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There is substantial empirical and climatological evidence that precip-
itation extremes have become more extreme during the twentieth century,
and that this trend is likely to continue as global warming becomes more
intense. However, understanding these issues is limited by a fundamental is-
sue of spatial scaling: most evidence of past trends comes from rain gauge
data, whereas trends into the future are produced by climate models, which
rely on gridded aggregates. To study this further, we fit the Generalized Ex-
treme Value (GEV) distribution to the right tail of the distribution of both rain
gauge and gridded events. The results of this modeling exercise confirm that
return values computed from rain gauge data are typically higher than those
computed from gridded data; however, the size of the difference is somewhat
surprising, with the rain gauge data exhibiting return values sometimes two
or three times that of the gridded data. The main contribution of this paper is
the development of a family of regression relationships between the two sets
of return values that also take spatial variations into account. Based on these
results, we now believe it is possible to project future changes in precipitation
extremes at the point-location level based on results from climate models.

1. Introduction. There is great interest in understanding the behavior of the
extremes of weather and climate and the impacts of these extremes. Furthermore,
there is mounting evidence that, for example, precipitation extremes have become
even more extreme during the twentieth century, and that this trend is likely to
continue with continued global warming and climate change [see, e.g., Karl and
Knight (1998), Zwiers and Kharin (1998), Groisman et al. (1999), Kharin and
Zwiers (2000), Meehl et al. (2000), Frich et al. (2002), Kiktev et al. (2003), Hegerl
et al. (2004), and Groisman et al. (2005)]. Future projections produced by global
and regional climate models offer a way to characterize any trends in extreme be-
havior. However, there is the issue of spatial scaling and how to compare the output
of climate models with historical data. Climate model data represent an aggregate
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over a grid box, whereas historical data are collected from rain gauges associated
with monitoring stations at specific point locations. In this work we seek to exam-
ine and quantify the relationship between the extremes of gridded climatological
data sets, such as reanalysis data or climate model output, and observed point-
level data from weather stations. This relationship is used to develop a framework
for predicting point-level extreme behavior from future runs of climate models.
Essentially, we seek to construct a statistical model that balances the following:
(1) exploiting the clear similarities in the spatial patterns of extreme behavior from
gridded and point-level data sets and (2) accounting for the differences in the dis-
tributions of extremes from the two types of data.

Our findings suggest that there is a family of regression relationships between
the two sets of return values that takes spatial variation into account. Based on
these results, we now believe it is possible to project future changes in precipitation
extremes at the point-location level based on results from climate models.

The paper is organized as follows: First, we discuss the methodology for the
statistical modeling of extreme values and regression methods for analyzing the
relationship between gridded and point-level data. Second, we look at gridded data
results from a well-known reanalysis (NCEP) and from a climate model (CCSM).
Spatial and temporal trends are considered, and a comparison is made between
NCEP and CCSM results. To explore more fully the spatial trend using stan-
dard methods, we also look at a comparison of the return values obtained through
the modeled regression relationship with return values obtained through universal
kriging over the unused stations. Finally, a discussion of the results of this analysis
and its implications is presented.

2. The data. The point-level data were obtained from the National Climatic
Data Center (NCDC) and represent daily rainfall values at 5873 meteorological
stations covering a period from 1950 to 1999. The reanalysis data are from the Na-
tional Centers for Environmental Prediction (NCEP) and cover a period from 1948
to 2003 on a 2.5◦ grid [Kalnay et al. (1996)], resulting in 288 grid cells. Precipi-
tation is determined by a numerical weather model in reanalysis data. It is impor-
tant to note that systematic model errors, due to incomplete physical readings and
grid resolution, can influence estimates obtained from reanalysis data. The climate
model output was obtained from two runs of the National Center for Atmospheric
Research’s Community Climate System Model (CCSM) which included a control
run from 1970–1999 and a future projection from 2070–2099. The CCSM data
were on a 1.4◦ grid (820 grid cells). The NCDC data were measured on a scale
of tenths of a millimeter; the NCEP and CCSM data were converted accordingly.
Annual total rainfall amounts were computed for each season: December, January,
and February (DJF); March, April, and May (MAM); June, July, and August (JJA);
and September, October, and November (SON).
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3. Methodology. The statistical methodology adopted in this paper is essen-
tially in two parts. First, extreme value distributions are fitted to each data series
(both point-location and gridded) to determine the 100-year return value for that
series. Second, regression relationships are established between the point-location
and gridded return values, primarily with the purpose of predicting the former from
the latter.

