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MULTICATEGORY VERTEX DISCRIMINANT ANALYSIS FOR
HIGH-DIMENSIONAL DATA

BY TONG TONG WU1 AND KENNETH LANGE2

University of Maryland and University of California

In response to the challenges of data mining, discriminant analysis con-
tinues to evolve as a vital branch of statistics. Our recently introduced method
of vertex discriminant analysis (VDA) is ideally suited to handle multiple cat-
egories and an excess of predictors over training cases. The current paper ex-
plores an elaboration of VDA that conducts classification and variable selec-
tion simultaneously. Adding lasso (�1-norm) and Euclidean penalties to the
VDA loss function eliminates unnecessary predictors. Lasso penalties apply
to each predictor coefficient separately; Euclidean penalties group the col-
lective coefficients of a single predictor. With these penalties in place, cyclic
coordinate descent accelerates estimation of all coefficients. Our tests on sim-
ulated and benchmark real data demonstrate the virtues of penalized VDA in
model building and prediction in high-dimensional settings.

1. Introduction. Despite its long history, discriminant analysis is still under-
going active development. Four forces have pushed classical methods to the limits
of their applicability: (a) the sheer scale of modern datasets, (b) the prevalence of
multicategory problems, (c) the excess of predictors over cases, and (d) the excep-
tional speed and memory capacity of modern computers. Computer innovations
both solve and drive the agenda of data mining. What was unthinkable before has
suddenly become the focus of considerable mental energy. The theory of support
vector machines (SVM) is largely a response to the challenges of binary classifica-
tion. SVMs implement a geometric strategy of separating two classes by an opti-
mal hyperplane. This simple paradigm breaks down in passing from two classes to
multiple classes. The one-versus-rest (OVR) remedy reduces classification with k

categories to binary classification. Unfortunately, OVR can perform poorly when
no dominating class exists [Lee, Lin and Wahba (2004)]. The alternative of per-
forming all

(k
2

)
pairwise comparisons [Kressel (1999)] has value, but it constitutes

an even more egregious violation of the criterion of parsimony. In the opinion
of many statisticians, simultaneous classification is more satisfying theoretically
and practically. This attitude has prompted the application of hinge loss functions
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in multicategory SVM [Bredensteiner and Bennett (1999); Crammer and Singer
(2001); Guermeur (2002); Lee, Lin and Wahba (2004); Liu, Shen and Doss (2005,
2006); Liu (2007); Vapnik (1998); Weston and Watkins (1999); Zhang (2004b);
Zou, Zhu and Hastie (2006); Yuan, Joseph and Zou (2009)].

Our earlier paper [Lange and Wu (2008)] introduced a new method of multicat-
egory discriminant analysis that shares many of the attractive properties of multi-
category SVM under hinge loss. These properties include simple linear prediction
of class vertices, creation of dead regions where predictions incur no loss, and
robustness to outliers. Our vertex discriminant analysis (VDA) procedure has the
advantage of operating in (k − 1)-dimensional space rather than in k-dimensional
space. Each class is represented by a vertex of a regular simplex, with the vertices
symmetrically arranged on the surface of the unit ball in R

k−1. These conventions
emphasize symmetry, eliminate excess parameters and constraints, and simplify
computation and model interpretation. For hinge loss we substitute ε-insensitive
loss. Both loss functions penalize errant predictions; the difference is that hinge
loss imposes no penalty when wild predictions fall on the correct side of their
class indicators. A generous value of ε makes ε-insensitive loss look very much
like hinge loss. In addition, ε-insensitive loss enjoys a computational advantage
over hinge loss in avoiding constraints. This makes it possible to implement rapid
coordinate descent. Class assignment in VDA is defined by a sequence of conical
regions anchored at the origin and surrounding the class vertices.

Modern methods of discriminant analysis such as VDA are oriented to data sets
where the number of predictors p is comparable to or larger than the number of
cases n. In such settings it is prudent to add penalties that shrink parameter es-
timates to 0. Our paper [Lange and Wu (2008)] imposes a ridge penalty to avoid
overfitting. Although shrinkage forces a predicted point toward the origin, the point
tends to stay within its original conical region. Hence, no correction for parame-
ter shrinkage is needed, and the perils of underprediction are mitigated. A ridge
penalty also adapts well to an MM algorithm for optimizing the loss function plus
penalty.

Motivated by problems such as cancer subtype classification, where the number
of predictors p far exceeds the number of observations n, we resume our study
of VDA in the current paper. In this setting conventional methods of discriminant
analysis prescreen predictors [Dudoit, Fridlyand and Speed (2002); Li, Zhang and
Ogihara (2004); Li, Zhang and Jiang (2005);] before committing to a full analysis.
Wang and Shen (2007) argue against this arbitrary step of univariate feature selec-
tion and advocate imposing a lasso penalty. Ridge penalties are incapable of feature
selection, but lasso penalties encourage sparse solutions. Consumers of statistics
are naturally delighted to see classification reduced to a handful of predictors. In
our experience, it is worth adding further penalties to the loss function. Zhang et al.
(2008) suggest �∞ penalties that tie together the regression coefficients pertinent
to a single predictor. In our setting Euclidean penalties achieve the same goal and
preserve spherical symmetry. By design �1 penalties and Euclidean penalties play
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different roles in variable selection. One enforces sparsity of individual variables,
while the other enforces sparsity of grouped variables. In the sequel we denote
our original VDA with a ridge penalty as VDAR, the modified VDA with a lasso
penalty as VDAL, the modified VDA with a Euclidean penalty as VDAE, and the
modified VDA with both lasso and Euclidean penalties as VDALE. The same sub-
scripts will be attached to the corresponding penalty tuning constants.

A second objection to VDAR as it currently stands is that the computational
complexity of the underlying MM algorithm scales as O(p3). This computational
hurdle renders high-dimensional problems intractable. Although substitution of
lasso penalties for ridge penalties tends to complicate optimization of the objec-
tive function, prior experience with lasso penalized regression [Friedman et al.
(2007); Wu and Lange (2008)] suggests updating one parameter at a time. We
implement cyclic coordinate descent by repeated application of Newton’s method
in one dimension. In updating a single parameter by Newton’s method, one can
confine attention to the intervals to the left or right of the origin and ignore the
kink in the lasso. The kinks in ε-insensitive loss are another matter. We overcome
this annoyance by slightly smoothing the loss function. This maneuver preserves
the relevant properties of ε-insensitive loss and leads to fast reliable optimization
that can handle thousands of predictors with ease. Once the strength of the lasso
penalty is determined by cross-validation, model selection is complete.

