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INCOMPATIBILITY OF TRENDS IN MULTI-YEAR ESTIMATES
FROM THE AMERICAN COMMUNITY SURVEY

BY TUCKER MCELROY

U.S. Census Bureau

The American Community Survey (ACS) provides one-year (1y), three-
year (3y) and five-year (5y) multi-year estimates (MYEs) of various demo-
graphic and economic variables for each “community,” although the 1y and
3y may not be available for communities with a small population. These sur-
vey estimates are not truly measuring the same quantities, since they each
cover different time spans. Using some simplistic models, we demonstrate
that comparing different period-length MYEs results in spurious conclusions
about trend movements. A simple method utilizing weighted averages is pre-
sented that reduces the bias inherent in comparing trends of different MYEs.
These weighted averages are nonparametric, require only a short span of data,
and are designed to preserve polynomial characteristics of the time series that
are relevant for trends. The basic method, which only requires polynomial
algebra, is outlined and applied to ACS data. In some cases there is an im-
provement to comparability, although a final verdict must await additional
ACS data. We draw the conclusion that MYE data is not comparable across
different periods.

1. Introduction. The American Community Survey (ACS) replaces the for-
mer Census Long Form, providing timely estimates available throughout the
decade. The ACS sample size is comparable to that of the Census Long Form; vari-
ability in the sampling error component of the ACS is partially reduced through
a rolling sample [Kish (1981)]. The rolling sample refers to the pooling of sam-
ple respondents over time—in some cases this may be viewed as an approximate
temporal moving average of single period estimates. In particular, estimates from
regions with at least 65,000 people are produced with a single year of data, whereas
if the population is between 20,000 and 65,000, then three years of data are com-
bined, and if the population is less than 20,000, then five years of data are pooled.
A somewhat dated overview of the ACS can be found in Alexander (1998). More
current details can be found in the Census Bureau (2006) and Torrieri (2007).

In order to examine longer time series of ACS data, it is necessary to exam-
ine older estimates published for a small group of regions in the Multi-Year Es-
timates Study (MYES), which is publicly available at www.census.gov/acs/www/
AdvMeth/Multi_Year_Estimates/online_data_year.html.
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The MYES was a trial study for the ACS that produced one, three and five
year estimates for counties included in the 1999–2001 demonstration period and
their constituent geographies, using data from 1999 through 2005. The Multi-Year
Estimates (MYEs) are divided according to period-length—either one-year (1y),1

three-year (3y) or five-year (5y)—the time period, the county and the geographic
type within the county (e.g., school district). There are hundreds of variables avail-
able, which are broken into four categories: demographic, economic, social and
housing. Most of the variables are totals, averages, medians or percentiles.

Because some counties have a low population, it was deemed desirable by
the U.S. Census Bureau to decrease sampling error for smaller geographies and
subpopulations by using a rolling sample; a discussion of issues associated with
this methodology can be found in the National Academy of Sciences Panel on the
Functionality and Usability of Data from the American Community Survey [Citro
and Kalton (2007)]. In essence, responses over a 3y or even a 5y span are gathered
together into one database, and a statistic of interest is computed over the tempo-
rally enlarged sample. In many cases, this is approximately equal to computing
a simple moving average of 1y estimates. This is known as a rolling sample—
see Kish (1981, 1998) and Alexander (2001) for a discussion. For larger counties,
the 1y MYE would be available as well. The question of whether each year should
be equally weighted was addressed in Bell (1998) and Breidt (2007); since all the
responses are pooled in the 3y and 5y cases, the U.S. Census Bureau judged that it
would be impractical to use some alternative weighting scheme (such as weighting
the most recent year of data more highly). Hence, the MYEs are formed from con-
tributions over multiple years that are equally weighted. Although this approach is
simple, one repercussion is that some lag (or time delay) is induced by the use of
rolling samples (whereas an unequal weighting scheme can be devised such that
time delay is reduced or eliminated for certain components of the time series).

