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The active field of Functional Data Analysis (about understanding the
variation in a set of curves) has been recently extended to Object Oriented
Data Analysis, which considers populations of more general objects. A par-
ticularly challenging extension of this set of ideas is to populations of tree-
structured objects. We develop an analog of Principal Component Analysis
for trees, based on the notion of tree-lines, and propose numerically fast (lin-
ear time) algorithms to solve the resulting problems to proven optimality. The
solutions we obtain are used in the analysis of a data set of 73 individuals,
where each data object is a tree of blood vessels in one person’s brain. Our
analysis revealed a significant relation between the age of the individuals and
their brain vessel structure.

1. Introduction. Functional data analysis has been a recent active research
area: we refer the reader to Ramsay and Silverman (2002, 2005) for a good intro-
duction and overview, and Ferraty and Vieu (2006) for a more recent viewpoint.
A major difference between this approach and more classical statistical methods is
that curves are viewed as the atoms of the analysis, that is, the goal is the statistical
analysis of a population of curves.

Wang and Marron (2007) recently extended functional data analysis to Object
Oriented Data Analysis (OODA), where the atoms of the analysis are allowed to
be more general data objects. Examples studied there include images, shapes and
tree structures as the atoms, that is, the basic data elements of the population of in-
terest. Other recent examples are populations of movies, as in functional magnetic
resonance imaging. A major contribution of Wang and Marron (2007) was the de-
velopment of a set of tree-population analogs of standard functional data analysis
techniques, such as Principal Component Analysis (PCA). The foundations were
laid via the formulation of particular optimization problems, whose solution re-
sulted in that analysis method (in the same spirit in which ordinary PCA can be
formulated in terms of an optimization problem).
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Here the focus is on the challenging OODA case of tree structured data objects.
A limitation of the work of Wang and Marron (2007) was that no general solutions
appeared to be available for the optimization problems that were developed. Hence,
only limited toy examples (three and four node trees, which thus allowed manual
solutions) were used to illustrate the main ideas (although one interesting real data
lesson was discovered even with that strong limitation on tree size).

One of our main contributions is that, through a detailed analysis of the under-
lying optimization problem, and a complete solution of it, a linear time computa-
tional method is now available. This allows the first actual OODA of a production
scale data set of a population of tree structured objects. Clinical findings resulting
from this OODA include significant correlation of age and structure in left sub-
populations. Comparison across subpopulations was consistent with the expected
symmetry.

Our ideas are illustrated in Section 2 using a set of blood vessel trees in the
human brain, collected as described in Aylward and Bullitt (2002). In the present
paper we choose to consider only variation in the topology of the trees, that is, we
consider only the branching structure and ignore other aspects of the data, such as
location, thickness and curvature of each branch.

Even with this topology only restriction, there is still an important correspon-
dence decision that needs to be made: which branch should be put on the left, and
which one on the right; see Section 2.1. Later analysis will also include location,
orientation and thickness information, by adding attributes to the tree nodes being
studied. A useful set of ideas for pursuing that type of analysis was developed by
Wang and Marron (2007).

In Section 2.2 we define our main data analytic concept, the tree-line, and the
notion of principal components based on tree-lines. Here we also state, and illus-
trate our main result, Theorem 2.1, which will allow us to quickly compute the
principal components. Section 2.3 is devoted to our data analysis using the blood
vessel data: we carefully compare the correspondence approaches, and present our
findings based on the computed principal components. In Section 3 we prove The-
orem 2.1 along with a host of necessary claims.

We finish the introduction by listing some relevant references on the use of trees
in statistics, and the statistical analysis of tree populations. Both are relatively new
and attractive areas. A likelihood approach to the analysis of tree populations is
developed by Banks and Constantine (1998). Breiman et al. (1984) worked on
classification and regression tree analysis. Breiman (1996) and Everitt, Landau
and Leese (2001) studied the use of trees in cluster analysis. Some examples of
statistical analysis of phylogenetic trees are in Holmes (1999) and Li, Pearl and
Doss (2000). We also refer to Pachter and Sturmfels (2005) for a comprehensive
account of various uses of trees in biological statistics.