In practice, cross-validation often yields too many false positive predictors.
This tendency has prompted Meinshausen and Buehlmann (2010) to introduce the
method of stability selection, which requires selected predictors to be consistently
selected across random subsets of the data. Here we demonstrate the value of sta-
bility selection in discriminant analysis. Because our revised versions of VDA are
fast, the 100-fold increase in computing demanded by stability selection is man-
ageable.

Before summarizing the remaining sections of this paper, let us mention its ma-
jor innovations: (a) the new version of VDA conducts classification and variable
selection simultaneously, while the original VDA simply ignores variable selec-
tion; (b) coordinate descent is substituted for the much slower MM algorithm,
(c) ε-insensitive loss is approximated by a smooth loss to accommodate Newton’s
method in coordinate descent, (d) Fisher consistency is established, (e) a grouped
penalty is added, and (f) the new VDA is tested on a fairly broad range of prob-
lems. These changes enhance the conceptual coherence, speed, and reliability of
VDA.

The rest of the paper is organized as follows. Section 2 precisely formulates
the VDA model, reviews our previous work on VDAR, and derives cyclic coor-
dinate descent updates for VDAL. Section 3 introduces the Euclidean penalty for
grouped predictors and sketches the necessary modifications of cyclic coordinate
descent. Section 4 takes a theoretical detour and shows that ε-insensitive loss is
Fisher consistent. By definition, Fisher consistent classifiers satisfy the Bayes op-
timal decision rule. There is already a considerable literature extending previous
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proofs of Fisher consistency from binary classification to multicategory classifica-
tion [Lee, Lin and Wahba (2004); Liu, Shen and Doss (2006); Liu (2007); Wang
and Shen (2007); Zhang (2004a); Zou, Zhu and Hastie (2008)]. Section 5 quickly
reviews the basics of stability selection. Sections 6 and 7 report our numerical tests
of VDA on simulated and real data. Section 8 concludes with a brief summary and
suggestions for further research.

2. Modified vertex discriminant analysis.

2.1. Ridge penalized vertex discriminant analysis (VDAR). Vertex discrim-
inant analysis (VDA) is a novel method of multicategory supervised learning
[Lange and Wu (2008)]. It discriminates among categories by minimizing ε-
insensitive loss plus a penalty. For reasons of symmetry, the vertices corresponding
to the different classes are taken to be equidistant. With two categories, the points
−1 and 1 on the real line suffice for discrimination. With three categories there
is no way of choosing three equidistant points on the line. Therefore, we pass to
the plane and choose the vertices of an equilateral triangle. In general with k > 3
categories, we choose the vertices v1, . . . , vk of a regular simplex in R

k−1. Among
the many ways of constructing a regular simplex, we prefer the simple definition

vj =
{

(k − 1)−1/21, if j = 1,
c1 + dej−1, if 2 ≤ j ≤ k,

(2.1)

where

c = − 1 + √
k

(k − 1)3/2 , d =
√

k

k − 1
,

and ej is the j th coordinate vector in R
k−1. This puts the vertices on the surface

of the unit ball in R
k−1. It is impossible to situate more than k equidistant points

in R
k−1.

Suppose Y and X denote the class indicator and feature vector of a random
case. The vector Y coincides with one of the vertices of the simplex. Given a loss
function L(y, x), discriminant analysis seeks to minimize the expected loss

E[L(Y,X)] = E{E[L(Y,X)|X]}.
This is achieved empirically by minimizing the average conditional loss n−1 ×∑n

i=1L(yi, xi). To maintain parsimony, VDA postulates the linear regression
model y = Ax +b, where A = (ajl) is a (k − 1)×p matrix of slopes and b = (bj )

is a k −1 column vector of intercepts. Overfitting is avoided by imposing penalties
on the slopes ajl but not on the intercepts bj . In VDA we take the loss function for
case i to be g(yi − Axi − b), where g(z) is the ε-insensitive Euclidean distance

g(z) = ‖z‖2,ε = max{‖z‖2 − ε,0}.
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Classification proceeds by minimizing the objective function

f (θ) = 1

n

n∑
i=1

g(yi − Axi − b) + λP (A),(2.2)

where θ = (A,b), and P(A) is the penalty on the matrix of slopes A. Since the
loss function is convex, it is clearly advantageous to take P(A) to be convex as
well. In VDAR the ridge penalty P(A) = ∑

j

∑
l a

2
j l is employed. Because of its

near strict convexity, the objective function f (θ) usually has a unique minimum.
Once A and b are estimated, we can assign a new case to the closest vertex, and
hence category.

For prediction purposes, VDAR is competitive in statistical accuracy and com-
putational speed with the best available algorithms for discriminant analysis
[Lange and Wu (2008)]. Unfortunately, it suffers two limitations. First, although it
shrinks estimates toward 0, it is incapable of model selection unless one imposes
an arbitrary cutoff on parameter magnitudes. Second, its computational complex-
ity scales as O(p3) for p predictors. This barrier puts problems with ten of thou-
sands of predictors beyond its reach. Modern genomics problems involve hundreds
of thousands to millions of predictors. The twin predicaments of model selection
and computational complexity have prompted us to redesign VDA with different
penalties and a different optimization algorithm.

2.2. A toy example for vertex discriminant analysis. The use of ε-insensitive
loss is based on the assumption that it makes little difference how close a lin-
ear predictor is to its class indicator when an observation is correctly classified.
Here ε is the radius of the circle/ball around each vertex. Training observations
on the boundary or exterior of the ε-insensitive balls act as support vectors and
exhibit sensitivity. Observations falling within an ε-insensitive ball exhibit insen-
sitivity and do not directly contribute to the estimation of regression coefficients.
The definition of ε-insensitive loss through Euclidean distance rather than squared
Euclidean distance makes classification more resistant to outliers. The following
small simulation example demonstrates the importance of creating the dead zones
where observations receive a loss of 0. These zones render estimation and classifi-
cation highly nonlinear.

We generated 300 training observations equally distributed over k = 3 classes.
To each observation i we attached a normally distributed predictor xi with variance
1 and mean

μ =
⎧⎨
⎩

−4, class = 1,
0, class = 2,
4, class = 3.

