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We are concerned with the estimation of the exterior surface and interior
summaries of tube-shaped anatomical structures. This interest is motivated by
two distinct scientific goals, one dealing with the distribution of HIV micro-
bicide in the colon and the other with measuring degradation in white-matter
tracts in the brain. Our problem is posed as the estimation of the support of
a distribution in three dimensions from a sample from that distribution, pos-
sibly measured with error. We propose a novel tube-fitting algorithm to con-
struct such estimators. Further, we conduct a simulation study to aid in the
choice of a key parameter of the algorithm, and we test our algorithm with
validation study tailored to the motivating data sets. Finally, we apply the
tube-fitting algorithm to a colon image produced by single photon emission
computed tomography (SPECT) and to a white-matter tract image produced
using diffusion tensor imaging (DTI).

1. Introduction. A common problem in biomedical imaging research is to
mathematically model anatomical structures and to summarize them in an appro-
priate space. In this manuscript we focus on modeling tube-like anatomical struc-
tures, such as the colon or white matter fiber bundles in the brain. In our setting
the objects of measurement are measured by biological signals represented in a
two- or three-dimensional array obtained via imaging or some other indirect mea-
surement of anatomy or function. Finding the best mathematical representation of
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the tube to quantify the anatomical or functional image remains a difficult—and
neglected—problem in statistics. In this manuscript we develop an algorithm for
fitting tubes to collections of points and apply this algorithm to data from two
motivating examples based on different medical imaging modalities.

Our first application is to single-photon-emission computed tomography
(SPECT) images from an experiment to evaluate the distributional penetrance of
anti-human immunodeficiency virus (HIV) microbicidal lubricants in the colon.
SPECT images are produced by applying computed-tomography techniques to
projections of photons emitted by a radioactive tracer. In this experiment a radio-
labeled over-the-counter lubricant was distributed in a subject’s colon.

Knowledge of the distributional penetrance of the tracer, along with knowledge
of the distribution of HIV-infected semen after intercourse with an infected partner,
would give crucial information regarding efficacy of the treatment for preventing
transmission. This experiment is one of the first to experimentally investigate the
distributional properties of microbicidal lubricants. Thus, this manuscript repre-
sents early work on this topic. Here, we study only the distributional penetrance of
the lubricant via SPECT imaging. Our goals are to obtain an accurate tube through
the tracer to outline the colon, along with a metric to measure the tube’s extent at
various orthogonal cross-sections.

Our second application is to diffusion tensor imaging (DTI) tractography. DTI is
a magnetic resonance imaging (MRI) technique used to identify white-matter tracts
by measuring the diffusivity of water in the brain along several gradients. White-
matter tracts are made up of myelinated axons. Axons are the long projections of
nerve cells that carry electrical signals, and are sheathed in a fatty substance called
myelin which insulates and speeds the transmission of signals. Measuring the dif-
fusion of water is useful as water diffuses preferentially, or anisotropically, along
white-matter tracts, unlike the isotropic diffusion that takes place in gray mat-
ter. Hence, DTI gives more detailed images of white-matter anatomy compared to
standard MRI techniques. In fact, anisotropic diffusion can be used to reconstruct
bundles of white-matter tracts, a process called tractography [Basser, Mattiello and
LeBihan (1994b); Basser et al. (2000); Mori and Barker (1999); LeBihan et al.
(2001)]. While several tractography methods are available, we note that our tube-
fitting algorithm does not depend on which of these methods is used. Moreover, it
applies to nontractography-based tract segmentations as well.

DTI-based tract segmentation holds great promise as a quantitative measure of
white-matter health, though tractography methods are still in development. An ex-
ample of potential application of tractography is to the study of multiple sclerosis
(MS), which causes demyelination. Individuals with MS can suffer profound dis-
ability, such as loss of vision and motor function. The ability to quantify tissue
damage using DTI tractography has important clinical and research implications.
Several parameters of the tracts, including shape, volume and anisotropy, may be
useful for monitoring the progression of MS.
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In both of these applications we seek a method of mathematically modeling the
tracer or anatomical structure with an envelope or tube that “represents” the object
in imaging space. Here, what is meant by “represents” is context- and modality-
specific, as different imaging techniques and settings can result in vastly different
goals for estimating the tube. A strength of our proposed method is its ability to
accommodate a large variety of settings.

We distinguish the tube-fitting problem from the volume of excellent work on
simultaneous confidence bounds around estimated functions. In our case, the tube
is not a measure of uncertainty, but is instead is the estimand of interest.

The steps of the tube-fitting algorithm are illustrated in Figure 1 using data from
our first application. Each of these steps will be examined in detail in Section 4,
but we provide an overview here. Panel 1 shows the data taken from a SPECT
image and panel 2 adds a curve fitted through the center of the data. In panel 3
we select a point f0 on the curve and identify nearby image points; panel 4 is a
detail of panel 3. Panels 5 and 6 show the local linearization method used to project
the nearby image points into the plane orthogonal to the fitted curve at f0, while
panel 7 shows an ellipse used as an estimate of the tube’s extent. Panel 8 shows

FIG. 1. A “Roadmap” of the tube-fitting algorithm.
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this ellipse in the context of the image points and centerline. Finally, panel 9 shows
the result of many iterations of the steps of the tube-fitting algorithm. We will refer
to this figure often in our exposition of the tube-fitting algorithm.

The curve fitted through the center of the data represents the “spine” of the tube.
It is also useful in our applications to represent the metric by which measures of
extent of the tube are taken. This component relies on existing methodology; the
remaining steps of the tube-fitting algorithm and the application to two imaging
modalities represent the methodological advances of this manuscript.

We apply the tube-fitting algorithm to an example of each type of image. The
results indicate that the procedure could be used in the SPECT application as a
replacement for the invasive sigmoidoscope procedure, which is currently used in-
stead of image processing. In the second application, our algorithm is used to ex-
tract MRI quantities at many points along a white-matter tract. This is an improve-
ment over the current approach, which examines tracts by looking at a sequence of
axial slices along the image and which does not produce satisfactory results when
the long axis of the tube is not normal to the axial plane (see Section 6).

The manuscript is structured as follows. Section 2 describes the data sets in de-
tail. Section 3 outlines the modified-principal-curve algorithm that serves as the
basis of the tube-fitting procedure. Section 4 gives the detailed tube-fitting algo-
rithm. Section 5 provides a validation study of the algorithm. Section 6 presents
the application to SPECT and DT images. Section 7 is a discussion.

