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DETECTING AND HANDLING OUTLYING TRAJECTORIES IN
IRREGULARLY SAMPLED FUNCTIONAL DATASETS

BY DANIEL GERVINI1

University of Wisconsin–Milwaukee

Outlying curves often occur in functional or longitudinal datasets, and
can be very influential on parameter estimators and very hard to detect vi-
sually. In this article we introduce estimators of the mean and the principal
components that are resistant to, and then can be used for detection of, out-
lying sample trajectories. The estimators are based on reduced-rank t-models
and are specifically aimed at sparse and irregularly sampled functional data.
The outlier-resistance properties of the estimators and their relative efficiency
for noncontaminated data are studied theoretically and by simulation. Appli-
cations to the analysis of Internet traffic data and glycated hemoglobin levels
in diabetic children are presented.

1. Introduction. In many statistical problems the collected data consists of
samples of stochastic processes rather than scalars or vectors. Typical examples
include human growth curves and circadian rhythms in medicine, time-dependent
gene expression profiles in genomics, and spectral curves in chemometrics. Other
examples and an overview of the related statistical methodology can be found in
Ramsay and Silverman (2005).

As with univariate or multivariate samples, the presence of atypical observa-
tions in functional samples tends to complicate the statistical analysis. By atypical
observations we mean atypical curves, not just isolated points. To illustrate the
problem, consider the following two examples. The first one is a problem on In-
ternet traffic analysis. The data, previously analyzed by Zhang et al. (2007), was
collected at the main Internet link of the University of North Carolina campus net-
work during seven consecutive weeks. The traffic is measured in packet counts,
every half an hour; the logarithm of the data for the 35 week days is shown in Fig-
ure 1(a). Most trajectories, while noisy, show a clear daily pattern: the traffic rises
sharply between 7 and 9 a.m., remains at approximately the same level between
9 a.m. and 4 p.m., and goes down again between 4 and 7 p.m. However, there is a
clearly atypical curve, a day with unusually low traffic, and another one less con-
spicuous but still atypical, corresponding to a day when the traffic peaked earlier
than usual in the morning. The problems created by these atypical curves, and how
to deal with them, will be discussed more extensively in Section 6.
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FIG. 1. Internet traffic data. Trajectories for (a) 35 week days and (b) 14 weekend days.

The second example is more complicated. Figure 2 shows trajectories of gly-
cated hemoglobin levels for diabetic children who underwent treatment at the
Children’s Hospital of the University of Zurich. The level of glycated hemoglobin
(abbreviated HbA1c) is used to assess the effectiveness of therapy in patients with
type-I diabetes mellitus, and to study the long-term effect of the disease on physi-
cal and intellectual development [see, e.g., Schoenle et al. (2002)]. One trajectory
is clearly out of control in Figure 2(a), but besides that, it is hard to discern any
systematic patterns in the data. To complicate the problem, HbA1c levels are mea-
sured at irregular time points, with as few as 2 observations for some individuals.
This makes individual smoothing of the trajectories (which would have eased vi-

FIG. 2. Child diabetes data. Trajectories of HbA1c levels for (a) 73 females and (b) 66 males.
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sualization) very hard or even impossible. This example will also be discussed in
more detail in Section 6, but it is clear that atypical curves cannot always be de-
tected by visual inspection, and one must rely on methods that can handle outlying
curves automatically.

These examples also show that outliers, in the functional sense, are not simply
the result of misrecorded data or extreme noise. They correspond to individuals
that, for some reason, do not follow the pattern of the majority of the data, and
often deserve to be studied more carefully rather than simply discarded. However,
these atypical curves must be downweighted at the estimation step, or they may
lead to erroneous conclusions for the rest of the population.

This article is organized as follows. Section 2 frames the discussion in a more
rigorous statistical setting, as an estimation problem for stochastic processes. Sec-
tion 3 proposes an outlier-resistant estimation method, and Sections 4 and 5 dis-
cuss their asymptotic and finite-sample properties. Section 6 presents a more thor-
ough analysis of the above examples. Available as supplementary material are a
Technical Report with proofs and mathematical derivations, and Matlab programs
implementing the proposed estimators.