The time delay effect is easy to understand in the case that the data is a simple
polynomial, such as a line or a quadratic. In the former case, a three-period aver-
age induces a time delay of exactly one time unit, whereas the five-period average
delays the line by two time units. For higher degree polynomials the delay is not
exact, and yet visually there is a definite shift in the graph of one or two units.
Assuming that trends in ACS MYEs are locally given by low-degree polynomi-
als, this brief discussion illustrates the problem with comparing MYEs of different
period lengths (and this is further expounded in Sections 2 and 3 below). In par-
ticular, making comparisons across regions of MYEs of different period lengths
will in general lead to false conclusions and spurious deductions, and therefore
should be avoided. This paper assesses the extent of this problem through some
extremely simple models, and proposes a class of trend-preserving weighted aver-
ages that can be used to illustrate and identify the sorts of false conclusions arising

1Technically, the 1y are not MYEs, but we will ignore this for didactic purposes.
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from such inter-period comparisons. The perspective of this author is that such
cross-period MYE comparisons should not be made for reasons discussed in the
subsequent sections. Although use of the proposed weighted averages in this paper
may well, in some cases, reduce the quantity of spurious conclusions drawn from
the data, it is acknowledged that they do not provide a full solution to the problem
of incomparability.

In Section 2 we provide additional discussion of the construction of MYEs, ex-
plicating the practical factors militating against inter-period comparisons. Then in
Section 3 we discuss a simple model for MYEs that focuses on the temporal as-
pects, while ignoring sampling error for simplicity. Using this formal approach,
we can illustrate in a quantitative fashion the pitfalls that may occur from making
cross-period MYE comparisons. In Section 4 we propose a system of weighted
averages that preserve any local polynomial trends, ensuring that these trends
for 1y, 3y and 5y are identical after application of the weights. This is a gen-
eral technique based on simple time series analysis and polynomial algebra, and
we apply it in the linear trend case to MYE data in Section 5, making use of the
newly available ACS data extended by the trial period of the MYES. Through
several examples, we illustrate the dangers of making inappropriate comparisons,
that is, cross-region comparisons involving MYEs of different period lengths. Fi-
nally, Section 6 summarizes the results of the paper and the main difficulties in
inter-period comparisons.

2. Practical issues in making comparisons. Beyond the issues of time delay
raised in the Introduction and further described below, there is a problem compar-
ing MYEs of different period lengths due to the differences in how the estimates
are constructed. A detailed discussion of these issues is beyond the scope of this
paper [for more information the reader is referred to Fay (2007), Starsinic and Ter-
sine (2007), and Tersine and Asiala (2007)], but here we briefly highlight some
relevant points.

In the construction of MYEs a weighting method is used that is different for 1y
versus 3y and 5y. In the former case, baseweights are used that are defined as
the inverse of sampling probabilities, with some differences between Housing
Units (HU) and Group Quarters (GQ). Next, there is a nonresponse adjustment fol-
lowed by the application of controls to a set of independent HU estimates derived
from the U.S. Census Bureau’s Population Estimates Program (GQs are handled
with separate controls). For the 3y and 5y estimates, similar weighting and adjust-
ments are made, but based off of data pooled over the whole three years and five
years respectively. Moreover, housing unit controls are further modified by the
so-called g-weighting (a type of calibration) [see Fay (2005, 2006, 2007)], with
the objective of reducing (sampling error) variances at the sub-county aggrega-
tion level. This process involves linking administrative records data with the ACS
sampling frame [Starsinic and Tersine (2007)].
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As a result of g-weighting, the 3y and 5y estimates are fundamentally differ-
ent in their construction from the 1y. We also point out that, apart from the g-
weighting, there is also the issue of additional pooling in 3y and 5y prior to weight-
ing and nonresponse adjustment; thus, a 5y estimate will have effectively five times
as many sample cases receiving weighting over the 1y estimate. Furthermore, the
population controls will vary between MYEs, since the vintage of the population
estimates will correspond to the final year in the particular MYE. So the 3y MYE
for 2005, 2006 and 2007 is controlled to the average population for those years
at a 2007 population vintage, whereas the 1y MYE for each of the corresponding
years 2005, 2006 and 2007 will each be based off population vintages from those
three years; this further interferes with comparability. A related issue is inflation
adjustment for monetary variables, which is handled by controlling to dollars in
the latest year of the period.