2. Motivating data sets.

2.1. SPECT colon imaging. Our SPECT colon data arise from an experiment
designed to study the viability of microbicide lubricant for HIV transmission dur-
ing anal intercourse [Hendrix et al. (2008); Hendrix, Cao and Fuchs (2009)].
SPECT imaging uses a radioactive isotope as the source signal. Projections of
emitted photons are collected via gamma cameras mounted on a gantry that are ro-
tated around the subject. Computed tomography algorithms are used to convert the
projection images into a three-dimensional image. The principal benefit of SPECT
imaging is the ability to image changes in tracer position and distribution within
an anatomical structure over time, rather than simply imaging anatomy.

The experiment was designed to simultaneously image the distribution of sur-
rogates for the microbicide lubricant and the viral-mixed semen to assess if the
coverage of the lubricant is sufficient. The experiment used an over-the-counter
lubricant as a surrogate for the microbicide, which was mixed with a radioactive
tracer (TC-sulfur colloid). A radiolabeled surrogate for the viral-mixed semen is
being used for extensions of the experiment, though the data considered here con-
tains only the lubricant.

Ten milliliters of the radiolabeled lubricant was injected into the subject’s colon,
who subsequently simulated receptive anal intercourse using an artificial phallus.
The subject was then imaged using a dual-head VG SPECT imaging system (GE
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Medical Systems, Waukesha, WI) equipped with a low-end X-ray computed to-
mography system (Hawkeye). The image was reconstructed using an ordered sub-
sets EM algorithm and filtered as provided with the scanner software (GE eNTE-
GRA workstation, version 1.04). We present analysis of the reconstructed SPECT
image of the distributed lubricant.

2.2. Quantification of DTI tractography. As mentioned above, DTI [Basser,
Mattiello and LeBihan (1994b)] has two major values as an imaging modality: its
sensitivity to tissue microstructure [Beaulieu (2002)] and its ability to guide trac-
tography of the major white matter tracts [Mori et al. (1999)]. This is due to DTI’s
sensitivity to diffusion anisotropy [Basser and Pierpaoli (1996)]—the tendency of
water to diffuse in a particular direction, which, in the brain and spinal cord, is of-
ten along the course of an axonal tract. By combining analysis of tissue microstruc-
ture with tractography, we can limit our focus to one or several tracts with spe-
cific functional correlates, for example, motion, vision and language. Within these
tracts, we can analyze not only quantities derived from DTI including anisotropy,
absolute and directional diffusivity of water, and tract volume, but also quantities
derived from other MRI sequences that have been coregistered to the DTI [Reich
et al. (2007)]. This offers the possibility of a comprehensive, multimodal approach
to analyzing the structure-dysfunction relationship in the central nervous system.

To compare tract-specific imaging results across individuals, a normalization
procedure is required. There are two general approaches: whole-brain normaliza-
tion, which involves warping brains to match one another or some canonical atlas,
and tract-specific normalization, which focuses specifically on the tract of inter-
est. The former approach is computationally intensive and may require sacrificing
optimal registration of the tract of interest to achieve acceptable registration of
the whole brain. We have introduced an approximate tract-specific normalization
approach that samples tracts in a slice-by-slice manner [Reich et al. (2007)]; this
approach has yielded promising correlations between tract-specific MRI quantities
and clinical disability scores [Reich et al. (2008, 2009)]. However, because white
matter tracts in the brain do not typically run perpendicular to the cardinal imaging
planes (axial, coronal and sagittal), a parametric approach that accounts for each
tract’s specific shape and anatomical course would reduce noise and might increase
sensitivity for detection of relevant abnormalities. The parameterization would be
different for each tract but would ideally be generated by an algorithm that could
be applied automatically to any tract. In particular, we hope that the tube-fitting
algorithm will allow us to estimate quantities derived from DTI at many points
along a tract, regardless of the anatomical course of that tract.

Details of our MRI acquisition protocol have been described [Reich et al.
(2006)]. On a 3-Tesla Philips Intera scanner, we obtained whole-brain DTI im-
ages in the axial plane (2.2 × 2.2 × 2.2 mm voxels interpolated on the scanner to
0.8 × 0.8 × 2.2 mm; parallel imaging with a sensitivity-encoding reduction fac-
tor of 2; 2 averages; 32 noncoplanar gradient directions with a nominal b-value
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of 700 s/mm2; and a scanner average of 5 minimally diffusion-weighted scans
with b ≈ 33 s/mm2). We coregistered all images to the first minimally diffusion-
weighted scan using the Automatic Image Registration (AIR) algorithm [Woods,
Cherry and Mazziotta (1992)] with a 6-parameter rigid-body transformation, and
we corrected the gradient directions for the rotational component of the transfor-
mation. We then estimated the diffusion tensor in the standard fashion [Basser,
Mattiello and LeBihan (1994a)], diagonalized the tensor to obtain its eigenval-
ues and eigenvectors, and calculated maps of anisotropy and diffusivity. These
analyses were performed in DtiStudio [Jiang et al. (2006)], as well as with custom
software purpose-written in Matlab (The Mathworks, Natick, MA).

We used the DTI data sets to obtain 3D reconstructions of the corticospinal
tracts using the fiber association by continuous tractography method [Mori et al.
(1999, 2005); Mori and van Zijl (2002)]. We reconstructed the tracts using frac-
tional anisotropy and the principal eigenvector of the diffusion tensor. We used
every voxel in the brain with fractional anisotropy > 0.13 as a potential starting
point for tractography and halted individual tracts once a voxel with fractional
anisotropy < 0.13 was encountered or when the reconstructed tract turned at an
angle steeper than 40 degrees from one voxel to the next. We chose multiple re-
strictive regions of interest to limit the reconstructed corticospinal tracts to their
known anatomical course; these regions of interest have been described previously
[Reich et al. (2006)] and were drawn in the rostral medulla, rostral pons and sub-
cortical white matter. We manually excluded the rare spurious fibers that were
included in this reconstruction but that clearly fell outside the major portion of the
corticospinal tract.

