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VARIABLE SELECTION AND REGRESSION ANALYSIS FOR
GRAPH-STRUCTURED COVARIATES WITH

AN APPLICATION TO GENOMICS1

BY CAIYAN LI AND HONGZHE LI

University of Pennsylvania School of Medicine

Graphs and networks are common ways of depicting biological infor-
mation. In biology, many different biological processes are represented by
graphs, such as regulatory networks, metabolic pathways and protein–protein
interaction networks. This kind of a priori use of graphs is a useful sup-
plement to the standard numerical data such as microarray gene expres-
sion data. In this paper we consider the problem of regression analysis and
variable selection when the covariates are linked on a graph. We study a
graph-constrained regularization procedure and its theoretical properties for
regression analysis to take into account the neighborhood information of the
variables measured on a graph. This procedure involves a smoothness penalty
on the coefficients that is defined as a quadratic form of the Laplacian matrix
associated with the graph. We establish estimation and model selection con-
sistency results and provide estimation bounds for both fixed and diverging
numbers of parameters in regression models. We demonstrate by simulations
and a real data set that the proposed procedure can lead to better variable
selection and prediction than existing methods that ignore the graph informa-
tion associated with the covariates.

1. Introduction. There has been a growing interest in penalized least squares
problems via L1 or other types of regularization, especially in high-dimensional
settings. Important penalty functions that can lead to sparse variable selection in
regression include Lasso [Tibshirani (1996)] and SCAD [Fan and Li (2001)]. In
particular, Lasso has the crucial advantage of being a convex problem, which leads
to efficient computational algorithms by coordinate descent [Efron et al. (2004);
Friedman et al. (2007); Wu and Lange (2008)] and sparse solutions. Zou (2006)
proposed a novel adaptive Lasso procedure and presented results on model selec-
tion consistency and oracle properties of the parameter estimates. Zhao and Yu
(2006) presented the irrepresentable condition for model selection consistency of
Lasso. Zhang and Huang (2006) studied the sparsity and bias of the Lasso se-
lection in high-dimensional linear regression. Fan and Li (2001) and Huang and
Xie (2007) established the asymptotic oracle properties of the SCAD-penalized
least squares estimators when the number of covariates is fixed or increases with
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the sample sizes. These novel penalized estimation methods are quite effective in
selecting relevant variables and in predicting future outcomes, especially in high-
dimensional settings.

New estimation procedures have also been developed in recent years to account
for certain structures of the explanatory variables. These include the group Lasso
procedure [Yuan and Lin (2006)] when the explanatory variables are grouped or or-
ganized in a hierarchical manner, the elastic net (Enet) procedure [Zou and Hastie
(2005)] that deals with groups of highly correlated variables, and the fused Lasso
[Tibshirani et al. (2005)] that imposes the L1 penalty on the absolute differences
of the regression coefficients in order to account for some smoothness of the co-
efficients. Nardi and Rinaldo (2008) established the asymptotic properties of the
group Lasso estimator for linear models. Jia and Yu (2008) provided conditions for
model selection consistency of the elastic net when p � n. Zou and Zhang (2009)
proposed an adaptive elastic net with a diverging number of parameters and estab-
lished its oracle property. Among these procedures, the Enet regularization and the
fused Lasso are particularly appropriate for the analysis of genomic data, where
the former encourages a grouping effect and the latter often leads to smoothness
of the coefficient profiles for ordered covariates.

Motivated by a genomic application in order to account for network information
in the analysis of genomic data, Li and Li (2008) proposed a network-constrained
regularization procedure for fitting linear regression models and for variable se-
lection, where the predictors in the regression model are genomic data that are
measured on the genetic networks, which we call the graph-structured covariates.
In particular, we assume that the covariates in the regression model are values of
the nodes on a graph, where a link between two nodes may indicate a functional
relationship between two genes in a genetic network or physical neighborhood
between two voxels on brain images. Since many biological networks are con-
structed using data from high-throughput experiments, often there is a probability
associated with an edge to indicate the certainty of a link. Such an edge probability
can be used as a weight in a undirected graph, in which case we have a weighted
graph. This graph-constrained regularization procedure is similar in spirit to the
fused Lasso [Tibshirani et al. (2005)], both of which try to smooth the regression
coefficients in certain ways. However, the fused Lasso does not utilize prior graph
information. Second, instead of using the L2 norm on the differences of the coeffi-
cients of the linked variables, the fused Lasso uses the L1 norm on the differences,
which tends to lead to the same regression coefficients for linked variables. In
this paper we consider the general problem of regression analysis when the ex-
planatory variables are nodes on a graph and present a cyclical coordinate descent
algorithm [Friedman et al. (2007)] to implement the network-constrained regular-
ization procedure of Li and Li (2008). This algorithm provides new insight on how
neighboring variables affect the coefficient estimate of a node. We also extend the
procedure of Li and Li (2008) to account for the possibility of different signs of
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the regression coefficients for neighboring variables. In addition, we provide theo-
retical results of the estimates, including sign consistency and error bounds of the
estimator and L2 consistency.