2. Functional data models. The data in the examples above and in similar
longitudinal studies can be thought of as discrete observations of continuous-time
stochastic processes (or, more generally, of stochastic processes depending on a
continuous variable). Usually, the data is observed with random noise:

xij = Xi(tij ) + εij , j = 1, . . . ,mi, i = 1, . . . , n,(1)

where {Xi(t)} are i.i.d. trajectories of the stochastic process of interest, {tij } are the
time points where the trajectories are measured, and {εij } are independent random
errors. It is known [see, e.g., Gohberg, Goldberg and Kaashoek (2003)] that a sto-
chastic process X ∈ L2([a, b]) with E(‖X‖2) < ∞ admits the expansion (known
as Karhunen–Loève decomposition)

X(t) = μ(t) +
∞∑

k=1

ykφk(t),(2)

where μ(t) = E{X(t)}. The φks form a nonrandom orthonormal basis of L2([a, b])
and the yks are uncorrelated random variables with zero mean and finite variance.
If ρ(s, t) = cov{X(s),X(t)}, we have the representation

ρ(s, t) =
∞∑

k=1

λkφk(s)φk(t),(3)

where λk = var(yk). If ρ(s, t) is continuous, then the φks are also continuous and
the series (3) converges uniformly and absolutely. This representation implies that
λk is an eigenvalue of ρ with eigenfunction φk , so the φks are called “principal
components” and the yks “component scores,” in analogy with multivariate analy-
sis.
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To a large extent, the stochastic process X(t) is characterized by μ(t) and
ρ(s, t). Estimating these functions is challenging when the time grid {tij } is ir-
regular or sparse, because it makes individual smoothing of the trajectories very
hard or even impossible (mi may be as low as 1 or 2 for some individuals). Some
authors that have addressed this problems are Staniswalis and Lee (1998), Yao,
Müller and Wang (2005), James, Hastie and Sugar (2000), Gervini (2006), and
Yao and Lee (2006). These estimators, however, cannot handle outlying curves
like those in the examples of the Introduction. Estimators that do handle outly-
ing curves were proposed by Locantore et al. (1999), Fraiman and Muniz (2001),
Cuevas, Febrero and Fraiman (2007), and Gervini (2008), but they can only be
applied to individually smoothed trajectories. Estimators that are able to han-
dle outlying curves and can be computed on sparse and irregularly sampled data
have not yet been proposed. We present one possible approach in the next sec-
tion.

3. Reduced-rank t-models. The eigenvalues λk in (3) typically decrease to
zero very fast, because

∑∞
k=1 λk < ∞. Therefore, only the leading terms in (2) are

of practical relevance, and we can assume

X(t) = μ(t) +
d∑

k=1

ykφk(t)(4)

for some d , where λ1 ≥ · · · ≥ λd > 0. Smoothness of μ and the φks can be built
into the model by assuming they are spline functions. That is, we assume μ(t) =
θT b(t) and φk(t) = ηT

k b(t), where b(t) ∈ R
p is a spline basis. The observational

model implied by (1) and (4) can be succinctly expressed as

xi = Biθ + BiH�1/2zi + σεi , i = 1, . . . , n,(5)

where Bi = [bk(tij )](j,k), H = [η1, . . . ,ηd ], � = diag(λ1, . . . , λd), zi is the vector
of standardized component scores and εi are the standardized measurement errors.
If we assume a heavy-tailed distribution for (zi ,εi ), outlier-resistant estimators of
μ and the φks are obtained automatically. The reason is that, informally speaking,
heavy-tailed models “expect” extreme observations, which are then downweighted
by the maximum likelihood estimation process.

Specifically, we assume that (zi ,εi ) has a joint multivariate t distribution with
ν degrees of freedom, location parameter 0 and scatter matrix Id+mi

, which we
denote by tν(0, Id+mi

). Then xi ∼ tν(Biθ,�i ), with �i = BiH�HT BT
i + σ 2Imi

.
The maximum likelihood estimating equations for this model, which are derived
in the Technical Report, are the following:

n∑
i=1

(
ν + mi

ν + si

)
BT

i �−1
i (xi−Biθ) = 0,(6)

(Id−JHHT )Snηk = 0, k = 1, . . . , d,(7)

ηT
k Snηk = 0, k = 1, . . . , d,(8)
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−1

2

n∑
i=1

tr(�−1
i ) + 1

2

n∑
i=1

(
ν + mi

ν + si

)
(xi−Biθ)T �−2

i (xi−Biθ) = 0,(9)

where

Sn =
n∑

i=1

{
−BT

i �−1
i Bi +

(
ν + mi

ν + si

)
BT

i �−1
i (xi−Biθ)(xi−Biθ)T �−1

i Bi

}
,

si = (xi−Biθ)T �−1
i (xi−Biθ) and J = [∫ bi(t)bj (t) dt](i,j). The best linear pre-

dictor of zi is E(zi |xi ) = �1/2HT BT
i �−1

i (xi−Biθ), and ẑi is obtained by replacing
the model parameters with their estimators.

What makes these estimators robust are the weights (ν + mi)/(ν + si) that ap-
pear in equations (6)–(9). Since si is the squared Mahalanobis distance between
xi and the expected trajectory Biθ , atypical trajectories are downweighted and do
not seriously affect the estimators. Downweighting is strongest for the Cauchy
model (ν = 1) and becomes less pronounced as ν increases. When ν → ∞,
(ν + mi)/(ν + si) → 1 and one obtains the estimating equations for the Normal
reduced-rank model [James, Hastie and Sugar (2000)], which gives equal weight
to all sample curves and then lacks robustness.