We then compared four methods: (a) least squares with class indicators vj equated
to the standard unit vectors ej in R3 (indicator regression); (b) least squares with
class indicators vj equated to the vertices of an equilateral triangle inscribed on
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the unit circle as described in (2.1); (c) ε-insensitive loss with the triangular
vertices and ε = 0.6; and (d) ε-insensitive loss with the triangular vertices and
ε = 1/2

√
2k/(k − 1) = 0.866. Because there is only a single predictor, all four

methods omit penalization. As advocated in Lange and Wu (2008), method (d)
adopts the maximum value of ε consistent with nonoverlapping balls.

Figure 1 plots the three distances xi → ‖ŷi − vj‖ between the predicted value
ŷi for observation i and each of the three vertices vj . An observation is assigned
to the class whose vertex is closest. It is evident from these plots that squared
Euclidean loss fails to identify class 2, which is dominated and masked by the
other two classes (upper two panels of Figure 1). With surrounding balls of small
radius, class 2 can be identified but the misclassification rate is high (13%, lower
left plot). With surrounding balls of the maximum legal radius, ε-insensitive loss
readily distinguishes all three classes with a low misclassification rate (2.67%,
lower right plot). This example nicely illustrates the importance of the dead zones
integral to ε-insensitive loss. Our previous paper [Lange and Wu (2008)] reaches
essentially the same conclusions by posing discrimination with three classes as a
problem in one-dimensional regression. Section 4 discusses how ε-insensitive loss
achieves Fisher consistency. The dead zones figure prominently in the derivation
of consistency.

In these four examples masking is neutralized. Because our proof of Fisher con-
sistency requires nonlinear as well as linear functions, the possibility of masking
still exists in practice. Inclusion of nonlinear combinations of predictors, say prod-
ucts of predictors, may remedy the situation. Of course, creating extra predictors
highlights the need for rigorous model selection and fast computation.

2.3. Modified ε-insensitive loss. The kinks in ε-insensitive loss have the po-
tential to make Newton’s method behave erratically in cyclic coordinate descent.
It is possible to avoid this pitfall by substituting a similar loss function that is
smoother and still preserves convexity. Suppose f (s) is an increasing convex func-
tion defined on [0,∞). If ‖x‖ denotes the Euclidean norm of x, then the function
f (‖x‖) is convex. This fact follows from the inequalities

f [‖αx + (1 − α)y‖] ≤ f [α‖x‖ + (1 − α)‖y‖]
≤ αf (‖x‖) + (1 − α)f (‖y‖)

for α ∈ [0,1]. It seems reasonable to perturb the ε-insensitive function as little as
possible. This suggests eliminating the corner near s = ε. Thus, we define f (s) to
be 0 on the interval [0, ε − δ), a polynomial on the interval [ε − δ, ε + δ], and s − ε

on the interval (ε + δ,∞). Here we obviously require 0 < δ < ε.
There are two good candidate polynomials. The first is the quadratic

p2(s) = (s − ε + δ)2

4δ
.
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FIG. 1. Distance to class indicators. The upper left plot shows observed distances under squared
Euclidean loss with class indicators vj equated to the standard unit vectors in R3. The upper right
plot shows observed distances under squared Euclidean loss with class indicators equated to the
vertices of an equilateral triangle. The lower left plot shows observed distances under ε-insensitive
loss with the triangular vertices and ε = 0.6. Finally, the lower right plot shows observed distances
under ε-insensitive loss with the triangular vertices and ε = 1/2

√
2k/(k − 1) = 0.866. In the lower

right plot, it is clear that observations with x < −2 will be predicted as class 1 (black), observations
with x > 2 will be predicted as class 3 (green), and observations with −2 ≤ x ≤ 2 will be predicted
as class 2 (red). This is consistent with the true classes shown on the x-axis.

This function matches the function values and the first derivatives of the two linear
pieces at the join points ε − δ and ε + δ. Indeed, brief calculations show that

p2(ε − δ) = 0, p′
2(ε − δ) = 0, p2(ε + δ) = δ, p′

2(ε + δ) = 1.
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Unfortunately, the second derivative p′′
2(s) = (2δ)−1 does not match the vanishing

second derivatives of the two linear pieces at the join points. Clearly, p2(s) is
increasing and convex on the open interval (ε − δ, ε + δ).

A more complicated choice is the quartic polynomial

p4(s) = (s − ε + δ)3(3δ − s + ε)

16δ3 .

Now we have

p4(ε − δ) = 0, p′
4(ε − δ) = 0, p′′

4(ε − δ) = 0,

p4(ε + δ) = δ, p′
4(ε + δ) = 1, p′′

4(ε + δ) = 0.

Both the first and second derivatives

p′
4(s) = (s − ε + δ)2(2δ − s + ε)

4δ3 ,

p′′
4(s) = 3(s − ε + δ)(ε + δ − s)

4δ3

are positive throughout the open interval (ε − δ, ε + δ). The second derivative
attains its maximum value of 3

4δ
at the midpoint ε. Thus, p4(s) is increasing and

convex on the same interval. We now write p(s) for the function equal to 0 on
[0, ε − δ), to p4(s) on [ε − δ, ε + δ], and to s − ε on (ε + δ,∞).

2.4. Cyclic coordinate descent. In our modified VDA the alternative loss func-
tion p(‖yi −Axi −b‖) is twice continuously differentiable. This has the advantage
of allowing us to implement Newton’s method. If we abbreviate yi − Axi − b by
ri , then applying the chain rule repeatedly yields the partial derivatives

∂

∂bj

p(‖ri‖) = −p′(‖ri‖)
‖ri‖ rij ,

∂2

∂b2
j

p(‖ri‖) = p′′(‖ri‖)
‖ri‖2 r2

ij + p′(‖ri‖)
‖ri‖

(
1 − r2

ij

‖ri‖2

)
,

∂

∂ajl

p(‖ri‖) = −p′(‖ri‖)
‖ri‖ rij xil,

∂2

∂a2
j l

p(‖ri‖) = p′′(‖ri‖)
‖ri‖2 (rij xil)

2 + p′(‖ri‖)
‖ri‖

[
x2
il − (rij xil)

2

‖ri‖2

]
.

The only vector operation required to form these partial derivatives is computation
of the norm ‖ri‖. As long as the number of categories is small and we update the
residuals ri as we go, the norms are quick to compute.
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Our overall objective function f (θ) is given in (2.2) with

g(v) =

⎧⎪⎪⎨
⎪⎪⎩

‖v‖2 − ε, if ‖v‖2 > ε + δ,
(‖v‖2 − ε + δ)3(3δ − ‖v‖2 + ε)

16δ3 , if ‖v‖2 ∈ [ε − δ, ε + δ],
0, if ‖v‖2 < ε − δ,

(2.3)

replacing the ε-insensitive loss g(v) = ‖z‖2,ε throughout. To minimize this objec-
tive function in the presence of a large number of predictors, we use the cyclic
version of coordinate descent highlighted by Friedman et al. (2007) and Wu and
Lange (2008). Cyclic coordinate descent avoids the bottlenecks of ordinary regres-
sion, namely matrix diagonalization, matrix inversion, and the solution of large
systems of linear equations. It is usually fast and always numerically stable for
smooth convex objective functions.