This paper is organized as follows. In Section 2 we describe the problem of
regression analysis with covariates measured on graphs. We then present a graph-
constrained estimation (Grace) procedure in order to account for the graph struc-
tures in Section 2.1 and an efficient coordinate descent algorithm to implement
the proposed regularization methods in Section 2.3. We present the estimation and
model selection consistency results in Section 3. We provide Monte Carlo simula-
tion results in Section 4 and results from the application to the analysis of a data
set on the gene expression of brain aging in Section 5. Finally, we give a brief
discussion of the methods and results.

2. Regression analysis for covariates measured on a graph. Consider a
weighted graph G = (V ,E,W), where V = {1, . . . , p} is the set of vertices that
correspond to the p predictors, E = {u ∼ v} is the set of edges indicating that
the predictors u and v are linked on the graph and there is an edge between
u and v, and W is the set of weights of the edges, where w(u, v) denotes the
weight of edge e = (u ∼ v). In genomic studies, biological networks are often
represented as graphs, an edge between u and v on the graph can indicate some
functional relationship between them and the weight can be used to measure the
uncertainty of the edge between two vertices, for example, indicating the prob-
ability of having an edge between two variables when the graph is constructed
from data. For each given sample, we assume that we have numerical measure-
ments on each of the vertices and these measurements are treated as explana-
tory variables in a regression analysis framework. For the uth node, let xiu be
the numerical measurement of the uth vertex on the graph for the ith individ-
ual. Further, let xu = (x1u, . . . , xnu)

T be the measured values at the uth vertex
for n i.i.d. samples. Consider the problem of variable selection and estimation
where we have design matrix X = (x1,x2, . . . ,xp) ∈ Rn×p and response vector
y = (y1, y2, . . . , yn)

T ∈ Rn, and they follow a linear model

y = Xβ + ε,(2.1)

where ε = (ε1, . . . , εn)
T ∼ N(0, σ 2In) and β = (β1, . . . , βp)T . Throughout this

paper we assume that the predictors and the response are centered so that

n∑
i=1

yi = 0,

n∑
i=1

xij = 0, and
1

n

n∑
i=1

x2
ij = 1 for j = 1, . . . , p.

In this paper we consider that the design matrix X is a deterministic matrix in the
fixed design settings.

When p is large, we assume that model (2.1) is “sparse,” that is, most of the true
regression coefficients β are exactly zero. Without loss of generality, we assume
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the first q elements of vector β are nonzeroes. Denote β(1) = (β1, . . . , βq)
T and

β(2) = (βq+1, . . . , βp)T , then element-wise β(1) �= 0 and β(2) = 0. Now write X(1)

and X(2) as the first q and last p−q columns of X, respectively, and let C = 1
n

XT X,
which can then be expressed in the following block-wise form:

C =
(

C11 C12
C21 C22

)
.

The goal of this paper is to develop a regularization procedure for selecting the true
relevant variables. Different from the existing approaches, we particularly account
for the fact that the explanatory variables are related on a graph. We make this
more precise in the next section.

2.1. Graph-constrained regularization and variable selection. In order to ac-
count for the fact that the p explanatory variables are measured on a graph, we
first introduce the Laplacian matrix [Chung (1997)] associated with a graph. Let
the degree of the vertex v be dv = ∑

u∼v w(u, v). We say u is an isolated ver-
tex if du = 0. Let w(u,u) = 0. Following Chung (1997), we define the Laplacian
matrix L for graph G with the uvth element defined by

L(u, v) =
⎧⎨
⎩

1 − w(u,u)/du, if u = v and du �= 0,
−w(u, v)/

√
dudv, if u and v are adjacent,

0, otherwise.
(2.2)

It is easy to verify that this matrix is positive semi-definite with 0 as the small-
est eigenvalue and 2 as the largest eigenvalue when all the weights are 1 [Chung
(1997)]. To allow the matrix to change with n, we further express this matrix in
block-wise form,

L =
(

L11 L12
L21 L22

)
,

where L11 corresponds to the q nodes that are relevant to the response and L22
corresponds to the p − q nodes that are not relevant.

The Laplacian matrix has the following interpretations. For a given vector β ,
the edge derivative of β along the edge e(u, v) at u is defined as

∂β

∂e

∣∣∣∣
u

= √
w(u, v)

(
βu√
du

− βv√
dv

)
,

and, therefore, the local variation of β at u can be measured by√∑(
∂β

∂e

∣∣∣∣
u

)2

.

