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In many medical studies, patients are followed longitudinally and inter-
est is on assessing the relationship between longitudinal measurements and
time to an event. Recently, various authors have proposed joint modeling
approaches for longitudinal and time-to-event data for a single longitudinal
variable. These joint modeling approaches become intractable with even a
few longitudinal variables. In this paper we propose a regression calibration
approach for jointly modeling multiple longitudinal measurements and dis-
crete time-to-event data. Ideally, a two-stage modeling approach could be
applied in which the multiple longitudinal measurements are modeled in the
first stage and the longitudinal model is related to the time-to-event data in
the second stage. Biased parameter estimation due to informative dropout
makes this direct two-stage modeling approach problematic. We propose a
regression calibration approach which appropriately accounts for informative
dropout. We approximate the conditional distribution of the multiple longi-
tudinal measurements given the event time by modeling all pairwise com-
binations of the longitudinal measurements using a bivariate linear mixed
model which conditions on the event time. Complete data are then simulated
based on estimates from these pairwise conditional models, and regression
calibration is used to estimate the relationship between longitudinal data and
time-to-event data using the complete data. We show that this approach per-
forms well in estimating the relationship between multivariate longitudinal
measurements and the time-to-event data and in estimating the parameters
of the multiple longitudinal process subject to informative dropout. We il-
lustrate this methodology with simulations and with an analysis of primary
biliary cirrhosis (PBC) data.

1. Introduction. Recently, many studies collect longitudinal data on a panel
of biomarkers, and interest is on assessing the relationship between these biomark-
ers and time to an event. For example, Allen et al. (2007) examined the relationship
between five longitudinally collected cytokines measured from serum plasma and
survival. Interest focused on whether the values of these multiple cytokines are as-
sociated with survival. In another example, patients with primary biliary cirrhosis
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are followed longitudinally and interest is on examining whether multiple longitu-
dinally biomarkers are prognostic for a poor clinical outcome. Important features
in studies of this type are that there may be a relatively large number of biomarkers
and that these biomarkers are subject to sizable measurement error due to labora-
tory error and biological variation.

Various authors have proposed joint modeling approaches for a single longi-
tudinal measurement and time-to-event data [Tsiatis, DeGruttola and Wulfsohn
(1995); Wulfsohn and Tsiatis (1997); Tsiatis and Davidian (2004); Henderson,
Diggle and Dobson (2000), among others]. There is also limited work on joint
models for a few longitudinal measurements and time-to-event data [Xu and Zeger
(2001a, 2001b); Huang et al. (2001); Song, Davidian and Tsiatis (2002); Ibrahim,
Chen and Sinha (2004); Brown, Ibrahim and DeGruttola (2005); Chi and Ibrahim
(2006)]. However, these methods are difficult to implement when the number of
longitudinal biomarkers is large since most of these approaches require integrating
over the vector of all random effects to evaluate the joint likelihood of the multi-
variate longitudinal and time-to-event data. This paper proposes an approach for
jointly modeling multivariate longitudinal and discrete time-to-event data which
easily accommodates many longitudinal biomarkers.

Fieuws and Verbeke (2005) and Fieuws, Verbeke and Molenberghs (2007) have
proposed an approach for modeling multivariate longitudinal data whereby all pos-
sible pairs of longitudinal data are separately modeled and are then combined in
a final step. We use a similar approach along with a recent regression calibra-
tion approach for jointly modeling a single series of longitudinal measurements
and time-to-event data [Albert and Shih (2009)] to implement the joint modeling
approach proposed in this paper. Recently, Fieuws et al. (2008) have proposed a
discriminant analysis based approach for using multivariate longitudinal profiles to
predict renal graft failure. At the end of their discussion, they mention that a more
elegant approach, which has not yet been developed, would involve a joint model
for the many longitudinal profiles and time-to-event data. This paper presents such
an approach.

We describe the approach in Section 2. We show the advantages of this approach
using simulation in Section 3. We illustrate the methodology with an analysis of
primary biliary cirrhosis data (PBC) in which we simultaneously examine the re-
lationship between multiple longitudinal biomarker in Section 4. A discussion fol-
lows in Section 5.