In this section we briefly review extreme value theory, and then explain how
it is applied to the present data sets. For further details the reader is referred to
overviews by Coles (2001) or Smith (2003). Katz, Parlange and Naveau (2002)
gave an excellent overview of the application of extreme value methods in hydrol-
ogy.

3.1. The Generalized Extreme Value (GEV) distribution. Suppose Y repre-
sents the annual maximum of daily precipitation in a given series. The Generalized
Extreme Value (GEV) distribution is defined by the formula

Pr{Y ≤ y} = exp
{
−

(
1 + ξ

y − μ

ψ

)−1/ξ

+

}
,(1)

where μ is a location parameter, ψ a scale parameter, and ξ is the extreme-value
shape parameter; μ and ξ can take any value in (−∞,∞) but ψ has to be > 0. The
notation (· · ·)+ follows the convention x+ = max(x,0) and is intended to signify
that the range of the distribution is defined by 1 + ξ

y−μ
ψ

> 0. In other words,

y > μ − ψ
ξ

when ξ > 0, y < μ − ψ
ξ

when ξ < 0.
The distribution (1) encompasses the classical “three types” of extreme value

distributions [Fisher and Tippett (1928), Gumbel (1958)], but in a form that fa-
cilitates parameter estimation through automated techniques such as maximum
likelihood. The “three types” correspond to the cases ξ > 0 (sometimes called the
Fréchet type), ξ < 0 (Weibull type), and ξ = 0, which is interpreted as the limit
case ξ → 0 in (1),

Pr{Y ≤ y} = exp
{
− exp

(
−y − μ

ψ

)}
, −∞ < y < ∞,(2)

widely known as the Gumbel distribution.
The n-year return value is formally defined by setting (1) to 1 − 1

n
; yn is then

the solution to the resulting equation. In practice, however, for large n, we have
1 − 1

n
≈ e−1/n and it is more convenient to define yn by the equation

(
1 + ξ

yn − μ

ψ

)−1/ξ

= 1

n
,

which leads to the formula

yn =
⎧⎨
⎩μ + ψnξ − 1

ξ
, if ξ �= 0,

μ + ψ logn, if ξ = 0.
(3)
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Loosely, the n-year return value is the value that would be expected to occur
once in n years under a stationary climate. In this paper we take n = 100, though
other values such as n = 25 or n = 50 could equally well be taken. Return values
allow one to summarize extreme precipitation in one number, and are widely used
and better understood by the common practitioner than the GEV parameters. An
alternative approach to modeling the 100-year return value would be to model the
three GEV parameters separately as a function of spatial location. However, this
would introduce additional complications into the analysis (for example, how to
model the dependence among the three GEV parameters), and we have preferred
to use 100-year return values directly as this leads to a simpler model.

3.2. Threshold exceedances and the point process approach. The simplest
procedure for fitting the model (1) is to calculate the annual maxima, say,
Y1, . . . , YM , for a series of length M years, and fit (1) directly by maximum likeli-
hood or some alternative statistical technique. For example, the papers by Kharin
and Zwiers (2000) and Zwiers and Kharin (1998) used the L-moments technique
which is popular among hydrologists and meteorologists.

In the present context, however, the direct method has some disadvantages. Fit-
ting the GEV to annual maxima is problematic when series are short. In addition,
many of the series contain missing values, and it is not clear how to adjust the
annual maxima to compensate for this.

Because of the difficulties associated with annual maxima, alternative meth-
ods have become popular based on peaks over thresholds (also known as the POT
approach). In this approach, for each series a high threshold is selected, and a
distribution fitted to all the values that exceed that threshold. Following Pickands
(1975), the distribution of exceedances over the threshold is taken to be the Gener-
alized Pareto distribution (GPD), which asymptotically approximates the distribu-
tion of exceedances over a threshold in the same sense as the GEV asymptotically
approximates the distribution of maxima over a long time period. Davison and
Smith (1990) developed a detailed statistical modeling strategy for exceedances
over thresholds based on the GPD. Threshold-exceedance methods work better
than annual-maxima methods when the series is short, and also adapt themselves
better to missing values in the data.

