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A SMOOTHING APPROACH FOR MASKING SPATIAL DATA

BY YIJIE ZHOU, FRANCESCA DOMINICI1 AND THOMAS A. LOUIS2

Merck Research Laboratories, Harvard University and Johns Hopkins University

Individual-level health data are often not publicly available due to con-
fidentiality; masked data are released instead. Therefore, it is important to
evaluate the utility of using the masked data in statistical analyses such as re-
gression. In this paper we propose a data masking method which is based on
spatial smoothing techniques. The proposed method allows for selecting both
the form and the degree of masking, thus resulting in a large degree of flexi-
bility. We investigate the utility of the masked data sets in terms of the mean
square error (MSE) of regression parameter estimates when fitting a Gener-
alized Linear Model (GLM) to the masked data. We also show that incorpo-
rating prior knowledge on the spatial pattern of the exposure into the data
masking may reduce the bias and MSE of the parameter estimates. By evalu-
ating both utility and disclosure risk as functions of the form and the degree
of masking, our method produces a risk-utility profile which can facilitate the
selection of masking parameters. We apply the method to a study of racial
disparities in mortality rates using data on more than 4 million Medicare en-
rollees residing in 2095 zip codes in the Northeast region of the United States.

1. Introduction. Individual-level information such as health data collected
by, for example, government agencies, are often not publicly available in order
to preserve confidentiality. On the other hand, there is public demand on these
individual-level data for research purposes. As an example, associations of individ-
ual health with various risk factors are of great interest and concern nowadays. Sta-
tistical research that addresses these two competing needs is known as statistical
disclosure limitation, where a large number of methods are developed on how to
process and release information that is subject to confidentiality concern [Duncan
and Lambert (1986); Fienberg and Willenborg (1998); Willenborg and Waal (1996,
2001)]. In this paper we refer to those methods that alter the original data values
as “data masking.” Corresponding to the two competing needs, a data masking
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method should be evaluated from both the utility of the masked data which rep-
resents the information retained after the masking, and the disclosure risk of the
masked data which is the risk that a data intruder can obtain confidential infor-
mation (e.g., obtain original data values and/or identify an individual to whom a
data record belongs). Ideally, masked data would have low disclosure risk while
preserving data utility as much as possible.

Examples of commonly used data masking methods include aggregated tab-
ular counts for categorical data [Fienberg and Slavkovic (2004)], data swap-
ping which exchanges values between selected records, with its various exten-
sions [Dalenius and Reiss (1982); Fienberg and McIntyre (2005)], cell suppression
where certain cells of contingency tables are not displayed [Cox (1995)], simulat-
ing synthetic data which have the same (conditional) distribution as the original
data [Rubin (1993); Fienberg, Makov and Steele (1998); Raghunathan, Reiter and
Rubin (2003); Reiter (2003, 2005b)], and additive random noise for continuous
variables [Kim (1986); Sullivan and Fuller (1989); Fuller (1993); Trottini et al.
(2004)], etc.

Among these methods, data aggregation, data swapping, additive random noise
and many other methods can be formulated as matrix masking [Duncan and Pear-
son (1991)]. Suppose data on n observations and p variables are stored in a n × p

matrix. Matrix masking takes the general form of Z∗ = AZB + C, where Z is the
original data matrix and Z∗ is the masked data matrix. Matrices A, B and C are
row (observation) operator, column (variable) operator and random noise, respec-
tively. Links between the above masking methods to matrix masking are investi-
gated in Duncan and Pearson (1991), Cox (1994), Fienberg (1994) and Fienberg,
Makov and Steele (1998).

Measuring and evaluating utility of masked data is important. In general there
are two classes of utility measures. One is global utility measures which reflect the
general distribution of masked data compared to that of the original data and are
not specific to any analysis. Such measures include the number of swaps in data
swapping, the added variance in the additive random noise approach, differences
between continuous original and masked data in their first and second moments,
etc. More sophisticated measures that compare distributions of masked and origi-
nal data can be found in Dobra et al. (2002), Gomatam, Karr and Sanil (2005) and
Woo et al. (2009). In addition, Bayesian decision theory-based utility is discussed
in Trottini and Fienberg (2002) and Dobra, Fienberg and Trottini (2003).

The second class of utility measures is analysis-specific tailored to analysts’
inference. For the utility associated with regression inference, Karr et al. (2006)
examine the overlap in the confidence intervals of linear regression coefficients
estimated with original and masked data. Kim (1986) and Fuller (1993) show
for the additive random noise approach that if masked data preserve the first two
moments of original data, then coefficient estimates from linear regression using
masked data are (approximately) unbiased. In addition, the methods of aggregated
tabular counts and data swapping can produce valid results for loglinear models
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because they preserve the marginal total of contingency tables. This is equiva-
lent to preserving sufficient statistics for loglinear models, given that the margins
of all higher-order interactions that appear in the model are preserved [Fienberg
and Slavkovic (2004); Fienberg and McIntyre (2005)]. Recently, Slavkovic and
Lee (2010) investigated logistic regression inference for contingency tables that
preserve marginal total or conditional probabilities. However, for a general data
structure additional research is needed. For example, bias and variance of para-
meter estimates from nonlinear regression using masked data are not quantified as
functions of masking parameters.

We propose a special case of matrix masking where we construct row (observa-
tion) transformed data, that is, Z∗ = AZ, using spatial smoothing. We investigate
the mean square error (MSE) of the regression parameter estimates when fitting a
Generalized Linear Model (GLM) to the masked data, and we provide guidance
on how to select the masking parameters to reduce the MSE. Specifically, for both
regressors and outcome we construct masked data which are weighted averages
of the original individual-level data by using linear smoothers. The shape of the
smoothing weight function defines the “form” of masking and the smoothness pa-
rameter measures the “degree” of masking. By choosing an appropriate weight
function and smoothness parameter value, the masked data can account for prior
knowledge on the spatial pattern of individual-level data, and parameter estimates
from nonlinear regression using such masked data may be less subject to bias and
MSE. Although data utility is our main focus, we also evaluate identification dis-
closure risk. We consider the scenario wherein a data intruder has correct informa-
tion on the risk factor regressors (e.g., exposure or demographic data) from some
external data sources, and his/her objective is to obtain the confidential information
on the health outcome through record matching. Using our method, we can evalu-
ate both the utility and the disclosure risk as functions of the form and the degree
of masking, which produces a risk-utility profile and can facilitate the selection of
the masking parameters. We also derive a closed-form expression for calculating
the first-order bias of the regression parameter estimates when estimated using the
masked data, for any assumed distribution of the outcome given the regressors in
the exponential family.

