The Annals of Applied Statistics

2010, Vol. 4, No. 4, 1976-1999

DOI: 10.1214/10-A0AS348

© Institute of Mathematical Statistics, 2010

AN IMPUTATION-BASED APPROACH FOR PARAMETER
ESTIMATION IN THE PRESENCE OF AMBIGUOUS CENSORING
WITH APPLICATION IN INDUSTRIAL SUPPLY CHAIN

BY SAMIRAN GHOSH
Indiana University—Purdue University

This paper describes a novel approach based on “proportional imputa-
tion” when identical units produced in a batch have random but independent
installation and failure times. The current problem is motivated by a real life
industrial production—delivery supply chain where identical units are shipped
after production to a third party warehouse and then sold at a future date
for possible installation. Due to practical limitations, at any given time point,
the exact installation as well as the failure times are known for only those
units which have failed within that time frame after the installation. Hence,
in-house reliability engineers are presented with a very limited, as well as
partial, data to estimate different model parameters related to installation and
failure distributions. In reality, other units in the batch are generally not uti-
lized due to lack of proper statistical methodology, leading to gross misspec-
ification. In this paper we have introduced a likelihood based parametric and
computationally efficient solution to overcome this problem.

1. Introduction: Background of the problem. After the production process,
consumer goods are often distributed through multi-step channels, giving rise to
the term “production—delivery”” supply chain. An exception to this practice is “just-
in-time” manufacturing where a product is assembled and shipped directly only
upon the request of a customer, which is quite popular in the personal computer
industry. However, for most consumer products, items produced by a company
are not shipped directly to the final customer. The traditional route for any large
scale industrial operation is to ship the manufactured products to a warehouse.
The warehouses are often maintained by third party retailer/shops, from where
the products are sold and installed at a future date to the final customer. Due to
geographic as well as company-retailer relationship, once the batch is shipped, it
is often unknown to the producing company whether a specific unit is working or
is still not installed, until and unless the unit stops working and the final customer
claims a warranty at a future date. At that point in time the data on the failed
unit becomes “complete” in a sense that we know exactly its installation as well
as failure time. For all other units it is not known (hence “partial” information
only) whether they are working or are not at all installed. The above setup is quite
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common in practice in many industrial supply chains, giving rise to a situation
where in-house engineers face a dilemma regarding the optimal usage of available
information. The untimely failure of a unit is always costly to the producer from the
warranty perspective [Abernethy (1996)]. Also, after infant mortality, reliability
assessment and future lifetime prediction at an early stage of the product lifespan
is advantageous for appropriate customer satisfaction issues.

Reliability estimation requires knowledge of the population at risk and the re-
liability of each unit of the population. The major objective is always to acquire
timely information of interest on failure modes. However, in the presence of both
“complete” and “partial” information, current practice is to estimate relevant relia-
bility information by using those units which have completed their life cycle (i.e.,
“complete” portion only), while not utilizing the “partial” information [Abernethy
(1996); Kececioglu (1993)]. The primary reason for this is the absence of any es-
tablished methodology for dealing with the current situation. This clearly makes
the inferential procedure suboptimal. In this article we adopt a proportional impu-
tation based approach to yield a practical solution to the situation described above.
The thrust of this paper is the estimation of the unknown parameters under the as-
sumption that we know the actual parametric distribution of installation as well as
failure time. The more general problem of unknown distributional form for either
installation or failure time (or both) is not considered here and is left for future
work.

The rest of the article is organized as follows. In the first three sections we
present notation and a theoretical justification of the proposed methodology. Sec-
tion 5 presents the algorithm for proportional imputation. The connection between
the exact likelihood based approach and our proposed algorithm is described in
Section 6. Section 7 describes the simulation performance of our algorithm. We
also include the analysis of industrial furnace data in Section 8. We conclude the
article with some discussion.

2. Notation and mathematical setting. The problem of interest is motivated
from a large industrial company producing residential furnace components. The
units are produced and shipped within the continental USA via multiple channels.
However, the general description of the problem and our solution is neither de-
pendent on a specific company nor confined to a specific commodity. Rather, our
proposed solution will have a broader application since the setup is common to
many production delivery supply chains. Consider a setup in which N identical
units are produced in a batch, which are then shipped to a warehouse. These units
will be installed only after being purchased by the customer at some future date.
We assume there exists no substantial time lag between purchase and actual in-
stallation of unit/units. Purchase and installation will be considered as the event of
interest, and the time in which this transpires will be referred to as the “installation
time.” Consider a fixed end of study time Ty. The general data description at hand
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is rather simple. For a particular unit we either know both the installation and fail-
ure times or know nothing at all. In fact, for many units at time 7T, their current
status will be unknown due to the fact that they have not yet failed either due to
noninstallation or are still in working condition. Let X (~ Fx(:)) and T (~ Fr(-))
denote the continuous random variables corresponding to installation time and
failure time and which are assumed to be independent of each other. In this pa-
per we assume that Fx(-) and Fr(-) are completely specified but with unknown
parameters. We denote the random set Q2 ={i € {1,2,...,N}: X; + T; < Tp} to
be the set of indices of the completely observed units. Let C denote the cardi-
nality of Q:C = |Q| = Zf\’: 1 H{Xi + T; < Ty}. Following standard results in sur-

vival/reliability analysis, the complete likelihood for the above setup is

N
L(Fx, Fr)=[]Ufx.rGi t)I{xi +1; < T} [P{X + T > To}]' ™

@.1) = . .
o1 frrtif{sx+ [ srt-narse] .