These estimators can be easily computed via the EM algorithm, which is de-
rived in detail in the Technical Report. The recursive steps are the following: given

current estimates θ̂
old

, �̂
old

(where � = H�1/2) and (σ̂ 2)old, the updates are

θ̂
new =

{
n∑

i=1

(
ν + mi

ν + ŝold
i

)
BT

i Bi

}−1 n∑
i=1

(
ν + mi

ν + ŝold
i

)
BT

i (xi−Bi�̂
oldẑold

i ),

vec(�̂
new

) =
[

n∑
i=1

{
(V̂old

i )−1 +
(

ν + mi

ν + ŝold
i

)
ẑold
i (ẑold

i )T
}

⊗ BT
i Bi

]−1

×
n∑

i=1

(
ν + mi

ν + ŝold
i

)
(ẑold

i ⊗ BT
i )(xi−Bi θ̂

old
),

(σ̂ 2)new = 1∑n
i=1 mi

[
n∑

i=1

(
ν + mi

ν + ŝold
i

)
‖xi − Bi θ̂

old − Bi�̂
old

ẑold
i ‖2

+
n∑

i=1

trace{Bi�̂
old

(V̂old
i )−1(�̂

old
)T BT

i }
]
,

where ŝi and ẑi are as before, and Vi = Id + �T BT
i Bi�/σ 2. To obtain Ĥ and

�̂ from �̂, we find the spectral decomposition of �̂
T

J�̂, say, UDUT with U
orthogonal and D diagonal, and set �̂ = D and Ĥ = �̂UD−1/2.

As it is well known, the EM algorithm can take a large number of iterations to
converge; but for our estimators each iteration is very fast to compute. Most of the
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computing time (in our Matlab implementation) is taken up by the recomputation
of the spline basis matrix Bi for each i on each iteration, so the computing time
grows mostly with n and only marginally with d , p or the mis. To give an idea of
the computing times involved, each run of the EM algorithm for the simulated data
in Section 5, with n = 100, takes approximately 15 seconds on a common laptop
computer with a 2.00GHz Intel Pentium processor.

In practice, the model dimension d is not known a priori, so the computation of
the estimators is done in a sequential way. We recommend to begin with a mean-
only model (d = 0), using θ̂ = 0 and σ̂ 2 = ∑

i,j x2
ij /

∑
i mi as initial estimators

for the EM iterations. Then proceed by adding one principal component at a time,
using the estimators of the previous (d −1)-dimensional model as initial estimators
for the d-dimensional model. The final dimension d0 can be chosen subjectively
or objectively. Subjective approaches include choosing a d that yields a small ratio
λ̂d/

∑d
k=1 λ̂k or a small value of λ̂d compared to the noise variance σ̂ 2. Objective

model selection methods can be based on the maximization of the penalized log-
likelihood

n∑
i=1

logf (xi |θ̂ , Ĥ, �̂) − cndf,(10)

where f (xi |θ̂ , Ĥ, �̂) is the tν(Bi θ̂ , �̂i) density evaluated at xi , df are the degrees of
freedom of the model, and cn is a constant. Concretely, cn = 1 defines the AIC cri-
terion and cn = logn/2 the BIC criterion. This approach has been used in the func-
tional data context [Yao, Müller and Wang (2005)] for normally distributed data
only, but Shen, Huang and Ye (2004) justify their use for exponential distributions
in general. The degrees of freedom of the model are the number of parameters
minus the number of orthonormality restrictions. Another objective method that
can be used, although in practice it tends to underperform (10), is cross-validation.
Cross-validation would maximize

n∑
i=1

logf
(
xi |θ̂ (−i), Ĥ(−i), �̂(−i)

)
,

where θ̂ (−i), Ĥ(−i) and �̂(−i) are the estimators computed without observation xi .
Another aspect that is rather subjective is the choice of basis functions for μ(t)

and φk(t), particularly the knot placement and quantity. If a large number of knots
is used, placement becomes less important but regularization is necessary. This can
be accomplished by adding roughness penalty terms of the form α

∫ {μ′′(t)}2 dt

and αk

∫ {φ′′
k (t)}2 dt to the log-likelihood function (the resulting modifications of

the EM algorithm are straightforward, since these terms are quadratic in the para-
meters). Selection of the smoothing parameters α and αk can be done, again, either
subjectively or objectively. The penalized log-likelihood approach, however, is not
as straightforward to implement as before, because the degrees of freedom of the
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model are not as easy to calculate when the fitted values x̂i are not linear functions
of the data [Ye (1998); Efron (2004)]. Cross-validation, on the other hand, can
be implemented as easily as usual despite its shortcomings. Nevertheless, since θ

and the ηks are model parameters common to all curves, the estimators θ̂ and {η̂k}
“borrow strength” across individuals and then the choice of smoothing parameters
is less problematic than if each curve were smoothed individually. This is based on
our experience with spline smoothing rather than on formal mathematical results,
although for kernel smoothers Yao, Müller and Wang (2005) and Kneip (1994)
have indeed established rates of convergence of the estimators and the bandwidths
that depend fundamentally on the number of curves n rather than the number of
observations per curve mi .