Another widely investigated approach to PCA of structured data is the family
of kernel methods. These map each data point in a non-Euclidean space to a vector
space, where linear PCA methods can be applied. The details of these methods,
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together with some commonly used kernel functions for tree space, can be found
in Shawe-Taylor and Cristianini (2004).

The use of kernel methods for tree structured data commonly appears in the
context of text categorization, where the parsing of sentences can be modeled via
trees. Collins and Duffy (2002) develop some useful kernels for this purpose, and
Eom et al. (2006) use tree kernels to mine the biomedical literature for protein in-
teractions. Another field where tree kernel ideas are applied is bioinformatics. See
Yamanishi et al. (2007) for an example of the use of the tree kernels approach for
classifying carbohydrate sugar chains modeled as trees, and Vert (2002), where an
application of tree-kernel PCA is used to measure similarities between the phylo-
genetic profiles of proteins.

2. Data and analysis. The data analyzed here are from a study of Magnetic
Resonance Angiography brain images of a set of 73 human subjects of both sexes,
ranging in age from 18 to 72, which can be found at http://hdl.handle.net/1926/594.
One slice of one such image is shown in Figure 1. This mode of imaging indicates
strong blood flow as white. These white regions are tracked in 3 dimensions, then
combined to give trees of brain arteries.

The set of trees developed from the image of which Figure 1 is one slice is
shown in Figure 2. Trees are colored according to region of the brain. Each region
is studied separately, where each tree is one data point in the data set of its region.
The goal of the present OODA is to understand the population structure of 73
subjects through 3 data sets extracted from them: Back data set (gold trees), left
data set (cyan) and right data set (blue). One point to note is that the front trees
(red) are not studied here. This is because the source of flow for the front trees is
variable, therefore this subpopulation has less biological meaning. For simplicity,
we chose to omit this subpopulation.

FIG. 1. Single slice from a Magnetic Resonance Angiography image for one patient. Bright regions
indicate blood flow. These regions in many MRA slices from each patient are tracked by a computer
software to construct Figure 2.

http://hdl.handle.net/1926/594
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FIG. 2. Reconstructed set of trees of brain arteries for the same patient as shown in Figure 1. The
colors indicate regions of the brain: Back (gold), Right (blue), Front (red), Left (cyan).

The stored information for each of these trees is quite rich (enabling the detailed
view shown in Figure 2). Each colored tree consists of a set of branch segments.
Each branch segment consists of a sequence of spheres fit to the white regions
in the MRA image (of which Figure 1 was one slice), as described in Aylward
and Bullitt (2002). Each sphere has a center (with x, y, z coordinates, indicating
location of a point on the center line of the artery) and a radius (indicating arterial
thickness).

2.1. Tree correspondence. Given a single tree, for example, the gold colored
(back) tree in Figure 2, we reduce it to only its topological (connectivity) aspects
by representing it as a simple binary tree. Figure 3 is an example of such a rep-
resentation. Each node in Figure 3 is best thought of as a branch of the tree, and
the thick line segments simply show which child branch connects to which parent.
The root node at the top represents the initial fat gold tree trunk shown near the
bottom of Figure 2. The thin dashed lines show the support tree, which is just the
union of all of the back trees, over the whole data set of 73 patients.

There is one set of ambiguities in the construction of the binary tree shown in
Figure 3. That is the choice, made for each adult branch, of which child branch is
put on the left, and which is put on the right. The following two ways of resolv-
ing this ambiguity are considered here. Using standard terminology from image
analysis, we use the word correspondence to refer to this choice.