ieQ

where 7; is an indicator of whether the ith unit is observed or not for i =
1,2,..., N. The above likelihood is difficult to maximize numerically except for
the very restrictive case when X and 7" are independent and identically distributed
(i.i.d.) according to an exponential distribution. For the other popular reliability
distributions (e.g., Weibull, Gamma), the above likelihood is difficult to maxi-
mize due to excessive flatness, especially when C <« N. In the furnace data de-
scribed in Section 8 and also in other simulation studies, the % ratio is on average
40% or below. With only this much data the above likelihood essentially becomes
very flat and brute force optimization often produces unstable estimates with large
variances. For more details on this see the simulation studies in Section 7. Next
we provide a proportional imputation scheme that has close connection with the
above likelihood, yet it employs a search strategy parallel to Monte-Carlo-based
approaches which is computationally faster and produces stable estimates.

2.1. Standard practice and an alternative formulation. For notational simplic-
ity and without loss of generality, we assume that the first C units are observed or,
in other words, we have complete information for {x;, fi},-czl- Notably, the man-
ufacturer knows nothing about a unit under two circumstances. First, if X > Tp,
that is, the unit is not being installed until time 7y and denoted as event B. Sec-
ond, X < Tp but T > Ty — X, that is, the unit is installed but still in operation and
denoted as event D. Since exact likelihood is difficult to use, traditional practice
is of two forms [Abernethy (1996); Kececioglu (1993)]. The most simplistic ap-
proach is to think that only C units are produced. Since we will have complete
information for all of them, we may use standard theory to estimate model para-
meters corresponding to X and T under specific distributional choices. The other
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practice is to think that we have C units not from the full distribution but rather
from the truncated distribution of both X and T (i.e., observed if X < Ty and
T < Tp). Then under some specific distributional assumptions (popular choices
are Exponential, Weibull, etc.) the MLE or rank egression based approaches are
used for parameter estimation [Wang (2004); Johnson (1964); Michael and Schu-
cany (1986)]. Both of these approaches will produces erroneous estimates for the
setup considered. The situation will be much simpler if it is also known for a spe-
cific “noninformative” unit whether it is under the event B or D. This knowledge,
if available, will enable us to render the case as Type-1 right censoring at Ty either
on X (under B) or on T (under D) and then follow the usual theory of estimation
with censored data [Meeker and Escobar (1998); Klein and Moeschberger (2005)].
Unfortunately, practical considerations suggest that even this information will not
be available under most producer—retailer setups resulting in “ambiguous” cen-
soring. This is unavoidable unless the producer company has an agreement with
the retailer to get in-time unit specific sales information. This involves monetary
implications and often short-term cost cutting actions get higher priority.

In this article we took an alternative route to impute the installation time (X) for
those units under D, that is, installed but not failed. Note that if we know or can
successfully impute the installation time and assume that the unit is still working,
this essentially means the failure time is being censored. This enables us to use
standard methodology to estimate the model parameters [see Meeker and Esco-
bar (1998); Klein and Moeschberger (2005)]. However, the crucial question is not
only how to impute the unobserved installation time, but also how many units are
needed to be imputed. Next we present the theory of an interesting computational
approach to achieve this task based on a proportional sampling imputation scheme.

3. How many to sample and where to sample from? In the parametric setup
we generally assume some distributional form for X and 7', Weibull and Exponen-
tial being the most popular choice to reliability engineers [Abernethy (1996)]. Our
present methodology is general in the sense that it does not depend on any specific
distributional choice for both X and 7. Note that for C complete units we have
samples from three conditional distributions, namely:

1. x| X+ T <Ty;
2. t|1 X +T < To;
3. x+t X+ T <Ty.

It is not difficult to formalize an estimation procedure if we have samples from
{x|X < Tp}. However, the identity

Jx(x|X = To) Fr (To — x) Fx (To)

X+T<Ty =
fx(x|X+T <Tp) Frax(To)




1980 S. GHOSH

implies
fx&xIX+T <To)Fryx(To)
Fr(Ty — x) Fx(Tp)

(3.1) o fx(x|X +T < To)Fy ' (Ty — x)
o fx (x| X + T < To){1 — Sr(To — x)} .

fx&x|X <Tp) =

REMARK. Note that the number of samples (if available) from {x|X < Tp}
will be larger than that from {x|X + T < Tp}. Hence, we have the identity,
# samples {x|X < Tp} — # samples {x|X + T < Tp} =#samples {x|X <ToNT >
To — X}. We will try to impute this difference (or unobserved installations) via
proportional sampling.

The above calculation shows why the assumption that the samples are from right
truncated and independent distributions is not valid. Even though X and T are
assumed to be independent, the very nature of the “installation-failure” setup will
make them intrinsically dependent. Hence, it will be wrong to carry out separate
estimation of the parameters of the distributions of X and 7' under the truncation
assumption, as in reality we do not have samples from {x|X < Ty} and {t|T < Tp}.
Next we have exploited this mutual dependence of X and T via a sampling and
imputation based approach.