These are fundamental incompatibilities; one may see that 1y, 3y and 5y are
really measuring different quantities. The weighted average methodology of this
paper—presented below—can address the issue of pooling in an approximate fash-
ion, but does not provide a resolution to the effects of g-weighting, nonresponse
adjustment and variable (population and monetary) vintages. However, given that
it is common in trend analysis of demographic and economic time series to com-
pare data that have no common basis of measurement [e.g., consumption versus
income is analyzed for co-integration in Engle and Granger (1987)], it is only vi-
tal to account for time delay shifts in the respective time series. Although such
weighted MYEs are not strictly comparable, they can still be used as subjects in
such a longitudinal or multivariate analysis, just as similar situations are treated
throughout the social sciences [see Granger (2004)].

3. Comparing MYEs. This section develops the issue of comparability in
a mathematical framework, so that we can obtain a quantitative view of why inter-
period comparisons are problematic. The MYEs are currently available as an an-
nual time series, and we use the notation Y

(k)
t for the ky MYE available at year t ,

where k = 1,3,5. We define the Simple Moving Average (SMA) polynomial of
order k by

�(k)(z) = 1

k
(1 + z + · · · + zk−1).

As usual, B denotes the backshift operator. Because of the method of construction
of the MYEs described in Section 1, we might think that Y

(5)
t = �(5)(B)Y

(1)
t and

Y
(3)
t = �(3)(B)Y

(1)
t are approximately true equations [such an assumption is used

for certain variance calculations in Citro and Kalton (2007)]. However, in our ex-
perience this approximation is poor for many variables, and is fair for only a few
variables—typically those involving linear statistics such as totals and averages.
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Therefore, we adopt the following error model for the purpose of demonstrating
issues of comparability of trends:

Y
(k)
t = �(k)(B)μt + ε

(k)
t ,(1)

for k = 1,3,5. Here μt is a common deterministic trend function, and the er-
rors ε

(k)
t include sampling error, serially correlated stochastic trend perturbations

and “nonadditive error,” that is, the error attributed to assuming a moving average
relationship to be valid. We will not be concerned with the statistical properties of
these errors, though they are assumed to be identically distributed in t with mean
zero. The common trend μt is conceived of abstractly, and does not necessarily
have a fundamental interpretation in terms of the population trend. Although other
models could be considered [such as Y

(k)
t = �(k)(B)(μt + ε

(k)
t )], (1) will be suffi-

cient for our illustrative purposes.
Now suppose that we have two time series of MYEs, denoted Y

(k)
t (with

trend μY
t and error process ε

(k)
t ) and Z

(k)
t (with trend μZ

t and error process η
(k)
t ).

These MYEs may correspond to two different geographical regions, and a practi-
tioner may be interested in comparing the trends μY

t and μZ
t , either at several time

points or perhaps at just one time t0. Formally, we might consider the following
hypotheses, although many others are conceivable:

H0 :μY
t0

= μZ
t0
,

Ha :μY
t0

> μZ
t0
.

In this formulation, the values of the mean at time t0 simply become parameters,
and it is the statistician’s task to devise parameter estimates that are accurate and
precise. Since typically in applications it is desirable to make trend comparisons in
real-time, any estimators must be a function of present and past data only, that is,
μ̂Y

t0
and μ̂Z

t0
are functions of the MYE series at times t0, t0 − 1, . . . . The simplest

unbiased estimators are μ̂Y
t0

= Y
(1)
t0

and μ̂Z
t0

= Z
(1)
t0

, but the 1y MYEs are not always
available. Suppose that the first region (Y ) includes 1y, 3y and 5y period MYEs,
but the second (Z) includes only 3y and 5y.

Commonly, users of MYEs (despite official cautions to the contrary) will take
μ̂Y

t0
= Y

(1)
t0

and μ̂Z
t0

= Z
(3)
t0

[or even equal to Z
(5)
t0

], even though the latter is a biased
estimate [due to the phase delay of �(3)(B); see below] of the trend. We refer to
this as the “inapt” comparison. Seeking to mitigate the phase delay, we can put
both trend estimates on an equal footing by taking μ̂Y

t0
= Y

(3)
t0

and μ̂Z
t0

= Z
(3)
t0

. Now
both trend estimates are biased, but at least they are biased in a similar fashion; this
will be called the “untimely” comparison. A “proper” comparison is one in which
both estimates are unbiased for their respective trend values. Of course, even for
a proper comparison Type I and II errors will occur due to statistical uncertainty,
but at least the bias will be eliminated.
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One could test the hypothesis of equal trends via μ̂Y
t0

−μ̂Z
t0

; this has the following
expectation for the inapt comparison: μY

t0
− (μZ

t0
+ μZ

t0−1 + μZ
t0−2)/3, which need

not be zero under H0. For the untimely comparison, the expectation would be(
(μY

t0
− μZ

t0
) + (μY

t0−1 − μZ
t0−1) + (μY

t0−2 − μZ
t0−2)

)
/3.