We apply our method to a study of racial disparities in risks of mortality for a
large sample of the U.S. Medicare population. This study consists of more than
4 million individuals in the Northeast region of the United States. We develop
and apply statistical models to estimate the age and gender adjusted association
between race and risks of mortality when using both the original individual-level
data and the masked data. The estimated association obtained from using the orig-
inal individual-level data is the gold-standard, and we compare it to the estimated
association obtained from using the masked data. We also calculate the identifica-
tion disclosure risk of the masked data sets.

In Section 2 we detail the method, and in Section 3 we present the simulation
studies. In Section 4 we apply our method to the Medicare data set, and in Section 5
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we discuss the method and the results. The R code is provided in the Supplement
[Zhou, Dominici and Louis (2010b)], while the Medicare data set is not provided
due to a confidentiality agreement. Derivation of the closed-form expression for
the first-order bias of the GLM regression parameter estimates when estimated
using the masked data is presented in the Appendix.

2. Methods.

2.1. Matrix masking using spatial smoothing. Assume that the outcome vari-
able Y and the regressors X are spatial processes {Y(s),X(s)}, and the ob-
served individual-level data {(Yi,Xi), i = 1, . . . ,N} are realizations of the spa-
tial processes at locations s = {s1, . . . , sN }, that is, Xi = X(si),Yi = Y(si), i =
1, . . . ,N . We construct masked data at s using spatial smoothing, and we show
later that this masking approach is a special case of matrix masking by row (obser-
vation) transformation.

Let Wλ(u, s;S) denote the relative weight assigned to data at location s when
generating smoothed data for the target location u, where λ ≥ 0 is a smoothness
parameter, and S denotes all spatial locations in a study area so s is a subset of S.
The parameter λ controls the degree of smoothness, with smoothness increasing
with λ. For notational convenience we suppress the dependence of W on S.

We consider a subclass of linear smoothers under which the smoothed spatial
processes at location u are defined as follows. For λ > 0,

Yλ(u) =
∫

Y(s)Wλ(u, s) dN(s)
/∫

Wλ(u, s) dN(s),

(2.1)
Xλ(u) =

∫
X(s)Wλ(u, s) dN(s)

/∫
Wλ(u, s) dN(s),

where N(s) is the counting process for locations with available data from the spa-
tial processes {Y(s),X(s)}. For ∀u ∈ s we require that W0(u, s) = I{s=u}. If W is
continuous in λ, we define W0(u, s) as limλ↓0 Wλ(u, s). Therefore, we have that
{Y0(si),X0(si)} = {Yi,Xi}, the original individual-level data.

We generate masked data by taking the predictions from (2.1) at s where the
original individual-level data are available, that is, {Yλ(si),Xλ(si), i = 1, . . . ,N}.
By definition in (2.1), the masked data are weighted averages of the original
individual-level data {Y(si),X(si)}. The shape of the weight function W and the
degree of smoothness λ control the form and the degree of masking, respectively,
where the degree of masking increases with the degree of smoothness. In practice,
the masked data at location si are computed by

Yλ(si) =
N∑

k=1

YkWλ(si, sk)

/ N∑
k=1

Wλ(si, sk),

(2.2)

Xλ(si) =
N∑

k=1

XkWλ(si, sk)

/ N∑
k=1

Wλ(si, sk),
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where the same W and λ are applied to both Y and X. Examples of commonly
used smoothers within this class include parametric linear regressions fitted by
ordinary least square and weighted least square, penalized linear splines with
truncated polynomial basis, kernel smoothers and LOESS smoothers [Simonoff
(1996); Bowman and Azzalini (1997); Hastie, Tibshirani and Friedman (2001);
Ruppert, Wand and Carroll (2003)].

Let Y and Yλ denote the vectors of {Yi} and {Yλ(si)}, and let X and Xλ denote
the matrices of {Xi} and {Xλ(si)}, respectively, where Xi and Xλ(si), i = 1, . . . ,N ,
are row vectors. It can be seen that Yλ = AλY and Xλ = AλX , where Aλ =
(Aλij

) = (Wλ(si, sj )/
∑N

j=1 Wλ(si, sj )). Therefore, constructing masked data by
equation (2.2) is a special case of matrix masking by row (observation) transfor-
mation. Reidentification from (Yλ, Xλ) to (Y, X ) requires knowledge of both W

and λ as well as the existence of A−1
λ .

2.2. Bias and variance in nonlinear regression using masked data. Bias may
arise when a nonlinear model that is specified for the original individual-level data
is fitted to the masked data. Specifically, we assume the following model for the
original individual-level data which is viewed as the “truth,”

g(E{Y|X }) = X β.(2.3)

Model (2.3) implies the analogous model for the masked data

g(E{Yλ|Xλ}) = Xλβ(2.4)

only for a linear function g(x) = ax, where a is a constant (except for few special
circumstances such as Xi = x, i.e., constant exposure). Specifically,

g(E{Yλ|Xλ}) = aE{Yλ|Xλ} = aE{Yλ|X }
= aAλE{Y|X } model (3)= aAλa

−1X β = Xλβ.

It follows that for a nonlinear regression model (2.3), the coefficient estimate ob-
tained by fitting model (2.4) will be a biased estimate of β . Therefore, it is im-
portant to evaluate the bias of the coefficient estimate under model (2.4) as well
as how the bias varies as a function of the form and the degree of data masking.
To consider both the bias and variance of the coefficient estimate obtained by fit-
ting model (2.4), we evaluate the MSE as a function of the form and the degree of
masking.

It is common to assume that the masked data are mutually independent. How-
ever, they are generally correlated, since they combine information across the same
original data. To investigate the impact of this correlation on the uncertainty of the
coefficient estimate when using the masked data, we compare the “naive” confi-
dence interval under model (2.4) which does not account for this correlation with
an appropriate confidence interval obtained by using simulation or bootstrap meth-
ods [Efron (1979); Efron and Tibshirani (1993)].
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2.3. Identification disclosure risk of masked data. We evaluate the identifica-
tion disclosure risk of the masked data by calculating the probability of identifica-
tion as developed in Reiter (2005a). To compute the risk of the released masked
data set, we first compute the probability of matching for a particular data record.