3.1. Proportional imputation scheme. To estimate the number of imputations
necessary, let us denote the random variable V = Z?’: 1 Vj, where

Vi { 1, if jth unit is installed on or before T,
7o, otherwise.

Hence, P[V; = 1] = P[X < Ty] = Fx(Tp) and V; ~ Bernoulli(Fx(Tp)).
Under the assumption that units are identical and independent, V ~ Binomial(N,
Fx(Tp)). Hence, E[V] = N Fx(Tp) and since C units are already observed, we
need to impute for N Fx (Tp) — C units. Of course, N Fx(Tp) — C need not be an
integer and so we round it up to produce a sensible estimate. We use [-] notation to
denote this rounding procedure. All these make sense provided we know the pa-
rameters in Fx(-), but, in fact, the main purpose of this paper is to estimate those
parameters. However, for the time being let us assume that some crude estimates of
these parameters are available. We will describe exactly how to get such accurate
estimates in Section 5.

Without loss of generality, we assume C units are ordered in the sense that
xi <xj41 fori =1,...,C—1.The observed installations are depicted in Figure 1.
These installations produce a natural C + 1 partitioning of the study interval, that
is, [0, Tp]. Due to the continuous distributional choice for X, we consider the case
with no ties. However, we remark that the case with ties can be handled with minor
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FI1G. 1. Schematic diagram of C observed installations.

modifications. The probability of a unit being installed in the interval [x, xx41] is
given by Plxy < X < xp+1]1 = Fx(xg+1) — Fx(xx). An installed unit will remain
unobserved if it does not fail by 7p. So the conditional probability of remaining
unobserved is given by

f;;kﬂ St(To — x) fx(x)dx
Fx(xg41) — Fx(xx)

Next we present a theorem for the above conditional probability if the interval
[xk, xk+1] becomes narrower, that is, xg41 | Xk.

3.2) PIT > Ty — X|xi < X < xp+1] =

S Sp(To—x) fx (x) dx
Fx (xp1)—Fx (xk)

THEOREM 3.1. limy

Sx (r+1) #0.

= St (To — xx), provided

PROOF. This follows by application of I’Hospital’s rule. [J

REMARK. This indicates that if xz41 | Xz, then the probability of survival
(i.e., remaining unobserved) for a unit installed exactly at x; will be S7(Ty — xx).

Now using equation (3.2), the joint probability of a unit being installed in
[xk, xk+1] and then remaining unobserved is

Xk

(3.3) Pl <X <xp+1) N(T > Ty — X)] 2/ " St(To — x) fx(x)dx.

Xk

Due to the nonincreasing property of the survival function, it is easy to see that

Sr(To—xi) [ fr(x)dx < / S0 (To — x) fx(x) dx
Xk Xk

(3.4)

Xk

+1
< S7(To — xk+1) fx(x)dx.

Xk

We would like to use the above inequality to approximate equation (3.3) via
liep1 = POk < X < x¢41) N(T > To — X)]

S1(To — xx) + S7(To — Xk+1)
a 2

(3.5)

[Fx (xg+1) — Fx(xi)].

REMARK. Note if Ty | but [xg, xr+1] remains fixed with xz4; < Tp, then
Ix4+1 1 due to the monotone decreasing property of the survival function. Con-
versely, if To 1, then Iy | . The approximation for ;4 given in equation (3.5)
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works very well provided the observed installation times are not very sparse over
[0, To]. Next, we present a theorem characterizing unobserved installation times
over different regions.

THEOREM 3.2. Let xx € (Xg—1,Xk+1). Then P[T > Ty — X|xp—1 < X <
x) < PIT > To — X|xp < X < xp41].

The proof is provided in the Appendix. Theorem 3.2 implies that the probability
of remaining unobserved increases as the installation time gets closer to the end of
study time 7p. Equation (3.5) characterizes the probability of a single unit being
installed in [xg, xx41] but remains unobserved until 7. Note that we have C + 1
such intervals in [0, Tp]. Hence, the expected number of unobserved installations
in [xg, xg41]is

{NFx(To) — C}x41

U1 = e :
> i=01j+1

with the identity >C_, ax11 = N Fx (Tp) — C.

LEMMA 3.1, Y5 0 Iyt = Y X001,y — x;_1) — S7(To — x;41)] +
Fy (To) 3002 ywhere xo = 0 and xc41 = To.

PROOF. Note that [y = L0 tSrQo=s) |y (3 1) — Fy (xz)]. Hence,

c c

St(To — xx) + St (To — Xk+1)
Y h=Y :
k=0

2

[Fx (xp41) — Fx (xi)]
k=0
St (To — x0) + S7(To — x1)
2
St(To — x1) + S7(Th — x2)
2

=[Fx(x1) — Fx(x0)]

+ [Fx(x2) — Fx(x1)]

St(To — xc) + St(To — xc+1)
3 )

After cancelling successive terms and setting S7(0) = 1, we complete the proof.
g

+ [Fx(xc+1) — Fx(x¢)]

Note that even if the distributional forms for X and 7" are known, o1 will still
not be available if we do not know the parameters of Fx(-) and Fr(-). In Section 5
we will propose a general iterative approach for estimating these parameters which
in turn will yield the estimate &4 for k =0, ..., C. In practice, we use [@g+1]
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for obvious reasons. We would like to put forward a sampling based approach to
impute these unobserved installation times in Section 5. We denote the random set
F={ie{l,2,....N}:(X; <To)N(X; +T; > Tp)} with [T'| = Zlgzo[&k+1] being
the number of imputed samples of X. In this situation, by combining the observed
and imputed samples we have the case of type-1 right censoring for the installation
time X. The likelihood for X is then given by

(3.6) Ly={ TT futw]sea¥=cI,

ieQuUl
which we need to maximize with respect to the parameters to obtain the ML esti-
mates.