• Thickness correspondence: Put the node that corresponds to the child with larger
median radius (of the sequence of spheres fit to the MRA image) on the left.
Since it is expected that the fatter child vessel will transport the most blood, this
should be a reasonable notion of dominant branch.



TREE-LINE ANALYSIS 1601

FIG. 3. Thick line segments show the topology only representation of the gold (back tree) from
Figure 2. Only branching information is retained for the OODA. Branch location and thickness
information are deliberately ignored. Thin dashed lines show the union over all trees in the sample.

• Descendant correspondence: Put the node that corresponds to the child with the
most descendants on the left.

These correspondences are compared in Section 2.3.
Other types of correspondence, that have not yet been studied, are also possible.

An attractive possibility, suggested in personal discussion by Marc Niethammer,
is to use location information of the children in this choice. For example, in the
back tree, one could choose the child which is physically more on the left side
(or perhaps the child whose descendants are more on average to the left) as the
left node in this representation. This would give a representation that is physically
closer to the actual data, which may be more natural for addressing certain types
of anatomical issues.

2.2. Tree-lines. In this section we develop the tools of our main analysis,
based on the notion of tree-lines. We follow the ideas of Wang and Marron (2007),
who laid the foundations for this type of analysis, with a set of ideas for extending
the Euclidean workhorse method of PCA to data sets of tree structured objects.
The key idea (originally suggested in personal conversation by J. O. Ramsay) was
to define an appropriate one-dimensional representation, and then find the one that
best fits the data. The tree-line is a first simple approach to this problem.

First we define a binary tree:

DEFINITION 2.1. A binary tree is a set of nodes that are connected by edges
in a directed fashion, which starts with one node designated as root, where each
node has at most two children.
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FIG. 4. Toy example of a data set of trees, T , with three data points (n = 3). This will be used to
illustrate several issues below.

Using the notation ti for a single tree, we let

T = {t1, . . . , tn}(2.1)

denote a data set of n such trees. A toy example of a set of 3 trees is given in
Figure 4.

To identify the nodes within each tree more easily, we use the level-order in-
dexing method from Wang and Marron (2007). The root node has index 1. For the
remaining nodes, if a node has index ω, then the index of its left child is 2ω and of
its right child is 2ω + 1. These indices enable us to identify a binary tree by only
listing the indices of its nodes.

The basis of our analysis is an appropriate metric, that is, distance, on tree space.
We use the common notion of Hamming distance for this purpose:

DEFINITION 2.2. Given two trees t1 and t2, their distance is

d(t1, t2) = |t1 \ t2| + |t2 \ t1|,
where \ denotes set difference.

Two more basic concepts are defined below; the notion of support tree has al-
ready been shown in Figure 3 (as the thin dashed lines).

DEFINITION 2.3. For a data set T , given as in (2.1), the support tree and the
intersection tree are defined as

Supp(T ) =
n⋃

i=1

ti ,

Int(T ) =
n⋂

i=1

ti .

Figure 7 in Section 2.3 shows the support trees of the data sets used in this study.
Figure 8 in Section 2.3 includes the corresponding intersection trees.
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FIG. 5. Toy example of a tree-line. Each member comes from adding a node to the previous. Each
new node is a child of the previously added node. Starting point (�0), the first tree in the example, is
the intersection tree of the toy data set of Figure 4.

The main idea of a tree-line (our notion of one-dimensional representation) is
that it is constructed by adding a sequence of single nodes, where each new node
is a child of the most recent child:

DEFINITION 2.4. A tree-line, L = {�0, . . . , �m}, is a sequence of trees where
�0 is called the starting tree, and �i comes from �i−1 by the addition of a single
node, labeled vi . In addition, each vi+1 is a child of vi .

An example of a tree-line is given in Figure 5. Insight as to how well a given
tree-line fits a data set is based upon the concept of projection:

DEFINITION 2.5. Given a data tree t , its projection onto the tree-line L is

PL(t) = arg min
�∈L

{d(t, �)}.

