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A statistical model for predicting individual house prices and construct-
ing a house price index is proposed utilizing information regarding sale price,
time of sale and location (ZIP code). This model is composed of a fixed time
effect and a random ZIP (postal) code effect combined with an autoregressive
component. The former two components are applied to all home sales, while
the latter is applied only to homes sold repeatedly. The time effect can be
converted into a house price index. To evaluate the proposed model and the
resulting index, single-family home sales for twenty US metropolitan areas
from July 1985 through September 2004 are analyzed. The model is shown to
have better predictive abilities than the benchmark S&P/Case–Shiller model,
which is a repeat sales model, and a conventional mixed effects model. Fi-
nally, Los Angeles, CA, is used to illustrate a historical housing market down-
turn.

1. Introduction. Modeling house prices presents a unique set of challenges.
Houses are distinctive, each has its own set of hedonic characteristics: number of
bedrooms, square footage, location, amenities and so forth. Moreover, the price of
a house, or the value of the bundle of characteristics, is observed only when sold.
Sales, however, occur infrequently. As a result, during any period of time, out of
the entire population of homes, only a small percentage are actually sold. From
this information, our objective is to develop a practical model to predict prices
from which we can construct a price index. Such an index would summarize the
housing market and would be used to monitor changes over time. Including both
objectives allows one to look at both micro and macro features of a market, from
individual houses to entire markets. In the following discussion, we propose an
autoregressive model which is a simple, but effective and interpretable, way to
model house prices and construct an index. We show that our model outperforms,
in a predictive sense, the benchmark S&P/Case–Shiller Home Price Index method
when applied to housing data for twenty US metropolitan areas. We use these
results to evaluate the proposed autoregressive model as well as the resulting house
price index.
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A common approach for modeling house prices, called repeat sales, uti-
lizes homes that sell multiple times to track market trends. Bailey, Muth and
Nourse (1963) first proposed this method and Case and Shiller (1987, 1989) ex-
tended it to incorporate heteroscedastic errors. In both models, the log price differ-
ence between two successive sales of a home is used to construct an index using
linear regression. The previous sale price acts as a surrogate for hedonic infor-
mation, provided the home does not change substantially between sales. There is a
large body of work focused on improving the index estimates produced by the Bai-
ley, et al. approach. For instance, a modified form of the repeat sales model is used
for the Home Price Index produced by the Office of Federal Housing Enterprise
Oversight (OFHEO). Gatzlaff and Haurin (1997) suggest a repeat sales model that
corrects for the correlation between economic conditions and the chance of a sale
occurring. Alternatively, Shiller (1991) and Goetzmann and Peng (2002) propose
arithmetic average versions of the repeat sales estimator as an alternative to the
original geometric average estimator. The former work is used commercially by
Standard and Poors to produce the S&P/Case–Shiller Home Price Index. We will
be using this index in our analysis as it is the most well known.

Several criticisms have been made about repeat sales methods. Theoretically, for
a house to be included in a repeat sales analysis, no changes must have been made
to it; however, in practice, that is almost never the case. Furthermore, Englund,
Quigley and Redfearn (1999) and Goetzmann and Speigel (1995) have commented
on the difficulty of detecting such changes without the availability of additional
information about the home. Goetzmann and Speigel, however, do propose an al-
ternate model which corrects for the effect of changes to homes around the time
the house is sold.

Even if homes which have changed are removed from the data set, an index
constructed out of the remaining homes may still not reflect the true index value.
Case and Quigley (1991) argue that houses age which has a depreciating effect
on their price. Therefore, as Case, Pollakowski and Wachter (1991) write, re-
peat sales indices produce estimates of time effects confounded with age effects.
Palmquist (1982) has suggested applying an independently computed depreciation
factor to account for the impact of age.

In a sample period, out of the entire population of homes, only a small fraction
are actually sold. A fraction of these sales are repeat sales homes with no signifi-
cant changes. Recall that the remaining sales, those of the single sales homes, are
omitted from the analysis. If repeat sales indices are used to describe the hous-
ing market as a whole, one would like the sample of repeat sales homes to have
similar characteristics to all homes. If not, Case, Pollakowski and Wachter remark
that the indices would be affected by sample selection bias. Englund, Quigley and
Redfearn in a study of Swedish home sales, and Meese and Wallace (1997), in a
study of Oakland and Freemont home sales, both found that repeat sales homes are
indeed different from single sale homes. Both studies also observed that in addi-
tion to being older, repeat sales homes were smaller and more “modest” [Englund,
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Quigley and Redfearn (1999)]. Therefore, repeat sales indices seem to provide in-
formation only about a very specific type of home and may not apply to the entire
housing market. However, published indices do not seem to be interpreted in that
manner. Case and Quigley (1991) propose an alternative hybrid model that com-
bines repeat sales methodology with hedonic information which makes use of all
sales. While the index constructed with this method represents all home sales, it
requires housing characteristics which may be difficult to collect on a broad scale.

We feel the repeat sales concept is valuable although the current models of this
type have the issues described above. The proposed model applies the repeat sales
idea in a new way to address some of the criticisms while still maintaining the sim-
plicity and reduced data requirements that the original Bailey et al. method had.
While our primary goal is prediction, we believe the resulting index could be a bet-
ter general description of housing sales than traditional repeat sales methodology.

In our method, log prices are modeled as the sum of a time effect (index), a lo-
cation effect modeled as a random effect for ZIP (postal) code, and an underlying
first-order autoregressive time series [AR(1)]. This structure offers four advan-
tages. First, the price index is estimated with all sales: single and repeat. Essen-
tially, the index can be thought of as a weighted sum of price information from
single and repeat sales. The latter component receives a much higher weight be-
cause more useful information is available for those homes. Second, the previous
sale price becomes less useful the longer it has been since the last sale. The AR(1)
series includes this feature into the model more directly than the Case–Shiller
method. Third, metropolitan areas are diverse and neighborhoods may have dis-
parate trends. We include ZIP code effects to model these differences in location.3

Finally, the proposed model is straightforward to interpret even while including
the features described above. We believe the model captures trends in the overall
housing market better than existing repeat sales methods and is a practical alterna-
tive.

We apply this model to data on single family home sales from July 1985 through
September 2004 for twenty US metropolitan areas. These data are described in
Section 2. The autoregressive model is outlined and estimation using maximum
likelihood is described in Section 3; results are discussed in Section 4. For com-
parison, two alternative models are fit: a conventional mixed effects model and the
method used in the S&P/Case–Shiller Home Price Index. As a quantitative way
to compare the indices, the predictive capacity of the three methods are assessed
in Section 5. In Section 6 we examine the case of Los Angeles, CA, where the
proposed model does not perform as well. We end with a general discussion in
Section 7.