If the trends agree at times t0, t0 − 1, and t0 − 2, this quantity is zero; however,
some bias is to be expected under H0. In contrast, it is clear from the definition of
the proper comparison that the mean of μ̂Y

t0
− μ̂Z

t0
is zero under H0.

From this discussion, we see that making inferences about trends based on a di-
rect use (i.e., by looking just at the values rather than some more complicated
statistics) of MYEs of different period lengths leads to bias even in the case that
a highly idealized model holds true. The incidence of spurious conclusions (i.e.,
Type I errors) can be reduced by making proper comparisons, and we explore
this further in the following section. However, even proper comparisons have their
limitations, and our attitude is that MYEs of different period length should not be
compared; using a proper comparison provides an improvement, but false conclu-
sions can still be obtained (not to speak of the practical issues raised in Section 2).

We note that the incomparability of trends increases with the dispersion of the
errors ε

(k)
t ; if these errors were zero, then the rolling sample would be exactly

a moving average, and a proper comparison would enable full comparability of
MYE trends. A crude assessment of the size of these errors, relative to the trend,
is given by the “Noise-Signal Ratio” (NSR)

ε
(k)
t

�(k)(B)μt

= Y
(k)
t

�(k)(B)μt

− 1.

This is only well-defined when �(k)(B)μt is nonzero, and we generally suppose
that it is positive at all times. Since we do not know μt , we can substitute Y

(1)
t when

the 1y MYEs are available. Then for k = 3,5, we have Y
(k)
t /�(k)(B)Y

(1)
t − 1 as

our estimate of the NSR. For convenience, we will instead use logarithms of noise
and signal, which are approximated (by first-order Taylor series) by the former
expression:

NSR(k)
t = logY

(k)
t − log�(k)(B)Y

(1)
t

for k = 3,5. Computing this quantity at all available times t , we define a compati-
bility measure by

C(k) = max
t

∣∣NSR(k)
t

∣∣.
If this measure is small, for example, C(k) = 0.01, then the rolling sample is well-
approximated by a moving average, and the proper comparison is more meaning-
ful.
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4. Trend-preserving weighted averages. In what follows, the function of the
model (1) is to illustrate the incomparability of MYEs of different period length;
we are not interested in fitting the model to actual MYEs in order to pursue statis-
tical inference. In this sense, the model only serves a pedagogical purpose. Next,
suppose that μt is given by a polynomial of degree d in t . Is it possible to find sets
of weighted averages, or linear filters, such that when applied to each MYE the
trends will coincide? That is, if we view the underlying trend of the ky MYE as
�(k)(B)μt , then we seek three filters �(k)(B) such that �(k)(B)�(k)(B)μt is the
same for each k = 1,3,5; or, in other words,

�(1)(z) = �(3)(z)�(3)(z) = �(5)(z)�(5)(z).(2)

Since users are typically interested in comparisons utilizing the most current data
available, it makes sense to formulate our problem with concurrent filters, that is,
filters that only depend on present and past data. Therefore, each filter is of the
form

�(k)(z) = ∑
j≥0

ψ
(k)
j zj .

In practice, only a finite number of the coefficients ψ
(k)
j are nonzero. Now a filter

�(z) will pass (i.e., leave invariant) a polynomial of degree d if �(1) = 1 and
∂j

∂zj �(z)|z=1 = 0 for 1 ≤ j ≤ d [Brockwell and Davis (1991), page 39]. Now us-

ing (2) and the fact that �(3)(z) and �(5)(z) share no common roots, it is easy to
see that

�(1)(z) = �(z)�(3)(z)�(5)(z).

We are free to design the polynomial �(z) such that the polynomial-passing con-
straints are satisfied; hence, �(z) must have degree at least d . The following theo-
rem describes how to construct this polynomial.