2. Modeling approach. Define Ti to be a discrete event-time which can
take on discrete values tj , j = 1,2, . . . , J , and Yij to be a binary indictor of
whether the ith patient is dead at time tj . Then Ji = ∑J

j=1(1 − Yij ) = J − Yi·,
where Yi· = ∑J

j=1 Yij indicates the number of follow-up measurements before
the event or the end of follow-up at time tJ . Longitudinal measurements are
measured at times t1, t2, . . . , tJi

. Denote X1i = (X1i1,X1i2, . . . ,X1iJi
)′, X2i =
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(X2i1,X2i2, . . . ,X2iJi
)′, . . . ,XP i = (XPi1,XP i2, . . . ,XP iJi

)′ as the P biomark-
ers measured repeatedly at j = 1,2, . . . , Ji time points. Further, define X∗

pi =
(X∗

pi1,X
∗
pi2, . . . ,X

∗
piJi

)′ as the longitudinal measurements without measurement
error for the pth biomarker and X∗

i = (X∗
1i ,X∗

2i , . . . ,X∗
P i). We consider a joint

model for multivariate longitudinal and discrete time-to-event data in which the
discrete event time distribution is modeled as a linear function of previous true
values of the biomarkers without measurement error on the probit scale. Specifi-
cally,

P
(
Yij = 1|Yi(j−1) = 0;X∗

i

) = �

(
α0j +

P∑
p=1

αpX∗
pi(j−1)

)
,(1)

where i = 1,2, . . . , I , j = 2,3, . . . , Ji , Yi1 is taken as 0, α0j governs the baseline
discrete event time distribution and αp measures the effect of the pth biomarker
(p = 1,2, . . . ,P ) at time tj−1 on survival at time tj . Specifically, (1) allows for
examining the effect of multiple “true” biomarker values at time j − 1 on the
probability of an event between the (j − 1)th and j th time point.

The longitudinal data is modeled assuming that the fixed and random effect
trajectories are linear. Specifically, the multivariate longitudinal biomarkers can be
modeled as

Xpij = X∗
pij + εpij ,(2)

where

X∗
pij = βp0 + βp1tj + γpi0 + γpi1tj ,(3)

where βp0 and βp1 are the fixed effect intercept and slope for the pth biomarker,
and γpi0 and γpi1 are the random effect intercept and slope for the pth bio-
marker on the ith individual. Denote β = (β10, β11, β20, β21, . . . , βP 0, βP 1)

′ and
γ i = (γ1i0, γ1i1, γ2i0, γ2i1, . . . , γP i0, γP i1)

′. We assume that γ i is normally distrib-
uted with mean 0 and variance �γ , where �γ is a 2P by 2P dimensional variance
matrix, and εpij are independent error terms which are assumed to be normally
distributed with mean 0 and variance σ 2

pε (p = 1,2, . . . ,P ).
Alternative to (1), where the probability of an event over an interval depends on

the true biomarker values at the beginning of the interval, the event-time process
could be adapted to depend on the random effects of the multivariate longitudinal
process [e.g., γpi1 can replace X∗

pi(j−1) in (1)].

2.1. Difficulty in joint estimation. Conceptually, model (1)–(2) can be esti-
mated by maximizing the likelihood

L =
I∏

i=1

∫
γ i

· · ·
∫ {

P∏
p=1

h(Xpi |γpi0, γpi1)

}
(4)

×
{

Ji∏
j=2

(1 − rij )

}(
ri(Ji+1)

)Ji<J
f (γ i ) dγ i ,
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where rij = P(Yij = 1|Yi(j−1) = 0), h(Xpi |γpi0, γpi1) is the product of Ji uni-
variate normal density functions each with mean X∗

pij and variance σ 2
pε , and f (γ )

is a multivariate normal density with mean zero and variance �γ . When P = 1,
(4) can be maximized by numerical integration techniques such as a simple trape-
zoidal rule or Gaussian quadrature [Abramowitz and Stegun (1974)]. However,
these methods are not feasible for even a few longitudinal biomarkers. Alternative
Monte Carlo methods such as Monte Carlo EM [Wei and Tanner (1990)] are possi-
ble, but these methods do not perform well for even moderately high dimensional
random effects (say, P > 2). In the next subsection we develop an alternative ap-
proach which is easy to implement with a large number of longitudinal biomarkers.

2.2. Estimation. We propose a two stage regression calibration approach for
estimation, which can be described as follows. In the first stage, multivariate lin-
ear mixed models can be used to model the longitudinal data. In the second stage,
the time-to-event model is estimated by replacing the random effects with corre-
sponding empirical Bayes estimates. There are three problems with directly apply-
ing this approach. First, estimation in the first stage is complicated by the fact that
simply fitting multivariate linear mixed models results in bias due to informative
dropout; this is demonstrated by Albert and Shih (2009) for the the case of P = 1.
Second, as described in Section 2.1, parameter estimation for multivariate linear
mixed models can be computationally difficult when the number of longitudinal
measurements (P ) is even moderately large. Third, calibration error in the empir-
ical Bayes estimation needs to be accounted for in the time-to-event model. The
proposed approach will deal with all three of these problems.