3ZIP code was readily available in our data; other geographic variables at roughly this scale might
have been even more useful had they been available.
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TABLE 1
Metropolitan areas in the data

Ann Arbor, MI Kansas City, MO Minneapolis, MN Raleigh, NC
Atlanta, GA Lexington, KY Orlando, FL San Francisco, CA
Chicago, IL Los Angeles, CA Philadelphia, PA Seattle, WA
Columbia, SC Madison, WI Phoenix, AZ Sioux Falls, SD
Columbus, OH Memphis, TN Pittsburgh, PA Stamford, CT

2. House price data. The data are comprised of single family home sales
qualifying for conventional mortgages from the twenty US metropolitan areas
listed in Table 1. These sales occurred between July 1985 and September 2004.
Not included in these data are homes with prices too high to be considered for a
conventional mortgage or those sold at subprime rates. Note, however, that sub-
prime loans were not prevalent during the time period covered by our data. Similar
data are used by Fannie Mae, Freddie Mac, and to construct the OFHEO Home
Price Index.

For each sale, the following information is available: address with ZIP code,
month and year of sale, and price. To ensure adequate data per time period, we di-
vide the sample period into three month intervals for a total of 77 periods, or quar-
ters. We make an attempt to remove sales which are not arm’s length by omitting
homes sold more than once in a single quarter. Given the lack of hedonic informa-
tion, we have no way of determining whether a house has changed substantially
between sales. Therefore, we do not filter our data to remove such houses.

Table 2 displays the number of sales and unique houses sold in the sample pe-
riod for a selection of cities. Complete tables for all summaries in this section are
provided in Appendix A. Observe that the total number of sales is always greater
than the number of houses because houses can sell multiple times (repeat sales).
Perhaps more illuminating is Table 3, where we count the number of times each
house is sold. We see that as the number of sales per house increases, the number
of houses reduces rapidly. Nevertheless, a significant number of houses sell more
than twice. With a sample period of nearly twenty years, this is not unusual; how-

TABLE 2
Summary counts for a selection of cities

Metropolitan area Sales Houses

Stamford, CT 14,602 11,128
Ann Arbor, MI 68,684 48,522
Pittsburgh, PA 104,544 73,871
Los Angeles, CA 543,071 395,061
Chicago, IL 688,468 483,581
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TABLE 3
Sale frequencies for a selection of cities

Metropolitan area 1 sale 2 sales 3 sales 4+ sales

Stamford, CT 8,200 2,502 357 62
Ann Arbor, MI 32,458 12,662 2,781 621
Pittsburgh, PA 48,618 20,768 3,749 718
Los Angeles, CA 272,258 100,918 18,965 2,903
Chicago, IL 319,340 130,234 28,369 5,603

ever, single sales are the most common despite the long sample period. The first
column of Table 3 shows this clearly. Moreover, this pattern holds for all cities in
our data. Finally, in Figure 1, we plot the median price across time for the subset
of cities. This graph illustrates that both the cost of homes and the trends over time
vary considerably across cities.

For all metropolitan areas in our data, the time of a sale is fuzzy, as there is
often a lag between the day when the price is agreed upon and the day the sale
is recorded (around 20–60 days). Theoretically, the true value of the house would
have changed between these two points. Therefore, in the strictest sense, the sale
price of the house does not reflect the price at the time when the sale is recorded.
Dividing the year into quarters reduces the importance of this lag effect.

3. Model. The log house price series is modeled as the sum of an index
component, an effect for ZIP code (as an indicator for location), and an AR(1)
time series. The sale prices of a particular house are treated as a series of sales:
yi,1,z, yi,2,z, . . . , yi,j,z, . . . , where yi,j,z is the log sale price of the j th sale of the
ith house in ZIP code z. Note that yi,1,z is defined as the first sale price in the
sample period; as a result, both new homes and old homes sold for the first time in
the sample period are indicated with the same notation.

FIG. 1. Median prices for a selection of cities.
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Let there be 1, . . . , T discrete time periods where house sales occur. Allow
t (i, j, z) to denote the time period when the j th sale of the ith house in ZIP code z

occurs and let γ (i, j, z) = t (i, j, z) − t (i, j − 1, z), or the gap time between sales.
Finally, there are a total of N = ∑Z

z=1
∑Iz

i=1 Ji observations in the data where there
are Z ZIP codes, Iz houses in each ZIP code and Ji sales for a given house.

The log sale price yi,j,z can now be described as follows:

yi,1,z = μ + βt(i,1,z) + τz + εi,1,z, j = 1,

yi,j,z = μ + βt(i,j,z) + τz + φγ (i,j,z)(yi,j−1,z − μ − βt(i,j−1,z) − τz

)
(1)

+ εi,j,z, j > 1,

where:

1. The parameter βt(i,j,z) is the log price index at time t (i, j, z). Let β1, . . . , βT

denote the log price indices, assumed to be fixed effects.
2. φ is the autoregressive coefficient and |φ| < 1.

3. τz is the random effect for ZIP code z. τz
i.i.d.∼ N (0, σ 2

τ ) where τ1, . . . , τZ are
the ZIP code random effects which are distributed normally with mean 0 and
variance σ 2

τ and where i.i.d. denotes independent and identically distributed.
4. We impose the restriction that

∑T
t=1 ntβt = 0 where nt is the number of sales

at time t . This allows us to interpret μ as an overall mean.
5. Finally, let

εi,1,z ∼ N
(

0,
σ 2

ε

1 − φ2

)
, εi,j,z ∼ N

(
0,

σ 2
ε (1 − φ2γ (i,j,z))

1 − φ2

)
,

and assume that all εi,j,z are independent.

Note that there is only one process for the series yi,1,z, yi,2,z, . . . . The error
variance for the first sale, σ 2

ε /(1 − φ2), is a marginal variance. For subsequent
sales, because we have information about previous sales, it is appropriate to use the
conditional variance (conditional on the previous sale), σ 2

ε (1−φ2γ (i,j,z))/(1−φ2),
instead. For more details refer to the supplemental article [Nagaraja, Brown and
Zhao (2010)].