4. Asymptotic properties. The distributional assumptions made in Section 3
were just working assumptions to derive robust estimators of μ(t) and the φk(t)s.
In this section we will study the consistency of the estimators under broader condi-
tions. We will also study their sensitivity to outliers, as quantified by the influence
function.

To simplify, let us assume that the individual time grids t1, . . . , tn are i.i.d. real-
izations of a random vector t ∈ R

m, so mi = m for all i. Let w = (t,x) and let us
collect all model parameters in a single vector ξ = (θ,η1, . . . ,ηd, λ1, . . . , λd, σ 2).
The estimating equations (6) to (9) can be expressed as a single system of equa-
tions

∑n
i=1 ψ(wi , ξ̂) = 0 for an appropriate function ψ(w, ·) : R(p+1)(d+1) →

R
(p+1)(d+1). Estimators of this type are called M-estimators, or sometimes

Z-estimators [Maronna, Martin and Yohai (2006), Chapter 3; Van der Vaart (1998),
Chapter 5]. For such estimators the notion of Fisher consistency is useful. Suppose
w = (t,x) follows model (5) with parameter ξ = ξ0, and let F0 be the resulting
distribution of w. Let ξ = ξ(F0) be the solution to the eqnarray EF0{ψ(w, ξ)} = 0.
In principle, ξ(F0) need not be equal to the true model parameter ξ0; if it is,
the estimator is said to be Fisher consistent [Maronna, Martin and Yohai (2006),
page 67]. It turns out that under some regularity conditions, M-estimators ξ̂ con-
verge in probability to ξ(F0) as n goes to infinity; then, under those regularity
conditions, Fisher consistency implies the usual consistency [Van der Vaart (1998),
Theorem 5.9].

The next theorem shows that θ̂ and the η̂ks are Fisher consistent under broad
conditions, whereas σ̂ 2 and the λ̂ks are off by a common factor [this is typical of
M-estimators of scale parameters; see Maronna, Martin and Yohai (2006), Chap-
ter 6.12].

THEOREM 1. If w = (t,x) follows model (5) with parameter ξ0, and (z,ε) has
a joint spherical distribution, then ξ(F0) = (θ0,η01, . . . ,η0d, β0λ01, . . . , β0λ0d,

β0σ
2
0 ) with β0 > 0 a factor that depends on the distribution of (z,ε) and on ν but

not on the model parameter ξ0.
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Theorem 1 implies that the estimators of μ and the φks derived under a tν dis-
tributional assumption on (z,ε) are actually Fisher consistent under any spherical
distribution of (z,ε), including the Normal distribution or a tν∗ distribution with
ν∗ �= ν. The estimators of σ 2 and the λks, although not Fisher-consistent, are off
by a common factor β0, which implies that the ratios λ̂d/σ̂ 2 and λ̂d/

∑d
k=1 λ̂k are

Fisher-consistent.
Now we turn our discussion to the outlier sensitivity of the estimators. Outlier

sensitivity can be measured by the influence function [Maronna, Martin and Yohai
(2006), Chapter 3], which is defined as

IF(w; ξ̂ ,F0) = lim
ε↘0

1

ε

{
ξ
(
(1 − ε)F0 + εδw

) − ξ(F0)
}
,

where δw is the point-mass distribution at w. The gross-error sensitivity of ξ̂ is
defined as γ ∗ = supw ‖ IF(w; ξ̂ ,F0)‖. Note that for a small contamination propor-
tion ε, the asymptotic bias caused by δw is approximately ε IF(w; ξ̂ ,F0). There-
fore, if γ ∗ < ∞, the bias is bounded regardless of the location of the outliers and
the estimator ξ̂ is said to be locally robust.

For regular M-estimators, it can be shown that IF(w; ξ̂ ,F0) = −M−1ψ(w,

ξ(F0)), where M = EF0{∂ψ(w, ξ)/∂ξT |ξ=ξ(F0)} [Maronna, Martin and Yohai

(2006), Chapter 3]. Then γ ∗ ≤ λ
−1/2
min (MMT ) supw ‖ψ(w, ξ(F0))‖, where λmin(A)

denotes the smallest eigenvalue of A, so γ ∗ < ∞ as long as M is invertible and
ψ(w, ξ) is bounded in w. This is true for our estimating functions ψ , so the
t-model estimators ξ̂ are locally robust.