The bias from informative dropout is a result of differential follow-up whereby
the longitudinal process is related to the length of follow-up. That is, in (2)–(3),
patients with large values of X∗

pij are more likely to have an early event when
αp > 0 for p = 1,2, . . . ,P . There would be no bias if all J follow-up measure-
ments were observed on all patients. As proposed by Albert and Shih (2009) for
univariate longitudinal data, we can avoid this bias by generating complete data
from the conditional distribution of Xi = (X1i ,X2i , . . . ,XP i) given Ti , denoted as
Xi |Ti . Since Xi |Ti under model (2)–(3) does not have a tractable form, we propose
a simple approximation for this conditional distribution. Under model (2)–(3), the
distribution of Xi |Ti can be expressed as

P(Xi |Ti) =
∫

h(Xi |γ i , Ti)g(γ i |Ti) dγ i .(5)

Since Ti and the values of Xi are conditional independent given γ i , h(Xi |γ i , Ti) =
h(Xi |γ i ), where h(Xi |γ i ) = ∏P

p=1 h(Xpi |γpi0, γpi1). The distribution of Xi |Ti

can be expressed as a multivariate linear mixed model if we approximate g(γ i |Ti)

by a normal distribution. Under the assumption that g(γ i |Ti) is normally distrib-
uted with mean μTi

= (μ01Ti
,μ11Ti

,μ02Ti
,μ12Ti

, . . . ,μ0PTi
,μ1PTi

)′ and variance
�∗

γTi
, and by rearranging mean structure parameters in the integrand of (5) so that
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the random effects have mean zero, Xi |Ti corresponds to the following multivari-
ate linear mixed model:

Xpij |(Ti, γ
∗
ip0Ti

, γ ∗
ip1Ti

) = β∗
p0Ti

+ β∗
p1Ti

tj + γ ∗
ip0Ti

+ γ ∗
ip1Ti

tj + ε∗
pij ,(6)

where i = 1,2, . . . , I , j = 1,2, . . . , Ji , and p = 1,2, . . . ,P . The parameters
β∗

p0Ti
and β∗

p1Ti
are intercept and slope parameters for the pth longitudinal

measurement and for patients who have an event time at time Ti or who
are censored at time tJ . In addition, the associated random effects γ ∗

iTi
=

(γ ∗
i10Ti

, γ ∗
i11Ti

, γ ∗
i20Ti

, γ ∗
i21Ti

, . . . , γ ∗
iP 0Ti

, γ ∗
iP 1Ti

)′ are multivariate normal with mean
0 and variance �∗

γTi
, and the residuals ε∗

pij are assumed to have an independent

normal distribution with mean zero and variance σ ∗2
εp . Thus, this conditional model

involves estimating separate fixed effect intercept and slope parameters for each
potential event-time and for subjects who are censored at time tJ . Likewise, sep-
arate random effects distributions are estimated for each of these discrete time
points. For example, the intercept and slope fixed-effect parameters for the pth
biomarker for those patients who have an event at time Ti = t3 is β∗

p0t3
and β∗

p1t3
,

respectively. Further, the intercept and slope random effects for all P biomarkers
on those patients who have an event at time Ti = t3,γ

∗
it3

, is multivariate normal
with mean 0 and variance �∗

γ t3
. A similar approximation has been proposed by

Albert and Shih (2009) for univariate longitudinal data (P = 1).
Recall that by generating complete data from (6) we are able to avoid the bias

due to informative dropout. However, when P is large, direct estimation of model
(6) is difficult since the number of elements in �∗

γTi
grows quadratically with P .

For example, the dimension of the variance matrix �∗
γTi

is 2P by 2P for P lon-
gitudinal biomarkers. Fieuws and Verbeke (2005) proposed estimating the para-
meters of multivariate linear mixed models by formulating bivariate linear mixed
models on all possible pairwise combinations of longitudinal measurements. In the
simplest approach, they proposed fitting bivariate linear mixed models on all

(P
2

)
combinations of longitudinal biomarkers and averaging “overlapping” or duplicate
parameter estimates. Thus, we estimate the parameters in the fully specified model
(6) by fitting

(P
2

)
bivariate longitudinal models that only include pairs of longitudi-

nal markers. Fieuws and Verbeke (2005) demonstrated with simulations that there
is little efficiency loss using their approach relative to a full maximum-likelihood
based approach. Fitting these bivariate models is computationally feasible since
only four correlated random effects are contained in each model. (That is, �∗

γTi

is a four by four-dimensional matrix for each discrete event-time Ti .) Duplicate
estimates of fixed effects and random-effect variances from all pairwise bivari-
ate models are averaged to obtain final parameter estimates of the fully specified
model (6). For example, when P = 4 there are (P − 1) = 3 estimates of β∗

p0Ti
,

β∗
p1Ti

, σ ∗2
εp for the pth longitudinal biomarker that need to be averaged.