3. Modified principal curve algorithm. To construct our tube, we first need
a fitted curve that acts as a centerline for our data. Statistical analysis for three-
dimensional curve-fitting and centerline calculation has received little attention in
the statistical community. (We emphasize the difference between fitting nonpara-
metric functions, a process well studied in the smoothing literature, and nonpara-
metric curve-fitting.) However, curve fitting has received a great deal of attention
in the computer-vision and medical-image-processing literature. Relevant litera-
ture exists in the field of virtual colonoscopy and localization of polyps [see, for
example, McFarland et al. (1997); Samara et al. (1998, 1999); Hong et al. (1997);
Chiou et al. (1998); Deschamps and Cohen (2001)]. These approaches generally
require connected curves, and are not directly applicable to the range of problems
that we consider, which may have interrupted structures or may be a voxel-wise
reduction of connected-curve data. Also relevant from the image processing liter-
ature is the tremendous volume of work on Bezier curves and B-splines [see the
review in Cohen, Riesenfeld and Elber (2001)]. Though we have explored Bezier
approaches, we do not utilize them because of the large amount of user input re-
quired to appropriately place knots.
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Another popular collection of techniques treats the points of the image as a
networked graph and uses combinatorial algorithms to find globally optimal paths
[Cohen and Kimmel (1997); Chaudhuri et al. (2004); Chiou et al. (1999); Bitter
et al. (2000a, 2000b)]. Dijkstra’s algorithm is often used to find solutions [Dijkstra
(1959)].

Perhaps the most statistical approach that we have encountered relies on the use
of principal curves [Hastie and Stuetzle (1989); Hastie (1984); Hastie, Tibshirani
and Friedman (2001)]. These generalizations of principal components find a curve
achieving a local minimum for the sum of the orthogonal distances of the points
onto the curve. This approach is useful in statistical methods of image analysis
[Banfield and Raftery (1992); Caffo et al. (2009)]. Numerous modifications of the
principal-curve idea have been published [see the discussion in Kegl et al. (2000)].
In addition, there are related stochastic search algorithms for finding centerlines, as
considered in Deng (2007). Our approach in this manuscript utilizes the modified-
principal-curve algorithm presented in Caffo et al. (2009). This procedure can ac-
commodate interrupted curves, constrained points and can fit low variation curves
that the original algorithm could not. We briefly describe the procedure below.

To start, we need a method for representing a curve. The study of differen-
tial geometry has revealed several equivalent methods for representing real-valued
curves [Cohen, Riesenfeld and Elber (2001); Thorpe (1979); Kreyszig (1991)], in-
cluding implicit representations, the set of points {(x, y, z) ∈ R

3 | F(x, y, z) =
G(x,y, z) = 0}, for surfaces F and G and parametric representations. We fo-
cus entirely on parametric representations, of which implicit representations are
a special case [Kreyszig (1991)]. An allowable parametric representation sets
f (t) = {f x(t), f y(t), f Z(t)} : [a, b] → R

3, where [a, b] is an interval in R and
at least one of df x(t)/dt , df y(t)/dt or df z(t)/dt is nonzero. We assume the
constraint t ∈ [0,1] for identifiability. However, this assumption alone does not
uniquely specify a curve. Indeed, if the curve is considered to be the location of a
particle at time t , then the same curve can arise from particles following the same
path at different rates.

Given this parametric curve representation, we view the process of fitting a
curve through three-dimensional coordinates as inherently a missing-data problem.
Let {(Xi, Yi,Zi)}ni=1 be a collection of realized values for the coordinate functions.
The process of finding a curve through them largely amounts to finding a reason-
able estimates for the missing data {ti}ni=1. However, estimating the missing time
data, {ti}ni=1, is a difficult process.

Here {Xi,Yi,Zi}ni=1 are lattice values of points in the image surviving a thresh-
olding procedure for noise reduction. In addition, to improve computing times, we
often work with a subset of the points, sampled uniformly, as the curve is often
well defined with much fewer points. This is not necessary for the DTI tractogra-
phy example, but it speeds up computing substantially at no loss of quality-of-fit
for the SPECT colon data.
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The basic principal curve algorithm is a blocked-maximization algorithm that
iterates between two steps: calculating the time points and fitting curves to the
coordinate data: {(Xi, ti)}, {(Yi, ti)}, {(Zi, ti)}. Suppose that an initial estimate of
f , say, f̃ , is given. Then, the ti are calculated as

ti = argmin
t∈[0,1]

‖f̃ (t) − (Xi, Yi,Zi)‖.(1)

The estimate f̃ is then updated by fitting a smoother between the {Xi} and the {ti},
the {Yi} and the {ti}, and the {Zi} and the {ti}, separately. We use cubic regression
splines for this portion of the algorithm, though other smoothers could be used.
However, regression splines allow for easily calculated derivatives on the coordi-
nate function. The steps of updating the {ti} and f̃ are iterated until the change in
f̃ between successive steps is sufficiently small.

Several modifications to the principal curve algorithm outlined above are pro-
posed by Caffo et al. (2009). First, the modified-principal-curve approach allows
for user-specified end points. Second, it molds the curve by gradually increas-
ing the degrees of freedom in the regression splines, so that gross features of the
curve are captured before fitting finer details. This provides for better fits to com-
plex curves. Third, the modified approach incorporates image intensities to adjust
the emphasis placed on high- and low-intensity points in the curve-fitting. Fourth,
a grid search is used to perform the minimization in the second step of the algo-
rithm to speed up convergence. Finally, the stopping criterion is based on rela-
tive change in mean square error. As described originally, the modified-principal-
curve-fitting algorithm also allows for user-specified interior points, though con-
strained interior points did not lead to better fits in our applications.

The modified principal curve algorithm is semiautomated, requiring user de-
fined endpoints and, in some cases, adjustment of the final number of degrees of
freedom used in the regression splines. This algorithm provides a differentiable
curve that acts as a centerline through the data. We emphasize, however, that the
algorithm used to construct the centerline curve functions independently of the
algorithm used to fit the tube. So, for example, other less automated procedures,
such as using B-splines with user-selected knot points, could be used for this step.

4. Tube-fitting algorithm. In the previous section we outlined the curve-
fitting algorithm, which provides the centerline for our tube-fitting algorithm. Be-
fore we begin the exposition of the tube-fitting algorithm, we pause briefly to reit-
erate our goal and outline our general approach.

In this section our aim is to provide an estimate of the boundary of a tube-
shaped structure based on a collection of observed data points from the interior of
this structure. To accomplish this, we estimate the centerline of the structure and,
at many points along this centerline, estimate the cross-sectional extent of the tube.
The tube-fitting algorithm consists of a collection of steps that can proceed from
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any point on the centerline and progresses to an estimate of cross-sectional bound-
ary of the tube. While the basic outline of the procedure is simple and intuitive,
many of the steps require special care.

The steps in the tube-fitting algorithm are as follows: (i) select a starting point
f0 on the centerline; (ii) identify nearby image points; (iii) project nearby image
points onto the plane orthogonal to the centerline at f0; (iv) fit a bivariate normal
distribution to the (now two-dimensional) points in the orthogonal plane; (v) use
a level set of the bivariate normal to define the tube at the chosen starting point
on the fitted curve. Each of these steps will be examined in greater detail in the
following subsections. Further, we encourage the reader to refer often to Figure 1,
which shows graphically the steps in the tube-fitting algorithm.