Influence functions are also useful for the computation of asymptotic variances.
Under appropriate regularity conditions,

√
n(ξ̂ − ξ(F0)) converges in distribution

to a N(0,V) with V = E{IF(w; ξ̂ ,F0) IF(w; ξ̂ ,F0)
T } [Van der Vaart (1998), Theo-

rem 5.21]. This result is useful, for instance, to derive asymptotic confidence bands
for μ(t), provided one can obtain a more explicit expression for the p×p block of
V that corresponds to the asymptotic variance of θ̂ . In some cases this is possible,
as the next theorem shows.

THEOREM 2. If w = (t,x) follows model (5) and (z,ε) has a joint spherical
distribution, then M has a block structure

M =
[

M11 0
0 M22

]

with M11 ∈ R
p×p given by

M11 = EF0

{
g(w)BT (t)

1

β0
�−1(t)B(t)

}
,

where

g(w) = 2

m

(ν + m)s(w)/β0

{ν + s(w)/β0}2 − ν + m

ν + s(w)/β0
,
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B(t) = [bk(tj )](j,k), �(t) = B(t)H0�0HT
0 BT (t) + σ 2

0 Im, s(w) = {x − μ0(t)}T ×
�−1(t){x − μ0(t)} and μ0(t) = B(t)θ0. Furthermore,

IF(w; θ̂,F0) = −M−1
11

(
ν + m

ν + s(w)/β0

)
BT (t)

1

β0
�−1(t){x − μ0(t)}.

From Theorem 2 we see that the asymptotic covariance matrix of θ̂ has the form
M−1

11 AM−1
11 , and due to the block structure of M, θ̂ is asymptotically independent

of {η̂k}, {λ̂k} and σ̂ 2. The matrices M11 and A can be estimated by

M̂11 = 1

n

n∑
i=1

ĝiBT
i �̂

−1
i Bi

and

Â = 1

n

n∑
i=1

(
ν + m

ν + ŝi

)2

BT
i �̂

−1
i (xi − μ̂)(xi − μ̂)T �̂

−1
i Bi ,

where

ĝi = 2(ν + m)ŝi

m(ν + ŝi )2 − ν + m

ν + ŝi
.

Note that, by Theorem 1, �̂i and ŝi are consistent estimators of s(wi)/β0 and
�−1(ti )/β0, so M̂−1

11 ÂM̂−1
11 is a consistent estimator of M−1

11 AM−1
11 .

5. Simulation study.

5.1. Assessment of parameter estimators. We studied the finite-sample behav-
ior of the estimators by simulation. We were mainly interested in the relative effi-
ciency of the estimators for normally distributed data and in their bias under outlier
contamination. Three estimators were considered: the maximum likelihood esti-
mator for (a) the Normal model [James, Hastie and Sugar (2000)], (b) the Cauchy
model, which is a t-model with ν = 1, and (c) the t-model with ν = 5. As spline
basis we chose cubic splines with five equidistant knots. We considered different
simulation scenarios (described below) but only part of the results are reported
here (Table 1). The rest can be found in the Technical Report.

To assess the efficiency of the estimators, we simulated data from the two-
component model

xij = μ(tij ) +
2∑

k=1

zik

√
λkφk(tij ) + σεij ,(11)

with μ(t) = 0 and φk(t) = √
2 sin(kπt), for t ∈ [0,1]. The component scores

zik and the random errors εij were independent N(0,1) and λ1 = 1, λ2 = 0.5,
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TABLE 1
Simulation results. Root mean squared errors of different estimators for noncontaminated normal

data and outlier-contaminated data

No
contam.

Endogenous contam. Exogenous contam.

Estim. Model 10% 20% 30% 10% 20% 30%

μ̂ Normal 0.142 0.427 0.819 1.205 0.367 0.703 1.040
Cauchy 0.169 0.190 0.247 0.330 0.162 0.184 0.212

t5 0.159 0.183 0.254 0.365 0.153 0.179 0.224

φ̂1 Normal 0.142 1.091 1.331 1.363 0.942 1.265 1.290
Cauchy 0.165 0.299 0.627 1.006 0.158 0.189 0.220

t5 0.163 0.338 0.673 1.087 0.152 0.183 0.232

σ 2 = 0.25. Three designs were considered for the tij s: (i) m = 20 fixed uniformly
spaced points in [0,1], (ii) m = 20 random points (which vary from curve to curve)
with uniform distribution in [0,1], and (iii) mi random points with uniform distri-
bution in [0,1], where m1, . . . ,mn was a sample from a Poisson random variable
with mean 15. The third design is the one that best resembles sparse and irregu-
larly observed data. As sample sizes we took n = 50, n = 100 and n = 200. Each
sampling situation was replicated 500 times. Root mean squares of ‖μ̂ − μ‖ and
‖φ̂1 − φ1‖ are given in Table 1, for grid design (ii) and sample size n = 100.
The relative behavior of the estimators is similar for the other designs and sample
sizes, as can be seen in the more detailed results shown in the Technical Report. We
see that the t-model estimators are generally less efficient than the Normal-model
estimators, as expected, but the loss of efficiency is minimal. We also note that the
estimators μ̂ were obtained by fitting a mean-only model to the simulated data,
whereas the estimators φ̂1 where obtained by fitting a one-component model to the
data; therefore, the models were always underspecified, but this did not seem to
affect the consistency of the estimators (the boxplots in the Technical Report show
that the errors decrease as n increases).