For the present paper, however, we prefer a third approach, the point process ap-
proach [Smith (1989, 2003) and Coles (2001)], that, although operationally very
similar to the POT approach, uses a representation of the probability distribution
that leads directly to the GEV parameters (μ,ψ, ξ). An advantage of the point
process approach is that the parameter estimates are not directly tied to the choice
of threshold, and the ideal threshold can be determined by considering where the
parameter estimates stabilize. Although the parameters for the point process ap-
proach are different from those of the GPD approach, the two are still mathemat-
ically equivalent (in the case used in the present paper, where there is no direct
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dependence on covariates), so the consistency and asymptotic normality of esti-
mators follows from results in Smith (1987), among other references on statistical
properties for the GPD.

Under this model, if we observe N peaks over a threshold u, say, Y1, . . . , YN ,
at times T1, . . . , TN , during an observational period [0, T ], we view the pairs
(T1, Y1), . . . , (TN,YN) as points in the space [0, T ] × (u,∞), which form a non-
homogeneous Poisson process with intensity measure

λ(t, y) = 1

ψ

(
1 + ξ

y − μ

ψ

)−1/ξ−1

+
.(4)

The negative log-likelihood associated with this model may be written in the form
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where T is the length of the observation period in years and the (· · ·)+ symbols
in (5) essentially mean that the expression is evaluated only if 1 + ξ

u−μ
ψ

> 0 and

1 + ξ
Yi−μ

ψ
> 0 for each i (if these constraints are violated, we set � = +∞).

The basic method of estimation is therefore to choose the parameters (μ,ψ, ξ)

to minimize (5). This is performed using standard methods for numerical nonlin-
ear optimization. Once we have found the maximum likelihood estimates and as-
sociated variance–covariance estimates, it is straightforward to estimate the n-year
return value from (3), with an approximation to the standard error of the estimate
ŷn by the delta method.

3.3. Details of the fitting procedure. In practice, there are a number of details
that need attention to implement this procedure successfully:

1. Missing values. Missing values in the time series may be accommodated by
defining the time period T in (5) to be the total observed time period, ignoring
any periods when data are missing. In practice, there could still be a bias if too
many observations are missing, because if there are trends in the data, the re-
sults will be sensitive to the exact time period covered by the data. To minimize
this kind of bias, we impose the constraint that a station is only included in the
analysis if the proportion of missing days does not exceed a small fraction ε,
where, in practice, we take ε = 0.1.

2. Seasonality. Rainfall being a seasonal phenomenon, the GEV parameters
(μ,ψ, ξ) vary by season. Therefore, we perform separate analyses for sum-
mer (June, July, and August), fall (September, October, and November), winter
(December, January, and February), and spring (March, April, and May), where
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the calculation of T in (5) is adjusted to account for the actual number of days
in each season (92 in summer, 91 in fall, 90.25 in winter allowing for leap years,
92 in spring). We adopt the convention that December of each year is counted
as part of the following year, so there is not a discontinuity in the winter season.
For example, winter 1950 is actually the period from December 1949 through
Febuary 1950.

3. Choice of time period. After taking account of the convention just noted re-
garding the month of December, the period over which continuous records are
available for both the point-source and gridded data is 1949–1999. Our default
option is therefore to take this as defining the time period for our analysis. There
may be some advantage in considering shorter time periods, for example, to ex-
amine the extent to which rainfall distributions have changed with time.

4. Choice of threshold. We follow the convention of taking a fixed percentile at
each station as the threshold for that station. For example, the 95th-percentile
threshold is defined as the 95th percentile of all observations at a given station,
excluding missing values but including days when the observed precipitation
is 0. As a sensitivity check, we also considered the 97th percentile thresh-
old but find the results to be little different. It should be noted that papers in
the climate literature often consider much higher thresholds [e.g., Groisman et
al. (2005) use the 99.7% threshold], but only in the context of counting ex-
ceedances and not fitting probability distributions to the excesses over a thresh-
old. In the present context, if we go much above the 97th percentile, we en-
counter too many failures of the fitting algorithm.

5. Clustering. To compensate for short-term autocorrelations, we usually work
with peaks over the threshold rather than all individual exceedances over the
threshold value, where the peaks are defined as the largest values within each
cluster. The runs algorithm [Smith and Weissman (1994)] may be used to de-
fine peaks. In practice, each group of consecutive daily observations over the
threshold was treated as a single cluster and only the cluster maximum was used
for the analysis. The results are not too sensitive to this aspect of the analysis
and, in fact, we would get very similar answers if we treated every exceedance
as a peak value.