The underlying series for each house is given by ui,j,z = yi,j,z − μ − βt(i,j,z) −
τz. We can rewrite this series as ui,j,z = φγ (i,j,z)ui,j−1,z + εi,j,z where εi,j,z is as
given above. This autoregressive series is stationary, given a starting observation
ui,1,z, because E[ui,j,z] = 0, a constant, where E[·] is the expectation function,
and the covariance between two points depends only on the gap time and not on the
actual sale times. Specifically, Cov(ui,j,z, ui,j ′,z) = σ 2

ε φ(t (i,j ′,z)−t (i,j,z))/(1 − φ2)

if j < j ′. Therefore, the covariance between a pair of sales depends only on the
gap time between sales. Consequently, the time of sale is uninformative for the
underlying series, only the gap time is required. As a result, the autoregressive
series ui,j,z where i and z are fixed and j ≥ 1 is a Markov process.
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The autoregressive component adds two important features to the model. Intu-
itively, the longer the gap time between sales, the less useful the previous price
should become when predicting the next sale price. For the model described in (1),
as the gap time increases, the autoregressive coefficient decreases by construction
(φγ (i,j,z)), meaning that sales prices of a home with long gap times are less cor-
related with each other. (See Remark 3.1 at the end of this section for additional
discussion on the form of φ.) Moreover, as the gap time increases, the variance
of the error term increases. This indicates that the information contained in the
previous sale price is less useful as the time between sales grows.

To fit the model, we formulate the autoregressive model in (1) in matrix form:

y = Xβ + Zτ + ε∗,(2)

where y is the vector of log prices and X and Z are the design matrices for the
fixed effects β = [μβ1 · · · βT −1]′ and random effects τ , respectively. Then, the
log price can be modeled as a mixed effects model with autocorrelated errors, ε∗,
and with covariance matrix V.

We apply a transformation matrix T to the model in (2) to simplify the computa-
tions; essentially, this matrix applies the autoregressive component of the model to
both sides of (2). It is an N ×N matrix and is defined as follows. Let t(i,j,z),(i′,j ′,z′)
be the cell corresponding to the (i, j, z)th row and (i ′, j ′, z′)th column. Then,

t(i,j,z),(i′,j ′,z′) =
⎧⎨
⎩

1, if i = i′, j = j ′, z = z′,
−φγ (i,j), if i = i′, j = j ′ + 1, z = z′,
0, otherwise.

(3)

As a result, Tε∗ ∼ N (0,
σ 2

ε

1−φ2 diag(r)) where diag(r) is a diagonal matrix of di-
mension N with the diagonal elements r being given by

ri,j,z =
{

1, when j = 1,
1 − φ2γ (i,j), when j > 1.

(4)

Using the notation from (1), let ε = Tε∗. Finally, we restrict
∑T

t=1 ntβt = 0
where nt is the number of sales at time t . Therefore, βT = − 1

nT

∑T −1
t=1 ntβt .

The likelihood function for the transformed model is

L(θ;y) = (2π)−N/2|V|−1/2

(5)
× exp

{−1
2

(
T(y − Xβ)

)′V−1(
T(y − Xβ)

)}
,

where θ = {β, σ 2
ε , σ 2

τ , φ} is the vector of parameters, N is the total number of
observations, V is the covariance matrix, and T is the transformation matrix. We
can split V into a sum of the variance contributions from the time series and the
random effects. Specifically,

V = σ 2
ε

1 − φ2 diag(r) + (TZ)D(TZ)′,(6)
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where D = σ 2
τ IZ and IZ is an identity matrix with dimension Z × Z.

We use the coordinate ascent algorithm to compute the maximum likelihood
estimates (MLE) of θ for the model in (1). This iterative procedure maximizes
the likelihood function with respect to each group of parameters while holding
all other parameters constant. The algorithm terminates when the parameter esti-
mates have converged according to the specified stopping rule. Bickel and Dok-
sum (2001) include a proof showing that, for models in the exponential family, the
estimates computed using the coordinate ascent algorithm converge to the MLE.
The proposed model, however, is a member of the differentiable exponential fam-
ily; therefore, as Brown (1986) states, the proof does not directly apply. Nonethe-
less, we find empirically that the likelihood function is well behaved, so the MLE
appears to be reached for this case as well. Empirical evidence of convergence can
be found in the supplemental article [Nagaraja, Brown and Zhao (2010)].

We outline Algorithm 1 below. The equations for updating the parameters and
random effects estimates are given in Appendix B.

To predict a log price, we substitute the estimated parameters and random ef-
fects into (1):

ŷi,j,z = μ̂ + β̂t (i,j,z) + τ̂z + φ̂γ (i,j,z)(yi,j−1,z − μ̂ − β̂t (i,j−1,z) − τ̂z

)
.(7)

We then convert ŷi,j,z to the price scale (denoted as Ŷi,j,z) using

Ŷi,j,z(σ
2) = exp

{
ŷi,j,z + σ 2

2

}
,(8)

where σ 2 denotes the variance of yi,j,z. The additional term σ 2/2 approximates
the difference between E[exp{X}] and exp{E[X]} where E[·] is the expectation
function. We must adjust the latter expression to approximate the conditional mean
of the response, y. We improve the efficiency of our estimates by using the adjust-
ment stated in Shen, Brown and Zhi (2006). In (8), σ 2 can be estimated from the

Algorithm 1 Autoregressive (AR) model fitting algorithm.
1. Set a tolerance level ε (possibly different for each parameter).
2. Initialize the parameters: θ0 = {β0, σ 2,0

ε , σ 2,0
τ , φ0}.

3. For iteration k (k = 0 when the parameters are initialized),
(a) Calculate βk using (19) in Appendix B with {σ 2,k−1

ε , σ 2,k−1
τ , φk−1}.

(b) Compute σ 2,k
ε by computing the zero of (20) using {βk, σ 2,k−1

τ , φk−1}.
(c) Compute σ 2,k

τ by calculating the zero of (21) using {βk, σ 2,k
ε , φk−1}.

(d) Find the zero of (22) to compute φk using {βk, σ 2,k
ε , σ 2,k

τ }.
(e) If |θk−1

i − θk
i | > ε for any θi ∈ θ , repeat step 3 after replacing θk−1 with θk .

Otherwise, stop (call this iteration K).
4. Solve for βT by computing: β̂T = − 1

nT

∑T −1
t=1 nt β̂

K
t .

5. Plug in {βK,σ 2,K
ε , σ 2,K

τ , φK} to compute the estimated values for τ using (23).
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mean squared residuals (MSR), where MSR = 1
N

∑N
i=1(yi,j,z − ŷi,j,z)

2 and N is
the total number of observations used to fit the model. Therefore, the log price
estimates, ŷi,j,z, are converted to the price scale by

Ŷi,j,z = exp
{
ŷi,j,z + MSR

2

}
.(9)

Goetzmann (1992) proposes a similar transformation for the index values com-
puted using a traditional repeat sales method. Calhoun (1996) suggests applying
Goetzmann’s adjustment when using an index value to predict a particular house
price. For the autoregressive model, the standard error of the index is sufficiently
small that the efficiency adjustment has a negligible impact on the estimated index.
Therefore, we simply use exp{β̂t } to convert the index to the price scale. Finally,
we rescale the vector of indices so that the first quarter has an index value of 1.