THEOREM 1. The minimal length concurrent filters �(k) that pass degree d

polynomials and satisfy (2) are given by

�(5)(z) = �(z)�(3)(z),

�(3)(z) = �(z)�(5)(z),

�(1)(z) = �(z)�(3)(z)�(5)(z),

where the coefficients of �(z) are given by the first column of the inverse of the
matrix with entry jk given by

∂j−1

∂zj−1

[
zk−1�(3)(z)�(5)(z)

]∣∣∣∣
z=1

.
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PROOF. Let �(z) = �(3)(z)�(5)(z), with φk the coefficients of �(z). Apply-
ing the polynomial-passing constraints yields

1{j=0} =
j∑

l=0

(
j

l

)
∂�(z)

∂zl

∣∣∣∣
z=1

∂�(z)

∂zj−l

∣∣∣∣
z=1

=
j∑

l=0

(
j

l

)
d∑

k=0

φk

k!
(k − l)!

∂�(z)

∂zj−l

∣∣∣∣
z=1

=
d∑

k=0

φk

∂j

∂zj
[zk�(z)]

∣∣∣∣
z=1

.

This is easily rewritten in matrix form, from which the result follows. �

EXAMPLE (Linear trends). Supposing that the trend is linear and d = 1, we
have

�(5)(z) = (4 + z + z2 − 3z3)/3,

�(3)(z) = (4 + z + z2 + z3 + z4 − 3z5)/5,

�(1)(z) = (4 + 5z + 6z2 + 3z3 + 3z4 − z5 − 2z6 − 3z7)/15.

EXAMPLE (Quadratic trends). Supposing that the trend is quadratic and d = 2,
we have

�(5)(z) = (26 − 11z + 3z2 − 23z3 + 14z4)/9,

�(3)(z) = (26 − 11z + 3z2 + 3z3 + 3z4 − 23z5 + 14z6)/15,

�(1)(z) = (26 + 15z + 18z2 − 5z3 + 9z4 − 17z5 − 6z6 − 9z7 + 14z8)/45.

Theorem 1 has the following interpretation. If one wishes to make a proper com-
parison of MYEs (defined in Section 3) that preserves polynomials of order d , then
the minimal length linear filters that accomplish this goal are given by Theorem 1.

5. Illustrations on ACS data. We now provide three illustrations of the
concepts discussed in this article. We focus on Median Household Income in
Pima, AZ, Number of Divorced Males in Lake, IL, and Median Age in Ham-
pden, MA. These three counties are included in the MYES and, therefore, the
data extends back to the year 2000. In particular, the following MYEs are avail-
able: 2000 through 2007 for 1y, 2001 through 2005 and 2007 for 3y, and 2003
through 2005 for 5y. The year index here refers to the last year that entered
into the sample, and so is consistent with our notation for Y

(k)
t . Current ACS

estimates are now available for all geographical regions, covering the 1y years
2006 and 2007, and the 3y MYE 2005–2007 has just become available. Let-
ting t range between 00 and 05 (referring to the year), the available database is
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Y
(1)
00 , . . . , Y

(1)
07 , Y

(3)
01 , . . . , Y

(3)
05 , Y

(3)
07 , Y

(5)
03 , . . . , Y

(5)
05 . In order to apply our methods,

we need to impute (by forecasting) the 3y MYE Y
(3)
06 and the 5y MYEs Y

(5)
06 and

Y
(5)
07 . (This is a provisional necessity, since in the future full time series data for all

counties will be published.)
The missing values are obtained by forecasting them utilizing a simple random

walk model, which is feasible for these time series based on economic and demo-
graphic considerations (to actually fit a time series model to such a short series is
pointless):

Ŷ
(3)
06 = 1

2

(
Y

(3)
05 + Y

(3)
07

)
,

Ŷ
(5)
06 = Y

(5)
05 + 1

2

(
Y

(5)
05 − Y

(5)
03

)
,

Ŷ
(5)
07 = Y

(5)
05 + 2

2

(
Y

(5)
05 − Y

(5)
03

)
.

The MYEs (with imputed values in bold) are given in Table 1. The final row of
the table gives the various 2007 trend values estimated via the method of Sec-
tion 4 [the data and calculations are given in McElroy (2009)]. Note that Y

(3)
01 and

Y
(5)
03 are not used in the calculation of these trend estimates. Although the Income

MYEs follow a linear growth pattern, the Divorce MYEs fluctuate more in their
slope component, whereas the Age MYEs trend upward very slowly with little
noise. Thus, we might say that Income and Age exhibit linear trend lines, whereas
Divorce is nonlinear; it is important to consider different types of trend behavior
in order to evaluate this paper’s method.