The smoothness of vector β with respect to the graph structure can be expressed
as

βT Lβ = ∑
u∼v

(
βu√
du

− βv√
dv

)2

w(u, v).
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This variation functional for vectors β penalizes vectors that differ too much over
nodes that are linked. It contains a scaling by

√
du. One intuitive reason for such a

scaling is to allow a small number of nodes with large du to have more extreme val-
ues of βu while the usually much greater number of nodes with small du should not
ordinarily allow to have very large βu. This variation functional has been widely
used in semi-supervised learning on graphs [Zhu (2005); Zhou et al. (2004)].

For many problems with covariates measured on a graph, we would expect that
the neighboring variables are correlated and, therefore, the regression coefficients
would show some smoothness. One way to account for such a dependence of the
regression coefficients is to impose a Markov random field (MRF) prior to the col-
lection of β vectors. The MRF decomposes the joint prior distribution of the βu’s
into lower-dimensional distributions based on the graph-neighborhood structures.
A common MRF model is the Gaussian MRF model that assumes that the joint
distribution of β is given by

f (β) ∝ exp
{
− 1

2σ 2 βT Lβ

}
,

which is an improper density. Based on this Gaussian MRF prior assumption, Li
and Li (2008) introduced the following graph-constrained estimation of the regres-
sion coefficients, denoted by β̂ ,

β̂ = argmin
β

Q(β,λ1, λ2),(2.3)

where

Q(β,λ1, λ2) = ‖y − Xβ‖2
2 + λ1‖β‖1 + λ2β

T Lβ

= (y − Xβ)T (y − Xβ) + λ1
∑
u

|βu|

+ λ2
∑
u∼v

(
βu√
du

− βv√
dv

)2

w(u, v),

where L is the Laplacian as defined in (2.2) and the tuning parameters λ1, λ2 con-
trol the amount of regularization for sparsity and smoothness. For the special case
when λ2 = 0, the estimate reduces to the Lasso, and when L is the identity matrix,
the estimate reduces to the elastic net estimates.

2.2. An adaptive graph-constrained regularization. The Grace procedure may
not perform well when two variables that are linked on the graph have different
signs in their regression coefficients, in which case the coefficients are not ex-
pected to be locally smooth. For example, for genetic networks, two genes might
be negatively correlated with the phenotypes and are therefore expected to have
different signs in their regression coefficients. In order to account for the sign dif-
ferences, we can first perform a standard least square regression when p < n or
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the elastic net regression when p ≥ n and denote the estimate as β̃ . We can then
modify the above objective function as

Q∗(λ1, λ2, β) = ‖y − Xβ‖2
2 + λ1‖β‖1 + λ2β

T L∗β,

= ‖y − Xβ‖2
2 + λ1

p∑
j=1

|βj |

+ λ2
∑
u∼v

(
sign(β̃u)βu√

du

− sign(β̃v)βv√
dv

)2

w(u, v),

where

L∗(u, v) =
⎧⎨
⎩

1 − w(u,u)/du, if u = v and du �= 0,
− sign(β̃u) sign(β̃v)w(u, v)/

√
dudv, if u and v are adjacent,

0, otherwise.

Note that the L∗ matrix is still positive semi-definite. We call the β defined by

β̂ = argmin
β

Q∗(β,λ1, λ2)(2.4)

the adaptive Grace (aGrace).

2.3. A coordinate descent algorithm. Friedman et al. (2007) presented a coor-
dinate descent algorithm for solving the Lasso and the Enet regularization. In this
section we develop a similar algorithm for the proposed graph-constrained reg-
ularization. We only present the detailed algorithm for the optimization problem
defined by equation (2.3). Similar algorithms can be developed by the aGrace de-
fined by (2.4). If we let λ = (λ1 + 2λ2)/2n and α = λ1/(λ1 + 2λ2), the Grace can
be written as

β̂(λ,α) = argmin
β

{
R(β) := 1

2n
‖y − Xβ‖2

2 + λPα(β)

}
,(2.5)

where

Pα(β) := (1 − α)
1

2
βT Lβ + α‖β‖1 = (1 − α)

1

2

∑
u∼v

(
βu√
du

− βv√
dv

)2

+ α

p∑
u=1

|βu|

is the graph-constrained penalty function.
Given a covariate xu, suppose we have estimated β̃v for v �= u, and we want to

partially minimize the objective function with respect to βu. We can rewrite the
objective function in (2.5) as

R(β) = 1

2n

∑
i=1

(
yi − ∑

v �=u

xivβ̃v − xiuβu

)2

+ λ(1 − α)
1

2

∑
v∼u

(
βu√
du

− β̃v√
dv

)2

+ λα|βu| + λ(1 − α)
1

2

∑
w∼v

w,v �=u

(
β̃w√
dw

− β̃v√
dv

)2

+ λα
∑
w �=u

|β̃w|.
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We would like to compute the gradient at βu, which only exists when βu �= 0.
We first consider the case that the covariate u is connected to some other nodes
(variables) on the network. If βu > 0, due to the standardization of the covariates,
we can differentiate the objective function R(β) with respect to βu as

∂R

∂βu

= −
[

1

n

∑
i=1

xiu

(
yi − ∑

v �=u

xivβ̃v

)
+ λ(1 − α)

∑
v∼u

β̃v√
dudv

]

+ λα + [1 + λ(1 − α)]βu.