4. Characterization of failure time. So far our effort was to characterize the
expected number of unobserved installation times in different partitions of [0, Tp].
Once this is known, we want to impute these installation times in an iterative fash-
ion (see Section 5). For the time being, if we assume the imputed samples represent
the actual unobserved installation times, it presents the case of random right cen-
soring for T. This is explained in Figure 2. The left-hand diagram in Figure 2
represents the possible scenarios with both installation and failure times. In the
right-hand diagram of Figure 2 we plot the time to failure for each unit, taking
installation time as the starting point. For the imputed installation time (i.e., unob-
served due to the fact that the unit is still working) what we really get is 7o — X or
the random censoring time. Hence, the observed variable is T* = min{T, Tp — X}.
Note that X and T are assumed to be independent and so are T and Tp — X. Let §
indicate whether T* is censored (8§ = 0) or it is a real failure (§ = 1). For the cur-
rent situation we have C real failures and [N Fx (Ty) — C] censored times, while

Unitl [~°7°°°° b [ e
AEs A
Unit3 * * — ¢
Unitd  |r---mmmmmmmmmmmmes ®------| N\ [
Unit3 * -+ *
Unitf  |---cccceemcecnneen @----veee-eeedl e
Ut? —o——— —
0 Installation Time + Time to T 0 Time to failure T

“n n

failure

FIG. 2. Schematic diagram (on left) until observation time Ty with N =7 and C = 3. A
“e” indicates an installation and a “4” indicates a failure. A solid line indicates an observed
unit (i.e., X + T < Tp). A dashed line indicates an unobserved unit [i.e., either {X > Ty} or
{(X < Tp) N(T > Ty — X)}]. Note that units 1, 4 and 6 are installed but still working, while unit 2
is not installed at all. The diagram at the right indicates the time to failure only starting from the in-
stallation time for each unit (starting from e, at the left). Unit 2 does not appear on the right diagram

as it has not been installed yet, while units 1, 4 and 6 are censored for T .
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[N (1 — Fx(Tp))] units do not contribute to the estimation process as they provide
no information related to failure. The data from n = [N Fx (Tp)] units consists of
the pair (¢, §;). Since we are interested in inference about the parameters of Fr(-),
the likelihood function for the same is given by

(41) Lt = H[fT(ti*)]ai[ST(ti*)]lf(S,-.

i=l

5. Iterative algorithm. All our earlier calculations are solely for the purpose
of parameter estimation in the distributions of X and 7. The key quantity of the
whole discussion is a1 (see Section 3.1), which represents the number of unob-
served installation times in [xx, xx+1]. However, the estimation of a4 requires
knowledge of the parameters in the distributions of X and 7. We have assumed
so far that the distributions of X and 7 are known; however, the parameters are
actually unknown. Hence, an iterative procedure is proposed.

Begin procedure

Step 0. Find initial parameter estimates of Fx(-) and Fr(-) assuming that they are
coming from a truncated distribution (< Tp) for which we have complete
knowledge (e.g., Weibull, Exponential, etc.).

Step 1. Using the current value of the distribution parameters, find &4 for k =
0,..., C. Note that it is quite possible to have & not as an integer, say,
Qg1 = int(@y+1) + frac@s+1) = U1 + Vir1.

Step 2. Draw U1 samples from the interval [xi, xx4+1] of the distribution Fy(-)
using current values of the distribution parameters.

Step 3. First, draw a sample from a Bernoulli(Vj41). If it is equal to one, draw
another sample as in step 2, otherwise skip to the next step. Hence, the
total number of imputed samples is either Uy or Ug41 + 1.

Step 4. Re-estimate the parameters of X using both imputed and observed (C)
samples via MLE under right censoring using equation (3.6).

Step 5. Re-estimate the parameters of T by using both observed (C) and censored
samples via equation (4.1). The random censoring value for any imputed
sample is To — Ximputed-

Step 6. Return to step 1 until an acceptable convergence tolerance level is reached
on the parameter estimates.

End procedure

Note that the conventional approach stops at “Step 0” without any further it-
eration, so we are simply using that as the initial guess. Details for obtaining the
MLE for some of the truncated distributions (e.g., Exponential and Weibull) are de-
scribed in the Appendix. Though this algorithm assumes that the parametric form
of X and T are known, it does not depend upon any specific distributional choice.
Under the assumption that the specific distributional choices of Fx(-) and Fr(-)
are correct, the speed of convergence depends upon the actual observed sample
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size (C) and end of study time (7p). If C is too small, it will require many impu-
tations (as [N Fx (Ty) — C] is big). Similarly, if Tj is too small thus representing
an early study termination, it will force C to be quite small. Both of these cases
represent very little available information. This generally results in large sampling
variance with high fluctuations in the iterations resulting in nonconvergence.