We pause to discuss the choice of an ellipse (the level set of a bivariate normal)
as the shape of the cross-sectional boundary of the tube. Our first inclination was
to use the convex hull—the smallest closed set containing the points—because it is
flexible and comparatively unrestrictive. For a one-dimensional cross section, this
approach is analogous to using the minimum and maximum. However, such esti-
mates do not account for any noise in the measurements inherent in some imaging
techniques and would only be acceptable for very high resolution images without
noise. Moreover, similar to elliptical cross sections, convex hulls cannot estimate
nonconvex cross-sectional shapes. A circle centered at the origin, that is, the level
set of a bivariate normal distribution with no correlation, was too restrictive for the
shapes seen in practice.

Therefore, as a compromise between these extremes, we use an ellipse to define
the boundary of the tube. This choice coincides with observed points projected
into the orthogonal plane as well as our scientific collaborators’ knowledge of the
anatomical structures in our motivating data sets; for other applications, a differ-
ent choice for the shape of the boundary may be needed. We emphasize that our
algorithm is easily adapted to these other applications, in that only the final step is
changed. Last, in Section 4.7 we explore our algorithm’s performance in a case in
which the cross section is not elliptical.

4.1. Step 1: Selecting a starting point. The elements of the tube-fitting algo-
rithm discussed in this subsection are illustrated in panels 3 and 4 of Figure 1.

As noted, the tube-fitting algorithm consists of several steps that are repeated
along the length of the centerline. We prefer to take 50 equally spaced points on
the centerline as the individual starting points at which we estimate cross sections
of the tube. The steps in the algorithm are the same, regardless of the position of
the starting point. To aid in the clarity of our figures, we display a starting point
in the middle of the curve. We emphasize that the starting points, and hence the
locations where the cross section of the tube is estimated, do not have to be the
projection of an observed point onto the curve, nor does it have to lie on the lattice
defined by the imaging coordinates.
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Notationally, we will call the starting point on the centerline f0. Also, we recall
the latent variable t that was used in Section 3 to parameterize the centerline f (t).
Let t0 be the value of that variable such that f0 = f (t0). The variable t will prove
to be a useful tool in the following steps, as it orders the image points according to
their orthogonal projection onto the centerline f (t).

4.2. Step 2: Identifying nearby image points. The elements of the tube-fitting
algorithm discussed in this subsection are illustrated in panels 3 and 4 of Figure 1.

Again, in the steps of our algorithm we are trying to estimate the cross-sectional
extent of the tube-shaped structure at f0. We base our estimate of the boundary on
image points that are local to f0. In this subsection we discuss what is meant by
“local” in this context.

Let the set {Pi}ni=1 be the points from the image used in the curve-fitting proce-
dure, so that Pi = (Xi, Yi,Zi). Recall that in Section 3 we assigned to each Pi a
value of the latent variable ti such that the distance between Pi and the centerline
f (t) is minimized. Our goal in this subsection is to select points in {Pi}ni=1 that
are near f0. We use the collection {ti}ni=1 to do this. As we argue below, this is
preferable to the seemingly more intuitive approach of using Euclidean distance.

The neighborhood of points to be used in estimating the cross-sectional extent
of the tube is

{Pij } = {Pi | |t0 − ti | < tr},(2)

where tr is the range of the time window. Intuitively, measuring proximity in terms
of the latent variable t allows us to select the nearest neighbors of f0, defining “lo-
cal” in terms of distance on the curve f (t). This strategy for defining a neighbor-
hood of observed points around f0 has major benefits over competing methods,
such as using a neighborhood based on the Euclidean distance between the ob-
served points and f0. Specifically, for f0 near high curvature in the fitted curve,
observed points can then overly contribute to the fitted tube at multiple locations.
See Figure 2 for a two-dimensional illustration. The blue points in the left panel
are in the Euclidean neighborhood structure of P0, and include points that lack face
validity for contributing to the estimate of the extent of the tube. In contrast, the
right panel shows that the neighborhood defined as (2) has much better behavior.
We note that in areas of low curvature, our method for choosing {Pij } coincides
with the method using Euclidean distance.

For our applications, we have found that choosing 0.05 ≤ tr ≤ 0.2, depending
on the total number of image points, includes enough points to estimate the tube’s
shape without using locations that are very distant. (Recall that our curve-fitting
algorithm specifies 0 ≤ t ≤ 1.) However, we emphasize that truncating points in
this way is done primarily for computational purposes. In estimating the extend of
the tube, we weight points (see below) by their distance in t , so that further away
points contribute less to the estimate.



TUBE-FITTING FOR ANATOMICAL AND FUNCTIONAL STRUCTURES 347

FIG. 2. Comparison of methods for defining the neighborhood around f0. In the left, the neighbor-
hood is defined as though points with a Euclidean distance from f0 less than 2; in the right, we use
a t-window with tr = 0.2. In both, the point f0 is shown in green, and the points in the set {Pij } are
shown in blue.

4.3. Step 3: Local linearization and projection onto the cross-sectional plane.
The elements of the tube-fitting algorithm discussed in this subsection are illus-
trated in panels 5 and 6 of Figure 1.

Thus far, we have selected a starting point f0 and found the collection of nearby
points {Pij }. Next, we will project the points {Pij } onto the orthogonal cross sec-
tion; once the points are projected into a single two-dimensional plane, we will
estimate the tube’s extent.

The projection of the set {Pij } onto the orthogonal plane is a step that may
strike a reader as unexpectedly complex. A simple, intuitive and standard ap-
proach is to take as the projection of Pi the point in the orthogonal plane with
minimum Euclidean distance from Pi . However, in the context of our tube-fitting
algorithm, this standard projection fails in the following way. In areas of modest or
high curvature, such projections skew toward the interior of the curve, rather than
remaining centered around the centerline. Estimates of the extent of the tube are
therefore similarly skewed. Figure 3 illustrates this point using a two-dimensional
analog, showing standard projections and projections using our novel projection
approach which we explain next. A three-dimensional illustration appears in Sec-
tion 5.

Instead of the standard projection, we use a method that maintains a point’s dis-
tance and direction from the centerline in its projected position on the orthogonal
plane. Conceptually, our method stretches the space containing the centerline f (t)
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FIG. 3. Two projection methods shown in an area of high curvature: in green, standard projections
minimizing the distance between a point and the line; in red, our modified projections that maintain
a point’s distance from the fitted curve. Again, f0 is highlighted in green and the {Pij } are shown in
blue.

and the points Pi around it so that f (t) is linear. Our conceptual framework then
considers the plane containing the image point Pij and the point on the centerline
f (tij ) as a transparent sheet [note this plane is orthogonal to the centerline at f (tij )

from our construction of tij ]. The projection of {Pij } onto the cross-sectional plane
is found by stacking one such transparent sheet for each point in {Pij }, overlaying
them so that the points {f (tij )} coincide.