To assess the robustness of the estimators, two types of outliers were consid-
ered; we call them endogenous and exogenous. Endogenous outliers are curves
that belong to the space spanned by {φ1, φ2} just like the rest of the data, only
that the component scores zi follow a different distribution. Exogenous outliers,
on the contrary, are curves that do not belong to the space spanned by {φ1, φ2}. In
these simulations we generated exogenous outliers by taking linear combinations
of φ1, φ2 and φ3(t) = c{t (1 − t)}1/2 sin{2π(1 + 2(9−4k)/5)/(t + 2(9−4k)/5)} with
k = 5 (the so-called “Doppler function,” with c such that ‖φ3‖ = 1). Three contam-
ination proportions were considered for the scenarios described below: ε = 0.10,
ε = 0.20 and ε = 0.30. The time grid was generated following the uniform ran-
dom design (ii), and the sample size was n = 100. Each scenario was replicated
500 times.
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Let us first examine the robustness of μ̂. Endogenous outliers were generated
by replacing εn component scores zi1 with a large constant K (so the outlying
curves were virtually identical to K

√
λ1φ1), whereas exogenous outliers were gen-

erated by adding K
√

λ1φ3 to εn sample curves. We considered two contaminating
constants, K = 4 and K = 8, but only the results for K = 4 are reported in Ta-
ble 1 (the results for K = 8 are given in the Technical Report). Since the “true”
mean for these samples are εKφ1 and εKφ3, respectively, because λ1 = 1, the
root mean squared errors should be approximately εK for nonrobust estimators.
This is exactly what we see in Table 1 for the Normal-model estimator. In contrast,
t-model estimators show remarkably low biases, even for contamination propor-
tions as high as 30%.

To study the robustness of φ̂1, endogenous outliers were generated by replac-
ing εn/2 scores zi2 with K

√
λ2 and εn/2 with −K

√
λ2; exogenous outliers were

generated by adding K
√

λ1φ3 to εn/2 sample curves and subtracting the same
quantity to other εn/2 sample curves. As before, we used K = 4 and K = 8 but
only report the case K = 4 here, since the other results are similar. Note that these
symmetric contaminations affect φ̂1 but do not affect μ̂, because they alter the
covariance structure without changing the mean. In fact, the endogenously conta-
minated data follows model (11) with λ∗

1 = (1−ε)λ1 and λ∗
2 = (1−ε)λ2 +ελ2K

2,
so λ∗

2 can be actually larger than λ∗
1 if K is big enough, in which case we expect the

root mean squared error of a nonrobust estimator to be close to ‖φ2 − φ1‖ = √
2.

This is what we observe in Table 1. The exogenously contaminated data also fol-
lows model (11) with three components, but the components are not φ1, φ2 and φ3

(because they are not orthogonal). We see in Table 1 that endogenous outliers have
a more deleterious effect on the estimators than exogenous outliers. In fact, the
t-model estimators are practically unaffected by exogenous outliers. Under en-
dogenous contaminations, the performance of the t-model estimators deteriorates
for large contamination proportions, although they still outperform the Normal-
model estimators.

Overall, the conclusion from this Monte Carlo study is that t-model estima-
tors are highly resistant to outliers, even for relatively large contamination pro-
portions, and have a high relative efficiency for Normal data. Given that their
computational complexity is comparable to that of Normal-model estimators, we
think that they are a practical and safer alternative. In particular, we recom-
mend the use of Cauchy-model estimators, since they are the most robust in the
t family and are not much less efficient than t5-model estimators for Normal
data.

5.2. Assessment of model selection criteria. We also ran a Monte Carlo study
to evaluate the performance of the AIC and BIC criteria for selection of the model
dimension d . We generated data from the two-component model (11) and from a
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symmetrically contaminated model with exogenous outliers, as explained above.
Since exogenous contamination introduces a spurious third direction of variability,
the expected effect on the AIC and BIC criteria is an overestimation of the model
dimension.

We compared two types of estimators: the Normal-model estimators and the
Cauchy-model estimators. As before, we chose cubic splines with five equidistant
knots as spline basis; then p = 9 and, for the true model with d = 2, the degrees
of freedom are 27. We considered two sample sizes, n = 20 and n = 60 (note
that in the former case n is less than the degrees of freedom of the true model).
The models were fitted in a sequential way, as suggested in Section 3, from d = 0
to d = 4. Each sampling situation was replicated 300 times.