REMARK 3.1. The autoregressive coefficient form, φγ (i,j,z), deserves further
explanation. For each house indexed by (i, z), let t1(i, z) = t (i,1, z) denote the
time of the initial sale. Conditioning on the (unobserved) values of the parame-
ters {μ,βt , σ

2
ε , σ 2

τ } and on the values of the random ZIP code effects, {τz}, let
{ui,z;t : t = t1(i, z), t1(i, z) + 1, . . .} be an underlying AR(1) process. To be more
precise, ui,z;t is a conventional, stationary AR(1) process defined by

ui,z;t =
{

εi,1,z, if t = t1(i, z),
φui,z;t−1 + εi,1,z, if t > t1(i, z),

(10)

where if t = t (i, j, z), then εi,z;t (i,j,z) = εi,j,z and otherwise εi,z;t
i.i.d.∼ N (0,

σ 2
ε

1−φ2 ).
Then the observed log sale prices are given by {yi,j,z} where ui,z;t (i,j,z) = yi,j,z −
(μ + βt(i,j,z) + τz). The values of ui,z;t are to be interpreted as the potential sale
price adjusted by {μ,βt , σ

2
ε , σ 2

τ } of the house indexed by (i, z) if the house were
to be sold at time t .

For housing data like ours, the value of the autoregressive parameter φ for this
latent process will be near the largest possible value, φ = 1. Consequently, if the
underlying process were actually an observed process from which one wanted to
estimate φ, then estimation of φ could be a delicate matter. However, sales gen-
erally occur with fairly large gap times and so the values of φγ (i,j,z) occurring in
the data will generally not be close to 1. For that reason, conventional estimation
procedures perform satisfactorily when estimating φ. We provide empirical evi-
dence for this in Section 4 and in the supplemental article [Nagaraja, Brown and
Zhao (2010)].

4. Estimation results. To fit and validate the autoregressive (AR) model, we
divide the observations for each city into training and test sets. The test set contains
all final sales for homes that sell three or more times. Among homes that sell twice,
the second sale is added to the test set with probability 1/2. As a result, the test
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TABLE 4
Parameter estimates for the AR model

Metropolitan area μ̂ φ̂ σ̂ 2
ε σ̂ 2

τ

Ann Arbor, MI 11.6643 0.993247 0.001567 0.110454
Atlanta, GA 11.6882 0.992874 0.001651 0.070104
Chicago, IL 11.8226 0.992000 0.001502 0.110683
Columbia, SC 11.3843 0.997526 0.000883 0.028062
Columbus, OH 11.5159 0.994807 0.001264 0.090329
Kansas City, MO 11.4884 0.993734 0.001462 0.121954
Lexington, KY 11.6224 0.996236 0.000968 0.048227
Los Angeles, CA 12.1367 0.981888 0.002174 0.111708
Madison, WI 11.7001 0.994318 0.001120 0.023295
Memphis, TN 11.6572 0.994594 0.001120 0.101298
Minneapolis, MN 11.8327 0.992008 0.001515 0.050961
Orlando, FL 11.6055 0.993561 0.001676 0.046727
Philadelphia, PA 11.7106 0.991767 0.001679 0.183495
Phoenix, AZ 11.7022 0.992349 0.001543 0.106971
Pittsburgh, PA 11.3408 0.992059 0.002546 0.103488
Raleigh, NC 11.7447 0.993828 0.001413 0.047029
San Francisco, CA 12.4236 0.985644 0.001788 0.056201
Seattle, WA 11.9998 0.989923 0.001658 0.039459
Sioux Falls, SD 11.6025 0.995262 0.001120 0.032719
Stamford, CT 12.5345 0.987938 0.002294 0.093230

set for each city contains roughly 15% of the sales. The remaining sales (including
single sales) comprise the training set. Table 8 in Appendix A lists the training
and test set sizes for each city. We fit the model on the training set and examine
the estimated parameters. The test set will be used in Section 5 to validate the AR
model against two alternatives.

In Table 4, the estimates for the overall mean μ (on the log scale), the autore-
gressive parameter φ, the variance of the error term σ 2

ε , and the variance of the
random effects σ 2

τ are provided for each metropolitan area. As expected, the most
expensive cities have the highest values of μ: Los Angeles, CA, San Francisco,
CA, and Stamford, CT. In Figure 2, the indices for a sample of the twenty cities
are provided. There are clearly different trends across cities.

The estimates for the AR model parameter φ are close to one. This is not sur-
prising as the adjusted log sale prices, ui,j,z, for sale pairs with short gap times are
expected to be closer in value than those with longer gap times. It may be tempting
to assume that since φ is so close to 1, the prices form a random walk instead of
an AR(1) time series (see Remark 3.1). However, this is clearly not the case. Re-
call that φ enters the model not by itself but as φγ (i,j,z) where γ (i, j, z) is the gap
time. These gap times are high enough that the correlation coefficient φγ (i,j,z) is
considerably lower than 1. The mean gap time across cities is around 22 quarters.
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FIG. 2. The AR index for a selection of cities.

As an example, for Ann Arbor, MI, φ̂22 = 0.99324722 ≈ 0.8615 which is clearly
less than 1. Therefore, the types of sensitivity often produced as a consequence of
near unit roots do not apply to our autoregressive model.

We have modeled the adjusted log prices, ui,j,z = yi,j,z − βt(i,j,z) − τz, as a
latent AR(1) time series. Accordingly, for each gap time, γ (i, j, z) = h, there is an
expected correlation between the sale pairs: φh. To check that the data support the
theory, we compare the correlation between pairs of quarter-adjusted log prices at
each gap length to the correlation predicted by the model.

First, we compute the estimated adjusted log prices ûi,j,z = yi,j,z − β̂t (i,j,z) − τ̂z

for the training data. Next, for each gap time h, we find all the sale pairs
(ûi,j−1,z, ûi,j,z) with that particular gap length. The sample correlation between
those sale pairs produces an estimate of φ for gap length h. If we repeat this pro-
cedure for each possible gap length, we should obtain a steady decrease in the cor-
relation as gap time increases. In particular, the points should follow the curve φh

if the model is specified correctly.
In Figure 3, we plot the correlation of the adjusted log prices by gap time for

Columbus, OH. Note that the computed correlations for each gap time were com-
puted with varying quantities of sale pairs. Those computed with fewer than twenty
sale pairs are plotted as blue triangles. We also overlay the predicted relationship
between φ and gap time. The inverse relationship between gap time and correla-
tion seems to hold well and we obtain similar results for most cities. One notable
exception is Los Angeles, CA, which we discuss in Section 6.