Consider now the convex lasso penalty P(A) = ∑k−1
j=1

∑p
l=1 |ajl|. Although the

objective function f (θ) is nondifferentiable, it possesses forward and backward di-
rectional derivatives along each coordinate direction. If ejl is the coordinate direc-
tion along which ajl varies, then the forward and backward directional derivatives
are

dejl
f (θ) = lim

τ↓0

f (θ + τejl) − f (θ)

τ

= 1

n

n∑
i=1

∂

∂ajl

g(ri) + (−1)I (ajl<0)λ

and

d−ejl
f (θ) = lim

τ↓0

f (θ − τejl) − f (θ)

τ

= −1

n

n∑
i=1

∂

∂ajl

g(ri) + (−1)I (ajl>0)λ,

where I (·) is an indicator function taking value 1 if the condition in the parentheses
is satisfied and 0 otherwise.

Newton’s method for updating a single intercept parameter of f (θ) works well
because there is no lasso penalty. For a slope parameter ajl , the lasso penalty in-
tervenes, and we must take particular care at the origin. If both of the directional
derivatives dejl

f (θ) and d−ejl
f (θ) are nonnegative, then the origin furnishes the

minimum of the objective function along the ejl coordinate. If either directional
derivative is negative, then we must solve for the minimum in the corresponding
direction. Both directional derivatives cannot be negative because this contradicts
the convexity of f (θ). In practice, we start all parameters at the origin. For under-
determined problems with just a few relevant predictors, most updates are skipped,
and many parameters never budge from their starting values of 0. This simple fact
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plus the complete absence of matrix operations explains the speed of cyclic coor-
dinate descent. It inherits its numerical stability from the descent property of each
update.

Newton’s method for updating ajl iterates according to

am+1
j l = am

jl −
(1/n)

∑n
i=1

∂
∂ajl

g(rm
i ) + (−1)

I (am
jl<0)

λ

(1/n)
∑n

i=1
∂2

∂a2
j l

g(rm
i )

,

where rm
i is the value of the ith residual at iteration m. In general, one should check

that the objective function is driven downhill. If the descent property fails, then the
simple remedy of step halving is available. The Newton update for an intercept is

bm+1
j = bm

j −
(1/n)

∑n
i=1

∂
∂bj

g(rm
i )

(1/n)
∑n

i=1
∂2

∂b2
j

g(rm
i )

.

3. Penalty for grouped effects.

3.1. Euclidean penalty. In model selection it is often desirable to impose co-
ordinated penalties that include or exclude all of the parameters in a group. In
multicategory classification, the slopes of a single predictor for different dimen-
sions of R

k−1 form a natural group. In other words, the parameter group for pre-
dictor l is the lth column al = (a1l , . . . , ak−1,l)

t of the slope matrix A. The lasso
penalty λL‖al‖1 and the ridge penalty λR‖al‖2

2 separate parameters and do not
qualify as sensible group penalties. The scaled Euclidean norm λE‖al‖2 is an ideal
group penalty since it couples parameters and preserves convexity [Wu and Lange
(2008); Wu, Zou and Yuan (2008)].

The Euclidean penalty possesses several other desirable features. First, it re-
duces to a lasso penalty λ|ajl| on ajl whenever aml = 0 for m 
= j . This feature of
the penalty enforces parsimony in model selection. Second, the Euclidean penalty
is continuously differentiable in al whenever al is nontrivial. Third, the Euclidean
penalty is spherically symmetric. This makes the specific orientation of the sim-
plex irrelevant. If one applies an orthogonal transformation O to the simplex, then
the transformed vertices Oy are still equidistant. Furthermore, the new and old
versions of the objective functions satisfy

1

n

n∑
i=1

g(yi − Axi − b) + λE

p∑
l=1

‖al‖2

= 1

n

n∑
i=1

g(Oyi − OAxi − Ob) + λE

p∑
l=1

‖Oal‖.

Thus, any minimum of one orientation is easily transformed into a minimum of
the other, and predictors active under one orientation are active under the other
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orientation. For instance, if the estimates for the original objective function are Â

and b̂, then the estimates for the transformed objective function are OÂ and Ob̂.

3.2. Coordinate descent under a Euclidean penalty. In modified VDA with
grouped effects, we minimize the objective function

f (θ) =
n∑

i=1

g(yi − Axi − b) + λL

k−1∑
j=1

p∑
l=1

|ajl| + λE

p∑
l=1

‖al‖2.(3.1)

If the tuning parameter for the Euclidean penalty λE = 0, then the penalty reduces
to the lasso. On the other hand, when the tuning parameter for the lasso penalty
λL = 0, only group penalties enter the picture. Mixed penalties with λL > 0 and
λE > 0 enforce shrinkage in both ways. All mixed penalties are norms on A and
therefore convex functions.

The partial derivatives of the Euclidean penalty are similar to those of the loss
function g(v). There are two cases to consider. If ‖al‖ = 0, then the forward and
backward derivatives of λE‖al‖ with respect to ajl are both λE . The forward and
backward second derivatives vanish. If ‖al‖ > 0, then ‖al‖ is differentiable and

∂

∂ajl

λE‖al‖ = λE

ajl

‖al‖ ,

∂2

∂a2
j l

λE‖al‖ = λE

‖al‖
(

1 − a2
j l

r‖al‖2

)
.

4. Fisher consistency of ε-insensitive loss. A loss function L(y, x) is Fisher
consistent if minimizing its average risk E{L[f (X),Y )]} leads to the Bayes op-
timal decision rule. Fisher consistency is about the least one can ask of a loss
function. Our previous development of VDA omits this crucial topic, so we take it
up now for ε-insensitive loss without a penalty. The empirical loss minimized in
VDA is

EMLn(L,f ) = 1

n

n∑
i=1

L[f (xi), yi] = 1

n

n∑
i=1

‖yi − f (xi)‖ε,

and the VDA classifier is obtained by solving

f̂ = arg min
f ∈Fn

EMLn(L,f ),

where Fn is the space of linear functions in the predictor matrix (xij ). This space
is determined by the slope matrix A and the intercept vector b. Once these are
estimated, we assign a new case to the class attaining

arg min
j∈{1,...,k}

‖vj − f̂ ‖ = arg min
j∈{1,...,k}

‖vj − Âx − b̂‖.(4.1)
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If we define pj (x) = Pr(Y = vj |X = x) to be the conditional probability of class
j given feature vector x, then Fisher consistency demands that the minimizer
f ∗(x) = arg min E[‖Y − f (X)‖ε | X = x] satisfy

arg min
j∈{1,...,k}

‖vj − f ∗(x)‖ = arg max
j∈{1,...,k}

pj (x).