Specifically, let Z = (Y, X ) denote the unmasked data set and Zλ = (Yλ, Xλ)

denote the released masked data set. Let t denote a data vector possessed by a data
intruder, where t contains the true values for a particular individual. Zλ can be di-
vided into two components: ZU

λ which consists of variables that are not available
in t, and ZAp

λ which consists of variables that are available in t. Z = (ZU,ZAp)

is the same decomposition of the true data set. Let J be a random variable that
equals j if to match t with the j th individual in Zλ. The probability of matching is
Pr(J = j |t,Zλ), j = 1, . . . ,N , assuming that t always corresponds to an individ-
ual within Zλ. Assumptions about the knowledge and behavior of the intruder are
used to determine this probability. Using Bayes’ rule,

Pr(J = j |t,Zλ) = Pr(Zλ|J = j, t)Pr(J = j |t)∑N
j=1 Pr(Zλ|J = j, t)Pr(J = j |t) ,

where Pr(Zλ|J = j, t) can be decomposed into

Pr(zλ,1, . . . , zλ,j−1, zλ,j+1, . . . , zλ,N |zλ,j , J = j, t)

· Pr(zU
λ,j |zAp

λ,j , J = j, t) · Pr(zAp
λ,j |J = j, t).

Following the guidance in Reiter (2005a), we compute each component of Pr(J =
j |t,Zλ) as follows:

1. Pr(J = j |t) = 1/N . This is because the true values are replaced by some
weighted averages upon releasing, so exact matching between t and any ZAp

λ

record is not possible.
2. Pr(zAp

λ,j |J = j, t) equals

1 − ‖zAp
λ,j − t‖

maxN
k=1 ‖zAp

λ,k − t‖
,(2.5)

which is the tail probability of a uniform distribution with density 1/

maxN
k=1 ‖zAp

λ,k − t‖. We assume the intruder knows that the masked data are
weighted averages of the original data. As we point out at the end of Sec-
tion 2.1, detailed information on W and λ shall not be released. Therefore, it
is a reasonable assumption that the intruder will assume a uniform distribu-
tion based on the difference from t. The larger the difference, the smaller the
probability.

3. Pr(zU
λ,j |zAp

λ,j , J = j, t) is computed through
∫

Pr(zU
λ,j |zU

j , zAp
λ,j , J = j, t)Pr(zU

j |zAp
λ,j , J = j, t) dzU

j ,(2.6)
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where Pr(zU
λ,j |zU

j , zAp
λ,j , J = j, t) = 1− ‖zU

λ,j−zU
j ‖

maxN
k=1 ‖zU

λ,k−zU
j ‖ , Pr(zU

j |zAp
λ,j , J = j, t) is

obtained through regression of ZU on ZAp
λ , and the integral is computed using

Monte Carlo integration.
4. Pr(zλ,1, . . . , zλ,j−1, zλ,j+1, . . . , zλ,N |zλ,j , J = j, t) is conservatively assumed

to be equal to 1. As pointed out in Reiter (2005a), such assumption provides
the upper limit on the identification risks and greatly simplifies the calculation.

Assuming a record t is matched to the individuals with the largest probability of
matching, we measure the identification disclosure risk of the entire released data
set using the expected percentage of correct matches. Same as in Reiter (2005a),
we assume that the intruder possesses correct records for all individuals in the re-
leased data set and seeks to match each record with an individual with replacement,
that is, matching of one record is independent from matching of another record.
Let mj be the number of individual records with the maximum matching prob-
ability for tj , j = 1, . . . ,N . Let Ij = 1 if the mj individual records contain the
correct match, and Ij = 0 otherwise. The expected percentage of correct matches
is

∑N
j=1

1
mj

Ij /N .

3. Simulation studies.

3.1. Data generation, parameter estimation and disclosure risk evaluation. In
this section we conduct simulation studies to illustrate that parameter estimates
from regression using masked data may be less subject to bias and MSE when
the selection of the smoothing weight function accounts for the spatial patterns of
exposure. We illustrate this point using three examples. In each case, we define the
study area to be [−1,1]× [−1,1]. Within this study area we randomly select 1000
locations as s where individual-level exposure and outcome data are obtained.

In each example, we define a spatial process of exposure X(s) and we obtain
X(si) for si ∈ s. We simulate the individual-level outcome data at s from a model
of the general form

Y(si)
i.i.d.∼ Poisson

(
eμ+βX(si)

)
,(3.1)

with the individual-level exposure coefficient β being the parameter of inter-
est. The values of μ and β are selected to achieve reasonable variability of
E{Y(si)|X(si)} under model (3.1) across the locations.

We construct the masked data {Yλ(si),Xλ(si)} using kernel smoothers, and we
estimate the exposure coefficient βλ under model

Yλ(si)
i.i.d.∼ Poisson

(
eμλ+βλXλ(si )

)
,(3.2)

which is analogous to model (3.1) but fitted to the masked data. The masked data
are constructed and βλ is estimated for each combination of 20 λ values and two
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different kernel weights, respectively, so we can evaluate the bias and the MSE as
functions of both the smoothing weight and λ.

In addition, we construct spatially aggregated data by equally partitioning the
study area into 7 × 7 = 49 cells and calculating Y+j = ∑nj

i=1 Y(si) and X̄·j =∑nj

i=1 X(si)/nj , where nj is the total number of individual-level data points in
cell j , j = 1, . . . ,49. We estimate the exposure coefficient βe using the aggregated
data {Y+j , X̄·j } under the analogous model

Y+j
i.i.d.∼ nj · Poisson

(
eμe+βeX̄·j ).(3.3)

To evaluate the identification disclosure risk, we consider the scenario that a
data intruder possesses the correct exposure data, that is, X(si) for si ∈ s, and
seeks the matches with the released data set in order to obtain information on the
health outcome Y . Specifically, ZAp is X and ZU is Y .

We generate 500 replicates of the individual-level outcome data. For each repli-
cate βλ and βe are estimated as above, and the estimates are averaged across the
500 replicates.