5. Model validation. To show that the proposed AR model produces good
predictions, we fit the model separately to each of the twenty cities and apply the
fitted models to each test set. For comparison purposes, a mixed effects model
along with the benchmark S&P/Case–Shiller model is applied to the data. The
former model is a simple, but reasonable, alternative to the AR model. Both models
are described below. In addition to the predictions, we compare the price indices
and training set residuals.
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FIG. 3. Checking the AR(1) assumption for Columbus, OH.

The root mean squared error (RMSE)4 is used to evaluate predictive perfor-
mance for each city in Section 5.3. We will see that the AR model provides the
best predictions. In addition, we will show the results from Columbus, OH as a
typical example.

5.1. Mixed effects model. A mixed effects model provides a very simple, but
plausible, approach for modeling these data. This model treats the time effect (βt )
as a fixed effect, and the effects of house (αi) and ZIP code (τz) are modeled as
random effects. There is no time series component to this model. We describe the
model as follows:

yi,j,z = μ + αi + τz + βt(i,j,z) + εi,j,z,(11)

where αi
i.i.d.∼ N (0, σ 2

α ), τz
i.i.d.∼ N (0, σ 2

τ ), and εi,j,z
i.i.d.∼ N (0, σ 2

ε ) for houses i from
1, . . . , Iz, sales j from 1, . . . , Ji , and ZIP codes z from 1, . . . ,Z. As before, μ is a
fixed parameter and βi,j,z is the fixed effect for time. The estimates for the param-
eters θ = {μ,β, σ 2

ε , σ 2
τ } are computed using maximum likelihood estimation.

Finally, estimates for the random effects α and τ are calculated by iteratively
calculating the following:

α̂ =
(

σ 2
ε

σ 2
α

II + W′W
)−1

W′(y − Xβ̂ − Zτ̂ ),(12)

τ̂ =
(

σ 2
ε

σ 2
τ

IZ + Z′Z
)−1

Z′(y − Xβ̂ − Wα̂),(13)

4RMSE=
√

1
n

∑n
k=1(Yk − Ŷk)

2, where Y is the sale price and n is the test set size.
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where X and W are the design matrices for the fixed and random effects respec-
tively and y is the response vector. These expressions are derived using the method
of computing BLUP estimators outlined by Henderson (1975).

To predict the log price, ŷi,j,z, we substitute the estimated values:

ŷi,j,z = μ̂ + β̂t (i,j,z) + α̂i + τ̂z.(14)

We use transformation (9) to convert these predictions back to the price scale.
Finally, we construct a price index similar to the autoregressive case. Therefore, as
in Figure 2, the values of exp{β̂t } are rescaled so that the price index in the first
quarter is 1.

5.2. S&P/Case–Shiller model. The original Case and Shiller (1987, 1989)
model is a repeat–sales model which expands upon the Bailey, Muth and
Nourse (1963) setting by accounting for heteroscedasticity in the data due to the
gap time between sales. Borrowing some of their notation, the framework for their
model is

yi,t = βt + Hi,t + ui,t ,(15)

where yi,t is the log price of the sale of the ith house at time t , βt is the log in-

dex at time t , and ui,t
i.i.d.∼ N (0, σ 2

u ). The middle term, Hi,t , is a Gaussian random
walk which incorporates the previous log sale price of the house. Location infor-
mation, such as ZIP codes, are not included in this model. Like the Bailey, Muth
and Nourse setup, the Case and Shiller setting is a model for differences in prices.
Thus, the following model is fit:

yi,t ′ − yi,t = βt ′ − βt +
t ′∑

k=t+1

vi,k + ui,t ′ − ui,t ,(16)

where t ′ > t . The random walk steps are normally distributed where vi,k
i.i.d.∼

N (0, σ 2
v ). Weighted least squares is used to fit the model to account for both

sources of variation.
The S&P/Case–Shiller procedure follows in a similar vein but is fit on the price

scale instead of the log price scale. The procedure is similar to the arithmetic in-
dex proposed by Shiller (1991) which we will describe next; however, full de-
tails are available in the S&P/Case–Shiller® Home Price Indices: Index Methodol-
ogy (2009) report. Let there be S sale pairs, consisting of two consecutive sales
of the same house, and T time periods. An S × (T − 1) design matrix X, an
S × (T − 1) instrumental variables (IV) matrix Z, and an S × 1 response vec-
tor w are defined next. Let the subscripts s and t denote the row and column index
respectively. Finally, let Ys,t be the sale price (not log price) of the house in sale
pair s at time t . Therefore, in each sale pair, there will be two prices Ys,t and Ys,t ′
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where t �= t ′. The matrices X, Z and vector w where s indicates the row and t

indicates the column are now defined as follows:

Xs,t =
⎧⎨
⎩

−Ys,t , if first sale of pair s is at time t , t > 1,
Ys,t , if second sale of pair s is at time t ,
0, otherwise,

Zs,t =
⎧⎨
⎩

−1, if first sale of pair s is at time t , t > 1,
1, if second sale of pair s is at time t ,
0, otherwise,

ws =
{

Ys,t , first sale of pair s at time 1,
0, otherwise.

The goal is to fit the model w = Xb + ε where b = (b1 · · · bT )′ is the vector
of the reciprocal price indices. That is, Bt = 1/bt is the price index at time t .
A three-step process is implemented to fit this model. First, b is estimated using
regression with instrumental variables. Second, the residuals from this regression
are used to compute weights for each observation. Finally, b is estimated once
more while applying the weights. This process, outlined in full in the S&P/Case–
Shiller® Home Price Indices: Index Methodology report, is described below:

1. Estimate b by running a regression using instrumental variables: b̂ = (Z′X)−1×
Z′w.

2. Calculate the weights for each observation using the squared residuals from
the first step. These weights are dependent on the gap time between sales.
We denote the residual as ε̂i which is an estimate of ui,t ′ − ui,t + ∑t ′−t

k=1 vi,k .

The expectation of εi is E[ui,t ′ − ui,t + ∑t ′−t
k=1 vi,k] = 0 and the variance is

Var[ui,t ′ − ui,t + ∑t ′−t
k=1 vi,k] = 2σ 2

u + (t ′ − t)σ 2
v . To compute the weights for

each observation, the squared residuals from the first step are regressed against
the gap time. That is,

ε̂2
i = α0︸︷︷︸

2σ 2
u

+ α1︸︷︷︸
σ 2

v

(t ′ − t) + ηi,(17)

where E[ηi] = 0. The reciprocal of the square root of the fitted values from the
above regression are the weights. Using their notation, we denote this weight
matrix by 
−1.

3. The final step is to estimate b again while incorporating the weights, 
: b̂ =
(Z′
−1X)−1Z′
−1w. The indices are simply the reciprocals of each element
in b for t > 1 and, by construction, B1 = 1.