Wang and Marron (2007) show that this projection is always unique. This will
also follow from Claim 3.1 in Section 3, whose characterization of the projection
will be the key in computing the principal component tree-lines, defined shortly.

The above toy examples provide an illustration. Let t2 be the second tree shown
in Figure 4. Name the trees in the tree-line, L, shown in Figure 5, as �0, �1, �2, �3.
The set of distances from t2 to each tree in L is tabulated as

j 0 1 2 3
d(t2, �j ) 5 4 3 2

The minimum distance is 2, achieved at j = 3, so the projection of t2 onto the
tree-line L is �3.

Next we develop an analog of the first principal component (PC1), by finding
the tree-line that best fits the data.
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DEFINITION 2.6. For a data set T , the first principal component tree-line, that
is, PC1, is

L∗
1 = arg min

L

∑
ti∈T

d(ti,PL(ti)).

In conventional Euclidean PCA, additional components are restricted to lie in
the subspace orthogonal to existing components, and subject to that restriction, to
fit the data as well as possible. For an analogous notion in tree space, we first need
to define the concept of the union of tree-lines, and of a projection onto it.

DEFINITION 2.7. Given tree-lines L1 = {�1,0, �1,1, . . . , �1,p1}, . . . ,Lq =
{�q,0, �q,1, . . . , �q,pq }, their union is the set of all possible unions of members
of L1 through Lq :

L1 ∪ · · · ∪ Lq = {
�1,i1 ∪ · · · ∪ �q,iq |i1 ∈ {0, . . . , p1}, . . . , iq ∈ {0, . . . , pq}}.

Given a data tree t , the projection of t onto L1 ∪ · · · ∪ Lq is

PL1∪···∪Lq (t) = arg min
�∈L1∪···∪Lq

{d(t, �)}.(2.2)

In our non-Euclidean tree space, there is no notion of orthogonality available,
so we instead just ask that the 2nd tree-line fit as much of the data as possible,
when used in combination with the first, and so on.

DEFINITION 2.8. For k ≥ 1, the kth principal component tree-line is defined
recursively as

L∗
k = arg min

�∈L

∑
ti∈T

d(ti,PL∗
1∪···∪L∗

k−1∪L(ti)),(2.3)

and it is abbreviated as PCk.

For the concept of PC tree-lines to be useful, it is of crucial importance to be
able to compute them efficiently. We need two more notions:

DEFINITION 2.9. Given a tree-line

L = {�0, �1, . . . , �m},
we define the path of L as

VL = �m \ �0.

Intuitively, a tree-line that well fits the data “should grow in the direction that
captures the most information.” Furthermore, the kth PC tree-line should only aim
to capture information that has not been explained by the first k − 1 PC tree-lines.
This intuition is made precise in the following theorem, which is the main theoret-
ical result of the paper:
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FIG. 6. Weighted support tree illustrating Theorem 2.1. Intersection tree is shown in black. Nodes
that are added to construct PC1 are red. Nodes that make up PC2 are shown in green. The rest of
the nodes in the support tree are blue.

THEOREM 2.1. Let �0 be a given starting point, k ≥ 1, and L∗
1, . . . ,L

∗
k−1 be

the first k − 1 PC tree-lines. For v ∈ Supp(T ) define

wk(v) =
⎧⎨
⎩

0, if v ∈ VL∗
1
∪ · · · ∪ VL∗

k−1
,∑

i

δ(v, ti), otherwise.(2.4)

Then the kth PC tree-line L∗
k is the tree-line whose path maximizes the sum of wk

weights in the support tree, that is,
∑

v∈V ∗
Lk

wk(v).

Here, the delta function δ(v, ti) is equal to 1 if v is a node that exists in tree ti ,
and 0 otherwise. The proof of Theorem 2.1 is given in Section 3. Figure 6 is an
illustration: the weight of a node is the number of times the node appears in the
trees of Figure 4. The black edge is the intersection tree of the same data set. The
maximum weight path attached to Int(T ) is the red path, which gives rise to the
tree-line of Figure 5, which is thus the first principal component of the data set of
Figure 4.