6. Connection with the exact likelihood. Note that our main goal is to es-
timate parameters in the distribution of X and T and typically a likelihood is a
function of those parameters. As noted earlier in Section 3, though X and T are as-
sumed to be independent, the nature of ambiguous censoring make their joint dis-
tribution dependent, where the functional component related to respective parame-
ters are nonseparable. As a consequence, maximum likelihood estimation requires
joint maximization for all parameters over the exact likelihood function given in
equation (2.1), which is computationally prohibitive. Thus, a major point in this
article is the separation of the X and T distributions via equations (3.6) and (4.1).
A pertinent question is the theoretical justification of the above in light of the ex-
act likelihood. Note that P{X + T > To} = Sx(Tp) + fOTO St(To — x)dFx(x). In
case there is an oracle which supplies us information about the N — C unobserved
units, that is, whether {X > Ty} or {X < To} N {T > Tp — X}, the above expression
simplifies considerably. Suppose that out of those N — C units we know that |I'|
(= [N Fx(Ty) — C]) units are installed (with reported installation times) but have
not yet failed by 7p; then for those units, P{X + T > To} = fx(x)St(To — x). For
the remaining N — |Q2| — |['| (= [N(1 — Fx(Tp))]) no information is available,
as they are not installed. Hence, we get type-1 right censoring on X at 7p, imply-
ing P{X 4+ T > To} = Sx(Tp). The likelihood contribution from the imputed and
unobserved units is {]_[jep Ix(x;)St(Th — xj)}SX(To)N_m‘_‘F'. Under the above
setup, the complete likelihood for all observed and imputed samples becomes

L(Fy, Fp)

61 o TT ) fr ) || TT S (T — xSy ¥-94-0
ieQ jer

| se =TT peca T Ar T 1t —xp .

ieQuUI’ ieQ jer

This is what corresponds to equations (3.6) and (4.1).

7. Simulation studies. Next we present some simulation studies with dif-
ferent choices of reliability distributions to demonstrate the efficacy of the pro-
posed approach. In particular, we consider exponential and Weibull distributions
for both X and T with different values of 7p. To explain the convergence criteria
let us assume u is a parameter (in either X or 7') that needs to be estimated. We

stop the iteration when |“2—K

o | < &, where i denotes the iteration number, p is
p
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a prespecified positive integer constant and ¢ is a prespecified small value chosen
by the end user. For multi-parameter cases this needs to be satisfied for every para-
meter. Alternatively, in the spirit of the Monte-Carlo-based approach, we may run
a fixed but large number of iterations and discard the first few iterations as non-
stabilized (or “burn-in”) values and keep all the remaining to report the estimated
empirical mean and standard deviation. We took the second approach as we found
that convergence is very fast even for ¢ = 0.0005, except for the situation when

€ < 20%. In every situation we also report the exact stopping time if we choose

N
,U«H—p Mi
+

to use the first stopping criterion (i.e., stop if | | < ¢). We also report the

exact runtime in every simulation using R code on a Windows-XP-based machine
until convergence. We hope this should give the reader a comprehensive idea about
the run time efficacy of our approach. The computer code used for the simulation
is available as a supplementary material [Ghosh (2009)].

Table 1 represents the simulation results for different choices of distributions
for X and T. We choose N = 200 for all experiments. We run the iteration 1000
times for each model, of which we discard the first 100 as burn-in values. The
reported parameter estimates and standard deviations are based on the remaining
900 iterations. We also report the convergence iteration number, which, for the
multi-parameter case, represents the maximum of all iterations taken by individual
parameters to satisfy Iﬂ’“’ipﬂ’l < e. As we can see from Table 1, convergence is

achieved quickly. For parameter estimation we used the maximum likelihood ap-
proach which is described briefly in the Appendix section. Again for other nontriv-
ial distributions with complicated MLE, the method of moments or rank regression
based approaches [Johnson (1964)] could be used. In each model, following stan-
dard practice, we obtain the initial parameter estimates for the distribution of X
and T using the right truncated distribution. These initial estimates are way off in
all cases, which explains why standard practice is unsatisfactory in this nontrivial
situation. We summarize our simulation result in Table 1 The first two rows in

Table 1 are of special interest since we assumed X, T' i "Exp(A =§). As shown
in Appendix B.5, the exact likelihood given in equation (2.1) can be solved nu-
merically in this case. For Ty = 6 the exact likelihood based MLE yields *=022
with asymptotic standard deviation &, = 0.026. For Ty = 5, we get 2 =0.18 with
asymptotic standard deviation & = 0.028. In both of these cases our simulation re-
sult is very close to the true value (A = § = 0.2) even though we did not use the in-
formation that A = § in our proposed algorithm. In Figure 4 we present pictorially
the result for these two cases. This supports the viability of our algorithm. Next we
explore non-i.i.d. cases. Figure 3 presents the case for X ~ Exp(A) and T ~ Exp(§)
with two different observation times (7 = 4, 6). In the first case, we choose the
true model parameters in such a way that about 50% of the cases are observed
(i.e., C > 100). Figure 3(a) and (b) present the case when A = 0.5 and § = 0.2. We
observe 108 and 66 units for 7o = 6 and 4, respectively. As expected, the case with
more units produces better estimates. Nevertheless, we point out that for 7y = 4,