Similarly, we can get the corresponding expression when βu < 0. Following the
calculus by Donoho and Johnstone (1994) and Friedman et al. (2007), we obtain
the coordinate-wise update form for βu as

β̃u ← S((1/n)
∑

i=1 xiu(yi − ỹ
(u)
i ) + λ(1 − α)

∑
v∼u (β̃v/

√
dudv), λα)

1 + λ(1 − α)
,(2.6)

where:

• ỹ
(u)
i = ∑

v �=u xivβ̃v is the partial residual for fitting βu, that is, the fitted value
excluding the contribution from xiu. Since the covariates are standardized,
1
n

∑
i=1 xiu(yi − ∑

v �=u xivβ̃v) is the simple least-squares coefficient while fit-
ting the partial residual to xiu, i = 1, . . . , n.

• S(z, γ ) is the soft-thresholding operator with value

sign(z)(|z| − γ )+ =
⎧⎨
⎩

z − γ, if z > 0 and γ < |z|,
z + γ, if z < 0 and γ < |z|,
0, otherwise.

When covariate u is not connected to other nodes on the network, that is, when
it has no neighbors, the corresponding coordinate-wise updating formula becomes
the Lasso updating formula, that is

β̃u ← S

(
1

n

∑
i=1

xiu

(
yi − ỹ

(u)
i

)
, λα

)
.(2.7)

Comparing the two updated forms of (2.6) and (2.7), an intuitive explanation
can be drawn to help to understand the effect of the graph-constraint penalty on
the coefficients. For an isolated predictor, the graph penalty is vanished and, thus,
we only apply a soft-thresholding for the Lasso penalty, while for a connected pre-
dictor, form (2.6) takes into account the graph-constraint to the penalty by adding
the scaled summation of the coefficients of the neighboring covariates to the sim-
ple least-squares coefficient and applying a proportional shrinkage for the graph
penalty.

Given α, we can compute the solution path for a decreasing sequence of
values for λ, starting from the smallest value λmax for which there is no co-
variate selected, that is, β̂ = 0. Similar to Friedman et al. (2007), we can set
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λmax = maxl|〈xl, y〉|/nα, λmin = ελmax and construct a sequence of K values of λ

decreasing from λmax to λmin on the log scale. Typical values are ε = 0.001 and
K = 100. Cross-validation (CV) can be used to select the two tuning parameters α

and λ.

3. Error bound and model selection consistency for fixed and diverging p.
In this section we provide some theoretical results on the proposed Grace proce-
dure, including the error bounds, L2 consistency of Grace and the model selection
consistency for both fixed and diverging p when p tends to infinity with the sample
size n. Our theoretical development follows that of Zhao and Yu (2006), Jia and Yu
(2008) and Zou and Zhang (2009) on sign consistency of Lasso and adaptive elas-
tic net estimates. In our theoretical analysis, we assume the following regularity
conditions throughout:

(A1) We use 
min(M) and 
max(M) to denote the minimum and maximum
eigenvalues of a positive definite matrix M, respectively. We further assume that
C = 1

n
XT X is positive definite and

b ≤ 
min(C) ≤ 
max(C) ≤ B,

where b and B are two positive constants that do not depend on n.
(A2) 1

n
max1≤i≤n

∑p
j=1 x2

ij → 0, as n → ∞.

These two conditions assume that the predictor matrix has a reasonably good
behavior and were also assumed in Zhao and Yu (2006) and in Zou and Zhang
(2009). Condition (A1) is also the condition (F) in Fan and Peng (2004) and con-
dition (A2) ensures that the rows of the matrix X behave like a sample from a
probability distribution in Rp [Portnoy (1984)]. These two conditions hold natu-
rally if one assumes that xi are i.i.d. with finite second moments.

3.1. Error bound and L2-consistency of Grace. We first provide the follow-
ing nonasymptotic risk bound for the Grace of the regression coefficients defined
by (2.1) for any p and n:

THEOREM 3.1. Given the data (y,X), define the Grace as

β̂(λ1, λ2) = argmin
β

{‖y − Xβ‖2
2 + λ1‖β‖1 + λ2β

T Lβ},

for nonnegative tuning parameters λ1 and λ2. Then under the regularity condi-
tion (A1), we have

E(‖β̂(λ1, λ2) − β‖2
2) ≤ 4λ2

2

2
max(L)‖β(1)‖2

2 + 4pnBσ 2 + 2λ2
1p

n2
2
min(C + (λ2/n)L)

.(3.1)