Finally, to estimate the prices in the test set, we simply calculate

Ŷi,j = B̂t (i,j−1)

B̂t (i,j)

Yi,j−1,(18)
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where Yi,j is the price of the j th sale of the ith house and Bt is the price index at
time t . We do not apply the correction proposed by Goetzmann when estimating
prices because it is appropriate only for predictions on the log price scale. The
S&P/Case–Shiller method is fit on the price scale so no transformation is required.

5.3. Comparing predictions. We fit all three models on the training sets for
each city and predict prices for those homes in the corresponding test set. The
RMSE for the test set observations is calculated in dollars for each model in or-
der to compare performance across models. These results are listed in Table 5.
The model with the lowest RMSE value for each city is shown in italicized font.
Note that while the S&P/Case–Shiller method produces predictions directly on the
price scale, the autoregressive and mixed effects models must be converted back
to the price scale using (9). It is clear that the AR model performs better than the
S&P/Case–Shiller model for all of the cities, reducing the RMSE by up to 21% in
some cases; the AR model produces lower RMSE values when compared to the
mixed effects model as well for nearly all cities, San Francisco, CA, being the only
exception. Moreover, the AR model performs better under alternate loss functions
as well, which we show in the supplemental article [Nagaraja, Brown and Zhao
(2010)].

TABLE 5
Test set RMSE for three models (in dollars)

Metropolitan area AR (local) Mixed effects (local) S&P/C–S

Ann Arbor, MI 41,401 46,519 52,718
Atlanta, GA 30,914 34,912 35,482
Chicago, IL 36,004 — 42,865
Columbia, SC 35,881 38,375 42,301
Columbus, OH 27,353 30,163 30,208
Kansas City, MO 24,179 25,851 —
Lexington, KY 21,132 21,555 21,731
Los Angeles, CA 37,438 — 41,951
Madison, WI 28,035 30,297 30,640
Memphis, TN 24,588 25,502 25,267
Minneapolis, MN 31,900 34,065 34,787
Orlando, FL 28,449 30,438 30,158
Philadelphia, PA 33,246 — 35,350
Phoenix, AZ 28,247 29,286 29,350
Pittsburgh, PA 26,406 28,630 30,135
Raleigh, NC 25,839 27,493 26,775
San Francisco, CA 49,927 48,217 50,249
Seattle, WA 38,469 41,950 43,486
Sioux Falls, SD 20,160 21,171 21,577
Stamford, CT 57,722 58,616 68,132
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Note that the RMSE value is missing for Kansas City, MO for the S&P/Case–
Shiller model. Some of the observation weights calculated in the second step of the
procedure were negative, halting the estimation process. This is another drawback
to some of the existing repeat sales procedures. Calhoun (1996) suggests replacing
the sale specific error ui,t [as given in (16)] with a house specific error ui ; however,
this fundamentally changes the structure of the error term and, as a result, the fitting
process. Furthermore, it is not implemented in the S&P/Case–Shiller methodology.
Therefore, we do not apply it to our data.

Three values are also missing in Table 5 for the mixed effect model results. For
these three cities, the iterative fitting procedure failed to converge. We can attribute
this to the size of these data and, more importantly, that the data do not conform
well to the mixed effects model structure.

Next, we will examine several diagnostic plots to assess whether the model as-
sumptions are satisfied for each method. We begin by investigating the variance
of the residuals. As the gap time increases, we expect a higher error variance in-
dicating that the previous price becomes less useful over time. The proposed au-
toregressive model and the S&P/Case–Shiller model each incorporate this feature
differently, using an underlying AR(1) time series and a random walk respectively.
The mixed effects model, however, assumes a constant variance regardless of gap
time. In Figure 4, for each model, we plot the variance of the predictions by gap
time for the training set residuals.5 The expected variance by gap time values us-
ing the estimated parameters is then overlaid. The autoregressive and mixed effects
models are fit on the log price scale, whereas the S&P/Case–Shiller model is fit on
the price scale. Therefore, the residual plots are graphed on very different scales.

There are two features to note here. The first is that heteroscedasticity is
clearly present: the variance of the residuals does in fact increase with gap time.
The second feature is that while none of the methods perfectly model the het-
eroscedastic error, the mixed effects model is undoubtedly the worst. This pat-
tern holds across all of the cities in the data set. Both the autoregressive and
S&P/Case–Shiller models seem to have lower than expected variances in Fig-
ure 4.

For both the AR and mixed effects models, the random effects for ZIP codes are
assumed to be normally distributed. As a diagnostic procedure, we construct the
normal quantile plots of the ZIP code effects. The results are shown in Figure 5.
Columbus, OH has a total of 103 ZIP codes, or random effects. We find the nor-
mality assumption appears to be reasonably satisfied for the mixed effects model
but less so for the autoregressive model. Note, however, that each random effect is

5Note that for these three plots, the term “residual” indicates the usual statistical residual values
produced by applying the model and comparing the predictions with the response vector. For the
AR and mixed effects models, these residuals are identical to the predictions on the log price scale
discussed in previous sections; however, for the S&P/C–S model, this is not the case.
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FIG. 4. Comparing the variance of the residuals for Columbus, OH.

estimated using a different number of sales. This interferes with the routine inter-
pretation of these plots. In particular, the outliers in both plots correspond to ZIP
codes containing ten or fewer sales. Across all metropolitan areas, the normality
assumption seems to be well satisfied in some cases and not so well in others, but
with no clear pattern we could discern as to the type of analysis, size of the data or
geographic region. The supplemental article contains results of the Shapiro–Wilk
test for normality [Nagaraja, Brown and Zhao (2010)].

In Figure 6, we plot four indices for Columbus, OH: the AR index, the mixed
effects index, the S&P/Case–Shiller index, and the mean price index. The mean
index is simply the average sale price at each quarter rescaled so that the first
index value is 1. From the plot, we see that the autoregressive index is generally
between the S&P/Case–Shiller index and the mean index at each point in time. The
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FIG. 5. Normality of ZIP code effects for Columbus, OH.

mean index treats all sales as single sales. That is, information about repeat sales is
not included; in fact, no information about house prices is shared across quarters.
The S&P/Case–Shiller index, on the other hand, only includes repeat sales houses.
The autoregressive model, because it includes both single sales and repeat sales,
is a mixture of the two perspectives. Essentially, the index constructed from the
proposed model is a measure of the average house price placing more weight to
those homes which have sold more than once.

6. The case of Los Angeles, CA. Even though the autoregressive model has
a lower RMSE than the S&P/Case–Shiller model for Los Angeles, CA, it does not

FIG. 6. House price indices for Columbus, OH.
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FIG. 7. Problems with the assumptions.

seem to fit the data well. If we examine Figure 7, a plot of the correlation against
gap time, we immediately see two significant issues when what is expected (line)
is compared with what the data indicate (dots). First, the value of φ is not as close
to 1 as expected. Second, the pattern of decay, φγ (i,j,z), also does not follow the
presumed pattern. We will focus on Los Angeles, CA, and discuss these two issues
for the remainder of this section.