Model (6) is then used to construct complete longitudinal pseudo data sets
which in turn are used to estimate the mean of the posterior distribution of an indi-
vidual’s random effects given the data. Specifically, multiple complete longitudinal
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data sets can be constructed by simulating Xpij values from the approximation to
the distribution of Xi |Ti given by (6) where the parameters are replaced by their
estimated values. Since the simulated data sets have complete follow-up on each
individual, the bias in estimating the posterior mean of γ i caused by informative
dropout will be much reduced.

The posterior mean of distribution γ i given the data can be estimated by fitting
(2)–(3) to the generated complete longitudinal pseudo data. However, similar to
fitting the conditional model (6), fitting model (2)–(3) is difficult due to the high
dimension of �γ . Thus, we again use the pairwise estimation approach of Fieuws
and Verbeke (2005), whereby we estimate the parameters of (2)–(3) by fitting all
pairwise bivariate models and averaging duplicate parameter estimates to obtain fi-
nal parameter estimates. For each generated complete longitudinal pseudo data set,
the estimate of the posterior mean, denoted as γ̂ i = (γ̂1i0, γ̂1i1, . . . , γ̂P i0, γ̂P i1)

′,
can be calculated as

γ̂ i = �γ Z′
iV

−1
i (Xi − Zi β̂),(7)

where Zi is a PJ × 2P design matrix corresponding to the fixed and random
effects in (2)–(3), where Zi = diag(A′,A′, . . . ,A′)︸ ︷︷ ︸

P times

, A =
(

1
t1

1
t2

···
···

1
tJ

)
, and Vi is

the variance of Xi . Estimates of X∗
pij , denoted as X̂∗

pij , are obtained by substituting
(β̂p0, β̂p1, γ̂pi0, γ̂pi1) for (βp0, βp1, γpi0, γpi1) in (3).

To account for the measurement error in using γ̂ i as compared with using γ i in
(1), we note that

P
(
Yij = 1|Yi(j−1

) = 0; X̂∗
i ) = �

( α0j + ∑P
p=1 αpX̂∗

pij√
1 + Var{∑P

p=1 αp(X̂∗
pij − X∗

pij )}
)
,(8)

where Var{∑P
p=1 ωp(X̂∗

pi(j−1) − X∗
pi(j−1)} = R′

ij Var(γ̂ i − γ i )Rij , Rij = (ω1,

ω1tj−1,ω2,ω2tj−1, . . . ,ωp,ωptj−1), Var(γ̂ i −γ i ) = �γ −�γ Z′
i{V−1

i Zi −V−1
i ×

ZiQZ′
iV

−1
i }Zi�γ , and where Q = (

∑I
i=1 Z′

iV
−1
i Zi )

−1 [Laird and Ware (1982);
Verbeke and Molenberghs (2000)]. Expression (8) follows from the fact that
E[�(a + V )] = �[(a + μ)/

√
1 + τ 2], where V ∼ N(μ, τ 2).

In the second stage, α0j (j = 1,2, . . . , J ) and αp (p = 1,2, . . . ,P ) can be esti-
mated by maximizing the likelihood

L =
I∏

i=1

[
Ji∏

j=2

{
1 − P

(
Yij = 1|Yi(j−1) = 0; X̂∗

i

)}]
(9)

× P
(
Yi(Ji+1) = 1|YiJi

= 0; X̂∗
i

)Ji<J
,

where P(Yij = 1|Yi(j−1 = 0, X̂∗
i ) is given by (8). Thus, we propose the following

algorithm for estimating α0j and αp (p = 1,2, . . . ,P ):
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1. Estimate the parameters of model (6) by fitting
(P

2

)
bivariate models to each of

the pairwise combinations of longitudinal measurements and averaging dupli-
cate parameter estimates. The bivariate models can be fit in R [Venables, Smith
and the R Development Core Team (2008)] using code presented in Doran and
Lockwood (2006).

2. Simulate complete longitudinal pseudo measurements (i.e., Xpij for p =
1,2, . . . ,P , i = 1,2, . . . , I , j = 1,2, . . . , J ) from model (6) with model pa-
rameters estimated from step 1.

3. Estimate the parameters in model (2)–(3) without regard to the event time distri-
bution from complete longitudinal pseudo measurements (simulated in step 2)
by fitting all possible

(P
2

)
bivariate longitudinal models and averaging duplicate

model parameter estimates.
4. Calculate γ̂ i using (7) and X̂∗

pij using (3) with γ i replaced by γ̂ i and β being

replaced by β̂ estimated in step 3.
5. Estimate α0j (j = 2,3, . . . , J ) and αp (p = 1,2, . . . ,P ) using (8) and (9).
6. Repeat steps 2 to 5 M times and average α̂0j and α̂p to get final estimates.