The proof of this theorem is given in Li and Li (2010). Note that this result
is not asymptotic and holds for any p and q < p. From this theorem, under the
regularity assumption (A1) and the following further assumptions on p and the
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tuning parameters λ1, λ2:

(A3) limn→∞ p
n

= 0,

(A4) limn→∞
λ1

√
p

n
= 0,

(A5) limn→∞ λ2
n

= 0 and limn→∞ λ2‖β(1)‖2
n

= 0,

we have

‖β̂(λ1, λ2) − β‖2
2

P−→ 0,

which implies that the Grace of β is L2 consistent. This result implies that the
Grace procedure chooses the important variables with high probability and that
falsely chosen variables by Grace have very small coefficients. The L2 consis-
tency result suggests that we may use some hard-thresholding procedure to further
eliminate the variables with very small Grace coefficients. Alternatively, an inter-
esting randomized selection procedure proposed by Bickel, Ritov and Tsybakov
(2008) can be used to further eliminate the variables with small estimated Grace
coefficients. Note that under the classical setting where p, q and βi are all fixed as
n → ∞, the assumptions (A3)–(A5) hold when λi/n → ∞, i = 1,2.

3.2. Model selection consistency when p is fixed. We next establish the results
on model selection consistency for the standard case where p and q are fixed when
n → ∞. Following Zhao and Yu (2006), we define the Grace of β to be sign
consistent if there exists λ1 and λ2 as functions of n such that

lim
n→∞ Pr

(
sign(β̂(λ1, λ2)) = sign(β)

) = 1.

To establish the sign consistency of the Grace, we first provide the following graph-
constrained irrepresentable condition (GC-IC): there exists η > 0 and λ1 > 0,
λ2 > 0, such that∣∣∣∣

(
C21 + λ2

n
L21

)(
C11 + λ2

n
L11

)−1[
sign

(
β(1)

) + 2λ2

λ1
L11β(1)

]

− 2λ2

λ1
L21β(1)

∣∣∣∣(3.2)

≤ 1 − η,

where 1 is a vector of 1s with length p − q and the inequality holds element-
wise. Further, we assume that C → C0, where C0 is positive definite. The GC-IC
is a consequence of the Karush–Kuhn–Tucker (KKT) conditions for the following
constrained optimization problem that corresponds to the penalized optimization
problem of equation (2.5):

β̂(λ,α) = argmin
β

{
1

2n
‖y − Xβ‖2

2 :Pα(β) ≤ λ

}
.
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THEOREM 3.2. For fixed p,q and β , if C → C0, where C0 is positive defi-
nite and condition (A.2) holds, the graph-constrained estimate is sign consistent if
and only if GC-IC (3.2) holds for λ1, λ2 that satisfy λ1/

√
n → ∞ and λi/n → 0,

for i = 1,2.

This theorem is a special case of Theorem 3.3 and its proof is similar to that
of Zhao and Yu (2006) for Lasso estimates. We therefore omit its proof in this
paper. Note that the required conditions on the sparsity tuning parameter λ1 are
the same as those for the Lasso [Zhao and Yu (2006)], for example, λ1 = √

n logn

is a suitable choice. This theorem indicates that under some restrictive conditions
of the design matrix and the Laplacian matrix of the network, the sign consistency
property holds for the graph-constrained regularization. To gain further insight into
GC-IC, consider the special cases when λ2 is preselected and fixed and when λ1
goes to infinity, the GC-IC reverses back to the irrepresentable condition for the
Lasso given in Zhao and Yu (2006) and the graph-constrained penalty function
λ1‖β‖1 + λ2β

T Lβ = λ1(‖β‖1 + λ2
λ1

βT Lβ) is reduced to the Lasso penalty.

3.3. Model selection consistency when p diverges. We now consider the
model selection consistency of the graph-constrained regularization procedure un-
der the settings when the number of covariates p also goes to infinity as n → ∞,
in which case, the assumptions and the regularity conditions for Theorems 3.1
and 3.2 become inappropriate as C does not converge and β may change as n

grows. The following theorem shows that for the general scalings when p,q and n

all go to infinity, under some additional conditions between p,q and n, GC-IC also
guarantees that the Grace is sign consistent in selecting the true model.

THEOREM 3.3. Suppose each column of X is normalized to the L2-norm
of n and GC-IC (3.2) holds. Define ρ := min |(C11 + λ2

n
L11)

−1(C11β(1))| and
Cmin = 
min(C11), where 
min(·) denotes the minimal eigenvalue. Let Wmax =
maxu,v{w(u, v)}. If λ1 and λ2 are chosen such that:

(a) If L12 = 0,

λ2
1

n log(p − q)
→ ∞,

or if L12 �= 0,

λ2
1

log(p − q)(n + λ2
2W

2
max/(nCmin))

→ ∞.

