness Centrality; whether or not it is calculated with the
possibility of other roads also being blocked is up to the analyst.

4. Expert information. Singpurwalla makes note of the encapsulation of
prior information on deployments on particular road systems according to the deci-
sion maker’s subjective or personal probability. Rather than including this step di-
rectly into the probability of a deployment, we recommend a slightly more round-
about approach: using the assessment of personal probabilities by the decision
maker or the experts to elicit a prior distribution on the coefficients in the model
[Garthwaite, Kadane and O’Hagan (2005)], here corresponding to the 8 terms in
the logistic regression.

Essentially, the modeler queries the expert about their estimated probability of
a deployment in a particular time period for all roads, then fits the model to es-
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timate distributions on B corresponding to this uncertainty, having transformed
the fractions between zero and one into an unbounded region. In the notation of
Singpurwalla, we set

Kk
I
b > ZuBi + e,

log =
1—pi

i=1
where g; ~ N (0, 02). If we define P = [log
distribution is

P, Pn_y o :
= p log 17pn] , the elicited prior

B~N((Z'2)'Z'P,(Z'2)"'5%).

If the estimate provided by the expert (or group of experts) comes from a distribu-
tion, we can carry out this procedure using draws from this distribution by mixing
across iterations.

S. Conclusions. Singpurwalla’s approach has provided a crucial stimulus to
our own pursuit of the problem of road-blocking deployments. We all have a long
way to go before this framework can be applied practically. As noted by Singpur-
walla, the limited availability of this class of data makes it difficult to validate any
of our methods, especially the adversarial nature. Even the data that are known to
exist publicly, such as the Wikileaks disclosure, are not in a form that makes our
frameworks applicable. We are therefore left to continue developing these ideas
through simulation and thought experiment until the time comes for their more
practical application.
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