We choose M = 10 in the simulations and data analysis since this was shown
to be sufficiently large for univariate longitudinal modeling discussed in Albert
and Shih (2009). Asymptotic standard errors of α̂0j and α̂p cannot be used for
inference since they fail to account for the missing data uncertainty in our proce-
dure. Standard errors and 95% confidence intervals of parameter estimates using
the bootstrap [Efron and Tibshirani (1993)] are as follows:

1. Construct a bootstrap sample of size I , by resampling event-time and multi-
variate longitudinal data with replacement ((T b

i ,Xb
1i ,Xb

2i , . . . ,Xb
pi)) from the

(Ti,X1i ,X2i , . . . ,Xpi).
2. Fit the proposed estimation procedure.
3. Iterate 500 times between steps 1 and 2. The bootstrap standard error is the

sample standard deviation of the 500 bootstrap estimates. The 95% confidence
intervals were constructed using the percetile method (limits are 2.5 and 97.5
percentiles of the bootstrap distribution).

2.3. Incorporating covariate dependence. Covariates can be incorporated in
(3) by adding them directly into the multivariate linear mixed model (6). Specif-
ically, if X∗

pij = Ziηp + βp0 + βp1tj + γpi0 + γpi1tj , where Zi is a vector of
covariates with ηp being parameters for the pth biomarker, then P(Xi |Ti,Zi) =∫

h(Xi |γ i ,Zi)g(γ i |Ti) dγ i and Xi |Ti can be approximated by a multivariate lin-
ear mixed model with Ziηp being added to the right side of (6). Estimation then
proceeds as described in Section 2.2 Although more difficult, covariates can also
be incorporated into (1). If

P
(
Yij = 1|Yi(j−1) = 0,X∗

i ,Zi

) = �

(
α0j + Ziζ +

P∑
p=1

αpX∗
pi(j−1)

)
,(10)
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then P(Xi |Ti,Zi) = ∫
h(Xi |γ i ,Zi)g(γ i |Ti,Zi) dγ i , and under the assumption

that g(γ i |Ti,Zi) is normally distributed with variance not depending on Zi (which
we found to be the case in simulations not shown), then Xi |Ti,Zi can be ap-
proximated by a multivariate linear mixed model with Ziζ

∗
pTi

added to the right-
hand side of (6). Extensive simulations showed that the conditional distribution
of γ i |Ti,Zi is nearly normally distributed over a wide range of parameter val-
ues, with slight departures from normality found when the relationship between
the longitudinal process and event-time processes is very strong (i.e., αp’s are very
large in magnitude). The multivariate linear model approximation is flexible in that
it allows the regression parameters to vary with Ti . A more parsimonious model
would be to constrain the parameters such that ζ ∗

pTi
does not vary with Ti .

3. Simulations. We conduct a simulation study to examine the statistical
properties of the proposed approach. The approach is examined for the situation
where P = 3, I = 300, and σ 2

pε = 0.75 for p = 1,2 and 3. The remaining para-
meters are presented in Table 1. We compare the proposed approach with M = 10
with a model where the X∗

pij ’s are assumed to be known (true model) and with
a model where the observed Xpij ’s are used in (1) (observed model). Although
the true values are never actually observed in practice, we examine the true model
as a benchmark in comparing the other models. Table 1 shows that the proposed
approach results in nearly unbiased estimates of α1, α2 and α3, whereas the model
which uses the observed observations (which are subject to measurement error) has
severe bias for estimating α1 and α3 (the two parameters which are nonzero). Al-
though the variability of parameter estimates is larger for the proposed approach
as compared with the observed approach, the root mean squared errors are sub-
stantially smaller for α1 and α3 for the proposed approach. For example, the root
mean squared errors for α1 is 0.089 for the proposed approach and 0.184 for the
observed model. Results when the “true” values for the markers (markers without
measurement errors) are assumed known are also presented in Table 1 (column
labeled Truth). As expected, estimates are unbiased for this gold standard case.
A comparison of the gold standard case with the proposed approach shows effi-
ciency loss. For example, the relative efficiency for estimating α1, α2 and α3 with
the proposed approach versus the gold standard is 0.45 [(0.06/0.089)2], 0.57 and
0.24, respectively. We conducted additional simulations with different parameter
values. In all cases tried, the mean squared errors were substantially smaller us-
ing the proposed approach as compared with using the observed values (data not
shown).

Table 1 also presents the average estimated intercept and slope for each of the
three longitudinal biomarkers. The results show that estimates of these fixed effects
are nearly unbiased for the proposed approach.