After setting the weights of the nodes on the red path to zero, the maximum
weight path attached to Int(T ) becomes the green path, which by Theorem 2.1
gives rise to PC2. The usefulness of these tools is demonstrated with actual data
analysis of the full tree data set.

2.3. Real data results. This section describes an exploratory data analysis of
the set of n = 73 brain trees discussed above using these tree-line ideas. The prin-
cipal component tree-lines are computed as defined in Theorem 2.1. Both corre-
spondence types, defined in Section 2.1, are considered and compared.

The different brain location types (shown as different colors in Figure 2) are
analyzed as separate populations (i.e., the n = 73 blue trees are first considered to
be the population, then the n = 73 gold trees, etc.), called brain location subpop-
ulations. This reveals some interesting contrasts between the brain location types
in terms of symmetry.
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FIG. 7. Support trees, for both types of correspondence (shown in the rows), and for three brain
location tree types (shown in columns, corresponding to the colors in Figure 2). Shows that the
descendant correspondence gives a population with more compact variation than the thickness cor-
respondence.

We first compare the two types of correspondence defined in Section 2.1 using
the concept of the support tree. This is done by displaying the support trees by
each type of correspondence, and for each of the three tree location types (shown
with different colors in Figure 2), in Figure 7. Note that all of the support trees for
the descendant correspondence (bottom) are much smaller than for the thickness
correspondence (top), indicating that the descendant correspondence results in a
much more compact population. This seems likely to make it easier for our PCA
method to find an effective representation of the descendant based population.

Figure 7 already reveals an aspect of the population that was previously un-
known: there is not a very strong correlation between median tree thickness of a
branch and the number of children.

Figure 8 shows the first 3 PC tree-lines, for the three subpopulations (shown as
rows), with the intersection tree as the starting tree, for the descendant correspon-
dence.

In the human brain, the back circulation (gold) arises from a single vessel (the
basilar artery) and immediately splits into two main trunks, supplying the back
sides of the left and right hemispheres. These two parts of the back circulation
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FIG. 8. Best fitting tree-lines, for different subpopulations (rows), and PC number (columns). In-
tersection trees are shown in black. Support trees are shown in gray.

are expected to be approximately mirror-image symmetrical with both sides con-
taining one main vessel and other branches stemming from that. Consequently, for
each tree on the back data set, if we imagine a vertical axis that goes through the
root node, we expect the subtrees on both sides of the axis to be symmetrical with
each other.

The results of our model for the back subpopulation are consistent with this
expectation. The main vessel of one of the hemispheres can be seen in the starting
point (intersection tree) as the leftmost set of nodes, while the other main vessel
becomes the first principal component.

As for the left and right circulations (cyan and blue trees) of the brain, they are
expected to be close to mirror images of each other. Unlike the case of the back
subpopulation, in each of these circulations there is a single trunk from which
smaller branches stem. For this reason the bilateral symmetry observed within the
back trees is not expected to be found here.

The fact that PC1’s for left and right subpopulations are at later splits suggest
that the earlier splits tend to have relatively few descendants. The remaining PC2
and PC3 tree-lines do not contain much additional information by themselves.
However, when we consider PCs 1, 2 and 3 together and compare left and right
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subpopulations, that is, compare the second and third rows of Figure 8, the struc-
tural likeliness is quite visible. It should also be noted that for both of the subpop-
ulations all PCs are on the left side of the root-axis, indicating a strong bilateral
asymmetry, as expected.

The tree-lines, and insights obtained from them, were essentially similar for the
thickness correspondence, so those graphics are not shown here.