Here distance is ordinary Euclidean distance, and f ∗(x) is not constrained to be
linear in x. In the Supplementary File [Wu and Lange (2010)] we prove the fol-
lowing proposition.

PROPOSITION 1. If a minimizer f ∗(x) of E[‖Y − f (X)‖ε | X = x] with
ε = 1

2

√
2k/(k − 1) lies closest to vertex vl , then pl(x) = maxj pj (x). Either f ∗(x)

occurs exterior to all of the ε-insensitive balls or on the boundary of the ball sur-
rounding vl . The assigned vertex vl is unique if the pj (x) are distinct.

To help the reader better understand the behavior of the nonlinear function z �→∑
j pj‖vj − z‖ε , we plot it and its contour lines in Figure 2 for k = 3 classes. The

three class vertices are labeled clockwise starting with vertex 1 in the first quadrant.
Here we take ε = 1

2

√
2k/(k − 1) to be the largest possible value avoiding overlap

of the interiors of the ε-insensitive balls around each vertex of the regular simplex.
Figure 2 demonstrates that the optimal point varies with the probability vector
p. When the highest probabilities are not unique (upper two panels of Figure 2),
the optimal point falls symmetrically between the competing vertices. When there
is a dominant class (lower left panel of Figure 2), the optimal point falls on the
boundary of the dominant ball. In the first case with p = (1/3,1/3,1/3), if we
slowly increase p1 and decrease p2 and p3 symmetrically, then the optimal point
moves from the origin to the boundary of the ball surrounding vertex 1 (lower right
of Figure 2).

5. Stability selection. Stability selection [Meinshausen and Buehlmann
(2010)] involves subsampling the data and keeping a tally of how often a given
variable is selected. Each new subsample represents a random choice of half of the
existing cases. Let 
̂λ

k be the empirical probability over the subsamples that vari-
able k is selected under a particular value λ of the penalty tuning constant; the uni-
verse of relevant tuning constants is denoted by �. Meinshausen and Buehlmann
(2010) recommend 100 subsamples; the choice of � is left to the discretion of the
user. A predictor k is considered pertinent whenever maxλ∈� 
̂λ

k ≥ π for some
fixed threshold π > 1

2 . The set of pertinent predictors Ŝstable is the final (or stable)
set of predictors determined by this criterion.

One of the appealing features of stability selection is that it controls for the
number of false positives. Under certain natural assumptions, Meinshausen and
Buehlmann (2010) demonstrate that the expected number of false positives among
the stable set is bounded above by the constant q2/[(2π − 1)p], where q is the
average size of the random union Ŝ� = ⋃

λ∈� Ŝλ, and Ŝλ is the set of predictors
selected at the given penalty level λ in the corresponding random subsample.
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FIG. 2. Contour plots of
∑

j pj‖vj − z‖ε with k = 3 and ε = 1
2
√

k/(k − 1) for different p’s.
Upper left panel p = (1/3,1/3,1/3), upper right panel p = (0.37,0.37,0.26), lower left panel
p = (0.6,0.3,0.1), and lower right panel p = (1/3 + t,1/3 − 0.25t,1/3 − 0.75t) with t = 0.025.

6. Simulation examples.

6.1. Simulation example 1. The simulation examples of Wang and Shen
(2007) offer an opportunity to compare VDALE, VDAL, and VDAE to the highly
effective methods OVR and L1MSVM [Wang and Shen (2007)]. Example 1 of
Wang and Shen (2007) specifies either k = 4 and k = 8 classes, n = 20k train-
ing observations, and p = 100 predictors. When observation i belongs to class
c ∈ {1, . . . , k}, its j th predictor xij is defined by

xij =
{

uij + aj , if j = 1,2,
uij , if j = 3, . . . ,100,



MULTICATEGORY VDA FOR HIGH-DIMENSIONAL DATA 1711

where a1 = d · cos[2(c − 1)π/k] and a2 = d · sin[2(c − 1)π/k]. The uij are in-
dependent normal variates with mean 0 and variance 1. Only the first and second
predictors x1 and x2 depend on an observation’s class. The constant d determines
the degree of overlap of the classes. The various combinations of k ∈ {4,8} and
d ∈ {1,2,3} generate six datasets of varying difficulty. The three datasets with
k = 4 are underdetermined since n = 80 < p = 100; the datasets with k = 8 are
overdetermined since n = 160 > p = 100. As recommended in Lange and Wu
(2008), we take ε = 1

2

√
2k/(k − 1), the largest possible value avoiding overlap of

the interiors of the ε-insensitive balls around the vertices of the regular simplex.
For all five methods, we chose the penalty tuning constants by minimizing assign-
ment error on a separate testing sample with 20,000 observations. Table 1 reports
Bayes errors, optimal testing errors, number of variables selected, and elapsed
training time in seconds (×104) averaged over 100 random replicates.

Table 1 shows that VDALE and VDAE outperform VDAL across all six datasets.
Testing error is closely tied to the number of predictors selected. The addition of
a lasso penalty gives VDALE a slight edge over VDAE. The competing method
L1MSVM performs best overall by a narrow margin. The true predictors x1 and
x2 are always selected by all three VDA methods. In reporting their results for
L1MSVM and OVR, Wang and Shen (2007) omit mentioning the number of true
predictors selected and computing times.

6.2. Simulation example 2. In the second example of Wang and Shen (2007),
k = 3, n = 60, and p varies over the set {10,20,40,80,160}. We now compare
the three modified VDA methods with L1MSVM [Wang and Shen (2007)] and
L2MSVM [Lee, Lin and Wahba (2004)]. The 60 training cases are spread evenly
across the three classes. For p equal to 10, 20, and 40, discriminant analysis is
overdetermined; the reverse holds for p equal to 80 and 160. The predictors xij

are independent normal deviates with variance 1 and mean 0 for j > 2. For j ≤ 2,
xij have mean aj with

(a1, a2) =
⎧⎪⎨
⎪⎩

(√
2,

√
2
)
, for class 1,(−√

2,−√
2
)
, for class 2,(√

2,−√
2
)
, for class 3.