More technically, our projection method is carried out in the following steps.
Consider the plane orthogonal to f (ti). By the construction of f (t), both Pi and
f (ti) lie in this plane. We rotate and translate this plane so that: (i) the plane is
parallel to the axial plane of the image (i.e., is horizontal), (ii) the height of the
plane is Z = 0, and (iii) the point f (ti) is at the origin.

To accomplish this, we let n = g(ti) = ∇f (ti)/‖f (ti)‖ and, hence, the plane
orthogonal to f (t) at f (ti) is the collection of points R = {r ∈ R

3 | n ·(f (ti)−r) =
0}. Let A be the rotation matrix so that AR is horizontal (parallel to the XY plane).
Finally, let P ′

i = APi − Af (ti).
Notice that P ′

i has Z coordinate 0 and its distance from the origin is equal to the
distance between Pi and its projection onto the fitted curve, f (ti). We perform this
process for all points in the neighborhood of P0, {Pij }, to obtain a set of rotated and
translated points, {P ′

ij
}. These points in two-dimensional space have distance and

direction from the origin that is the same as their distance and direction from the
fitted centerline. In effect, we have locally linearized our fitted curve and collapsed
the locations in the current t-window into a single plane.
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4.4. Step 4: Fitting a bivariate normal in the orthogonal plane. In Sections 4.1
and 4.2 we selected a starting point and found image points that were near our
starting point. In the previous section we projected points local to f0 onto the
cross-sectional plane. Next, we fit a bivariate normal distribution to the projected
points in the cross-sectional plane.

Our task here is subtly affected by our overarching goal to provide an estimate of
the boundary of the tube-shaped structure at our current starting point f0. While we
have selected points local to f0 to construct this estimate, we further use weights
so that more distant points have a smaller impact on the estimation than nearer
points. Again, we use the latent variable t as a tool for constructing these weights,
precisely because t is a measure of distance along the centerline rather than a
measure of Euclidean distance.

Specifically, we use a cosine-transformed distance as the weight:

wij = cos[(tij − t0)π/r] + 1∑J
j=1 cos[(tij − t0)π/r] + 1

(3)

with r the half width of the t-window. This weighting scheme has the desired
effect of emphasizing nearby points while smoothly decreasing to zero for more
distant points. We note that other weighting schemes that decrease to zero at the
tails, specifically kernel weighting schemes, give very similar results. Schemes
that do not decrease to zero, like one that gives uniform weight to all points in the
t window, are less desirable because the resulting tube is not necessarily smooth.

Let {wij } be the collection of normalized weights. Then the estimated bivariate
normal has mean and variance

μ̃ =
J∑

j=1

wij P
′
ij

and �̃ =
J∑

j=1

wij (P
′
ij

− μ̃)(P ′
ij

− μ̃)T ,(4)

where 1 ≤ j ≤ J indexes ij and {P ′
ij
} is the projection of the local points into the

cross-sectional plane.

4.5. Step 5: Estimating the tube’s boundary. The elements of the tube-fitting
algorithm discussed in this subsection are illustrated in panels 7 and 8 of Figure 1.

In the final step of our algorithm, we select a level set of the bivariate normal fit
in the previous step as our estimate of the cross-sectional boundary of the tube. In
the two-dimensional cross-sectional plane, the tube is estimated by the level set

Ĝ′(t0) = {
P ∈ R

2||2π�̃|−1/2 exp{−(P − μ̃)′�̃−1(P − μ̃)/2} > l
}
,(5)

where Ĝ(t0) is the elliptical estimate of the boundary and l is chosen so that∫
P∈Ĝ′(t0)

|2π�̃|−1/2 exp{−(P − μ̃)′�̃−1(P − μ̃)/2}dP = 1 − α.(6)
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Typically the choice of α will be context-specific, depending on the shape of the
true boundary G(t0) and the measurement error variance (if any exists). In Sec-
tion 4.6 we explore the effect of α on the resulting estimate Ĝ(t0). Last, we recall
that our projection method took each point into the XY -plane through a series of
rotations and translations. We apply these steps in reverse to take the fitted ellipse
into our original space.

4.6. Choosing α. As previously mentioned, the underlying modality and noise
characteristics of the image impacts how one selects the cross-sectional ellipse
covering the structure; in other words, how one selects α in the level set of the
bivariate normal. Our two examples highlight the difficulty in obtaining a universal
rule. The SPECT image is clearly very noisy, as is required by the underlying
Poisson decay of the tracer and the other sources of noise imposed during image
acquisition and reconstruction. The DTI tract, on the other hand, appears nearly
noise free. However, there is noise in the underlying DTI image and potential noise
and bias from the tractography algorithm. However, without repeat scans, it is
impossible to characterize this variability in the DTI image. Therefore, we seek
the most accurate representation of the tract image, acknowledging that there are
sources of noise and bias that are not represented or quantified. Thus, the choice
of α differs greatly in these two applications.

To elaborate on this choice, we have two competing goals: (i) to maximize the
coverage of the true cross section by our estimated ellipse; and (ii) to avoid choos-
ing the ellipse excessively large through the inclusion of points not in the cross
section. To characterize these goals, we examine the quantities

TP = A{G(t0) ∩ Ĝ(t0)}
A{G(t0)} and FP = A{G(t0)

c ∩ Ĝ(t0)}
A{G(t0)} ,(7)

where A(·) gives the area of the designated shape, and again G(t0) is the true cross-
sectional boundary of the tube and Ĝ(t0) is the elliptical estimate of the boundary.
These quantities, TP and FP, can be thought of respectively as the true and false
positive rates normalized to the area of G(t0), so that 0 ≤ TP ≤ 1 and 0 ≤ FP.
These quantities are analogs of the true and false positive rates from the analysis
of classification data.