(b) If 1
ρ
{
√

logq
nCmin

+ λ1
n

‖(C11 + λ2
n

L11)
−1 sign(β(1))‖∞} → 0,

then the Grace β̂(λ1, λ2) is sign consistent as n → ∞.
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A proof analogous to Jia and Yu (2008) can be found in Li and Li (2010). The-
orem 3.3 gives a general sign consistency result for the Grace for general scalings
of p,q and n. If Cmin ≥ α for some α > 0 and ρ ≤ ρ0 for some ρ0 > 0, it is easy to
check that the conditions logq/n → ∞ and λ1

√
q/n → 0 guarantee that condition

(b) in Theorem 3.3 holds. In the settings when p and q are fixed, if C11 converges
to a nonnegative definite matrix C110, ρ converges to a nonnegative number. In
addition, it is easy to verify that the conditions in Theorem 3.2 guarantee that the
conditions (a) and (b) in Theorem 3.3 hold.

4. Monte Carlo simulations. We conducted Monte Carlo simulations to eval-
uate the proposed Grace and aGrace procedures and to compare the performance of
this procedure with Lasso and Enet in terms of prediction errors and identification
of relevant variables. We simulated the graph to mimic gene regulation modules.
We used genes and variables interchangeably in this section. We assumed that the
graph consisted of 200 unconnected regulatory modules with 200 transcription
factors (TFs) and each regulated 10 different genes for a total of 2200 variables.
Among these modules and genes, we further assumed that four TFs and their 10
regulated genes (for a total of 44 variables) were associated with the response
based on the following model:

Y =
44∑

u=1

βuXu + ε.(4.1)

We considered two different models. For the first model, we assumed that the
coefficients in model (4.1) were specified as

β =
(

2,
2√
10

, . . . ,
2√
10︸ ︷︷ ︸

10

,−2,
−2√

10
, . . . ,

−2√
10︸ ︷︷ ︸

10

,4,

4√
10

, . . . ,
4√
10︸ ︷︷ ︸

10

,−4,
−4√

10
, . . . ,

−4√
10︸ ︷︷ ︸

10

,0, . . . ,0
)
,

and the ε was random mean-zero normal error with variance σ 2 = ∑
u β2

u/4. For
each TF, the X value was simulated from a N(0,1) distribution, and conditional
on the value of the TF, we simulated the expression levels of the genes that they
regulated from a conditional normal distribution with correlations of 0.2, 0.5 and
0.9, respectively. We therefore had a total of 2200 variables and 44 of them were
relevant. For the second model, we considered the case when the regulated genes
had different signs in regression coefficients, where the regression coefficients in
model (4.1) have the same absolute values as in Model 1, but for each simulated
module, three out of the 10 genes regulated by the TF had different signs from
the other 7 genes. The X values were generated in the same way as in previous
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TABLE 1
Comparison of prediction mean-square errors (SE) using Grace, aGrace, Enet and Lasso for three

different correlation structures of 0.2, 0.5 and 0.9 between the transcription factors and their
regulated genes for each of the two models considered. The results are based on 100 replications

Model 1 (Cor) Model 2 (Cor)

Method 0.2 0.5 0.9 0.2 0.5 0.9

Grace 24.93 23.22 22.56 53.08 42.07 28.20
(2.97) (2.41) (2.20) (6.45) (5.03) (2.87)

aGrace 24.93 23.22 22.56 27.70 26.23 25.55
(2.97) (2.41) (2.20) (3.66) (3.03) (2.76)

Enet 51.33 37.37 25.82 56.18 45.65 27.33
(6.65) (4.69) (2.67) (7.22) (5.81) (2.72)

Lasso 53.41 40.30 27.82 57.62 47.65 29.23
(6.68) (4.94) (2.98) (7.01) (5.53) (2.78)

simulations. In this model, genes that are regulated by the same transcription factor
are assumed to have different regression coefficients.

For each model, our simulated data consisted of a training set, an indepen-
dent validation set and an independent test set with a sample size of 200 for all
three data sets. Models were fitted on training data only, and the validation data
were used to select the tuning parameters. We computed the prediction mean-
squared errors on the test data set. For each model, we repeated the simulations 100
times. Table 1 shows the prediction mean-square errors for several different pro-
cedures. For Model 1 when the neighboring genes have the same signs in regres-
sion coefficients, we observed that the Grace gave the smallest prediction errors
for all four models with different correlations among the predictors. Both Grace
and Enet performed better than Lasso in prediction. When the correlation is very
high, the prediction errors of these procedures were comparable, however, Grace
still gave the smallest prediction error among the procedures compared. When the
signs of the regression coefficients were the same, aGrace was reduced to Grace
and gave the same prediction results. For Model 2 when the neighboring variables
have different signs of coefficients, aGrace adjusting for the signs of the regression
coefficients gave the smallest prediction errors, further indicating the importance
of adjusting for the signs in the regularization. In general, Grace gave similar pre-
diction results as the Enet, except when the correlation between the transcription
factors and their regulated genes was very high, in which case Enet resulted in a
slightly smaller prediction error.