We expect φ to be close to 1; however, for Los Angeles, CA, this does not seem
to be the case. In fact, according to the data, for short gap times, the correlation
between sale pairs seems to be far lower than one. To investigate this feature, we
examine sale pairs with gap times between 1 and 5 quarters more closely. In Fig-
ure 8, we construct a histogram of the quarters where the second sale occurred
for this subset of sale pairs. We pair this histogram with a plot of the price in-
dex for Los Angeles, CA. Most of these sales occurred during the late 1980s and
early 1990s. This corresponds to the same period when Sing and Furlong (1989)
found that lenders were offering people mortgages where the monthly payment
was greater than 33% of their monthly income. The threshold of 33% is set to
help ensure that people will be able to afford their mortgage. Those persons with
mortgages that exceed this percentage tend to have a higher probability of default-
ing on their payments.

Bates (1989) found that a number of banks including the Bank of California
and Wells Fargo were highly exposed to these risky investments, especially in the
wake of the housing downturn during the early 1990s. If a short gap time is an
indication that a foreclosure took place, this would explain why these sale pair
prices are not highly correlated. We did observe, however, that other cities also
experienced periods of decline, such as Stamford, CT (see Figure 2), but did not
have anomalous autoregressive patterns like those in Figure 7 for Los Angeles, CA.

Even if this were not the case, the autoregressive model may not be perform-
ing well simply because there was a downturn in the housing market. Most of the
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FIG. 8. Examining the housing downturn.

cities in our data cover periods where the indices are increasing–the model may
be performing well only because of this feature. In the case of Los Angeles, CA,
if we examine the period between January 1990 and December 1996 on Figure 8,
the housing index was decreasing. However, if we calculate the RMSE of test set
sales for this period only, we find that the autoregressive model still performs better
than the S&P/Case–Shiller method. The RMSE values are $32,039 and $41,841,
respectively. Therefore, the autoregressive model seems to perform better in a pe-
riod of decline as well as in times of increase.

The second irregularity evident in Figure 7 is that the AR(1) process does not
decay at the same rate as the model predicts. In 1978 California voters, as a protest
against rising property taxes, passed Proposition 13 which limited how fast prop-
erty tax assessments could increase per year. Galles and Sexton (1998) argue that
Proposition 13 encouraged people to retain homes especially if they have owned
their home for a long time. It is possible that this feature of Figure 7 is a long
term effect of Proposition 13. On the other hand, it could be that California home
owners tend to renovate their homes more frequently than others, reducing the
decay in prices over time. However, we have no way of verifying either of these
explanations given our data.

7. Discussion. Two key tasks when analyzing house prices are predicting sale
prices of individual homes and constructing price indices which measure general
housing trends. Using extensive data from twenty metropolitan areas, we have
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compared our predictive method to two other methods, including the S&P/Case–
Shiller Home Price Index. We find that on average the predictions using our
method are more accurate in all but one of the twenty metropolitan areas examined.

Data such as ours often do not contain reliable hedonic information on individ-
ual homes, if at all. Therefore, harnessing the information contained in a previous
sale is critical. Repeat sales indices attempt to do exactly that. Some methods have
also incorporated ad hoc adjustments to take account of the gap time between the
repeat sales of a home. In contrast, our model involves an underlying AR(1) time
series which automatically adjusts for the time gap between sales. It also uses the
home’s ZIP code as an additional indicator of its hedonic value. This indicator has
some predictive value, although its value is quite weak by comparison with the
price in a previous sale if one has been recorded.

The index constructed from our statistical model can be viewed as a weighted
average of estimates from single and repeat sales homes, with the repeat sales
prices having a substantially higher weight. As noted, the time series feature of
the model guarantees that this weight for repeat sales prices slowly decreases in a
natural fashion as the gap time between sales increases.

Our results do not provide definitive evidence as to the value of our index when
comparing with other currently available indices as a general economic indicator.
Indeed, such a determination should involve a study of the economic uses of such
indicators as well as an examination of their formulaic construction and their use
for prediction of individual sale prices. We have not undertaken such a study, and
so can offer only a few comments about the possible comparative values of our
index.

As we have discussed, we feel it may be an advantage that our index involves
all home sales in the data (subject to the naturally occurring weighting described
above), rather than only repeat sales. Repeat sales homes are only a small, se-
lected fraction of all home sales. Studies have shown that repeat sales homes may
have different characteristics than single sale homes. In particular, they are evi-
dently older on average, and this could be expected to have an effect on their sale
price. Since our measure brings all home sales into consideration, albeit in a gen-
tly weighted manner, and since it provides improved prediction on average, it may
produce a preferable index.

Another advantage of our model is that it remains easy to interpret at both the
micro and macro levels, in spite of including several features inherent in the data.
Future work seems desirable to understand anomalous features such as those we
have discussed in the Los Angeles, CA, area. Such research may allow us to con-
struct a more flexible model to accommodate such cases. For example, it could
involve the inclusion of economic indicators which may affect house prices such
as interest rates and tax rates and measures of general economic status such as the
unemployment rate.
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APPENDIX A: DATA SUMMARY

TABLE 6
Summary counts

No. houses per sale count

City No. sales No. houses 1 2 3 4+
Ann Arbor, MI 68,684 48,522 32,458 12,662 2,781 621
Atlanta, GA 376,082 260,703 166,646 76,046 15,163 2836
Chicago, IL 688,468 483,581 319,340 130,234 28,369 5,603
Columbia, SC 7,034 4,321 2,303 1,470 431 117
Columbus, OH 162,716 109,388 67,926 31,739 7,892 1,831
Kansas City, MO 123,441 90,504 62,489 23,706 3,773 534
Lexington, KY 38,534 26,630 16,891 7,901 1,555 282
Los Angeles, CA 543,071 395,061 272,258 100,918 18,965 2,903
Madison, WI 50,589 35,635 23,685 9,439 2,086 425
Memphis, TN 55,370 37,352 23,033 11,319 2,412 587
Minneapolis, MN 330,162 240,270 166,811 59,468 11,856 2,127
Orlando, FL 104,853 72,976 45,966 22,759 3,706 543
Philadelphia, PA 402,935 280,272 179,107 82,681 15,878 2,606
Phoenix, AZ 180,745 129,993 87,249 35,910 5,855 968
Pittsburgh, PA 104,544 73,871 48,618 20,768 3,749 718
Raleigh, NC 100,180 68,306 42,545 20,632 4,306 818
San Francisco, CA 73,598 59,416 46,959 10,895 1,413 149
Seattle, WA 253,227 182,770 124,672 47,406 9,198 1,494
Sioux Falls, SD 12,439 8,974 6,117 2,353 419 85
Stamford, CT 14,602 11,128 8,200 2,502 357 62

TABLE 7
Number of ZIP codes by city

City No. ZIP codes

Ann Arbor, MI 57
Atlanta, GA 184
Chicago, IL 317
Columbia, SC 12
Columbus, OH 103
Kansas City, MO 179
Lexington, KY 31
Los Angeles, CA 280
Madison, WI 40
Memphis, TN 64
Minneapolis, MN 214
Orlando, FL 96
Philadelphia, PA 330
Phoenix, AZ 130
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TABLE 7
(Continued.)