3.2. Choice of smoothing weight function. To select a weight function that
may lead to less bias and possibly smaller MSE when estimating the exposure co-
efficient using the masked data, we notice that expectation of the masked outcome
Yλ(si) with respect to model (3.2) is

E{Yλ(si)|Xλ(si)} = eμλ+βλXλ(si),

while expectation of Yλ(si) with respect to model (3.1) is

E{Yλ(si)|X} =
∫

eμ+βX(s)Wλ(si, s) dN(s)

= eμ+βXλ(si )
∫

eβ[X(s)−Xλ(si )]Wλ(si, s) dN(s),

where X = {X(s)}. The comparison between E{Yλ(si)|X} and E{Yλ(si)|Xλ(si)}
suggests that we can reduce the bias and possibly the MSE of estimating μ and β

when using the masked data by selecting a W s.t.
∫

eβ[X(s)−Xλ(si )]Wλ(si, s) dN(s)

is close to 1. One way to construct such a W is to assign high weights to locations
that receive similar exposure as the target location and low weights otherwise.
The W constructed in this way has the property that it accounts for prior knowledge
on the spatial pattern of the exposure. In our examples, this is also the spatial
pattern of the outcome due to the model assumption (3.1). Therefore, to assess
the difference in bias and MSE when varying the smoothing weight function, we
construct two different kernel weights for data masking in the way that one weight
accounts for prior knowledge on the spatial pattern of the exposure as above, while
the other does not.
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3.3. Example I. We assume that the exposure is eradiated from a point
source A and decreases symmetrically in all directions as the Euclidean dis-
tance from A increases. Specifically, we define X1(s) = 7 exp(−r2

s /2.5) for s ∈
[−1,1] × [−1,1], where rs is the Euclidean distance between location s and the
point source A. Figure 1(a) shows the contour plot of X1(s). The individual-

level outcome is simulated from Y1(si)
i.i.d.∼ Poisson(e−25+4X1(si )). Aggregated

data of exposure and outcome are constructed by calculating group summaries
of {Y1(si),X1(si)} as described in Section 3.1.

FIG. 1. Example I of spatially varying exposure, weight function for spatial smooth-
ing, estimates, and disclosure risk. (a) Contour plot of exposure from point source A:
X1(s) = 7 exp(−r2

s /2.5), with cells for spatial aggregation. (b) Contour plot of ring weight func-
tion W1λ(s1, s) = exp(−|r2

s − r2
s1

|/λ) for calculating spatially smoothed exposure and outcome data
at location s1, from individual-level exposure X1(s) in (a) and individual-level outcome Y1(s) simu-
lated by Y1(s) ∼ Poisson(exp(−25 + 4X1(s))) where β = 4, with λ = 0.5. (c) Estimates of βλ with
“naive” 95% confidence intervals by fitting model Y1λ(s) ∼ Poisson(exp(μλ + βλX1λ(s))) where
{Y1λ(s),X1λ(s)} are constructed using the ring weight function in (b) and using the Euclidean weight
function W∗

λ (s1, s) = exp(−‖s − s1‖2/λ), with reference lines at β = 4 and at the estimate from
aggregated data. (d) Mean square error (MSE) of βλ using “naive” variance. (e) Identification dis-
closure risk measured by the expect percentage of correct record matching. (f) Disclosure risk versus
MSE for utility-risk trade-off.
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We construct masked data {Y1λ(si),X1λ(si)} by using equation (2.2) with both
the Euclidean kernel weight W ∗

λ and the ring kernel weight W1λ which are defined
as follows:

W ∗
λ (u, s) = exp(−‖s − u‖2/λ),(3.4)

W1λ(u, s) = exp(−|r2
s − r2

u|/λ).(3.5)

The ring kernel weight W1λ(u, s) decreases exponentially as the difference be-
tween r2

s and r2
u increases, and such difference is positively associated with the

difference between X1(s) and X1(u) according to the spatial pattern of the ex-
posure. Figure 1(b) shows the contour plot of W1λ(s1, ·). On the other hand, the
Euclidean kernel weight W ∗

λ (u, s) solely depends on ‖s − u‖, the Euclidean dis-
tance between location u and location s, and therefore does not account for prior
knowledge on the spatial distribution of the exposure.

3.4. Example II. We assume that the exposure is eradiated from a point
source A and toward a certain direction. Specifically, we define X2(s) = 7 ×
exp(−r2

s /6 − cos θs/3) for s ∈ [−1,1] × [−1,1], where θs is the angle between
the direction from point source A to location s and the direction that the expo-
sure is toward, and rs is defined the same as in Example I. Figure 2(a) shows the

contour plot of X2(s). The individual-level outcome is simulated from Y2(si)
i.i.d.∼

Poisson(e−36+4X2(si )). Aggregated data of exposure and outcome are constructed
by calculating group summaries of {Y2(si),X2(si)} as described in Section 3.1.

We construct masked data {Y2λ(si),X2λ(si)} by using equation (2.2) with the
Euclidean kernel weight (3.4) and the ring angle kernel weight

W2λ(u, s) = exp
(−(|r2

s − r2
u| + 2| cos θs − cos θu|)/λ)

,

which decreases exponentially as the difference between r2
s and r2

u increases as
well as the difference between cos θs and cos θu increases. Figure 2(b) shows the
contour plot of W2λ(s1, ·).

3.5. Example III. We assume that the exposure is eradiated from a point
source A but blocked in a certain area, such as blocked by a mountain, so the
blocked area receives no exposure. Specifically, we define the unblocked area to
be sx ≤ 0.4 or cosϑs ≤ 0.625 for s ∈ [−1,1]×[−1,1], where sx is the x-axis value
of location s and ϑs is the angle between the positive x-axis and the direction from
point source A to location s. We define the exposure X3(s) = 7 exp(−r2

s /2.5) · Is

for s ∈ [−1,1] × [−1,1], where Is is the indicator that s is located within the
unblocked area, and rs is defined the same as in Examples I and II. Figure 3(a)
shows the contour plot of X3(s). The individual-level outcome is simulated from

Y3(si)
i.i.d.∼ Poisson(e−24+4X3(si )). Aggregated data of exposure and outcome are

constructed by calculating group summaries of {Y3(si),X3(si)} as described in
Section 3.1.
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FIG. 2. Example II of spatially varying exposure, weight function for spatial smoothing, estimates,
and disclosure risk. (a) Contour plot of exposure from point source A toward a certain direction:
X2(s) = 7 exp(−r2

s /6 − cos θs/3), with cells for spatial aggregation. (b) Contour plot of ring an-
gle weight function W2λ(s1, s) = exp(−(|r2

s − r2
s1

| + 2| cos θs − cos θs1 |)/λ) for calculating spa-
tially smoothed exposure and outcome data at location s1, from individual-level exposure X2(s) in
(a) and individual-level outcome Y2(s) simulated by Y2(s) ∼ Poisson(exp(−36 + βX2(s))) where
β = 4, with λ = 0.5. (c) Estimates of βλ with “naive” 95% confidence intervals by fitting model
Y2λ(s) ∼ Poisson(exp(μλ + βλX2λ(s))) where {Y2λ(s),X2λ(s)} are constructed using the ring an-
gle weight function in (b) and using the Euclidean weight function W∗

λ (s1, s) = exp(−‖s − s1‖2/λ),
with reference lines at β = 4 and at the estimate from aggregated data. (d) Mean square error (MSE)
of βλ using “naive” variance. (e) Identification disclosure risk measured by the expect percentage of
correct record matching. (f) Disclosure risk versus MSE for utility-risk trade-off.