Only the first two predictors are relevant to classification.
We computed VDA testing errors over an independent dataset with 30,000 ob-

servations and chose penalty tuning constants to minimize testing error over a grid
of values. Table 2 reports Bayes errors, optimal testing errors, number of variables
selected, and training times in seconds (×104) averaged across 100 random repli-
cates. In this example VDALE, VDAE, and L1MSVM rank first, second, and third,
respectively, in testing error. Again there is a strong correlation between testing
error and number of predictors selected, and the lasso penalty is effective in com-
bination with the Euclidean penalty. The true predictors X1 and X2 are always
selected by the three VDA methods.
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TABLE 1
Comparison of VDALE, VDAL, VDAE, L1MSVM, and OVR on simulation example 1. Here p = 100 and n = 20k; d is the multiplier in each simulation.
Column 3 lists the Bayes error as a percentage. Column 5 reports the mean and 10%, 50%, and 90% percentiles of the number of nonzero variables. The

remaining columns report average testing error, average number of nonzero variables, and average training time in seconds (×104) over 100 random
replicates. The corrresponding standard errors for these averages appear in parentheses. Tuning constants were chosen to minimize error over a larger

independent dataset with 20,000 observations. The results of L1MSVM and OVR are taken from the paper of Wang and Shen (2007)

VDALE, VDAL and VDAE L1MSVM OVR

k d Bayes (%) Error (%) # Var Time Error (%) # Var Error (%) # Var

4 1 36.42 43.19 (0.09) 2.80 (0.11) 2,2,4 80 (3) 42.20 (0.09) 2.20 (0.05) 56.87 (0.25) 67.17 (1.93)

44.95 (0.22) 8.16 (0.84) 2,5,16 73 (3)

43.27 (0.08) 2.42 (0.05) 2,2,3 114 (3)

2 14.47 15.31 (0.03) 2.07 (0.02) 2,2,2 115 (4) 15.18 (0.04) 2.06 (0.02) 16.21 (0.09) 5.72 (0.38)

16.22 (0.11) 3.79 (0.28) 2,3,8 112 (3)

15.54 (0.04) 2.13 (0.04) 2,2,3 139 (3)

3 3.33 3.40 (0.01) 2 (0) 2,2,2 182 (13) 3.35 (0.02) 2.02 (0.01) 3.50 (0.02) 2.51 (0.13)

3.80 (0.04) 3.18 (0.18) 2,2,5 145 (7)

3.52 (0.01) 2.12 (0.04) 2,2,2 197 (8)

8 1 64.85 70.94 (0.11) 2.43 (0.08) 2,2,4 312 (10) 70.47 (0.10) 3.51 (0.16) 79.76 (0.07) 98.18 (0.29)

74.77 (0.09) 23.19 (1.99) 2,18,51 278 (6)

70.81 (0.10) 2.57 (0.09) 2,2,4 387 (3)

2 43.82 51.09 (0.24) 2.27 (0.06) 2,2,3 351 (10) 46.86 (0.12) 3.02 (0.12) 66.72 (0.11) 95.43 (0.25)

58.37 (0.11) 33.34 (1.48) 15,32,52 269 (6)

50.50 (0.22) 2.17 (0.05) 2,2,3 355 (9)

3 25.06 37.93 (0.40) 2.23 (0.05) 2,2,3 436 (9) 27.95 (0.13) 2.75 (0.17) 55.84 (0.12) 93.37 (0.21)

46.91 (0.15) 33.88 (1.30) 17,32,50 264 (5)

33.26 (0.36) 2.02 (0.01) 2,2,2 462 (4)
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TABLE 2
Comparison of VDALE, VDAL, VDAE, L1MSVM, and L2MSVM on simulation example 2 with k = 3
and n = 60. Column 2 lists the Bayes error as a percentage. Column 4 reports the 10%, 50%, and
90% percentiles of the number of nonzero variables. The remaining columns report average testing
error, average number of nonzero variables, and average training time in seconds (×104) over 100
random replicates. The corresponding standard errors for these averages appear in parentheses.

The partial results for L1MSVM and L2MSVM are taken from the paper of Wang and Shen (2007)

VDALE, VDAL and VDAE L1MSVM L2MSVM

p Bayes (%) Error (%) # Var Time Error (%) Error (%)

10 10.81 12.38 (0.10) 2, 3, 4 71 (8) 13.61 (0.12) 15.44 (0.17)

14.42 (0.14) 2, 3, 10 50 (8)

12.70 (0.12) 2, 3, 5 74 (8)

20 10.81 12.65 (0.11) 2, 4, 6 104 (7) 14.06 (0.14) 17.81 (0.22)

15.38 (0.19) 2, 4, 20 43 (7)

13.08 (0.13) 3, 5, 7 130 (7)

40 10.81 13.01 (0.13) 3, 5, 9 178 (10) 14.94 (0.14) 20.01 (0.22)

15.66 (0.20) 3, 5, 28 56 (7)

13.50 (0.13) 4, 7, 10 247 (8)

80 10.81 13.33 (0.14) 5, 8, 13 345 (15) 15.68 (0.15) 21.81 (0.14)

16.15 (0.22) 4, 8, 32 89 (8)

13.99 (0.15) 8, 12, 17 440 (14)

160 10.81 14.02 (0.14) 3, 14, 19 647 (30) 16.58 (0.17) 27.54 (0.17)

17.12 (0.23) 6, 12, 51 180 (8)

15.08 (0.19) 14, 19, 26 830 (22)

In one of the example 2 simulations, we applied stability selection [Meinshausen
and Buehlmann (2010)] to eliminate false positives. The left panel of Figure 3
shows that the true predictors X1 and X2 have much higher selection probabilities
than the irrelevant predictors. Here we take p = 160 predictors and 100 subsam-
ples, fix λE at 0.1, and vary λL. The right panel of Figure 3 plots the average
number of selected variables. One can control the number of false positives by
choosing the cutoff π . Higher values of π reduce both the number of false posi-
tives and the number of true positives. Here an excellent balance is struck for λL

between 0.1 and 0.2.

