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LEO BREIMAN: AN IMPORTANT INTELLECTUAL AND
PERSONAL FORCE IN STATISTICS, MY LIFE AND

THAT OF MANY OTHERS1

BY PETER J. BICKEL

University of California, Berkeley

I first met Leo Breiman in 1979 at the beginning of his third career, Professor
of Statistics at Berkeley. He obtained his PhD with Loéve at Berkeley in 1957.
His first career was as a probabilist in the Mathematics Department at UCLA. Af-
ter distinguished research, including the Shannon–Breiman–MacMillan Theorem
and getting tenure, he decided that his real interest was in applied statistics, so he
resigned his position at UCLA and set up as a consultant. Before doing so he pro-
duced two classic texts, Probability, now reprinted as a SIAM Classic in Applied
Mathematics, and Statistics. Both books reflected his strong opinion that intuition
and rigor must be combined. He expressed this in his probability book which he
viewed as a combination of his learning the right hand of probability, rigor, from
Loéve, and the left-hand, intuition, from David Blackwell.

After a very successful career as a consultant in which he developed some of
the methods in what is now called machine learning, which became the main focus
of his research he came as a visiting professor to Berkeley in 1980 and stayed on
in a permanent position till his death in 2005. As a visiting professor he taught a
course on nonparametric methods which I sat in on. It was a question he raised
in that course that led to our closer acquaintance and subsequent collaboration.
Leo had proposed goodness of fit statistics based on the empirical process of the
nearest neighbors sphere volumes, S1, . . . , Sn of an i.i.d. sample X1, . . . ,Xn ∼ F

on Rd .
Heuristics suggested that the limiting distribution of the statistic would be “dis-

tribution free” under the null if f is positive and continuous. I proposed an ap-
proach based on a variant of the “little block,” “big block” technique used by
Rosenblatt (1956) for stationary mixing sequences.

During the year or so that we ended up spending on the paper, we found that
the heuristics were much harder to make real than I thought. As time passed and I
became testy and grumbled to Leo, he would always comfort me with the comment
that we were plowing “hard new ground.” The editor of The Annals of Statistics,
whom I shall not name, was on a crusade to eliminate all but what he viewed as
genuinely applied papers from the journal, so he swiftly rejected the paper. The
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paper was accepted by The Annals of Probability and had considerable follow-up
in the probability, statistics and computer science literature.

Our interests came together again in another forum: a panel to discuss, in an
unclassified fashion, problems of national security. It was then that I was first ex-
posed to Random Forests (RF), which he seemed to advocate as the cure to the
world’s ills—which in many ways it was!

I very much liked the appropriateness of RF for high-dimensional data, as exem-
plified in Leo’s highly original approach of having each branching of a random tree
depend on a randomly selected subset of the features, {Xij1, . . . ,Xijp , i = 1, . . . , n}
where p is small even if d is very large.

Another feature was that random trees were based on bootstrap samples, an
approach he had already examined in bagging. This had the happy feature that for
each tree there was an independent test sample corresponding to the observations
not used for that tree. These and other properties such as importance of variables
were implemented in the RF package, initiated by Leo and completed by Adele
Cutler.

It was at one of these meetings that he proposed turning unsupervised learning
(Clustering) into supervised learning (Classification), by creating a pseudo sam-
ple from the distribution obtained by choosing features independently according
to their empirical marginal distribution. This pseudo sample, together with the
original sample to be clustered, now forms a training sample for a two-population
classification problem. For RF, Leo then defined a metric based on the scores of
the “true” sample which led to clusters. The idea is a generalization of the one he
proposed for CART where clusters correspond to leaves with a majority of “true”
observations. Although Leo did not arrive at this approach in the following way, it,
I believe, clarifies what’s going on.