The simulation result N =200. C denotes total observed samples, while | D| denotes true

TABLE 1

unobserved installations before Ty

Different Initial Simulation Average No. Convergence Time in

distribution Ty C |D| estimates results imputations p=5,e=0.0005 second

X ~Exp(A =0.2) 6 75 67 A=0.43 *=0.19,5;, =0.021 60 57 121

T ~Exp(8 =0.2) § =051 §=0.23,55 = 0.027

X ~Exp(A =0.2) 5 47 75 A=0.5 *=0.18,5, =0.026 72 46 97

T ~Exp(8 =0.2) §=0.48 5=0.19,55 = 0.029

X ~Exp(A=0.5) 6 108 84 2 =0.69 A= 0.48,5, =0.018 78 32 133

T ~Exp(§ =0.2) §=0.4 §=0.22,55=0.01

X ~Exp(A =0.5) 4 66 102 A=0.81 *=0.43,5;, =0.025 98 65 116

T ~Exp(§ =0.2) §=0.56 §=0.23,55 =0.013

X ~Exp(A =0.4) 6 170 13 rx =0.53 *=044,5=0.013 18 101 108

T ~Exp(8 =0.7) §=0.78 5=0.7,65=0.03

X ~Exp(A=0.4) 4 124 43 L =0.67 A= 0.41,5 =0.03 36 212 155

T ~Exp(§ =0.7) §=1.07 §=0.75,55 = 0.06

X ~Exp(A =0.7) 6 111 84 A=1.05 *=0.66,5; =0.03 88 66 123

T ~ Weibull(8 = 2,0 = 5) g=121 B =2.03,65=0.04

B = Shape, 6 = Scale 0=171E+03 0 =5.04,09 =0.14

X ~Weibull(B =1.5,0 =4) 6 107 47 B =251 E: 1.51,65 =0.04 35 45 115
6=5.15 0 =3.38,09 =0.14

T ~Exp(A =0.5) r=0.74 *=0.44, 5, =0.033
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FI1G. 3. Plot of the maximum likelihood estimate over different iterations for nonidentical exponen-
tial cases. Plots at the top are for A =0.5, § = 0.2 and at the bottom are for > = 0.4, § =0.7. The
“...” (dashed line) indicates the true value of the parameter in each case.

even though we observe only about 33% of the units, the final parameter estimates
are still noticeably close to the true parameter values. Similar observations could be
made for the other choice of parameter values in Figure 3(c) and (d). To elucidate
the problem when using the exact maximum likelihood based approach, we have
also plotted the log-likelihood surface (obtained via equation (2.1) and numerical
integration) in Figure 5 for the case A = 0.5 and § = 0.2. Figure 5(a) represents the
case when we have complete observations for all units (C = N). However, as T
shrinks, C goes down, and, as a result, the likelihood surface becomes very flat.
Hence, searching for the MLE becomes computationally challenging and often
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FI1G. 4. Plot of the maximum likelihood estimate over different iterations for the i.i.d. exponential
case (A =06=0.2). The “---” (dashed line) indicates true value of the parameter in each case.

leads to large variance. We have noted this problem earlier in Section 2. Figure 5(d)
presents the log-likelihood surface obtained via equation (6.1) when imputation is
in use. This representative plot is obtained for a specific iteration when 97 units
are imputed while running the algorithm described in Section 5. The flatness of the
resulting log-likelihood surfaces in Figure 5(c) and (d) is an indicator of computa-
tional difficulties in finding the MLE for each case. Next, in Figure 6 we describe
the iteration result when X ~ Exp(}) and T ~ Weibull(8, 8). In Figure 7 we de-
scribe the iteration result when X ~ Weibull(8, 6) and T ~ Exp(4). In all cases
the final estimates are quite close to the true model parameters. Though not re-
ported here, we obtain similar results with the gamma distribution. For details of
the sampling from a truncated gamma distribution, please refer to Damien and
Walker (2001). We have confined our simulation exploration only to commonly
used reliability distributions; however, we are hopeful that the algorithm presented
here will also work for other distributions with nonnegative support.

8. Motivating application. The data set that we will analyze using the cur-
rent procedure came from an industrial house producing residential furnace com-
ponents during one week in May 2001. We consider a batch with N = 400 units.
The data consist of C = 133 pairs of points as observed units (i.e., {x;, ti}l.lfl),
which have failed within the observation time of seven years from the date of man-
ufacturing. Figure 8(a) shows a violin plot for installation and failure times. The
violin plot is a combination of a box plot and a kernel density plot. There is no spe-
cific information available about the remaining units. We are assuming that there
exists no unit which has failed but was not reported. In practice, this could have

happened for many other reasons. In the present context the reliability engineers
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F1G. 5. Log-likelihood surface plots for the Exponential-Exponential model with . = 0.5 and
8 = 0.2. (a) is obtained when we use all the observations (C = 200). (b) is obtained when Ty = 6
and C = 108. (c) is obtained when Ty =4 and C = 66. Likelihood becomes flatter as C |, thus
making MLE search a difficult task. (d) is obtained for a specific iteration when imputation is used
(97 imputed samples) for To =4 and C = 66.