4. Example. We examine the effect of multiple longitudinal biomarkers on
the short-term prognosis for patients with primary biliary cirrhosis (PBC) using
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TABLE 1
Estimates of α0j = α0, α1, α2 and α3 from model (1) with σ1ε = σ2ε = σ3ε = 0.75

and with P = 3, J = 5, and I = 300. Random effects are generated under a
diagonal covariance matrix. Further, we assume that tj = j and all individuals

who are alive at t5 = 5 are administratively censored at that time point. The means
(standard deviations) from 500 simulations are presented

Parameters True values Truth Proposed Observed

α0 −1.75 −1.77 −1.76 −1.37
(0.115) (0.180) (0.089)

α1 0.40 0.408 0.405 0.221
(0.060) (0.089) (0.042)

α2 0 0.00 0.00 0.001
(0.058) (0.077) (0.042)

α3 0.40 0.405 0.400 0.219
(0.062) (0.092) (0.043)

β10 1.0 1.00
(0.058)

β11 0 0.03
(0.068)

β20 0.5 0.50
(0.050)

β21 0 −0.01
(0.067)

β30 1 1.00
(0.052)

β31 0 0.023
(0.065)

σ 2
b10 0.25 0.277

(0.061)

σ 2
b11 0.25 0.296

(0.087)

σ 2
b20 0.25 0.268

(0.062)

σ 2
b21 0.25 0.286

(0.087)

σ 2
b30 0.25 0.270

(0.059)

σ 2
b31 0.25 0.294

(0.083)

the PBC study conducted at the Mayo Clinic from 1974 to 1984 [Murtaugh et al.
(1994)]. PBC is a chronic disease characterized by inflammatory destruction of
the small bile ducts within the liver, which eventually leads to cirrhosis of the
liver, followed by death. Various biomarkers such as biliribin, prothrombin time
and albumin were collected longitudinally, and interest is on examining whether
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FIG. 1. Plot of log-transformed biliribin values versus follow-up time for 4 patients. Each plot
shows an example of complete follow-up in which the changes over time appear to be linear over the
first 4 years of follow-up and nonlinear over the entire length of follow-up. For each panel, the solid
line is a least-squares regression line for the first four years of follow-up, while the dashed line is a
corresponding line using all the follow-up data.

these biomarkers relate to the natural history of disease. Of major interest was
whether these biomarkers are prognostic for transplantation-free survival (time to
either transplantation or death). A total of 312 patients had a baseline measurement
and were followed longitudinally at 6 months and at yearly intervals thereafter.

For our application, we focused on the first 4 years of follow-up for a number
of reasons. First, individual changes in the biomarkers appeared to be close to
linear over this time period. Figure 1 shows 4 examples of complete follow-up in
which the changes in log-transformed biliribin appear to be linear over the first
4 years of follow-up and not very linear over the whole range of follow-up. For
each panel, the solid line is a least-squares regression line for the first four years
of follow-up, while the dashed line is a corresponding line using all the follow-up
data. The patterns over the whole follow-up period are nonlinear curves and are
not systematic over subjects, and therefore not easily characterized by a simple
nonlinear mixed model. The reason why the linear assumption is reasonable over
the shorter time interval is that, even though the curves are nonlinear, they can
adequately be approximated as linear functions over a short time interval (i.e.,
a nonlinear function can be locally approximated by a linear function). Second, the
methodology makes the assumption that the effect of the biomarkers on prognosis
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TABLE 2
The effect of log-transformed biliribin, prothrombin time and albumin on

transplantation-free survival. The analysis is based on fitting model (1) with
Xi(j−1) replacing X∗

i(j−1)
. Time-to-event is modeled as a discrete time process

with possible event times at 0.5, 1, 2, 3 and 4 years, where α02 reflects the baseline
discrete-time event distribution for the intervals 0 to 0.5 and 0.5 to 1 years. The
subsequent yearly intervals are characterized by α03, α04, α05 and α06. 95%

confidence intervals were estimated using the bootstrap with the percentile
method (500 bootstrap samples)

Parameters Estimate 95% confidence interval

α02 −3.71 −8.10 to −1.01
α03 −4.01 −8.51 to −1.14
α04 −3.37 −7.73 to −0.50
α05 −3.43 −7.91 to −0.39
α06 −3.39 −7.78 to −0.53
log Biliribin 0.58 0.45 to 0.74
log Albumin −2.57 −3.76 to −1.56
log Proth 1.86 0.79 to 3.53

is constant over the follow-up period [i.e., αp parameters in (1) do not vary over
time]. This assumption is more reasonable over the shorter 4 year interval rather
than the entire follow-up period.