We construct masked data {Y3λ(si),X3λ(si)} by using equation (2.2) with the
Euclidean kernel weight (3.4) and the ring block kernel weight

W3λ(u, s) = exp(−|r2
s − r2

u|/λ) · (Is = Iu),

which assigns nonzero weight only when location u and location s are both in
the blocked or unblocked area. In addition, the nonzero weight from W3λ(u, s)

decreases exponentially as the difference between r2
s and r2

u increases. Figure 3(b)
shows the contour plot of W3λ(s1, ·).
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FIG. 3. Example III of spatially varying exposure, weight function for spatial smoothing, es-
timates, and disclosure risk. (a) Contour plot of exposure from point source A but blocked in
certain area: X3(s) = 7 exp(−r2

s /2.5) · Is where Is is the indicator of location s in the un-
blocked area, with cells for spatial aggregation. (b) Contour plot of ring block weight func-
tion W3λ(s1, s) = exp(−|r2

s − r2
s1

|/λ) · (Is = Is1) for calculating spatially smoothed expo-
sure and outcome data at location s1, from individual-level exposure X3(s) in (a) and indi-
vidual-level outcome Y3(s) simulated by Y3(s) ∼ Poisson(exp(−24 + βX3(s))) where β = 4,
with λ = 0.5. (c) Estimates of βλ with “naive” 95% confidence intervals by fitting model
Y3λ(s) ∼ Poisson(exp(μλ+βλX3λ(s))) where {Y3λ(s),X3λ(s)} are constructed using the ring block
weight function in (b) and using the Euclidean weight function W∗

λ (s1, s) = exp(−‖s − s1‖2/λ),
with reference lines at β = 4 and at the estimate from aggregated data. (d) Mean square error (MSE)
of βλ using “naive” variance. (e) Identification disclosure risk measured by the expect percentage of
correct record matching. (f) Disclosure risk versus MSE for utility-risk trade-off.

3.6. Results. Results of Example I on parameter estimates, MSE and iden-
tification risk averaged across the 500 simulation replicates are shown in Fig-
ure 1(c)–(e), respectively. Specifically, Figure 1(c) shows the estimated βλ as a
function of λ for the ring kernel weight (3.5) and the Euclidean kernel weight (3.4),
with the “naive” 95% confidence intervals. By “naive” we mean that the confi-
dence intervals are computed by fitting model (3.2) directly, and therefore do not
account for the possible correlation between the masked data as pointed out earlier
in Section 2.2. The reference lines are placed at the true value of β and at the esti-
mated βe, from which the bias of estimating the exposure coefficient by using the
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estimated βλ can be evaluated. Figure 1(d) shows the MSE as a function of λ for
the two kernel weights, where in this example MSE is largely determined by the
bias. The reference lines are placed at the MSE from regression using the original
data (in which the bias part is 0) and the MSE of βe. Figure 1(e) shows the identifi-
cation disclosure risk of the masked data set measured by the expected percentage
of correct record matching, as a function of λ for the two kernel weights. Fig-
ure 1(f) plots the disclosure risk versus MSE, which shows the trade-off between
data utility and disclosure risk.

We find that data masking using the ring kernel weight (3.5) leads to smaller
bias and MSE when estimating the exposure coefficient than masking using the
Euclidean kernel weight (3.4), for all λ values that are considered. It suggests that
when using the masked data for loglinear regression, a masking procedure that
preserves the spatial pattern of the original individual-level exposure and outcome
data can lead to better estimates in terms of smaller bias and MSE than a masking
procedure that does not do so. As λ increases, the bias and MSE increase for both
kernel weights, while the differences in the bias and MSE between the two kernel
weights decrease. This increase in the bias/MSE and decrease in the bias/MSE
differences suggest that in the presence of a high degree of masking, choice for
the form of masking may be less influential on the resultant bias/MSE. Moreover,
comparing the estimated βλ and βe, we find that for small values of λ, the bias and
MSE is smaller when using the estimated βλ from the ring kernel weight (3.5).

On the other hand, we find that the disclosure risk is lower when using the
Euclidean kernel weight (3.4) for data masking compared to using the ring kernel
weight (3.5). This is not unexpected because masked data constructed using the
ring kernel weight is more informative about the original true values. However,
with a tolerable potential disclosure risk [<0.2 which is used as an example cutoff
in Reiter (2005a)], masked data when constructed using the ring kernel weight can
lead to better MSE which cannot be achieved by using the Euclidean kernel weight
with a comparable λ. Same as the trend for bias and MSE, the differences in the
disclosure risk between the two kernel weights become small as λ increases.

Similar results of Example II and Example III are shown in Figure 2(c)–(f) and
Figure 3(c)–(f).

Figure 4 shows the width ratios comparing the 95% “naive” confidence intervals
versus the percentile confidence intervals obtained from the empirical distribution
of the estimates across the 500 simulations, for the estimates of βλ in the three
examples respectively. Width ratio when λ = 0 (the solid dot) is calculated using
the nonsmoothed data, that is, the individual-level data. We find that in these three
examples, the “naive” confidence intervals generally overestimate the uncertainty
of the βλ estimates, and the degree of overestimation increases as λ increases.
In addition, for Examples II and III where the spatial patterns of exposure are
nonisotropic, the degree of overestimation differs for the weight functions with
and without accounting for prior knowledge on the spatial pattern of exposure.
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FIG. 4. Width ratios comparing the 95% “naive” confidence intervals (CI) versus the percentile
CI obtained from the empirical distributions of the estimates across the 500 simulations, for the
estimates of βλ in (a) Example I, (b) Example II, and (c) Example III of the simulation studies. Width
ratio when λ = 0 (the solid dot) is calculated using the nonsmoothed data.