3.4. Regression and model selection. Once the return values were computed
for both the point-level and gridded data sets, each of the return values for the
point-level (rain gauge) data was identified with a particular grid box and the as-
sociated return value for that grid box. A regression model was fitted, using the
gridded return values as a predictor for the point-level return values.

The regression analysis considered the possibility of using transformations or
including additional covariates. It was found necessary to include large-scale spa-
tial trends through polynomial functions of latitude and longitude. Elevation was
also included in some of the regressions. A variety of strategies for model se-
lection was adopted, including forward and backward selection, automatic model
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fits through Akaike’s information criterion (AIC) [Akaike (1974)], and residual
analysis. Some of the analyses looked for spatial correlation among residuals us-
ing the variogram [Cressie (1993)] as a further diagnostic technique—an adequate
regression model should have spatially independent residuals. Details of how these
analyses were conducted are in the next two sections.

4. Results: Observational data (NCDC) versus reanalysis data (NCEP).
In this section we detail results from the comparison between the point-level
(NCDC) 100-year return values versus the gridded reanalysis (NCEP) 100-year
return values. Figures labeled A.x are included in the supplemental appendix.

4.1. Extreme value analysis. For an initial analysis, the focus is on the winter
(DJF) season. The GEV parameters were estimated via the point process approach
as described in Section 3.2 for each station in the NCDC data and each grid cell
from the NCEP reanalysis data, using the 95th percentile for each data set as the
threshold. As explained in Section 3.3, the fitting method allows for missing val-
ues, but we excluded stations with more than 10% missing values over the 1949–
1999 time period. Of the original 5873 stations, about 1530 were excluded by this
criterion. In addition, for under 1% of all MLE calculations, the algorithm failed to
converge, and these were also excluded from subsequent analysis. Figure 1 shows
the 100-year return values computed for both the NCDC station data and each grid
cell from the NCEP data for the winter season. The point location data (bottom
frame) has a finer plot-grid with one station-level return per grid. The sparseness
(blank grids) in the NCDC plot is due to some stations being excluded or because
some of the grid boxes had no stations originally.

FIG. 1. NCEP grid and NCDC station return levels: One-hundred-year return values, in tenths of
a millimeter, computed for each grid cell in the NCEP data (left frame) and for each station from the
NCDC data (right frame).
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The plots show the meteorological differences across the U.S. Two aspects of
these plots are immediately visible: (1) the spatial patterns in the return values are
very similar, with higher values in the southeast and far west, and lower values over
the upper mid-west and mountain regions in the west, and (2) the return values for
the point-level data are much larger than those of the gridded data, as evidenced
by the difference in the scales of the two figures. The first point is addressed using
information available at each point station, that is, latitude, longitude, and elevation
measures.

Spatial trends are addressed through incorporation of local point station mea-
sures. The last feature is detailed further in Figure 2, where the GEV parameter

FIG. 2. Densities: Solid black curves indicate the fitted GEV densities for four grid cells from the
reanalysis (NCEP) grid data. San Francisco coast (top left): Latitude 37.5, Longitude −122.5; Mon-
tana (top right): Latitude 47.5, Longitude −112.5; Alabama (bottom left): Latitdue 32.5, Longitude
−87.5; and Key Largo, FL (bottom right): Latitude 25, Longitude −80. Dotted grey curves indicate
the fitted densities from each NCDC station within the grid cells.
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fits from the NCEP gridded data (solid black curves) are compared to the GEV pa-
rameter fits from the individual stations (dotted grey curves) within each grid cell.
There appears to be substantial variation among the density curves for individual
rain gauges, but the grid cell density seems clearly to be from a different popula-
tion for the grids from Alabama and Florida. Thus, the impact of the aggregation
across the grid cells is immediately apparent. The point-level densities suggest
larger return values than those derived from the NCEP data in the corresponding
grid cells, which again is clearly seen for the grids in Alabama and Florida.