believe that it is appropriate to model installation time (X) using an exponential
distribution, while failure time (7) is modeled according to a Weibull distribution
[Jager and Bertsche (2004); Zhu (2007)]. It should be noted that seasonality plays
an important role in selling, installation and duty cycles (how rigorously the unit
is being used) of the product. However, since in the present case we consider only
a single batch, we assume that these effects will be similar for every unit in the
batch. When comparing the units produced under different batches (and possibly
produced at different times of the year), additional care is required as the inde-
pendence assumption between X and 7 becomes questionable. This is due to the
fact that some installation times are associated with severe duty cycles and more
reliability problems.
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FI1G. 6. Plot of the maximum likelihood estimate for the Exponential-Weibull model over different

iterations. The “---” (dashed line) indicates true value of the parameter in each case.

Before running the algorithm we divide the installation times as well as fail-
ure times by their corresponding standard deviation estimated from 133 samples.
This rescaling is done for numerical stabilization only, which results in faster con-
vergence of the algorithm. Rescaled random variables have straightforward rela-
tionships with the original variables, without any drastic change to the distribu-
tional form. We run the algorithm for 1000 iterations, however, convergence (with
p =15, e =0.0005) was achieved much earlier. We discard the first 100 iterations
as burn-in and report the estimates on the basis of the remaining 900 iterations in
Table 2. For model comparison purposes we have also investigated separately the
case where T is assumed to follow the exponential distribution, without altering
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FI1G. 7.  Plot of the maximum likelihood estimate for the Weibull-Exponential model over different
iterations. The “---” (dashed line) indicates true value of the parameter in each case.

the distribution of X. In each case we obtain the initial parameter estimates using
the right truncated distributions. Figure 8 represents the case for the Exponential—
Weibull model combination. Though the Exponential-Exponential model parame-
ter is different from the previous choice (see Table 2), the density plot of the two
distributions of T are quite similar as depicted in Figure 9(b). We have also com-
pared the predictive performance of different models in Figure 9(c), including the
usual practice of truncated distributions without any imputation. We estimated the
expected number of failures to be observed for different observation times over an
interval of six months. This expected failure number is then compared with the ob-
served failure number for the current data set. This required repeated re-estimation
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FI1G. 8. Plot (a) represents violin plot for the observed 133 units. Other plots represent the max-
imum likelihood estimates for the Furnace data over different iterations. The “---” (dashed line)
indicates finally estimated mean of the parameter in each case.

of model parameters at different time points. As can be seen, the truncated mod-
els have a huge overestimation problem throughout the study period. This again
justifies our earlier criticism of current practice. Imputed models produce stable
estimates and do much better even at the very early stage of product lifetime with
only limited data. The Exponential-Weibull model choice does a little better than
the Exponential-Exponential model. However, they are very much comparable as
expected from Figure 9(b). It is desirable to estimate the expected failure number
accurately for two main reasons. First, by accurately estimating warranty claims,
an estimate of required financial reserves can be performed. This has immense im-
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TABLE 2
Estimates for N = 400 units in a single batch. C = 133 units have complete observations

Initial Simulation Average No. Convergence Time in
Distribution estimate result imputations iteration second
X ~Exp()) A=09 2=0.575,=0.014 260 167 381

=)

T ~Weibull(8,6) B=0.6, B=081,55=0.004
0=318 0=14.47,69p=04
T ~ Exp(8) §=0.51 §=0.079,55 = 0.001 263 45 421

)

plications in terms of future financial resource management. Second, it is desired
to continuously improve the quality of consumer products, especially at the very
high quality levels enjoyed by many consumer products today. All these aspects
necessarily depend upon the accurate and efficient estimation of the reliability pa-
rameters (in X and 7). The method described in this paper provides a first step in
this direction.

9. Concluding remarks. Unlike electronic commodities, item specific track-
ing is not a feasible solution for many large scale industrial operations. Hence,
the availability of both “complete” and “partial” information is quite common. In
addition, except for very rare occasions, there are hardly any situations where all
units in a batch start working at the same time. Unavailability of the installation
time in a timely fashion is a major challenge to reliability engineers. Because of
confidentiality issues we can not reveal any company specific information. How-
ever, we would like to mention that the above problem exists in different industrial
sectors, and there is no clear solution thus far. In this paper we have proposed
a computational approach to solve the problem with the optimal usage of partial
and complete information. From a reliability engineer’s perspective, this current
approach is simple, fast and also has straightforward interpretability.