Next we study the tree-line analog of the familiar scores plot from conventional
PCA (a commonly used high dimensional visualization device, sometimes called
a draftsman’s plot). In that case, the scores are the projection coefficients, which
indicate the size of the component of each data point in the given eigen-direction.
Pairwise scatterplots of these often give a set of useful two-dimensional views of
the data. In the present case, given a data point and a tree-line, the correspond-
ing score is just the length (i.e., the number of nodes) of the projection. Unlike
conventional PC scores, these are all integer valued.

Figure 9 shows the scores scatterplots for the set of left trees, based on the
descendant correspondence. The data points have been colored in Figure 9, to in-
dicate age, which is an important covariate, as discussed in Bullitt et al. (2008).
The color scheme starts with purple for the youngest person (age 20) and extends
through a rainbow type spectrum (blue–cyan–green–yellow–orange) to red for the
oldest (age 72). An additional covariate, of possible interest, is sex, with females
shown as circles, males as plus signs, and two transgender cases indicated using
asterisks.

It was hoped that this visualization would reveal some interesting structure with
respect to age (color), but it is not easy to see any such connection in Figure 9. One
reason for this is that the tree-lines only allow the very limited range of scores.
A simple way to generate a wider range of scores is to project not just onto simple
tree-lines, but instead onto their union, as defined in (2.2). Figure 10 shows the
scatterplots of several union PC scores, in particular, PC1 vs. PC1 ∪ 2 (shorthand
for PC1 ∪ PC2) vs. PC1 ∪ 2 ∪ 3. This combined plot, called the cumulative scores
scatterplot, shows a better separation of the data than is available in Figure 9. The

FIG. 9. Scores scatterplot for the descendant correspondence, left side subpopulation. The axes are
PC scores for each data point. Colors show age, with cold colors corresponding to young subjects
whereas warm colors are older subjects. No clear visual patterns are apparent with respect to age.
Symbols indicate gender: circles are females, plus signs are males and asterisks are transgenders.
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FIG. 10. Cumulative scores scatterplot for the descendant correspondence, left side subpopula-
tion. The axes are cumulative PC scores for each data point. Colors show age, with cold colors
corresponding to young subjects whereas warm colors are older subjects. No clear visual patterns
are apparent with respect to age. Symbols indicate gender.

PC unions show a banded structure, which again is an artifact that follows from
each PC score individually having a very limited range of possible values. This
seems to be a serious limitation of the tree-line approach to analyzing population
structure.

As with Figure 9, there is unfortunately no readily apparent visual connection
between age and the visible population structure. However, visual impression of
this type can be tricky and, in particular, it can be hard to see some subtle effects.

Figure 11 shows a view that more deeply scrutinizes the dependence of the PC1
score on age, using a scatterplot, overlaid with the least squares regression fit line.
Note that most of the lines slope downward, suggesting that older people tend to
have a smaller PC1 projection than younger people. Statistical significance of this
downward slope is tested by calculating the standard linear regression p-value for
the null hypothesis of 0 slope. For the left tree, using the descendant correspon-
dence, the p-value is 0.0025. This result is strongly significant, indicating that this
component is connected with age. This is consistent with the results of Bullitt et
al. (2008), who noted a decreasing trend with age in the total number of nodes.
Our result is the first location specific version of this.

Similar score versus age plots have been made, and hypothesis tests have been
run, for other PC components, and the resulting p-values for the left tree using the
descendent correspondence are summarized in this table:

PC1 PC2 PC3 PC4 PC1 ∪ 2 PC1 ∪ 2 ∪ 3 PC1 ∪ ···∪ 4

0.003 0.169 0.980 0.2984 0.003 0.004 0.007

Note that for the individual PCs, only PC1 gives a statistically significant result.
For the cumulative PCs, all are significant, but the significance diminishes as more
components are added. This suggests that it is really PC1 which is the driver of all
of these results.
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FIG. 11. Scatterplot of PC1 score versus age. Least squares fit regression line suggests a downward
trend in age. Trend is confirmed by the p-value of 0.003 (for significance of slope of the line).