The results are summarized in Table 2. We show two outputs: the percentage of
the samples for which the right model is selected and the percentage of the samples
for which the next model (d = 3) is selected; the remaining percentage would cor-
respond to the four-dimensional model, since we observed that models with d < 2
were never selected. For noncontaminated data, it is clear that the criteria have
no trouble selecting the right model, neither for Normal nor for Cauchy estima-
tors. For low contamination levels (ε = 0.10) the AIC and BIC based on Cauchy
estimators select the right model in the vast majority of cases, with the BIC crite-
rion being clearly superior; the nonrobust Normal estimators, in contrast, almost
never led to the right choice of model. For larger contamination proportions, even
the robust estimators break down; but even then we note that the BIC based on
Cauchy-model estimators outperforms the alternatives, since it selects the slightly
overspecified model d = 3 most of the time and very rarely leads to the worst
choice d = 4, in contrast to the other methods. All things considered, we think the
BIC based on Cauchy estimators is a recommendable criterion for selection of the
number of components.

TABLE 2
Simulation results. Percentage of times AIC and BIC select a two-component model and a

three-component model, for Normal and Cauchy estimators and several contamination proportions

Contamination proportion

n Method 0% 10% 20% 30%

20 AIC-Nor (99,1) (1,74) (3,65) (6.3,62.3)

BIC-Nor (99.7,0.3) (1,79.3) (4.7,71.3) (11.3,66.3)

AIC-Cau (98,2) (74,24.3) (12.3,83.7) (0,87.3)

BIC-Cau (99.7,0.3) (84.7,15.3) (20.7,78) (0.3,94.7)

60 AIC-Nor (100,0) (0.3,60.7) (0.3,53.7) (1.3,62)

BIC-Nor (100,0) (0.3,62.3) (0.3,55.3) (2,66)

AIC-Cau (100,0) (79.3,20) (0.3,76) (0,67.7)

BIC-Cau (100,0) (89.3,10.7) (1,94.7) (0,92)
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6. Examples.

6.1. Internet traffic. Accurate modeling of Internet traffic data is essential for
an efficient allocation of computational resources. In this section we show that
just a couple of atypical curves can lead to seriously misleading results. The data,
previously analyzed by Zhang et al. (2007), was collected at the main Internet
link of the University of North Carolina during seven consecutive weeks (from
June 9 to July 25, 2003). The traffic is measured in packet counts, every half hour.
The logarithm of the data for week days is shown in Figure 1(a) and for weekend
days in Figure 1(b).

Although the data is very noisy, we see that the trajectories follow a regular
pattern, which is different for week days than for weekends. Here we analyze only
the 35 week days. There is a very clear outlier in Figure 1(a), a curve that actu-
ally looks like a weekend trajectory. This curve corresponds to the Fourth of July.
A more subtle atypical curve corresponds to June 27, the second day of classes
and the last day for late registration for the Second Summer Session. That day the
traffic peaked two hours earlier than usual, and also decreased earlier than usual in
the afternoon.

We estimated the mean and the first two principal components using Normal-
model and Cauchy-model estimators based on cubic splines with 10 equi-
spaced knots. The results are shown in Figure 3. Rather than plotting the prin-
cipal components themselves, we show their effect on the mean, by plotting μ̂

plus/minus a constant times φ̂k . This makes interpretation easier. We see that the
mean estimators are similar but the principal components are completely differ-
ent. The Normal-model estimator of the first component is an amplitude effect
(above/below the mean, but parallel to it) and the second component is a shape
component (traffic higher than the mean until 3 p.m. and lower than the mean after-
ward). The first component is clearly dominant, since λ̂1 = 0.329 and λ̂2 = 0.085.
It is very suspicious that these components essentially mimic the two outliers; in
fact, July 4 has the largest first component score and June 27 the largest second
component score.

On the other hand, the Cauchy-model estimators of the components explain am-
plitude variability at the end of the day (the first component) and at the beginning
of the day (the second component), with the total variability roughly equally split
(λ̂1 = 0.176 and λ̂2 = 0.123). Of course, the fact that the two methods produce dif-
ferent estimators does not automatically imply that the Cauchy-model estimators
are better, but a residual analysis confirms this. Cauchy-model estimators produce
smaller residual norms ‖xi − x̂i‖ than Normal-model estimators for 25 of the 35
observations. The median residual norm for the Cauchy fit is 0.556, while for the
Normal fit it is 0.592. Figure 4 shows individual predictors and residuals; undoubt-
edly, Cauchy-model estimators offer an overall better fit (except for the Fourth of
July outlier). Normal-model estimators show a particularly poor fit for the Internet
traffic between 0 and 6 a.m.
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FIG. 3. Internet traffic data. Estimators of the mean (—–) and the mean plus (− − −) and mi-
nus (− · −) a constant times the principal component, for Normal-model estimators [(a), (c)] and
Cauchy-model estimators [(b), (d)] of the first [(a), (b)] and second [(c), (d)] principal components.