Table 2 shows parameter estimates from fitting model (1) with the observed data
as covariates instead of the true values. Although both standard errors and 95%
confidence intervals were estimated using the bootstrap, only the 95% confidence
intervals are presented since the bootstrap estimates were not normally distributed
for many of the parameter estimates. The results demonstrate a statistically sig-
nificant positive effect of biliribin and prothrombin time and a negative effect of
albumin on transplantation-free survival. However, it should be recognized that
these parameter estimates may be distorted due to the measurement error in these
longitudinal biomarker measurements.

Using the proposed approach, we initially fit model (1)–(3) which incorporated
a random intercept and slope term for each of the three biomarkers. However, the
random effect for slope for prothrombin time and albumin were estimated as nearly
zero. Thus, we re-fit the model without a random slope effect for these two bio-
markers. Table 3 shows parameter estimates from the proposed approach with 95%
confidence intervals estimated using the bootstrap (as in the analysis with the ob-
served biomarkers presented in Table 2, we do not present the parameter estimates
of the standard errors). Except for the effect of biliribin, estimates of the other two
biomarkers are substantially larger in magnitude under the proposed approach than
when ignoring measurement error and using the observed data (Table 2). This is
consistent with the common phenomenon that ignoring measurement error atten-
uates parameter estimates. In terms of inference, the effect of prothrombin time
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TABLE 3
The effect of log-transformed biliribin, prothrombin time and albumin (p = 1, 2

and 3, respectively) on transplantation-free survival using the proposed approach
with M = 10. We fit model (1) with the true longitudinal measurements following
(2)–(3). Time-to-event is modeled as a discrete time process with possible event
times at 0.5, 1, 2, 3 and 4 years. Standard errors (SE) were estimated using the
bootstrap. 95% confidence intervals were estimated using the bootstrap with

the percentile method (500 bootstrap samples)

Parameters Estimate 95% confidence interval

α02 −5.22 −20.57 to −25.06
α03 −5.48 −21.06 to 24.83
α04 −4.05 −18.67 to 27.75
α05 −4.24 −17.88 to 27.45
α06 −4.48 −18.05 to 27.23
log Biliribin 0.34 0.02 to 1.71
log Albumin −11.39 −61.38 to −5.21
log Proth 6.16 −3.78 to 22.83
β10 0.50 0.22 to 0.58
β11 0.26 0.09 to 0.35
β20 1.26 0.56 to 1.27
β21 −0.05 −0.05 to −0.02
β30 2.36 1.06 to 2.38
β31 0.02 0.1 to 0.03
σ 2
b10 0.99 0.45 to 1.11

σ 2
b11 0.27 0.05 to 0.63

σ 2
b20 0.03 0.01 to 0.04

σ 2
b30 0.01 0.005 to 0.025

on short-term prognosis is no longer statistically significant with the proposed ap-
proach, while the effects of biliribin and albumin on prognosis are statistically
significant with both approaches. In the PBC analysis, estimates of σ 2

pε were 0.31,
0.12 and 0.11 for log-transformed values of biliribin, albumin and prothrombin
time, respectively. The smaller absolute values for parameter estimates of albumin
and prothrombin time using the observed markers (Table 1) relative to estimates
for these markers using the proposed approach (Table 2) can be attributed to atten-
uation due to measurement error, since, in these cases, the residual variances are
substantially larger than the between-subject variations.

We also conducted analyses where we adjusted for treatment effect and age
in the discrete-time survival model [Zi is treatment group or age in model (10)].
As discussed in Section 2.3, we constrained the parameters ζ ∗

pTi
so that they did

not vary with Ti (results were similar when we did not constrain the parame-
ters). When we adjusted for treatment group (with treatment group coded as 1
for D-penicillamine and 0 for placebo) in (10), we estimated the α coefficient
corresponding to treatment as 0.051 (95% CI: −0.84 to 1.14). The estimates of
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other parameters were almost identical to those presented in Table 3. When we
adjusted for age in (10), we estimated the α coefficient corresponding to age
as 0.018 (95% CI: 0.01 to 0.129), where age was scaled in units of a year. Al-
though age was statistically significant, the effects of log bilirubin, albumin and
prothtime on transplantation-free survival were similar to those for the unadjusted
model. Specifically, the regression coefficients (α coefficients) corresponding to
three markers are 0.394 (95% CI: 0.07 to 2.21), −10.65 (−83.51 to −5.52) and
5.76 (−4.28 to 30.97).

Table 3 also shows the estimated fixed effect intercept and slope for the three
longitudinal biomarkers for the proposed approach. The estimates suggest that
biliribin is increasing, while albumin and prothrombin time are nearly constant
over time.