6.3. Simulation examples 3 through 6. To better assess the accuracy of the
three new VDA methods, we now present four three-class examples. In each ex-
ample we generated 1000 predictors on 200 training observations and 1000 testing
observations. Unless stated to the contrary, all predictors were independent and
normally distributed with mean 0 and variance 1. Penalty tuning constants were
chosen by minimizing prediction error on the testing data. We report average re-
sults from 50 random samples.
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FIG. 3. Stability selection with VDALE for p = 160. The left panel shows the empirical selection
probabilities of all 160 predictors over 100 subsamples as a function of λL for λE fixed at 0.1. The
first two predictors (red solid lines) stand out from the remaining predictors (black dash lines) with
much higher selection probabilities. The right panel plots the average number of selected predictors
(black solid line) and the expected number of falsely selected predictors for different values of the
cutoff π .

EXAMPLE 3. This is a multi-logit model with odds ratios

log
Pr(class = l|x)

Pr(class = 3|x)
=

⎧⎨
⎩

−xi1 − xi2 − xi3 + xi7 + xi8, for class 1,
xi4 + xi5 + xi6 − xi7 − xi8, for class 2,
1, for class 3.

These ratios and the constraint
∑3

i=1 Pr(class = i) = 1 determine class assignment.
Obviously, only the first eight predictors are relevant to classification.

EXAMPLE 4. In this example observations are equally distributed over
classes. For j ≤ 5 the predictor xij has mean aj with

(a1, a2, a3, a4, a5) =
⎧⎨
⎩

(0.5,0.5,1,0,0), for class 1,
(−0.5,−0.5,0,1,0), for class 2,
(0.5,−0.5,0,0,1), for class 3.

The remaining predictors have mean 0 and are irrelevant to classification.

EXAMPLE 5. This example is the same as example 3 except that the first six
predictors are correlated with correlation coefficient ρ = 0.8.

EXAMPLE 6. This example is the same as example 4 except that the first six
predictors are correlated with correlation coefficient ρ = 0.8.
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TABLE 3
Comparison of VDALE, VDAL, and VDAE. Each line reports for 50 random replicates average
prediction error and 10%, 50%, and 90% percentiles of the number of nonzero variables and
nonzero true variables selected. Standard errors for the average prediction errors appear in

parentheses

Method Error (%) # Var # True Var Error (%) # Var # True Var

Example 3 Example 4

VDALE 36.13 (0.36) 17,58,219 7,8,8 31.65 (0.31) 5, 11, 64 5,5,5
VDAL 37.57 (0.34) 20,87,264 7,8,8 34.05 (0.31) 8, 76, 214 5,5,5
VDAE 37.27 (0.38) 13,28,65 6,8,8 32.11 (0.33) 5, 8, 21 5,5,5

Example 5 Example 6

VDALE 24.19 (0.27) 8,14,40 6,7,8 6.98 (0.19) 6, 11, 24 5,5,5
VDAL 25.85 (0.29) 6,30,63 4,6,8 10.78 (0.32) 5, 12, 37 5,5,5
VDAE 24.11 (0.29) 11,19,39 6,7,8 6.64 (0.19) 7, 19, 43 5,5,5

Table 3 summarizes classification results for these examples. In all instances
VDALE and VDAE show lower prediction error rates than VDAL. In examples 3
and 4, where predictors are independent, VDALE and VDAL have much higher
false positive rates than VDAE. In defense of VDALE, it has a lower prediction
error and a higher true positive rate than VDAE in example 3. In examples 5 and
6, where predictors are correlated, VDALE and VDAE have much lower prediction
errors than VDAL; they also tend to better VDAL in variable selection.

7. Real data examples.

7.1. Overdetermined problems. To test the performance of VDA models on
real data, we first analyzed four standard datasets (wine, glass, zoo, and lymphog-
raphy) from the UCI machine learning repository [Murphy and Aha (1994)]. Ta-
ble 4 compares the performance of the modified VDAs to the original VDAR,
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), the k-
nearest-neighbor method (KNN), one-versus-rest binary support vector machines
(OVR), classification and regression trees (CART), random forest prediction, and
multicategory support vector machines (MSVM) [Lee, Lin and Wahba (2004)]. For
all four datasets, the error rates in the table are average misclassification rates based
on 10-fold cross-validation. We chose the penalty tuning constants for the various
VDA methods to minimize cross-validated errors over a one- or two-dimensional
grid. The entries of Table 4 demonstrate the effectiveness of VDAR on small-scale
problems. Our more complicated method VDALE is a viable contender.

7.2. Underdetermined problems. Our final examples are benchmark datasets
for cancer diagnosis. These public domain datasets are characterized by large num-
bers of predictors and include the cancers: colon [Alon et al. (1999)], leukemia
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TABLE 4
Mean 10-fold cross-validated testing error rates for empirical examples from the UCI data

repository. The triples beneath each dataset give in order the number of classes k, the number of
cases n, and the number of predictors p. NA stands for not available

Wine Glass Zoo Lymphography
Method (3, 178, 13) (6, 214, 10) (7, 101, 16) (4, 148, 18)

VDAR 0 0.2970 0.0182 0.0810
VDALE 0.0055 0.3267 0.0091 0.1210
VDAL 0.0111 0.3357 0.0272 0.1277
VDAE 0.0111 0.3420 0.0182 0.1620

LDA 0.0112 0.3972 NA 0.1486
QDA 0.0169 NA NA NA
KNN (k = 2) 0.2697 0.3084 0.0594 0.2432
OVR 0.0225 0.3178 0.0891 0.1486
CART 0.0899 0.4346 0.2475 0.2095
Random forest 0.0169 0.2009 0.0693 0.1621
MSVM 0.0169 0.3645 NA NA

[Golub et al. (1999)], prostate [Singh et al. (2002)], brain [Pomeroy et al. (2000)],
lymphoma [Alizadeh et al. (2000)], and SRBCT [Khan et al. (2001)]. We com-
pare our classification results with those from three other studies [Li, Zhang and
Jiang (2005); Statnikov et al. (2005); Dettling (2004)]. Table 5 summarizes all find-
ings. The cited error rates for BagBoost [Dettling (2004)], Boosting [Dettling and
Buhlmann (2003)], RanFor, SVM, nearest shrunken centroids (PAM) [Tibshirani
et al. (2002)], diagonal linear discriminant analysis (DLDA) [Tibshirani et al.
(2002)], and KNN appear in [Dettling (2004)]. The error rates in Table 5 are av-
erage misclassification rates based on 3-fold cross-validation. Again we chose the
penalty tuning constants for the various versions of VDA by grid optimization.
The error rates and training times listed in Table 5 are predicated on the selected
tuning constants.