City No. ZIP codes

Pittsburgh, PA 257
Raleigh, NC 82
San Francisco, CA 70
Seattle, WA 110
Sioux Falls, SD 30
Stamford, CT 23

TABLE 8
Training and test set sizes

Autoregressive model S&P/Case–Shiller model

City Training Test No. houses Training pairs No. houses

Ann Arbor, MI 58,953 9,731 48,522 10,431 9,735
Atlanta, GA 319,925 56,127 260,703 59,222 55,911
Chicago, IL 589,289 99,179 483,581 105,708 99,069
Columbia, SC 5,747 1,287 4,321 1,426 1,279
Columbus, OH 136,989 25,727 109,388 27,601 25,458
Kansas City, MO 107,209 16,232 90,504 16,705 16,092
Lexington, KY 32,705 5,829 26,630 6,075 5,748
Los Angeles, CA 470,721 72,350 395,061 75,660 72,338
Madison, WI 43,349 7,240 35,635 7,714 7,221
Memphis, TN 46,724 8,646 37,352 9,372 8,673
Minneapolis, MN 286,476 43,686 240,270 46,206 43,764
Orlando, FL 89,123 15,730 72,976 16,147 15,531
Philadelphia, PA 343,354 59,581 280,272 63,082 60,068
Phoenix, AZ 155,823 24,922 129,993 25,830 24,656
Pittsburgh, PA 89,762 14,782 73,871 15,891 14,956
Raleigh, NC 84,678 15,502 68,306 16,372 15,388
San Francisco, CA 66,527 7,071 59,416 7,111 6,948
Seattle, WA 218,741 34,486 182,770 35,971 34,304
Sioux Falls, SD 10,755 1,684 8,974 1,781 1,677
Stamford, CT 12,902 1,700 11,128 1,774 1,654

APPENDIX B: UPDATING EQUATIONS

In this section we provide the updating equations for estimating the parameters
θ = {β, σ 2

ε , σ 2
τ , φ} in the autoregressive model (see Section 3). Observe that the

covariance matrix V is an N ×N matrix where N is the sample size. Given the size
of our data, it is simpler computationally to exploit the block diagonal structure
of V. Each block, denoted by Vz,z, corresponds to observations in ZIP code z.



AN AUTOREGRESSIVE APPROACH TO HOUSE PRICE MODELING 147

Computations are carried out on the ZIP code level and the updating equations
provided below reflect this. For instance, yz and Tz are the elements of the log
price vector and transformation matrix respectively for observations in ZIP code z.

To start, an explicit expression for β can be formulated:

β̂ =
(

Z∑
z=1

(TzXz)
′V−1

z,zTzXz

)−1 Z∑
z=1

(TzXz)
′V−1

z,zTzyz.(19)

Estimates must be computed numerically for the remaining parameters. As all of
these are one-dimensional parameters, methods such as the Newton–Raphson al-
gorithm are highly suitable. We first define wz = yz − Xzβ for clarity. To up-
date σ 2

ε , compute the zero of

0 = −
Z∑

z=1

tr(V−1
z,z diag(rz)) +

Z∑
z=1

(Tzwz)
′V−1

z,z diag(rz)V−1
z,z(Tzwz),(20)

where tr(·) is the trace of a matrix and diag(r) is as defined in (4). Similarly, to
update σ 2

τ , find the zero of

0 =
Z∑

z=1

tr(V−1
z,z(Tz1nz)(Tz1nz)

′)

(21)

+
Z∑

z=1

(Tzwz)
′V−1

z,z(Tz1nz)(Tz1nz)
′V−1

z,z(Tzwz),

where nz denotes the number of observations in ZIP code z and 1k is a (k × 1)

vector of ones.
Finally, to update the autoregressive parameter φ, we must calculate the zero of

the function below:

0 = −
Z∑

z=1

tr
{

V−1
z,z

(
σ 2

τ

(
∂(Tz1nz)

∂φ

)
(Tz1nz)

′

+ σ 2
τ (Tz1nz)

(
∂(Tz1nz)

∂φ

)′

+ 2φσ 2
ε

(1 − φ2)2 diag(rz) + σ 2
ε

1 − φ2

∂ diag(rz)

∂φ

)}

−
Z∑

z=1

(
∂Tz

∂φ
wz

)′
V−1

z,z(Tzwz) −
Z∑

z=1

(Tzwz)
′V−1

z,z

(
∂Tz

∂φ
wz

)

+
Z∑

z=1

[
(Tzwz)

′V−1
z,z

[
σ 2

τ

(
∂(Tz1nz)

∂φ

)
(Tz1nz)

′(22)
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+ σ 2
τ (Tz1nz)

(
∂(Tz1nz)

∂φ

)′
+ 2φσ 2

ε

(1 − φ2)2 diag(rz)

+ σ 2
ε

1 − φ2

∂ diag(rz)

∂φ

]
V−1

z,z(Tzwz)

]
.

After the estimates converge, we must estimate the random effects. We use Hen-
derson’s procedure to derive the Best Linear Unbiased Predictors (BLUP) for each
ZIP code. His method assumes that the parameters in the covariance matrix, V, are
known; however, we use the estimated values. The formula is

τ̂z =
[

2σ̂ 2
ε

σ̂ 2
τ

+ (1 − φ̂2)(T̂z1z)
′ diag−1(rz)(T̂z1z)

]−1

(23)
×(

(1 − φ̂2)(T̂z1z)
′ diag−1(rz)(T̂zŵz)

)
,

where diag−1(r̂) is the inverse of the estimated diagonal matrix diag(r).
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SUPPLEMENTARY MATERIAL

Supplement to “An autoregressive approach to house price modeling”
(DOI: 10.1214/10-AOAS380SUPP; .pdf). This supplement contains extra analy-
sis on a variety of topics related to the paper from examining the convergence of
the coordinate ascent algorithm, or applying alternate loss functions, to studying
the impact of each feature included in the autoregressive (AR) model.
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