Suppose we have a sample X1, . . . ,Xn to cluster where Xi = (Xi1, . . . ,Xid)T

has density f . If we then apply RF or some other consistent classifier and permit
thresholds to vary, then for n = ∞, if we follow Leo’s prescription, the Bayes rule
is classifying an observation x as being from population I, the original sample to
be clustered if

f (x)
/ d∏

j=1

fj (xj ) ≥ c,

where the fj are the marginal densities of the X1j , j = 1, . . . , J . If fj ≡ 1 for all
j , which is achievable by standardizing the X·j to be U (0,1) and c is permitted
to vary, this corresponds to a method of density contours discussed by Hartigan
(1975). The “product density” version was essentially incorporated into RF by Leo,
although he did not develop a formal theory. Since RF reduces each coordinate to
its rank in the sample this is all that was feasible. In any case, after standardization
only dependence determines clustering.

In the course of these meetings and a growing personal friendship, Leo and I dif-
fered mainly in one thing: the need for regularization even for ensemble learners.
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He was fascinated that for J > 1, RF appeared to work “optimally” if trees were
grown to maximum purity. He held the same view about “boosting,” a classifica-
tion method due to Freund and Schapire (1996), which he championed and which
he had been the first to identify as an optimization algorithm in the population case.
Here his view was that, in the sample as well as in population cases, this algorithm
should be run as long as possible since only improvement was possible. This was
clearly false for J = 1 for both boosting and RF since the algorithms then corre-
sponded to the suboptimal nearest neighbour rule. Despite evidence to the contrary
[Lin and Jeon (2006)], he seemed to still hope that for d > 1, no regularization was
needed in both cases. He was certainly right that even without regularization corre-
sponding to pruned trees, for RF, and stopping rules for boosting, these algorithms
performed surprisingly well.

Leo was not only a man of great originality but also strong opinions: on regu-
larization (as above), on the nature of modeling [Breiman (2001)], on the census
[Breiman (1994)]. He appeared to turn against the use of mathematics in statis-
tics but every one of his papers contained mathematics—not general theories, but
insightful analyses with examples which corresponded to his heuristics. After a
while I became convinced that Leo loved to take extreme positions in public for
the sake of the excitement they would generate, and also for the calling forth of
clear statements of opposing views in rebuttal to his stark statements. I found that
in private, as expected, his views were much subtler than his public statements.

Whatever he did, he did with gusto, proposed highly original ideas for predic-
tion, CART [Breiman et al. (1984)], additive models with Friedman [Breiman and
Friedman (1985)], bagging [Breiman (1996)], RF, boosting and so on.

The Berkeley Statistics Department benefited greatly from Leo’s influence as
well. He persuaded us at an early stage of the importance of developing links
with machine learning for the sake of both fields. Largely as a consequence of
his leadership, we made one stellar joint appointment with Computer Science and
Electrical Engineering which led to our present highly interdisciplinary form.

Finally, Leo drew me into the machine learning world, introduced me to NIPS,
cheered me on when I argued in my Rietz lecture about the ease of learning when
predictors concentrated on low-dimensional manifolds. He had a very profound
influence on the type of problems I have worked on during the last 10–15 years.
Together with Yanki Ritov, we discussed semisupervised learning and realized that
this would work only if there was a coincidence between peaks and similar fea-
tures of unlabeled data and concentrations of labeled observations from particular
classes and that this advantage would become minimal as the size of the labeled
sample increased.

Shortly before his death he and I were preparing a joint proposal with Liza
Levina and Ritov for the development of new methodology for vector multiple
regression, an area he had already entered early with Jerry Friedman [Breiman and
Friedman (1997)]. Here too, as in semisupervised learning, the theory suggested
that eventually there was no profit from using dependence between the different
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coordinates of the vector to be predicted since only the conditional expectations
of the coordinates given the predictor variables mattered in the end. However, if
the number of variables to be predicted was very large, the questions became more
interesting. Unfortunately death intervened before we could follow these lines.

I learned a great deal from him and so did the field. His is a great personal and
scientific loss.
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