The joint modeling approach is important in this application for a number of
reasons. First, survival models which use observed biomarkers can result in atten-
uated estimates of risk. The proposed approach allowed us to account for the mea-
surement error in investigating the effect of multiple biomarker measurements on
the short-term prognosis of PBC patients in terms of transplantation-free survival.
With the proposed approach, we found that the “true” biliribin and albumin val-
ues at the beginning of an interval had a sizable and statistically significant effect
on the probability of either a transplantation or death in the subsequent interval.
Second, the proposed approach allows us to appropriately make inference about
changes in the three “true” biomarkers over time. As stated before, the largest
change over time was in biliribin which sizably increased over time. When making
these longitudinal inferences, not appropriately modeling the relationship between
the multiple biomarkers and survival may lead to bias due to informative dropout
[Wu and Carroll (1988)].

5. Discussion. We proposed an approach for jointly modeling multivariate
longitudinal and discrete time-to-event data. Unlike likelihood-based approaches
which require high-dimensional integration to evaluate the joint likelihood, this
approach only requires fitting bivariate random effects models. This methodology
uses recent methodology for fitting multivariate longitudinal data with bivariate
linear mixed models proposed by Fieuws et al. (2005, 2007). They discussed the
simple averaging of duplicate parameters estimates as we did in implementing the
proposed approach. They also proposed a pseudo-likelihood approach which in-
volves maximizing the sum of likelihoods from bivariate models across all

(P
2

)
combinations of pairwise longitudinal markers. Although this later approach may
provide some minor efficiency gain over simple averaging, it would be substan-
tially more complicated to implement in our setting. Further, one of the advantages
of the pseudo-likelihood approach is that it provides an analytic expression for
the asymptotic variance of the parameter estimates. Unfortunately, this asymptotic
variance is not generalizable to the joint model with time-to-event data, making
the pseudo-likelihood approach less attractive in our setting.
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There are similarities between our approach and the recent approach by Fieuws
et al. (2008) for predicting renal graft failure based on multivariate longitudinal
profiles. Both approaches model the conditional distribution of the multivariate
longitudinal profiles given the failure time. However, there are major differences
between the two approaches. Fieuws et al. model the conditional distribution of
the longitudinal measurements given the failure time and then use Bayes rule to
estimate the probability of failure given the longitudinal profiles. In our approach,
we use an approximation of the conditional distribution of Xi |Ti under the joint
model of the multivariate longitudinal and time-to-event data in order estimate the
parameters of this joint model.

We demonstrated the feasibility of the proposed approach with three biomark-
ers (P = 3). However, the approach can easily accommodate a large number of
longitudinal profiles since it simply involves fitting

(P
2

)
bivariate models. The re-

lationship between the multivariate longitudinal and event-time data is governed
by expression (1). However, other functional relationships are possible with this
approach. For example, we could relate the two processes by averages of “true”
longitudinal biomarkers either across time or across different biomarkers. Alterna-
tively, the approach could be formulated so that the event-time process depends on
the individual’s intercept and slope for each of the P longitudinal biomarkers.

The multivariate longitudinal profiles are modeled as multivariate linear mixed
models in (2) and (3), which was appropriate for the analysis of the PBC data.
However, the methodology could be extended to allow for more flexible nonlinear
modeling of marker profiles. This would involve approximating the conditional
probability Xi |Ti in (5) where h(Xi |γ i ) follows a multivariate nonlinear mixed
model, rather than the linear mixed model discussed in our paper. In the nonlinear
case, we could approximate (5) by (6), where (6) would be a nonlinear mixed
model with parameters indexed by Ti rather than the linear mixed model presented.
However, unless there is biological rational for a particular nonlinear mixed model,
it may be difficult to choose a reasonable model in most practical situations.

In our formulation, we assumed that event times are only administratively cen-
sored after a fixed follow-up at the end of the study. For the situation in which
patients are censored prematurely, dropout times can be imputed based on a model
fit using patients who had the potential to be followed over the entire study dura-
tion.

In this article methodology was developed using a discrete-time survival model
with calibration error being incorporated by using a probit link function. This ap-
proach led to an analytically tractable form for incorporating calibration error (8).
For the PBC study, little is lost by using a discrete-time model since the proba-
bility of an event in each of the five intervals is low (the estimated probability of
an event during each of the five time intervals is 0.05, 0.03, 0.08, 0.07 and 0.07).
For continuous-time survival models such as the Cox model, incorporating cali-
bration is more difficult since there is no simple analytic solution. That said, we
could use a Cox model if we do not account for the calibration error in replacing
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the random effect by their empirical Bayes estimators. Although not the case in the
PBC study, in situations where the within-subject variation is small relative to the
between-subject sources of variation, the calibration error will be small and there
will be only a small amount of bias induced by not accounting for the calibration
error.
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