Inspection of Table 5 suggests that VDALE may be superior to the popular clas-
sifiers listed. Although very fast, VDAL is not competitive with VDALE; VDAE
performs well but falters on the lymphoma and brain examples. Owing to the
large number of predictors, application of VDAR is impractical in these examples.
We also applied stability selection to the leukemia and SRBCT data. As Figure 4
demonstrates, the expected number of false positives is small across a range of
cutoff values π .

8. Discussion. As one of the most important branches of applied statistics,
discriminant analysis continues to attract the attention of theoreticians. Although
the flux of new statistical demands and ideas has not produced a clear winner
among the competing methods, we hope to have convinced readers that VDA and
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TABLE 5
Threefold cross-validated testing errors (as percentages) for six benchmark cancer datasets. The

parenthesized triples for each dataset give in order the number of categories k, the number of cases
n, and the number of predictors p. Column 2 and subsequent columns report average testing error
(standard error in parentheses), 10%, 50%, and 90% percentiles of number of nonzero variables,
and the average training time in seconds over 50 random partitions. Execution times apply to the

entire dataset under the optimal tuning parameters determined by cross-validation. All results
for the non-VDA methods are taken from the paper of Dettling (2004)

Method Error (%) # Var Time Error (%) # Var Time Error (%) # Var Time

Leukemia (2,72,3571) Colon (2,62,2000) Prostate (2,102,6033)

VDALE 1.56 18, 39, 74 0.50 9.68 10, 27, 103 0.15 5.48 16, 40, 53 1.15
(0.15) (0.55) (0.33)

VDAL 7.14 26, 30, 85 0.08 14.26 19, 25, 147 0.04 9.83 30, 36, 200 0.23
(0.62) (0.65) (0.56)

VDAE 3.02 42, 54, 179 0.45 11.08 34, 42, 213 0.12 6.76 47, 57, 366 0.85
(0.28) (0.52) (0.41)

BagBoost 4.08 16.10 7.53
Boosting 5.67 19.14 8.71
RanFor 1.92 14.86 9.00
SVM 1.83 15.05 7.88
PAM 3.75 11.90 16.53
DLDA 2.92 12.86 14.18
KNN 3.83 16.38 10.59

Lymphoma (3,62,4026) SRBCT (4,63,2308) Brain (5,42,5597)

VDALE 1.66 39, 69, 97 1.47 1.58 45, 60, 94 1.78 23.80 52, 78, 98 4.39
(0.27) (0.77) (1.54)

VDAL 14.36 39, 53, 86 0.12 9.52 43, 53, 65 0.11 48.86 46, 57, 66 0.38
(0.97) (1.14) (1.43)

VDAE 3.25 80, 91, 128 2.01 1.58 58, 70, 106 1.70 30.44 70, 85, 100 6.43
(0.38) (0.92) (1.76)

BagBoost 1.62 1.24 23.86
Boosting 6.29 6.19 27.57
RanFor 1.24 3.71 33.71
SVM 1.62 2.00 28.29
PAM 5.33 2.10 25.29
DLDA 2.19 2.19 28.57
KNN 1.52 1.43 29.71

its various modifications are competitive. It is easy to summarize the virtues of
VDA in four words: parsimony, robustness, speed, and symmetry. VDAR excels in
robustness and symmetry but falls behind in parsimony and speed. We recommend
it highly for problems with a handful of predictors. VDAE excels in robustness,
speed, and symmetry. On high-dimensional problems it does not perform quite as
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FIG. 4. Stability selection with VDALE for leukemia (upper panel with k = 2) and SRBCT (lower
panel with k = 3) data. The left panels plot the empirical selection probabilities of all predictors over
100 subsamples as a function of λL for λE fixed at 0.1. The right panel plots the average number
of selected predictors (black solid line) and the expected number of falsely selected predictors for
different values of the cutoff π .

well as VDALE, which sacrifices a little symmetry for extra parsimony. Apparently,
VDAL puts too high a premium on parsimony at the expense of symmetry.

Our Euclidean penalties tie together the parameters corresponding to a sin-
gle predictor. Some applications may require novel ways of grouping predictors.
For example in cancer diagnosis, genes in the same biological pathway could be
grouped. If reliable grouping information is available, then one should contem-
plate adding further Euclidean penalties [Wu and Lange (2008)]. If other kinds of
structures exist, one should opt for different penalty functions. For example, Yuan,
Joseph and Zou (2009) and Wu, Zou and Yuan (2008) discuss the problem of how
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to retain hierarchical structures in variable selection using the nonnegative garrote
[Breiman (1995)].

The class vertices in VDA are symmetrically distributed over the surface of the
unit ball. When categories are ordered or partially ordered, equidistant vertices
may not be optimal. The question of how to incorporate order constraints deserves
further investigation. The simplest device for three ordered categories is to identify
them with the points −1, 0, and 1 on the line.

Future applications of discriminant analysis will confront even larger datasets.
Computing times are apt to balloon out of control unless the right methods are
employed. Cyclic coordinate descent has proved to be extraordinarily fast when
coupled with lasso or Euclidean penalties. The same speed advantages are seen in
lasso penalized regression and generalized linear models. Further gains in speed
may well come in parallel computing. Statisticians have been slow to plunge into
parallel computing because of the extra programming effort required and the lack
of portability across computing platforms. It is not clear how best to exploit parallel
computing with VDA.

Stability selection as sketched by Meinshausen and Buehlmann (2010) appears
to work well with VDA. In our simulated example, it eliminates virtually all irrel-
evant predictors while retaining the true predictors. For the cancer data, the true
predictors are unknown; it is encouraging that the expected number of false posi-
tives is very low. Because stability selection requires repeated subsampling of the
data, users will pay a computational price. This cost is not excessive for VDA,
and we highly recommend stability selection. In our view it will almost certainly
replace cross-validation in model selection.

The theoretical underpinnings of VDA and many other methods of discrimi-
nant analysis are weak. We prove Fisher consistency here, but more needs to be
done. For instance, it would be reassuring if someone could vindicate our intuition
that shrinkage is largely irrelevant to classification by VDA. Although it is proba-
bly inevitable that statistical practice will outrun statistical theory in discriminant
analysis, ultimately there is no stronger tether to reality than a good theory. Of
course, a bad or irrelevant theory is a waste of time.

SUPPLEMENTARY MATERIAL

Supplementary File: Proof of Proposition 1 (DOI: 10.1214/10-AOAS
345SUPP; .pdf). We prove Fisher consistency of ε-insensitive loss in this paper.
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