To compare the performance on variable selection, Figure 1 shows the receiver
operating characteristic (ROC) curves of several different procedures in selecting
the relevant variables for the models with correlation of 0.2 and 0.9 between the TF
and their regulated genes. For Grace, aGrace and Enet, the ROC curves were ob-
tained as a function of the sparsity parameter λ1 with tuning parameter λ2 selected
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FIG. 1. Comparison of ROCs for Grace, aGrace, Enet and Lasso for Model 1 [plots (a) and (b)] and
Model 2 [plots (c) and (d)] and for correlations of 0.2 [plots (a) and (c)] and 0.9 [plots (b) and (d)].
The ROCs were calculated as a function of the sparsity parameter λ1. For Grace, aGrace and Enet,
the tuning parameter λ2 was selected based on 5-fold CV.

based on 5-fold cross-validation among the values of 0.1, 1, 10, 100 and 1000. For
Model 1 when the neighboring genes have the same signs in regression coefficients
[Figure 1 plots (a) and (b)], Grace gave much larger areas under the ROC cruves
than Enet and Lasso, indicating better performance in variable selection for Grace.
In addition, five-fold cross-validation always chose the largest λ2 = 1000 for Grace
and λ2 = 0.1 for Enet in all 100 replications. For Model 2 when the neighboring
variables have different signs of coefficients, aGrace adjusting for the signs of the
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regression coefficients performed better than the other three procedures compared,
resulting in larger areas under the curves, and Grace still performed better than
Lasso and Enet on variable selections in both low and high correlation scenarios.
When the correlation among the relevant variables is low, the 5-fold CV selected
λ2 = 1000 for aGrace and λ2 = 0.1 for Enet in all 100 replications and selected
λ2 = 100 for Grace in most of the replications. When the correlation among the
relevant variables was high, the 5-fold CV selected λ2 = 1000 for aGrace and
λ2 = 100 for Grace in most of the 100 replications and selected λ2 = 0.1 for Enet
in all the replications.

5. Application to network-based analysis of gene expression data. To
demonstrate the proposed method, we consider the problem of identifying age-
dependent molecular modules based on the gene expression data measured in hu-
man brains of individuals of different ages published in Lu et al. (2004). In this
study the gene expression levels in the postmortem human frontal cortex were
measured using the Affymetrix arrays for 30 individuals ranging from 26 to 106
years of age. To identify the aging-regulated genes, Lu et al. (2004) performed
simple linear regression analysis for each gene with age as a covariate. We ana-
lyzed this data set by combining the KEGG regulatory network information with
the gene expression data [Kanehisa and Goto (2002)]. In particular, we limited
our analysis to the genes that can be mapped to the KEGG regulatory work and
focused on the problem of identifying the subnetworks of the KEGG regulatory
network that are associated with human brain aging. By merging the gene expres-
sion data with the KEGG regulatory pathways, the final KEGG network includes
1305 genes and 5288 edges.

We treated the logarithm of the individual age as the response variable and the
expression levels (after log10 transformation) of 1305 genes on the KEGG net-
work as the explanatory variables in our analysis. Table 2 shows the results of sev-
eral different procedures where the tuning parameters were selected by five-fold

TABLE 2
Results of analysis of brain aging gene expression data by four different procedures, including the

number of genes selected (No. genes), the number of linked KEGG edges (No. edges), the
five-fold cross-validation error (CV error) and the values of the tuning parameters

selected(λ2 for Grace, aGrace and Enet and s1 = ∑
v |βv |)