6.2. Child diabetes study. Glycated hemoglobin (HbA1c) levels are often used
as a measure of average plasma glucose concentration over certain periods of time.
Figure 2 shows trajectories of HbA1c levels for diabetic children who underwent
treatment at the Children’s Hospital of the University of Zurich. The profiles are
very irregularly sampled and noisy. For girls, the minimum number of observations
per trajectory is 2, the median 33 and the maximum 55; for boys, the minimum
number of observations per trajectory is 2, the median 33 and the maximum 56.
For such irregular data individual smoothing is impractical, even impossible for
the shortest trajectories. The presence of at least one outlying curve is plain to see
in Figure 2(a), although it is hard to tell by visual inspection if there are any other
outliers.

We estimated the mean and the principal components for each sex, using Nor-
mal and Cauchy maximum likelihood estimators. Cubic splines with 6 equispaced
knots were used as basis functions. The BIC based on Normal-model estimators
selects a three-component model for both sexes, while the BIC based on Cauchy-
model estimators selects a four-component model; however, in the latter case λ̂4 is
very small compared to σ̂ 2 and the other λ̂s, so we settled for a three-component
model. Figure 5 shows the estimators of the mean and the two leading components
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FIG. 4. Internet traffic data. Estimated trajectories [(a), (b)] and residuals [(c), (d)] from Nor-
mal-model estimators [(a), (c)] and Cauchy-model estimators [(b), (d)].

(the third one is omitted for better visibility). For males, both methods produce
similar estimators, but for females the differences are striking. The Normal-model
estimators not only overestimate the mean but also provide a very irregular esti-
mator of the first principal component; the estimator of the second component is
also substantially different from the Cauchy-model estimator.

The trajectory with the largest mean squared residual for girls is shown in Fig-
ure 6. This is a patient whose diabetes level was clearly out of control. We see
that the Normal-model estimator provides a somewhat better fit for this curve than
the Cauchy estimator, but this is at the expense of a poorer fit for the rest of the
individuals. The mean squared residual of this observation is 22.6 for the Normal
fit and 24.8 for the Cauchy fit. However, the three quartiles of the mean squared
residuals for the whole sample are 0.18, 0.40 and 0.63 for the Cauchy fit, and 0.24,
0.43 and 0.71 for the Normal fit, so the Cauchy fit is better overall. Another confir-
mation of this is that the Normal-model estimators obtained after eliminating the
outlying trajectory are very similar to the Cauchy estimators.

7. Conclusion and discussion. As we have shown in Section 6, outlying
curves do occur in longitudinal and functional datasets. When individual smooth-
ing is feasible, they can be handled by the robust methods alluded to in Section 2.
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FIG. 5. Child diabetes data. Estimated means [(a), (b)] and leading principal components [(c),
(d)] of HbA1c trajectories for females [(a), (c)] and males [(b), (d)], using Normal (dashed line) and
Cauchy (solid line) maximum likelihood estimators.

FIG. 6. Child diabetes data. Outlying trajectory (dotted line), Cauchy-model estimator of the mean
(thick solid line), and fitted trajectory using Cauchy-model predictor (thin solid line) and Nor-
mal-model predictor (dashed line).
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But when the data is sparse and irregular, individual smoothing is unfeasible and
methods that employ the raw data must be used. One possible approach has been
presented in this article. The idea of using t models to derive robust estimators
is not new to Statistics [see, e.g., Lange, Little and Taylor (1989)], but those pro-
cedures were specifically developed for low dimensional multivariate data. They
cannot be applied “off the shelf” to functional or longitudinal data, where the di-
mension of the covariance matrix often exceeds the sample size. However, an adap-
tation of the reduced-rank approach of James, Hastie and Sugar (2000) provides a
way to implement t-model estimators in the functional data context. The approach
we have followed is the simplest one, which is to assume that (zi ,εi ) in (5) is
jointly t distributed, and, as a result, the xis themselves have a multivariate t dis-
tribution. But other approaches are possible. For instance, it could be assumed that
zi and εi have multivariate t distributions but are independent, or even that each
εij has an independent t distribution. Unfortunately, none of these assumptions
imply that the xis have a multivariate t distribution, which complicates the theo-
retical study of the estimators’ properties and the derivation of the EM algorithm.
Nevertheless, these alternatives are worth further research.

SUPPLEMENTARY MATERIAL

Technical Report and Matlab code (DOI: 10.1214/09-AOAS257SUPP; .zip).
The pdf file contains proofs, technical derivations and more detailed simulation
results not given in the paper. The zip file contains Matlab programs implementing
the EM algotihm for Normal and t reduced-rank models.
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