As explained in Section 3.3, a comparison was made between the 95th and
97th percentile thresholds to examine the sensitivity of the analysis to threshold
selection. GEV parameter estimates for these two threshold choices are shown in
Figures A.1–A.3 [Mannshardt-Shamseldin et al. (2010)]. Comparing across the
two thresholds, the GEV model parameters show little change, suggesting that
the parameter estimates have stabilized and the 95th percentile is a high enough
threshold. For subsequent analysis, we use the 95th percentile for the threshold.
It is generally agreed upon in the literature that the shape parameter ξ should be
small but positive. For the station data, the mean ξ̂ across all stations ranged from
0.087 in the spring to 0.127 in the summer and the percentage of stations for which
ξ̂ was positive ranged from 64% in the spring to 77% in the fall. A 0.05-level one-
sided hypothesis test for ξ = 0 was rejected 15–25% of the time for the right-sided
alternative and 3–7% for the left-sided alternative. The results were similar for
the grid cell (NCEP) data, however somewhat less decisive. The average values
of ξ̂ over all the grid cells ranged from 0.04 in the summer to 0.12 in the fall,
however, in the spring, only 41% of the ξ̂ were positive, 17% rejected ξ = 0 for
a right-sided alternative and 23% for a left-sided alternative. These results do not
contradict that there is an overall tendency for ξ to be positive, but clearly there
is a lot of variability from one data set to another. This is not in conflict with
the general belief that ξ is greater than zero, and we recognize that, in practice,
there is so much variability in individual estimates that it is difficult to make such
conclusions. The evidence is less decisive in the case of the grid cell data than it is
with the station data, which is consistent with our concern that maybe NCEP does
not represent extreme precipitation well.

4.2. Direct comparison of NCEP and station averaged data. To gain further
insight into the relationship between extreme values in NCEP and in station data,
the following comparison was performed.

We selected 17 NCEP grid cells that included a large number (>65) of obser-
vational stations. For each such grid cell, a “station averaged” data set was con-
structed by averaging precipitation values over all stations on each day (including
zeros, but omitting missing values). The extreme value parameters were estimated
for this station-averaged data set and used to estimate the 100-year return value.
The result (a) was compared with (b) the 100-year return value estimated from
NCEP data and (c) the average of 100-year return values for each of the individual
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TABLE 1
Table of 100-year return values computed for 17 grid cells for the DJF season, by (a) first
averaging daily station data, the fitting an extreme value distribution to the daily averages;

(b) fitting an extreme value distribution to the NCEP values; (c) averaging over
100-year return values computed for individual stations

100-year return value estimated from

Latitude Longitude Station averages NCEP Averages of individual
Grid cell (◦N) (◦W) (a) (b) station return values (c)

1 32.5 97.5 741 429 1170
2 32.5 95.0 1035 450 1531
3 32.5 90.0 1112 529 1691
4 32.5 85.0 954 505 1315
5 35.0 97.5 632 661 872
6 35.0 82.5 658 561 995
7 37.5 122.5 955 670 1559
8 37.5 100.0 300 351 488
9 37.5 97.5 498 438 669

10 37.5 82.5 443 490 670
11 37.5 80.0 446 452 713
12 37.5 77.5 505 442 766
13 40.0 97.5 307 360 545
14 40.0 80.0 378 392 576
15 40.0 77.5 526 451 758
16 40.0 75.0 610 468 847
17 42.5 90.0 300 493 489

stations in that grid cell. If NCEP data are an accurate representation, we should
expect (a) and (b) to be roughly comparable, but (c) to be larger. Table 1 shows the
results for the DJF data.

In 10 of the 17 cases, the ratio of (a) to (b) is between 0.8 and 1.2. Of the
exceptions, the ratio is below 0.8 in one case (grid cell 17) and ranges up to 2.3
(cell 2). In contrast, the ratio of (c) to (b) is >1.3 in all but one case (cell 17),
and goes as high as 3.4 in cell 2. Similar results were obtained for the other three
seasons; the ratios overall [both (a) to (b) and (c) to (b)] were highest for the JJA
season.

The results of this exercise show (as we anticipated) that NCEP data are not
an ideal representation of precipitation extremes computed from averages over
stations; but in a majority of grid cells, the representation is reasonable, and it
shows that the discrepancy between return values computed from NCEP and from
individual stations is not primarily due to NCEP being a poor representation of
precipitation extremes.