As discussed above, because it depends highly on the distribution of measure-
ment errors and other factors, the choice of α will be context-specific. We therefore
advise a validation study tailored to the application at hand, if such a study is possi-
ble. Indeed, in Section 5 we present validation data both to confirm the tube-fitting
algorithm and to aid in selecting α for our SPECT imaging application. However,
a study of this kind is not always possible, so here we present a brief simulation
designed to provide a basis for evaluating the interplay between the choice of α

and noise levels in the image.
We posit an underlying collection of true points from an ellipse and add spher-

ical noise. The goal is to estimate the ellipse. Thus, two sources of variation are
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FIG. 4. The left panel shows several of the true ellipses used in our simulation. On the right, we
show the points sampled uniformly from an ellipse in black and the points observed with measurement
error in red.

considered, the sampling of underlying true points and noise. The simulation con-
sisted of the following steps:

1. Points are sampled uniformly from the interior of the underlying ellipse G.
2. Normal errors with variance matrix � = σ 2I2×2 are added to the sampled

points to give observed points.
3. From the observed points, a bivariate normal is estimated and used to construct

Ĝ for a range of α values.
4. TP and FP are calculated for each of the α values.

These steps are iterated 100 times each for a variety of ellipse shapes and measure-
ment error variances. Figure 4 shows some of the ellipses G used in our simulation,
as well as a representative collection of sample points and observed points.

We found that two main factors should contribute to the choice of α: the mea-
surement error variance and the eccentricity of the ellipse. The eccentricity of
an ellipse with semi-major and -minor axes A and B , respectively, is defined as

e =
√

A2−B2

A2 . For low measurement error variance, say, σ = 0.1 ∗ B , the eccen-
tricity of the ellipse is irrelevant: taking α = 0.12 gives TP = 0.95 and FP = 0.1.
For large measurement error variance, the eccentricity of the ellipse is quite im-
portant. Indeed, for an ellipse with A = B and σ = B , α = 0.62 yields TP = 0.95
and FP = 0.2, while for an ellipse with A = 4B and σ = B , the same choice of
α gives TP = 0.55 and FP = 0.05. Figure 5 shows the results of our simulation
study. We present these results in two ways. First, keeping the eccentricity of the
ellipse constant, we examine the effect of varying σ on TP and FP. Second, we
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FIG. 5. Results of the simulation for choosing α. For all panels, the solid line represents TP and
the dashed line FP. In the top row, each panel fixes the shape of G and varies σ , while in the bottom
row σ is fixed for each panel and the shape of the ellipse changes.

keep σ constant and allow the shape of the ellipse to vary. Finally, we note that
the results presented here hold for ellipses in other scales; that is, TP and FP as a
function of α are the same for A = B = 10 and σ = 5 and for A = B = 100 and
σ = 50.

4.7. Performance of ellipse as cross-sectional shape. Finally, we used a simu-
lation study to examine the effect of choosing an ellipse as the shape for the tube’s
cross section when the true cross section is nonelliptical. We used a variety of
cross-sectional shapes: a square, a “U” and, for reference, a circle. For each cross
section, we created a three-dimensional structure by stacking fifty copies of the
shape, one on top of the next. We applied the tube-fitting algorithm as presented
(that is, using an ellipse as the cross section) with α = 0.12 to each of these struc-
tures.

In Figure 6, we show each of the cross sections, as well as a typical estimated
ellipse. For the square, our ellipse misses the corners and mistakenly includes extra
points on the sides. However, the true and false positive rates, 0.967 and 0.146,
respectively, indicate that miss-specifying the cross-sectional shape in this case
still provides a reasonable estimate of the three-dimensional structure. We note
that using a convex hull as to estimate the extent of this structure would be ideal,



TUBE-FITTING FOR ANATOMICAL AND FUNCTIONAL STRUCTURES 353

FIG. 6. Three true cross-sectional shapes used in our simulation, as well as a typical estimated
ellipse.

having a true positive rate equal to 1 and a false positive rate equal to zero. For
the “U” shape, the ellipse includes almost all of the true image points, but also
includes a large number of nonimage points; the true and false positive rates are
0.98 and 0.338. This cross-sectional shape is particularly difficult; a convex hull
would include many nonimage points and have a high false positive rate. For the
circle, the ellipse performs well, as is expected; the true and false positive rates are
1 and 0.089. Further, we note that taking α = 0.14, rather than α = 0.12, gives true
and false positive rates equal to 1 and 0, respectively.

From this simulation, we see that misspecification of the cross-sectional shape
can result in a lower true positive rate and higher false positive rate, but that the
performance of the fitted tube is generally still reasonable. Moreover, in situations
where the true cross section is approximately or exactly elliptical, as is true in our
applications, the fitted tube performs quite well. Last, we reiterate that the choice
of the cross-sectional shape is the last step of the tube-fitting algorithm, and can
be changed in a straightforward way in other applications without affecting the
majority of the algorithm.

5. Validation. Before applying our tube-fitting algorithm to image data, we
pursued a brief validation study using mathematical phantoms. A mathematical
phantom is simply a shape, created digitally, which is then passed through a com-
putational model of the imaging process. Accurate computational models of dif-
fusion imaging are not available due to the inherent complexity of nuclear spin
systems and water diffusion. On the other hand, very accurate models for some
transmission and emission imaging, such as X-rays, planar scintigraphy, SPECT,
PET (positron emission tomography) and CT (X-ray computed tomography) are
available. In these cases the imaging process is perhaps simpler to model than in
MRI and highly accurate models of the imaging physics have been created. To
generate the SPECT images for validation, we used system models implemented
in the Division of Medical Imaging Physics in the Department of Radiology at the
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Johns Hopkins University. In this method, the projection data of the phantom were
obtained using an analytical projector that models all of the important components
of the images physics, including photon interactions inside both the phantom and
the detector system. The 3D SPECT images were then reconstructed from the pro-
jection data using an iterative statistical algorithm.

Our phantom is a three-dimensional coil of fixed diameter; we also investigated
coils with monotonically increasing or decreasing diameters, with very similar re-
sults. The phantom was projected using the analytical projector described above
with effects of attenuation and detector resolution blur. Poisson noise with data-
derived means was also added to the projection data. Several noise levels were
investigated to mimic images taken at baseline, three hours, 10 and 24 hours
after introduction of the tracer. (Later images are noisier than earlier images.)
The SPECT images were reconstructed using the OS-EM algorithm [Hudson and
Larkin (1994)].

Each image had an imaging space of over 20,000 nonbackground voxels. To
speed up curve-fitting and tube-fitting algorithms, we randomly sampled 1000 lo-
cations among these, separately for each validation image. The algorithms were
run on the sampled locations, and the resulting fitted tube was compared to the
true underlying anatomical structure. Additionally, we varied the level set of the
bivariate normal used to define the tube at each point along the fitted curve, which
is equivalent to varying the choice of α. Particularly, we were interested in the pro-
portion of points included in the tube that were indeed in the anatomical structure
(true positives), the proportion of points included in the tube that are not in the
structure (false positives), and the effect of α—the level of the bivariate normal
used in constructing Ĝ′(t0)—on these rates. Our goals are to maximize the true
positive rate while minimizing the false positive rate; that is, we want our tube to
be large enough to capture the structure but not so large as to include extraneous
points.