The primary focus of any reliability analysis is the failure time. However, the
waiting time for the installation is also very important in the sense that it provides
valuable market specific information from the sales perspective, including season-
ality and periodic sales patterns. In our approach we have targeted simultaneous
estimation for both installation and failure time parameters in a combined fash-
ion. To the best of our knowledge, this is the first attempt to do so. Finally, we
would like to point out some of the assumptions that we have made in this paper,
a violation of which will require more research. First, we have assumed that in-
stallation time and failure time are independent. This may be questionable in some
situations as discussed in Section 8. Second, there is no aging effect for the units
installed at different time points. Finally, we made the assumption that the distrib-
utional form of both installation and failure times is known. While for most of the
legacy industrial products, in-house experts have a good idea about this from his-
torical knowledge, it is of theoretical interest to see the effect of convergence and
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FI1G. 9. On the left, (a), maximum likelihood estimate for the furnace data when T ~ Exponential
distribution. In the middle, (b), density plot for two different model choices for T . Both look similar.
On the right, (¢), it represents performance of different models compared with the observed failure.
Truncated distribution with no imputation performs very poorly with huge overestimation. Perfor-
mance of imputed models are far better and the Exponential-Weibull model choice does the best
job.

the quality of parameter estimates under incorrect parametric model specification.
One way to avoid this is to choose a larger class of models. From the reliability
perspective there is considerable effort to generalize Weibull and other popular
reliability distributions [see Bali (2003) and Shao (2004)]. However, the resultant
estimation procedure will be more involved. Another possibility is a nonparametric
extension; however, the resulting procedure will be much more complex. In an on-
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going work we are also exploring the exact probabilistic and inferential procedure
based on equation (2.1).

APPENDIX A: PROOF OF THEOREM 3.2.
We can use the inequality (3.4) to argue that the following holds:
St(To — xx) = P[T > To — X|xx < X < xp1] = S7(To — Xk41),

ST(To — xx—1) < P[T > To — X|xk—1 < X < x¢] = S7(To — x¢).

Combining both of these yields the proof.

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION.

We concentrate here on Exponential and Weibull distribution as used in the
simulation, though other distributions with positive support, such as gamma and
log-normal, can also be considered. Most of the results are published elsewhere
and referenced as required.

B.1. Truncated exponential. Let X ~ Exp(A) with 0 < X < Ty. The p.d.f. is
given by

rexp(—xA)

fxIx, To) = m-

If we have n observations, then differentiating the log-likelihood equation with
respect to A and equating it to zero yields
1 To exXp (— T())\.)

- —x=0.
A 1 —exp(—ToAr)

The above equation needs to be solved numerically to get the MLE of A.

B.2. Randomly right censored exponential. Let 77 ~ Exp(1) and we ob-
serve T* = min{T, C,}, where in the current context C, = Tp — X and X is an-
other random variable denoting installation time. Let us denote our samples as
{t¥, 8i}!_,, where §; = 1 means the sample is an actual observation and 0 means it
is censored. If we have ) 7 §; = C true observations, then the log-likelihood is
given by

C n—C
LO)=clogh—1) ti—1 Y (To—xj),
i=1 j=I1

c
Y Y (To—x))

which upon equating to 0 yields A =
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B.3. Truncated Weibull. The MLE calculation for the truncated Weibull dis-
tribution is somewhat involved and may not always exist. Some explicit mathe-
matical formulations with the required regularity conditions are described in Mittal
and Dahiya (1989). We briefly mention only the final result here that has been used
in this paper. Suppose X ~ Weibull(8, 6), but with 0 < X < Ty. Let us denote by
Y= Tlo Unfortunately, the MLE for g is not available in closed form and needs to
be solved numerically using the equation

oyl Xy logy N [ex {n/ﬁ + 271 log i } B 1}1 _0
n n/B+ Yl logy; i1 yf Tog yi
Once we know 3 , the MLE of 6 is

§:To( i1y log yi )1/’9
n/B+ 3 logyi

B.4. Randomly right censored Weibull. Suppose 7' ~ Weibull(8, 8). Sim-
ilar to the randomly right censored exponential case T7* = min{T, C,}, where
in the current context C, = Ty — X. We denote our data set as {ti*, 8;}7_, and

"_18;i = C. The MLE is given explicitly in Shao (2004) and Lemon (1975),
which again needs to be solved numerically for 8 using the equation
L Xizidilogt 1P logt} —0.

B C Zln: 1 (fi*)ﬁ
Once we know E , the MLE of 9 is

n B I/E
. !t )ﬂ)
0= i=1\" )
( C

B.5. Derivation of the exact MLE for i.i.d. exponential case. We assume
X, T i Exp(A). The complete likelihood is given by

L) (A)zce—x z,.czl(x;+z,~)[e—xT0 + TO}\e—ATo]N—C‘

Now differentiating the log-likelihood equation with respect to A and equating it
to zero yields

2 Ty(N-C) &
= L4+ t)— (N = C)To =0.
T an, R SO

The equation needs to be solved numerically for A to obtain MLE.
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SUPPLEMENTARY MATERIAL

Furnace Data Set and R Code for Furnace Data as well as Simulation for
all Models Considered in the Paper (DOI: 10.1214/10-AOAS348SUPP; .zip).
R code is used for the simulation as well as real data analysis.

Supplementary material has five files:

1. Furnace data in MS Excel format (data.xls).

2. Code for analyzing furnace data (code_furn.doc).

3. Code for the Exponential-Exponential model (new_code_Exp(2).doc).
4. Code for the Exponential-Weibull model (new_code_ExpWeb.doc).

5. Code for the Weibull-Exponential model (new_code_WebExp.doc).

For the simulation examples data sets are generated on the fly at the beginning
of the code. No special R package is required to run the codes. All the codes are
commented for the ease of understanding.
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