4. Application to Medicare data. We apply our method to the study of racial
disparities in risks of mortality for a sample of the U.S. Medicare population.

4.1. Data source. We extract a large data set at individual-level from the
Medicare government database. Specifically, it includes individual age, race, gen-
der and a day-specific death indicator over the period 1999–2002, for more than
4 million black and white Medicare enrollees who are 65 years and older residing
in the Northeast region of the U.S. People who are younger than 65 at enrollment
are eliminated because they are eligible for the Medicare program due to the pres-
ence of either a certain disability or End Stage Renal Disease and therefore do not
represent the general Medicare population.

Figure 5 shows the study area which includes 2095 zip codes in 64 counties in
the Northeast region of the U.S. We select the counties whose centroids are located
within the range that covers the Northeast coast region of the U.S., and we exclude
zip codes without available study population from the study map. This area covers
several large, urban cities including Washington DC, Baltimore, Philadelphia, New
York City, New Haven and Boston. It has the advantage of high population density
and substantial racial diversity.
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FIG. 5. Location of the 2095 zip codes included in our study area.

We categorize the age of individuals into 5 intervals based on age in his/her
first year of observation: [65, 70), [70, 75), [75, 80), [80, 85) and [85, +). This
categorization facilitates detection of age effects because differences in the risks
of mortality for one-year increase in age are relatively small. We “coarsen” the
daily survival information into yearly survival indicators. By doing so, we define
our outcome as the probability of the occurrence of death for an individual in one
year. This definition adjusts for the differential follow-up time.

4.2. Statistical models and data masking. Let i denote individual, j denote
zip code, t denote year, and Dijt be the death indicator for individual i in zip
code j in year t . Similarly as in Zhou, Dominici and Louis (2010a), we define the
individual-level model as

logit Pr(Dtij = 1) = β0 + β1raceij + ageijβ2
(4.1)

+ β3genderij + (age × gender)ijβ4.

Geographic locations for each individual are needed to spatially smooth the
individual-level data. However, from the Medicare data we only have the longitude
and latitude of the zip code centroids. Therefore, we apply a two-step masking pro-
cedure on the individual-level data, where we first aggregate the individual-level
data to zip code-level, and we then spatially smooth the zip-code level aggregated
data to construct the masked data at the zip code-level.

Specifically, let D++j denote the total death count and nj denote the total
person-years of zip code j . We first obtain from aggregation {% blackj , % agecatj ,
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% malej , % (agecat × male)j , pj = D++j /nj , j = 1, . . . , J }, which are the mar-
ginal distributions of race, age, gender, the joint distribution of age and gender, and
the mortality rate, respectively, of each zip code.

Due to the complex spatial pattern of the zip code-level covariates, we use kernel
smoothers with bivariate normal density kernel weights for spatial smoothing, so
the shape of the smoothing weight is flexible by varying the correlation parameter
value of the bivariate normal distribution. Let the vector s = {s1, s2} denote the
location of a zip code, where s1 and s2 are the longitude and latitude of the zip
code centroid, respectively. We use smoothing kernel weights of the general form

Wλ(u, s) = exp
(−(s1 − u1, s2 − u2)

T �−1
λ (s1 − u1, s2 − u2)/2

)
,

where

�λ = λ

(
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,

σ 2
1 and σ 2

2 are the variances of the longitude and latitude data of the 2095 zip
codes, respectively. We consider for ρ the following three values:

1. ρ = 0, so the weight solely depends on the Euclidean distance ‖s − u‖;
2. ρ = 0.5, so higher weight is assigned to s in the northeast and southwest direc-

tions of u;
3. ρ = −0.5, so higher weight is assigned to s in the northwest and southeast

directions of u.

Let pjλ denote the smoothed mortality rate of zip code j from which we cal-
culate the smoothed death count D++jλ = pjλ · nj . Let % blackjλ, % agecatjλ,
% malejλ, % (agecat × male)jλ denote the smoothed marginal distributions of
race, age, gender and the smoothed joint distribution of age and gender, respec-
tively, of zip code j . We specify the model for masked data as

D++jλ ∼ Bin(nj ,pjλ),

logitpjλ = β0λ + β1λ% blackjλ + β2λ% agecatjλ(4.2)

+ β3λ% malejλ + β4λ% (agecat × male)jλ.

The zip code-level nonsmoothed aggregated data are also used to fit model (4.2).
To evaluate the identification disclosure risk, we consider the scenario that a data

intruder possesses correct zip code-level demographic data and seeks the match-
ing with the masked zip code-level data set in order to obtain information on the
zip code-level mortality. Specifically, the released data set consists of % blackjλ,
% agecatjλ, % malejλ and pjλ, j = 1, . . . ,2095, and the data intruder possess the
correct % blackj , % agecatj and % malej .
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4.3. Choice of association measure. The common approach to report the as-
sociation between race and mortality risks is to report the race coefficients β1 in
model (4.1) and β1λ in model (4.2), whose interpretation is subjected to the coding
of the race covariate. For direct understanding of the difference in the risk of death
between the black and white populations, we define and report the population-level
odds ratio (OR) of death comparing Blacks versus Whites, which is a function of
the predicted values [Zhou, Dominici and Louis (2010a)]. Therefore, interpreta-
tion of this association measure does not depend on model parameterization (e.g.,
on covariate centering and scaling).

Specifically, let

Ptijb = Pr(Dtij = 1|raceij = Black,ageij ,genderij ),

Ptijw = Pr(Dtij = 1|raceij = White,ageij ,genderij )

denote the predicted probabilities of death in year t for a black person and a white
person, respectively, whose other covariates values are the same as the ith individ-
ual in the j th zip code. We define the population-level OR from the individual-level
model (4.1) as follows:

OR = P···bQ···w
P···wQ···b

,

where

P···b = ∑
t,i,j

Ptijb, P···w = ∑
t,i,j

Ptijw,

Q···b = 1 − P···b, Q···w = 1 − P···w.