There are two important differences between our current validation study and
the simulation study in Section 4.6. The first is that our current study is tailored to
the SPECT application, and is therefore preferable for selecting α in this setting.
Second, the true and false positive rates discussed here are taken over the entire
fitted tube, rather than at a single fitted ellipse as in our previous simulations.

It is worth noting that the fitted tube captured the shape of the anatomical struc-
ture quite well, even in noisier images. As seen in the left panel of Figure 7, the
false positives and false negatives occurred primarily in a thin layer on the outer
surface of the anatomical structure. These errors are at least in part due to variations
in the fitted curve and tube induced by randomly sampling 1000 points from the
more that 20,000 nonbackground voxels rather than to a general deficiency in the
tube-fitting algorithm. All other errors occurred at the endpoints of the tube, due
to the placement of the user specified endpoints in the the curve-fitting algorithm.
We include in the right panel of Figure 7 a similar image for a tube constructed
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FIG. 7. False positives (black) and false negatives (red) in tubes fitted to a SPECT scan at 10 hours.
Tubes were constructed using our local linearization method of projecting (left) and standard orthog-
onal projections (right).

using standard orthogonal projections. Here, the false positives occur almost ex-
clusively on the interior side of the structure and the false negatives occur almost
exclusively on the exterior side; this is consistent with our concerns above, namely,
that orthogonal projections skew toward the interior of the fitted curve. These ob-
servations reinforce our projection method and give us confidence in the ability of
the tube-fitting algorithm to accurately reproduce an imaged structure.

Figure 8 shows the true and false positive rates as a function of 1 − α. From
these graphs we see that for a fixed α, noisier images contain greater rates of both
true and false positives; the noise in the image leads to a wider fitted tube. We
also note that the α level set used to construct the tube does not correspond to the
true positive rate. Hence, it must be viewed as a tuning parameter used to balance
the true and false positive rates. Based on these figures, we select 0.8 ≤ 1 − α ≤

FIG. 8. True positive and false negative rates for each of the five validation images as a function of
the level used to determine the fitted tube.
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0.9, depending on the amount of noise in the image. For noiseless images (shown
in Figure 8 as “Truth”), choosing 1 − α = 0.9 gives a true positive rate ≈0.95
and a false positive rate ≈0.15; for our noisiest image (24 hours after baseline),
choosing 1 − α = 0.8 gives similar rates. We note that our selection is based on
visual inspection rather than a well-defined optimizing procedure.

6. Applications.

6.1. SPECT images. We first consider the SPECT colon image, which was
taken shortly after introduction of the tracer. We first filtered the image with a sim-
ple histogram filter to remove low intensity background noise and artifacts from the
reconstruction process. Next we sampled a subset of the remaining points to both
fit the curve and the tube. We used the modified principal curve-fitting algorithm
with K = 5 final degrees of freedom to find the centerline. Next, we employed
the tube-fitting algorithm with a time window width r = 0.2 and α = 0.15. Other
time windows produced generally similar results. However, shorter windows are
more sensitive to local variations in the density of sampled points, whereas longer
windows oversmooth and lose some gross anatomical features.

Figure 9 shows the sampled colon data, the fitted curve and the fitted tube col-
ored according to tracer concentration. As described above, the tracer concentra-
tion at each point along the curve was taken to be the summed concentration of
those points used to define the tube at that point. Though the fitted tube plausi-
bly recreates colon anatomy in terms of shape and width, we are unable to make
a comparison between the fitted tube and the subject’s colon. SPECT-CT scan-
ners typically produce poor CT scans; therefore, we lack good anatomical images
that could be used to make this comparison. However, a benefit of the tube-fitting
method is that it allows us to recreate the colon without radiating participants un-
necessarily or requiring additional expensive equipment.

FIG. 9. Three steps of the tube-fitting process. Farthest left is the sampled data from the SPECT
image; center is the centerline produced by the curve-fitting algorithm; right is the fitted tube, shaded
by tracer concentration (red is higher concentration, black is lower).
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FIG. 10. Concentration by distance from beginning of curve (near the anus). Concentration calcu-
lated using t-window and voxel-neighborhood approaches. Each curve is normalized to its maximum
value.

Figure 10 shows the concentration-by-distance curve. To find distance along the
curve, we initially employed the arc-length formula

d(t) =
∫ T

0

√{
d

dt
f̂ x(t)

}2

+
{

d

dt
f̂ y(t)

}2

+
{

d

dt
f̂ z(t)

}2

dt,(8)

using the final fitted curve. Though often the gradient of the fitted curve is easy to
calculate, a closed-form solution for the integral is not available. We have found
that simply calculating distance using the function value along the fine grid of
values of t used to create the tube is equally accurate. That is, we simply use lin-
ear approximation between equally spaced latent time points to measure distance
along the curve.

Computing the concentration at each distance from the curve onset can be ac-
complished in a variety of ways. Using the the neighborhood of t0 described in
Section 4, we can define for each ellipse the collection of intensities {Cij } for
those points {Pij } that are used to estimate the tube G(t0). A straightforward ap-

proach defines a proxy for the concentration as
∑J

j=1 Cij . However, a more ac-

curate measure of concentration is
∑J

j=1 Cij

A
, where A = area{Ĝ(t0)}, which takes

the cross-sectional area of the colon into account. We compare these methods for
finding concentration to those using a voxel-wise squared neighborhood approach
[Caffo et al. (2009)]. This approach consists of finding all image points that fall
within a cube of a given edge length and summing the concentrations of those
points. Three comparative drawbacks are apparent in this method: (i) as in the
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case of the projections above, points that are near in terms of Euclidean distance
but not t-distance may be included; (ii) there is no way to account for the width
of the colon at each point; and (iii) the voxel-neighborhood approach is signifi-
cantly more computationally intensive, especially for larger cube sizes. Notice in
Figure 10 that the voxel-neighborhood approach potentially underestimates con-
centration by averaging background voxels along with nonbackground.

6.2. DTI. Our second application is to a diffusion-tensor tractogram of the
intracranial portion of the corticospinal tract; this tract runs from the cerebral cor-
tex of the posterior frontal lobe to the spinal cord and consists primarily of motor
axons.