4.3. Regression results. Now that the return values have been computed, the
discrepancy between the return values computed from the NCDC point-level sta-
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FIG. 3. Modeling point station return values: 100-year return values: point-station returns re-
gressed on gridded return values (left) and log-transform of point-station values regressed on gridded
returns (right) for the NCEP grid cell data. Return values are in tenths of a millimeter for the winter
(DJF) season.

tion data and the NCEP gridded data can be modeled using regression methods.
Each point-level station is assigned to a grid cell and the relationship between the
grid cell return values and the point-level return values is considered. A simple
model, using return values from the grid cells to predict the return values from the
station data, shows excessive dispersion. The dispersion is increasing for larger
return values and the model does little to capture the spatial trends nor account
for the differences in scale of the return values. However, an alternative regression
model using a logarithmic transformation of the point-level return values greatly
improves the fit of the regression model, especially for homoscedasticity. This can
be seen in Figure 3. A model where both the grid cell returns and the station
level returns were log-transformed was considered, however, there was no sig-
nificant difference in the fit of the model with both transformed. The AIC value
of the model with just the station level returns log-transformed was smaller than
the model with both transformed, and a comparison of standard errors showed
that the log–log model had relatively higher standard errors than the model with
only the station level returns transformed. Thus, the model where just the station
level returns were log-transformed was chosen for further analysis. Adding eleva-
tion, measured in meters, as a covariate also reduced the dispersion. Details of the
model fits for all four seasons are shown in Table 2.

There does not appear to be much difference in the fitted models for the different
threshold values, supporting the previous conclusion concerning the GEV model
parameters. There does, however, appear to be a seasonal effect, with the coeffi-
cients on both the grid return values and elevation changing between the seasons.
Both of the covariates are significant in all of the models. In subsequent analy-
sis we concentrate on the winter season (DJF) in order to investigate scaling and
spatial trends.
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TABLE 2
Model coefficients across season and threshold for the basic regression model, log(Point return
levels) ∼ Grid Return + Elevation (no latitude or longitude terms), for the NCEP grid data. All

coefficient p-values < 0.001. Standard error are based on the assumption of independence,
which is further shown to be possibly an invalid assumption

Int. SE Grid SE Elev SE

Winter
95th 5.32 0.0032 0.0030 6.0×10−5 −0.00012 1.5×10−5

97th 5.31 0.0030 0.0030 5.8×10−5 −0.00011 1.5×10−5

Spring
95th 5.90 0.029 0.0023 5.6×10−5 −0.00026 1.4×10−5

97th 5.97 0.029 0.0021 5.7×10−5 −0.00028 1.1×10−5

Summer
95th 6.65 0.027 0.0015 6.1×10−5 −0.00039 9.3×10−6

97th 6.58 0.027 0.0016 6.0×10−5 −0.00037 9.6×10−6

Fall
95th 6.93 0.026 0.0006 4.4×10−5 −0.00049 1.1×10−5

97th 6.83 0.026 0.0008 4.4×10−5 −0.00048 1.2×10−5

4.4. Spatial trends. The simple regression of log point-level return value on
grid return value appears to do an adequate job of predicting the return values for
the station data, but the residuals still show spatial patterns that are not being ac-
counted for (see Figure 4). In particular, the right plot in Figure 4 shows generally
positive residuals in the southeast, and generally negative residuals in several other
regions (midwest, northeast, west coast). Such clear spatial patterns are indicative
that the residuals are nonrandom and, therefore, further modeling is required.

FIG. 4. Simple regression model including elevation: Fitted return values (left) and residuals
(right) from the regression model Log(Point) ∼ Grid + Elevation using the NCEP grid cell data.
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FIG. 5. Cubic model in lat and lon including elevation: Fitted return values (top left), residuals
(top right), and prediction standard errors (bottom) from the cubic regression model with NCEP grid
data. Errors range between 183.2 and 186.7 tenths of a mm.

Therefore, the model was extended to include polynomial terms in latitude and
longitude. The cubic model appears to do the best job at capturing the spatial trends
(Figure 5). Although the residual plot from the cubic model (right plot, Figure 5)
still shows some evidence of spatial dependence, it is not nearly as strong as the
corresponding residual plot in Figure 4 and, in fact, subsequent tests imply it may
be spurious. Empirical variograms [shown in Figure A.4, Mannshardt-Shamseldin
et al. (2010)] indicate a lack of spatial dependence in the residuals from the cubic
model. The variogram is a measure of the variability between two observations at
a given distance apart. The essentially flat variogram for the cubic model, shown
in Figure A.4, indicates little spatial dependence, whereas the gradual rise toward
the maximum, as seen in the plot for the linear model with no latitude or longi-
tude terms, is indicative of spatial dependence. The residuals for the cubic model,
Figure 4, show some evidence of spatial dependence for the eastern half of the
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U.S. Motivated by the appearance of a trend among sites in the eastern United
States seen in the residuals of Figure 5, at the suggestion of a reviewer, the bottom
variogram in Figure A.4 details the spatial trend for stations east of 100◦W. The
essentially flat variogram for the cubic model indicates little spatial dependence.
Additionally, all of the main effects and interactions in longitude and latitude were
significant in all four seasons.