To interpret these results, recall from Figure 8, that for the left trees, PC1
chooses the left child for the first 3 splits, and the right child at the 4th split. This
suggests that there is not a significant difference between the ages in the tree levels
closer to the root, however, the difference does show up when one looks at the
deeper tree structure, in particular, after the 4th split. This is consistent with the
above remark, that for the left brain subpopulation, the first few splits did not seem
to contain relevant population information. Instead, the effects of age only appear
on splits after level 4.

We did a similar analysis of the back and right brain location subpopulations,
but none of these found significant results, so they are not shown here. However,
these can be found at the web site http://www.stat.colostate.edu/~wanghn/tree.htm.

We also considered parallel results for the thickness correspondence, which
again did not yield significant results (but these are on the web site http://www.stat.
colostate.edu/~wanghn/tree.htm). The fact that descendant correspondence gave
some significant results, while thickness never did, is one more indication that de-
scendant correspondence is preferred.

One more approach to the issue of correspondence choice is shown in Figure 12.
This shows the amount of variation explained, as a function of the order of the Cu-
mulative Union PC, for both the thickness and the descendant correspondences, for

http://www.stat.colostate.edu/~wanghn/tree.htm
http://www.stat.colostate.edu/~wanghn/tree.htm
http://www.stat.colostate.edu/~wanghn/tree.htm
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FIG. 12. Total number of nodes explained, as a function of Cumulative PC Number. Shows that the
descendant correspondence allows PCA to explain a much higher proportion of the variation in the
population than the thickness correspondence.

the left brain location subpopulation. The amount of variation explained is defined
to be the sum, over all trees in the subpopulation of the lengths of the projections.
There are 5023 nodes in total for both correspondences. (The correspondence dif-
ference affects the locations of nodes, total count remains the same.)

It is not surprising that these curves are concave, since the first PC is designed
to explain the most variation, with each succeeding component explaining a little
bit less. But the important lesson from Figure 12 is that the descendant correspon-
dence allows PCA to explain much more population structure, at each step, than
the thickness correspondence.

In summary, there are several important consequences of this work:

• In real data sets with branching structure, tree PCA can reveal interesting in-
sights, such as symmetry.

• The descendant correspondence is clearly superior to the thickness correspon-
dence, and is recommended as the default choice in future studies.

• As expected, the back subpopulation is seen to have a more symmetric structure.
• For the left subpopulation there is a statistically significant structural age effect.



1612 B. AYDIN ET AL.

• There seems to be room for improvement of the tree-line idea for doing PCA
on populations of trees. A possible improvement is to allow a richer branching
structure, such as adding the next node as a child of one of the last 2 or 3 nodes.
We are exploring this methodology in our current research.

The data set used in this study have been expanded and improved during the
course of the study. Preliminary analysis of the new data set shows that the age
effect seen in the left subpopulation has become visible in all subpopulations. This
issue will be handled in detail in future work.

3. Optimization proofs. This section is devoted to the proof of Theorem 2.1
with some accompanying claims.

CLAIM 3.1. Let L = {�0, . . . , �m} be a tree-line, and t a data tree. Then

PL(t) = �0 ∪ (t ∩ VL).(3.1)

PROOF. Since �i = �i−1 ∪ vi, we have

d(t, �i) =
{

d(t, �i−1) − 1, if vi ∈ t ,
d(t, �i−1) + 1, otherwise.

(3.2)

In other words, the distance of the tree to the line decreases as we keep adding
nodes of VL that are in t , and when we step out of t , the distance begins to increase,
so Claim 3.1 follows. �

CLAIM 3.2. Let L1, . . . ,Lq be tree-lines with a common starting point, and t

a data tree. Then

PL1∪···∪Lq (t) = PL1(t) ∪ · · · ∪ PLq (t).