Similarly, we define population-level ORλ from model (4.2) using summary prob-
abilities

P·bλ =
∑

j njPjbλ∑
j nj

and P·wλ =
∑

j njPjwλ∑
j nj

,

where Pjbλ and Pjwλ are the predicted probabilities of death in one year for
zip codes that consist of solely black and solely white populations, respectively,
and whose marginal and joint distributions of age and gender are the same as zip
code j . “Naive” standard errors of log ORλ are calculated using the multivariate
Delta Method [Casella and Berger (2002)]. In addition, bootstrap confidence inter-
vals for log ORλ are calculated using 1000 nonparametric bootstrap samples. Both
“naive” and bootstrap confidence intervals for ORλ are obtained by exponentiating
the corresponding confidence intervals for log ORλ.
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FIG. 6. Estimates of ORλ under model (4.2) and identification disclosure risk as a function of λ for
the three weight functions. Estimates of ORλ is plotted with the 95% “naive” confidence intervals
(CI), CI using bootstrap standard error (SE) estimates, and bootstrap percentile CI. OR0 is estimated
by fitting model (4.2) to the nonsmoothed zip code-level aggregated data. (a) Estimates of ORλ for
bivariate normal density kernel weight with ρ = 0. (b) Estimates of ORλ for bivariate normal density
kernel weight with ρ = 0.5. (c) Estimates of ORλ for bivariate normal density kernel weight with
ρ = −0.5. (d) Identification disclosure risk measured by expected percentage of correct matching.

4.4. Results. Figure 6(a)–(c) shows the estimates of ORλ under model (4.2) as
a function of λ for the three kernel weights respectively, with the 95% “naive” con-
fidence intervals, confidence intervals using bootstrap standard error estimates and
bootstrap percentile confidence intervals. OR0 is estimated by fitting model (4.2)
to the nonsmoothed zip code-level aggregated data. The reference line is placed at
the estimate of OR under the individual-level model (4.1).

For small values of λ (<0.1), the estimates of ORλ for all three kernel weights
are smaller than the estimate of OR and therefore produce negative bias, while
for larger values of λ the bias differs substantially for different kernel weights.
For example, data masking using the kernel weight with ρ = 0.5 leads to consis-
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tent underestimation of the odds ratio for all λ values that are considered. When
using the kernel weight with ρ = −0.5 for data masking, the estimates of ORλ

are less subject to bias than those from using the other two kernel weights. Dif-
ferences in MSE between the three kernels can also be inferred from the plots,
and we find that using the kernel weight with ρ = −0.5 leads to much smaller
MSE than using the other two kernels. For all three kernel weights, the “naive”
confidence intervals underestimate the uncertainty of the ORλ estimates, which
is in the opposite direction of the relation between the “naive” and the appropri-
ate confidence intervals in the simulation studies. The two bootstrap confidence
intervals are wider than the “naive” confidence interval when λ = 0, which sug-
gests a systematic difference between the bootstrap confidence intervals and the
“naive” confidence intervals regardless of smoothing. This systematic difference
occurs because the nonsmoothed zip code-level aggregated data may not satisfy
the Binomial model assumption in (4.2).

Figure 6(d) shows the identification disclosure risk of the masked data set as
measured by the expected percentage of correct matches when using the three ker-
nel weights for masking, as a function of λ. The disclosure risk for all three kernel
weights are small, ranging from 0.01–0.04. The risk is similar for the masked data
sets when using the kernel weight with ρ = 0 and ρ = −0.5 for masking, and the
risk when ρ = 0.5 is slightly higher.

5. Discussion. We propose a special case of matrix masking based on spa-
tial smoothing techniques, where the smoothing weight function controls the form
of masking, and the smoothness parameter value directly measures the degree of
masking. Therefore, data utility and disclosure risk can be calculated as functions
of both the form and the degree of masking. In fact, the smoothing weight func-
tion W can be any weight function and is not restricted by existing smoothing
methods. With the variety of combinations of weight functions and smoothness
parameter values, it is feasible to construct masked data that maintain high data
utility while preserving confidentiality.

We consider a subclass of linear smoothers that produces masked data as
weighted averages of the original data. Therefore, the masked data values are
within a reasonable range. More importantly, correlation among the variables is
invariant under linear transformation, which may intrinsically contribute to better
data utility of the masked data. On the other hand, this subclass is a large class. It
includes many commonly used smoothers. We do not expect major restriction by
focusing on this subclass of linear smoothers.

Using our method, we investigate the utility of the masked data in terms of bias,
variance and MSE of parameter estimates when using the masked data for log-
linear and logistic regression analysis. Note that similar studies can be applied to
any GLM. In addition, we evaluate the identification disclosure risk of the masked
data set by calculating the expected percentage of correct record matching. In the
simulation studies, we provide guidance for constructing masked data that can
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lead to better regression parameter estimates in terms of smaller bias and MSE for
loglinear models, and we show the trade-off between better estimates and lower
disclosure risk. Specifically, masked data can be constructed by using a smooth-
ing weight function that accounts for prior knowledge on the spatial pattern of
individual-level exposure, together with a reasonably low degree of masking. We
provide guidance for how to select such a smoothing weight function for loglinear
models. In addition, we provide candidate weight functions for three simplified but
representative spatial patterns of exposure.

As is expected, masked data that can lead to better estimates are generally more
informative about the original data values and therefore are subject to relatively
higher identification disclosure risk. However, the flexibility in our data masking
method enables constructing the masked data that can lead to good parameter es-
timates, while the disclosure risk is controlled at a low level. In the meanwhile,
caution should be placed to the institute in releasing detailed information on the
data masking approach along with masked data. It is pointed out in Section 2.1
that simultaneously releasing the smoothing weight function W and the smooth-
ness parameter λ in the existence of A−1

λ can lead to reidentification of original
data. However, even if only partial information is released, for example, only the
information that data are masked using smoothing and the smoothing weight func-
tion is released while the smoothing parameter value is not released, it is possible
that a smart data intruder can still reconstruct the transformation matrix Aλ.

We apply our data masking method to the study of racial disparities in risks of
mortality for the Medicare population, and show how the bias and the variance of
the estimated OR of death comparing blacks to whites, and how the identification
disclosure risk, vary with the form and the degree of masking. The results suggest
that in the absence of clear guidance, it is helpful to explore a large flexible family
such as the bivariate normal density kernel to identify a weight function that can
lead to both good utility and low identification risk for the masked data.

We compare the “naive” confidence intervals with the appropriate ones which
account for the possible correlation among masked data in both the simulation
studies and the data application, where we observe opposite directions in the rela-
tion between the “naive” and the appropriate confidence intervals. It suggests no
general direction for that relation. One possible reason, which is also pointed out
in Section 4.4, is that the unmasked data in the simulation study are simulated from
Poisson distributions, while the unmasked data in the data application are real data
and do not strictly follow the assumed binomial distribution. Therefore, in the data
application, the standard errors account for both the correlation among the masked
data and the discrepancy of the original data distribution from binomial.