We also considered higher-order models, in particular, one including quartic
terms in latitude and longitude. For all four seasons, the quartic model is superior
to the cubic model based on AIC. However, from other points of view the cubic
model seems superior. There is little difference in the predictions based on the
two models, and several terms in the quartic model (as well as elevation) were not
significant. Individual terms in the quartic model are much harder to interpret. The
residuals from the cubic regression appear uncorrelated based on the variogram
plot (Figure A.4), and a later exercise that made a direct comparison with kriging
for a subset of rain gauge sites (Section 5.1) suggested that the cubic regression
method performed as well as kriging. Therefore, we did not pursue any regression
model beyond the one that included cubic terms in latitude and longitude. There
is no perfect model—the residuals from the cubic model still show some evidence
of a trend, but it is enormously improved over the model with no latitude and
longitude terms.

5. Results: Observational data (NCDC) versus climate model data
(CCSM). The results of the previous section show that the extreme behavior
on gridded data sets can be used to model and predict extreme behavior at spe-
cific point-level locations. However, the ultimate objective is to apply the results
to future projections from a climate model to obtain projection of return values
for point-level precipitation. Therefore, we apply the same methodology to output
from the CCSM model runs for the winter season of the current time period 1970–
1999 and a future model run for 2070–2099. It is recognized that in contrast to the
NCEP analysis, the CCSM model is not constrained by observed weather variables
and therefore is not expected to reproduce the observed precipitation as well as the
NCEP reanalysis. In general, the parameter estimates behave similarly to those
based on the NCEP data. The spatial patterns of parameters and return values of
the NCDC point-level data are consistent with the spatial patterns of the CCSM
for the current time period. Again, a cubic model is used to relate the return values
based on the gridded CCSM output to the NCDC point-level data. The relationship
of the CCSM grid-level return values to NCDC point-level return values is simi-
lar to the relationship derived from NCEP/NCDC data. The standard errors of the
predicted values for the CCSM 1970–1999 model runs range between 203.9 and
205.5 tenths of a millimeter for predicted values between 179.9 and 2016 tenths
of a millimeter. The standard errors of the predicted values are between 212.8 and
216.2 tenths of a millimeter when the same regression relationship is applied to the
CCSM 2070–2099 model runs, where the predicted values range from 173.7 and
2318 tenths of a millimeter. This is comparable to the standard errors for the NCEP
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predicted values, which ranged between 183.2 and 186.7 tenths of a millimeter for
predicted values between 194.0 and 1697 tenths of a millimeter.

5.1. Kriging comparison. Approximately 1530 stations out of 5873 were not
used in the regression analysis due to not meeting the 10% missing criterion or
nonconvergence of the numerical algorithm used in estimating the GEV parame-
ters. To investigate the effectiveness of accounting for the spatial dependence be-
tween stations, universal kriging is performed to obtain predictions at the unused
sites using the site latitude, longitude, and elevation values. The kriging is per-
formed using the R function Krig from the fields package [Fields Development
Team (2006)], using an exponential covariance structure with range parameter 155
miles [based on mid-level range of 250 km used by Groisman et al. (2005)]. The
kriged values are compared to the predictions obtained through applying the cubic
model.

The extreme precipitation levels at the unused stations are very similar for
the cubic model predictions and kriged predictions [see Figure A.5, Mannshardt-
Shamseldin et al. (2010)]. This suggests that the cubic model has accounted for
the spatial correlation between stations with similar effectiveness as a more costly
run-time kriging analysis. Looking across just the unused stations at the ratio of
kriged to cubic model predictions, it can be seen that the kriged and modeled return
levels produce very similar predicted values.