PROOF. For simplicity, we only prove the statement for q = 2. Assume that

L1 = {�1,0, �1,1, . . . , �1,p1},
L2 = {�2,0, �2,1, . . . , �2,p2}

with �0 = �1,0 = �2,0, and

VL1 = {v1,1, . . . , v1,p1}, VL2 = {v2,1, . . . , v2,p2}.(3.3)

Also assume

PL1(t) = �1,r1,(3.4)

PL2(t) = �2,r2 .(3.5)

For brevity, let us define

f (i, j) = d(t, �1,i ∪ �2,j ) for 1 ≤ i ≤ p1,1 ≤ j ≤ p2.(3.6)
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Using Claim 3.1, (3.4) means

v1,i ∈ t, if i ≤ r1 and v1,i /∈ t, if i > r1,(3.7)

hence,

f (i, j) ≤ f (i − 1, j), if i ≤ r1,
(3.8)

f (i, j) ≥ f (i − 1, j), if i > r1.

By symmetry, we have

f (i, j) ≤ f (i, j − 1), if j ≤ r2,
(3.9)

f (i, j) ≥ f (i, j − 1), if j > r2.

Overall, (3.8) and (3.9) imply that the function f attains its minimum at i = r1, j =
r2, which is what we had to prove. �

CLAIM 3.3. Let S be a subset of Supp(T ) which contains �0. For v ∈ Supp(T )

define

wS(v) =
⎧⎨
⎩

0, if v ∈ S,∑
i

δ(v, ti), otherwise.(3.10)

Then among the tree-lines with starting tree �0, the one which maximizes
∑
ti∈T

|(VL ∪ S) ∩ ti |

is the one whose path VL maximizes the sum of the wS weights:
∑

v∈VL
wS(v).

PROOF. For v ∈ Supp(T ), and a subtree t of Supp(T ), we have

arg max
�∈L

∑
ti∈T

|(VL ∪ S) ∩ ti | = arg max
�∈L

∑
ti∈T

∑
v∈VL∪S

δ(v, ti)

= arg max
�∈L

∑
v∈VL∪S

∑
ti∈T

δ(v, ti)

= arg max
�∈L

∑
v∈VL∪S

w∅(v)

= arg max
�∈L

∑
v∈VL

wS(v).
�

Finally, we prove our main result:
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PROOF OF THEOREM 2.1. For better intuition, we first give a proof when
k = 1. Using Claim 3.1 and Definition 2.6, we get

L∗
1 = arg min

L

∑
ti∈T

d
(
ti , �0 ∪ (ti ∩ VL)

)
.

Since VL is disjoint from �0,

L∗
1 = arg max

L

∑
ti∈T

|VL ∩ ti |,

the statement follows from Claim 3.3 with S = ∅.
We now prove the statement for general k. For an arbitrary data tree t , and tree-

line L, we have

PL∗
1∪···∪L∗

k−1∪L(t) = PL∗
1
(t) ∪ · · · ∪ PL∗

k−1
(t) ∪ PL(t)

= �0 ∪ (VL∗
1
∩ t) ∪ · · · ∪ (VL∗

k−1
∩ t) ∪ (VL ∩ t)(3.11)

= �0 ∪ [(VL∗
1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ t],

with the first equation from Claim 3.2, the second from Claim 3.1 and the third
straightforward.

Combining (3.11) with (2.3), we get

L∗
k = arg min

L

∑
ti∈T

d
(
ti , �0 ∪ [(VL∗

1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ ti]).(3.12)

Again, the paths of L∗
1, . . . ,L

∗
k−1 and L are disjoint from �0, so (3.12) becomes

L∗
k = arg max

L

∑
ti∈T

|(VL∗
1
∪ · · · ∪ VL∗

k−1
∪ VL) ∩ ti |,(3.13)

so the statement follows from Claim 3.3 with S = VL∗
1
∪ · · · ∪ VL∗

k−1
. �
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