No. genes No. edges CV error Tuning parameters

Grace 45 9 0.079 λ2 = 0.1, s1 = 4.72
aGrace 73 28 0.077 λ2 = 0.01, s1 = 6.97
Enet 41 10 0.077 λ2 = 1.0, s1 = 5.64
Lasso 18 0 0.098 s1 = 5.65
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cross-validations. Overall, we observed that the Lasso selected the fewest num-
ber of genes with relatively large cross-validation errors and Grace and Enet se-
lected roughly the same number of genes with similar CV errors. However, the
adaptive Grace resulted in more identified genes with similar CV errors than the
other two procedures. Figure 2 shows the subnetworks identified by four differ-
ent estimation procedures. As a comparison, we also included the genes selected
by Lasso, although it did not select any linked pairs of genes on the KEGG net-
work. It is interesting to note that as we impose more constraints on the regres-
sion coefficients, more linked genes are identified. Both Enet and Grace identified
some common subnetworks that were associated with brain aging. These included
fibroblast growth factors (FGF) and its receptors. It has been demonstrated that
FGFs are associated with many developmental processes including neural induc-
tion [Bottcher and Niehrs (2005)] and are involved in multiple functions including
cell proliferation, differentiation, survival and aging [Yeoh and de Haan (2007)].
It is also interesting to observe that mitogen-activated protein kinase (MAPK)
(MAPK1 and MAPK9) and the specific MAPK kinase (MAP2K) were also identi-
fied by Enet and Grace. The MAPKs play important roles in induction of apoptosis
[Hayesmoore et al. (2009)]. Other interesting genes include RAS protein-specific
guanine nucleotide-releasing factor 1 (RASGRF1), the functionality of which is
highly significant in various contexts of the central nervous system. In the hip-
pocampus, RASGRF2 has been shown to interact with the NR2A subunits of NM-
DARs, triggering Ras-ERK activation and induction of long-term potentiation, a
form of neuronal plasticity that contributes to memory storage in the brain [Tian
et al. (2004); Lu et al. (2004)]. Finally, the insulin receptor gene (INSR) is also
identified. INSR binds insulin (INS) and regulates energy metabolism. Evidence
from model organisms, including results from fruit flies [Tatar et al. (2001)] and
roundworms [Kimura et al. (1997)], relates INSR homologues to aging, most likely
as part of the GH1/IGF1 axis. These results indicated that our method can indeed
recover some biologically interesting molecular modules or KEGG subnetworks
that are related to brain aging in humans.

It is important to point out that the adaptive Grace identified several small sets
of connected genes that were missed by Enet or the standard Grace. One of the
subnetworks included EPHRIN and Eph receptor, both of which were found to be
related to neural development and entohino-hippocampal axon targeting [Flanagan
and Vaderhaeghen (1998); Stein et al. (1999)]. Another subnetwork was part of the
Jak-State signaling, which is important in both mature and aging brains [De-Frajaa
et al. (2000)]. Aging was also found to be associated with increased human T cell
CC chemokine receptor gene expression [Yung et al. (2003)]. Other interesting
subnetworks included PVRL3–PVRL1 that are associated with cell adhesion.

6. Discussion. We have introduced and studied the theoretical properties of a
graph-constrained regularized estimation procedure for linear regressions in order
to incorporate information coded in graphs. Such a regularization procedure can



VARIABLE SELECTION FOR GRAPH COVARIATES 1513

FIG. 2. Subnetworks identified by (a) Elastic net (Enet), (b) Grace and (c) aGrace for brain aging
gene expression data (only those genes that are linked on the KEGG network are plotted).
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also be regarded as a penalized least squared estimation where the penalty is de-
fined as a combination of the L1 and L2 penalties on degree-scaled differences of
coefficients between variables linked on the graphs. This penalty function induces
both sparsity and smoothness with respect to the graph structure of the regression
coefficients. Simulation studies indicated that when the coefficients are similar for
variables that are neighbors on the graph, the proposed procedure has better pre-
diction and identification performance than other commonly used regularization
procedures such as Lasso and elastic net regressions. Such improvement results
from effectively utilizing the neighboring information in estimating the regression
coefficients. If the smoothness assumption on the coefficients does not hold, we
expect that the cross-validation selects a very small value of λ2 and, therefore, the
proposed procedure would perform similarly as the Lasso. In analysis of the brain
aging gene expression data, different from Lasso, the new procedure tends to iden-
tify sets of linked genes on the networks, which often leads to better biological
interpretation of the genes identified. Although the methods presented are largely
motivated by applications in genomic data, they can be applied to other settings
when the covariates are nodes on general graphs, such as in image analysis.

Although the methods presented in this paper were developed mainly for linear
models, similar methods can be developed for the generalized linear models and
the censored survival data regression models, where we can use the negative of the
logarithm of the likelihood or partial likelihood as the loss function. Similar to the
techniques presented in Friedman et al. (2007) and Wu and Lange (2008), we can
use the coordinate descent procedure together with the iterative reweighted least
square to obtain the solution path. Such models have great applications in genomic
data analysis in identifying the genes or subnetworks that are associated with bi-
nary or censored survival data outcomes. Other extensions include replacing the
L1 part of the Grace penalty with other sparse penalty functions such as SCAD
or bridge penalty [Huang et al. (2008)]. Important future research also includes
how to handle covariates that are linked on directed graphs. Finally, to incorporate
the fact that the linked nodes might be negatively correlated and the correspond-
ing regression coefficients may have different signs, we introduced an adaptive
sign-adjusted graph-constrained regularization procedure and showed that such a
procedure can perform better than the original graph-constrained regularization.
The theoretical property of such an adaptive procedure is unknown and is an area
for future research.
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SUPPLEMENTARY MATERIAL

Proofs of Theorem 3.1 and Theorem 3.3 (DOI: 10.1214/10-AOAS332SUPP;
.pdf). We present the details of the proofs of Theorem 3.1 and Theorem 3.3 in the
Supplemental Materials.
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