5.2. Future vs present CCSM returns. The spatial pattern is consistent across
present and future model run predictions of 100-year return values. However, the
scale is different—an increased scale is seen for the future predictions in Figure 6.
The standard errors for the ratio were computed using the delta method and range
between 0.017 and 3.241 tenths of a millimeter. It should be noted that a few of the

FIG. 6. Present and future return levels: Cubic Models of CCSM: Present return values for the
current time period 1970–1999, Max = 2016 (left plot); and Future return values for the time period
2070–2099, Max = 2318 (right plot).
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FIG. 7. Ratio future to present return levels: Ratio of predicted point-level return values for the
future run (2070–2099) to the predicted point-level return values for the control run (1970–1999) for
the CCSM grid cell data (top left). Ratio of the cubic model outputs (top right). Indicator of stations
where ratio is significantly different from 1.0 (0.05 level). Bottom left shows the indicators of the
scaled return value ratios, bottom right shows indicators of log-scale ratio. “1” (green) indicates no
significant difference, “0” (blue) indicates ratio is significantly different from 1.0.

standard errors for the ratio seemed unrealistically large, but 95% were less than
0.444 tenths of a millimeter.

We calculate the ratio of predicted point-location return values for the present-
day run to the predicted return values for the future run. Figure 7 displays these
results. Figure 7 also shows the ratio of predicted point-level return values for the
future run to the predicted point-level return values for the control run for log-scale
model outputs (top right). The standard errors of the ratios on both the return-level
scale and the log-scale show a strong spatial trend and indicate the highest levels
of variability in the Mid-Northwest. Generally, there is consistency between the
return values, that is, many of the ratios are near 1.0. However, indicated are several
coastal areas where future predictions are up to twice the magnitude of the current
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predictions, including the Southeast Coast and the Pacific Northwest. In contrast,
in-land areas of the South East, East North Central, and Central regions show a
predicted decrease. In order to assess the significance of the increase or decrease
in return values suggested by the ratios, prediction intervals are calculated. The
bottom plots of Figure 7 display an indicator of stations where ratio is significantly
different from 1.0 at the 0.05 level. Note that a significant difference from 1.0 is
seen in the Northwest coast, an area of the east coast, an area in southern Texas, and
the Southeast regions—which indicated an increase or decrease in return values in
the top plots of Figure 7.

6. Discussion. The analysis in this paper shows that for rain gauge and cli-
mate model precipitation extremes, modeling the tail of the GEV distribution pro-
duces stable GEV parameter estimates and model coefficients within seasons and
across 95% and 97% thresholds. In addition, we were able to find regression re-
lationships between the rain gauge (station-level) and climate model (grid-level)
extremes. 100-year return values are successfully modeled by season at the point
(station) level using grid-level return values, station elevation, and station latitude
and longitude coordinates. For both the NCEP and CCSM return values, the re-
gression relationship between return values based on gridded and point-location
data is best expressed through a cubic model in latitude and longitude. This in turn
allows us to compute projected future return values for point-location data based
on the output of a climate model.

There is evidence of increasing extremes over time, as seen in the CCSM grid
cell data along several coastal areas where the future predictions are up to two
times the magnitude of the current modeled precipitation extremes.

The advantage of the present approach is its simplicity, requiring no more than a
combination of two well-established statistical techniques, GEV analysis to calcu-
late the return values and regression to relate the point-location and gridded values.
An alternative approach would be to proceed more directly through spatial models
of daily precipitation fields. Coles and Tawn (1996) developed such a relation-
ship using max-stable processes, which are especially appropriate in the context
of extremes. Later Sansó and Guenni (2000, 2004) derived a spatial model for
precipitation using a thresholded Gaussian process to accommodate the fact that
precipitation data includes both zero and nonzero values. Although the Sansó–
Guenni papers were not focussed specifically on extremes, it is possible that their
models, or some variant of them, could also effectively explain the spatial patterns
of extremes. Our major reason for not pursuing these approaches here is that they
would require much more intense computations to be applied to such a large data
set as the entire precipitation record of the continental United States. Neverthe-
less, we believe that attempting to unify our present approach with one based on a
stochastic model for precipitation is an important topic for future work.
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SUPPLEMENTARY MATERIAL

Appendix of Graphics (DOI: 10.1214/09-AOAS287SUPP; .pdf). The appen-
dix provides supplemental graphics, which are referenced in the manuscript as A.x.
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