As with the colon application, we begin by implementing the curve-fitting algo-
rithm to the image data to find a centerline. Though the imaged tract has less appar-
ent complexity than the colon, to achieve an optimal fit we use K = 8 as the final
degrees of freedom. It is also worth noting that the image contains only 231 loca-
tions, so no sampling is necessary. (The point density of DTI-derived tractograms
can be highly variable, and, as noted above in Section 2.2, there is substantial un-
dersampling bias for tractograms of the corticospinal tract.) Next, we employ the
tube-fitting algorithm with time-window width of r = 0.4 and α = 0.1. The time-
window width is much wider than in the case of the colon application due to the
relative sparsity of points: a wider window is necessary to fit reasonable bivariate
normals, though such a wide window may smooth some of the finer details of the
tract. A lower α is chosen because of the low noise level in the tract image.

In Section 2.2 we noted that one of the goals of DTI is to compare tract-specific
MRI quantities across patients. For example, we would like to compare the frac-
tional anisotropy (FA) at many points along the cortico-spinal tract across subjects.
Previously, tract profiles have been constructed slice-by-slice; that is, by using the
average FA in a spatial window for each axial slice. Profiles constructed in this
way have correlated promisingly with clinical disability scores; however, this ap-
proach only works well when the tract is perpendicular to the axial plane, and,
moreover, only uses information in one plane rather than borrowing information
from neighboring planes.

Instead, we propose to use the fitted tube to construct the FA profile. Here,
the fitted tube is overlayed on the FA map and those points on the interior of the
tube are used to estimate the profile. At each point along the tract, the FA value
is taken to be the weighted average of those points falling in the t-window, just
as we estimated the concentration in our SPECT example. This approach has the
following benefits: (i) it follows the anatomical course of the tract; (ii) it can be
used when the tract is not orthogonal to any cardinal imaging plane; and (iii) it
smoothly estimates the tract’s FA profile.

Figure 11 shows a single subject’s left cortico-spinal tract with image points
scaled by FA value, and the FA profile generated using both the tube-fitting algo-
rithm and the slice-by-slice approach. Note that the tube-fitting approach results in



TUBE-FITTING FOR ANATOMICAL AND FUNCTIONAL STRUCTURES 359

FIG. 11. On the left, we show the left cortico-spinal tract scaled by FA value. On the right, we show
the FA profile constructed using the tube-fitting algorithm and using the slice-by-slice method.

a smoother profile. More importantly, the tube-fitting method gives a profile that
follows the course of the tract and accurately represents FA values at each posi-
tion along the tract, whereas the slice-by-slice approach gives FA values in a given
imaging plane.

7. Discussion. We have introduced a novel method for fitting three-dimen-
sional tubes to imaging structures. Notably, we demonstrated the utility of the
method on two very distinct imaging applications under different imaging modal-
ities. In the colon SPECT imaging application, the tube-fitting method greatly im-
proves upon previously used method of voxel-wise square neighborhoods. More-
over, our method produces an accurate mathematical model of the structure. Such
characterization of the object of interest could be useful for subsequent shape
analysis and for defining new measures of extent, volume and other features of
anatomical structures.

With regard to future applications, we note that the ongoing SPECT study is
now collecting dual-isotope images, with the goal of comparing the relative distri-
bution of microbicidal lubricants and HIV-infected semen in the colon. Surrogates
for both, tagged with tracers emitting gamma photons with different wavelengths,
are injected at the same time and are simultaneously imaged. Such dual-isotope
studies may lead to drastically improved fits—using image data from both trac-
ers greatly increases the number of points available for our curve- and tube-fitting
algorithms. However, these studies raise the problem of accurately distinguishing
and characterizing two tracer distributions in the colon. Moreover, the study now
collects images serially at several time points, giving us the opportunity to study
changes in the concentration-by-distance curves over time. We are currently in-
vestigating the use of the accompanying X-ray computed tomography image for
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FIG. 12. Example corticospinal tracts for which the curve-fitting algorithm (and therefore the
tube-fitting algorithm) fails.

registration across time. Also, determining an anatomical landmark to compare
curves across subjects remains difficult. We anticipate that bone landmarks from
the CT image could be used to solve this problem, though we acknowledge that
the colon can be fairly mobile across time and it’s relation to bones may not be
straightforward.

In the case of DTI tractography, the application of the tube-fitting algorithm to
longitudinal images of multiple sclerosis patients will provide measures of disease
progression. Ideally, one could use these measures to provide clinical evidence for
the effectiveness of treatments. Validating the prediction performance of such mea-
sures remains an important problem. Moreover, the curve-fitting technique may
not be applicable to all tracts (see Figure 12), and without an accurate centerline or
without additional assumptions such as spatial contiguity of all points within the
tract (so that the sampled tracts shown here can be considered nonrandom under-
samplings), the tube-fitting algorithm will not work. A possible solution could be
to adapt the curve-fitting technique found in Chung et al. (2010) that uses tractog-
raphy path information for use in these more difficult tracts. Also, we are currently
only using tracts created after ample preprocessing. Quantities derived from the
original DTI image, such as anisotropy or diffusivity measurements, may produce
more informative summaries of the tube. It is also possible that tube-fitting for
this problem is best integrated into the tractography algorithm, which we have cur-
rently treated as a completely separate preprocessing step. Alternatively, the tensor
itself could potentially be used to derive the individual tubes, obviating the need
for tractography. However, we note that the fact that our algorithm only relies on
existing tractography algorithms is also a strength, as it can be immediately ap-
plied.

We also note that one of the most important white matter tracts, the corpus
callosum, which connects the left and right hemispheres of the brain, is not a tube-
like structure. Instead it is more of a surface, with no clear centerline. Clearly, to
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analyze such structures a different approach is necessary. We are investigating the
possibility of using principal surfaces for this task [Leblanc and Tibshirani (1994);
Chang et al. (2001)].

A related problem germane to both application is the study of curves and
tubes across individuals and across time. For example, the analysis of the vol-
ume/distance curves or the analysis of other features estimated by the tube remains
an open question.

The curve-fitting algorithm itself could be improved. As seen above, it is not
universally applicable. Moreover, a more automated algorithm with less user input
is desirable. We are currently experimenting with a new stochastic search algo-
rithm for finding centerlines, such as the use of genetic algorithms and simulated
annealing. A benefit of these approaches is the wide range of objective functions
which can be constructed to force a desired curve fit.

The tube-fitting algorithm presented here is a novel approach for the estima-
tion of the the support of distributions in three dimensions. It is limited in that it
requires the support to have a reasonable centerline and in that it uses ellipses to
estimate the cross-sectional extent. However, it has proved a useful algorithm in
two applications and holds a good deal of potential to be utilized in the field of
medical imaging.
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