The simulation study and data application results show that masked data con-
structed using our method can well preserve confidentiality. Specifically, the iden-
tification disclosure risk is reasonably low for all scenarios that we consider. Note
that our calculation of the disclosure risk is conservative: we assume that an in-
truder possesses true values for all the regressors, and we use probability 1 for
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the component Pr(zλ,1, . . . , zλ,j−1, zλ,j+1, . . . , zλ,N |zλ,j , J = j, t) in the calcula-
tion. In addition, the flexibility in the selection of smoothing weight function W

and smoothness parameter λ can also help control disclosure risk in addition to
improving data utility.

Based on our method, we additionally derive a closed-form expression for first-
order bias of the parameter estimates obtained using the masked data, for GLM that
belong to the exponential family. The first-order bias calculation is not necessary
when both individual-level exposure and health outcome data are available so the
actual bias can be computed. It may be used by researchers who have only the
individual-level exposure information to explore the possible bias in their analysis
using masked data.

Although our proposed method uses spatial smoothing and therefore applies to
spatial data, it can be easily generalized to other data types because the masking
procedure is a smoothing technique that takes weighted averages of the original
data. For example, the proposed method can be generalized to smoothing time se-
ries data by using the smoothing weight function Wλ(μ, s), where μ and s denote
time points. Also, note that an alternative method to mask spatial data is to mask
the individual spatial location [see Armstrong, Rushton and Zimmerman (1999);
Wieland et al. (1998)].

APPENDIX: FIRST-ORDER BIAS

We derive a closed-form expression for the first-order bias of estimating the re-
gression coefficients in a GLM that belongs to the exponential family, when using
data masked by our method. Let β denote the vector of regression coefficients of a
model specified for the original individual-level data. When the model belongs to
the exponential family, its log likelihood can be expressed as

LL(β) =
N∑

i=1

YiXiβ − b(Xiβ)

a(φ)
+ C(Yi,φ),

b′(Xiβ) = g−1(Xiβ), where b′(·) is the derivative of function b(·), and g(·) is the
link function. Substituting the individual-level data {Yi,Xi} by the masked data
{Yλ(si),Xλ(si)}, we obtain log likelihood of the analogous model when fitted to
the masked data,

LLm(βλ;λ) =
N∑

i=1

Yλ(si)Xλ(si)βλ − b(Xλ(si)βλ)

aλ(φλ)
+ Cλ(Yλ(si), φλ),(A.1)

where βλ denotes the corresponding vector of regression coefficients. In order to
calculate the MLE of βλ, it is common procedure to calculate the score func-
tion from the likelihood (A.1) and take its expectation with respect to the “true”
individual-level model E{Yi |Xi}. Denote the expected score function as S(λ,βλ)

and denote β(λ) as the solution s.t. S(λ,β(λ)) = 0. It can be shown that β(0) = β .
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Taking the derivative of S(λ,β(λ)) = 0 with respect to λ and evaluating it at λ = 0,
we obtain the standard result:

β ′(0) = −(S2(0,β(0))−1 · S1(0,β(0)),(A.2)

where S1 and S2 are the partial derivatives with respect to the first and second
components of ∂S/∂λ, respectively. Specifically,

S1(0,β(0)) =
N∑

i=1

XT
i

(∫
h(X(s)β)R0(si, s) dN(s)

− h′(Xiβ)

∫
X(s)T R0(si, s) dN(s) · β

)
(A.3)

S2(0,β(0)) = −
N∑

i=1

h′(Xiβ) · XT
i Xi ,

where R0(si, s) = ∂(Wλ(si ,s)/
∫

Wλ(si ,s) dN(s))

∂λ
|λ=0 and h(·) = g−1(·), inverse of the

link function of the GLM. In practice, S1(0,β(0)) in (A.3) is calculated by sub-
stituting the the integrals by summations over all locations where the original
individual-level data are available.

The quantity β ′(0) denotes the instant bias of estimating β using masked data,
when changing from no masking to a very low degree of masking. As expected,
when (i) X(s) is constant across all locations in s, or (ii) g(·) is a linear function,
S1(0,β(0)) is calculated to be 0, and therefore β ′(0) = 0.

Using β ′(0), we can approximate the bias of estimating β when fitting a GLM
using masked data whose degree of masking is λ, by calculating

β(λ) − β ≈ β ′(0) · λ.

This bias calculation can be extended to any function of β , for example, the pre-
dicted value. Specifically, bias in estimating f (β) can be approximated by

f (β(λ)) − f (β) ≈ f ′(β) · (
β(λ) − β

) ≈ f ′(β) · β ′(0) · λ.

It can be seen that the first-order bias approximation can be easily generalized to
approximation using higher-order terms of the Taylor series expansion in addition
to the first-order term. Specifically,

β(λ) − β ≈ β ′(0) · λ + β ′′(0) · λ2/2 + · · ·
(A.4)

+ β(n)(0) · λn/n!, n ≥ 1.

Similarly, we can generalize the bias approximation of estimating f (β).
A limitation of the bias approximation using Taylor series expansion (A.4) is

that we ignore the remainder term β(n+1)(ξ) · λn+1

(n+1)! , ξ ∈ (0, λ), which may not be
small for large values of λ. Therefore, the approximation only captures the bias for
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λ ≈ 0, that is, the instant direction and magnitude of the bias when changing from
no masking to a very low degree of masking. It may not capture the total bias for
a specified degree of masking. In the application of our method to the Medicare
data, the first-order bias is calculated to be 0 for all three kernel weights because R0
in (A.3) equals 0. In addition, when applying the bias approximation (A.4) to the
three examples in the simulation studies for n = 1, . . . ,5, the bias approximation
is calculated to be 0, while nonzero bias is shown by comparing the parameter
estimates when using the masked data with the true parameter value.

Acknowledgment. Thanks to Dr. Aidan McDermott for the help on the
Medicare data sources.

SUPPLEMENTARY MATERIAL

Supplement: R code (DOI: 10.1214/09-AOAS325SUPP). We provide the R
code for (1) the simulation study utility part of the three examples, (2) the func-
tion to compute the disclosure risk, and (3) the calculation of the bivariate normal
density kernel weight matrix.
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