As far as the linear approximation to the rolling sample, we can compute the
NSR comparability measure for years 2002–2007 for k = 3, and 2004–2007 for
k = 5 (by including the forecasted data). For Income C(3) = 0.017 and C(5) =

TABLE 1
MYEs for Income, Divorce and Age. Estimates have been forecast extended for the years 06 and 07,

written in bold

Income MYEs Divorce MYEs Age MYEs

Year 1y 3y 5y 1y 3y 5y 1y 3y 5y

00 35223 14043 36.40
01 35615 35956 14376 14429 37.30 36.80
02 37638 36780 17866 15504 37.00 36.80
03 37818 37373 37510 17398 16772 15473 37.10 37.00 36.70
04 38800 38739 38608 15632 17156 15903 37.20 37.10 36.90
05 41521 40404 40055 14591 15889 15945 37.40 37.30 37.20
06 42984 42395 41328 20941 17371 16181 37.40 37.35 37.45
07 43546 44386 42600 21844 18852 16417 37.60 37.40 37.70

Trend 43570 45223 45320 19331 19217 16695 37.59 37.59 38.25
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0.020, indicating some incompatibility. For the Divorce variable C(3) = 0.008 and
C(5) = 0.042, indicating a high amount of incomparability (though most of this
comes from the portion of the data that is forecasted, and thus might be resolved
when the real numbers are published). Finally, the Age variable is highly compat-
ible with C(3) = 0.002 and C(5) = 0.004.

Now imagine having two replications of each variable for two separate regions:
county A with all period-length MYEs available, and county B with a lower pop-
ulation such that only 3y and 5y MYEs are available. Starting with the Divorce
variable, an illustration of the time delay properties of MYEs is provided in com-
paring 1y to one-year-ahead-3y MYEs; there is a fairly close match up until the
2005 1y MYE and 2006 3y MYE. However, this latter value is imputed, and the
true value could easily have decreased from 2005; instead the imputation increases
merely because there is so much gain in the 2007 3y MYE. The 2007 “inapt” com-
parison discussed in Section 3 would then compare 21,844 with 18,852 or 16,417;
these are −13.7% and −24.8% discrepancies. If we use weighted averages for
comparing trends, the discrepancies are reduced to −0.59% and −13.6% respec-
tively (though given the nonlinear nature of the trend, we expect the forecasts to be
inappropriate, and hence not as much emphasis should be placed on the 5y MYEs).
In this case the weighted average methodology helps to properly align the series.

For the Income and Age time series data, which both exhibit linear trends (with
the former having much more variability), the weighted average method can ac-
tually increase discrepancies. In the former case, the discrepancies of 1.9% and
−2.2% become 3.8% and 4.0%; but for Age the discrepancies of −0.53% and
0.27% become 0% and 1.8% after using weighted averages. The Age data is very
stable, and here an inapt comparison indicates no change. We have not analyzed
these percentages statistically, as this would require actual modeling of the time
series. Nevertheless, a rough idea about trend comparability can be deduced by the
discussion here.

In summary, we see through these examples that the weighted average method-
ology can either increase or decrease discrepancies in some cases, and seems to
work less well with 5y versus 3y MYEs (although this may also be an artifact of
two imputations in the 5y MYEs). Part of this increase in discrepancy is due to
the weighted averages increasing the overall variance (even if they reduce the bias
of direct comparisons, as discussed in Section 3); if in (1) we make the crude as-
sumption that the errors ε

(k)
t are i.i.d., then the linear weights inflate the variance

by a factor of 1.16 and 3 respectively for the 3y and 5y MYEs. For the 1y MYE the
variance is multiplied by 0.48, but of course this MYE has the greatest variability
since its sampling error component is largest. This variance inflation can be cor-
rected by imposing extra conditions on the filter coefficients, but the result would
be an even longer set of weights. It can also be observed that the random walk
model used for forecasting is poorly suited to the Divorce data, since the change in
direction from 2003 to 2004 in the 1y MYE is not reflected in the corresponding
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time-delayed 5y MYEs of 2005–2006. A more definitive study would not rely on
imputations, and would be concerned with the qualitative aspects of trends pro-
duced by weighted averages; such a study must wait at least five years due to the
current ACS publication schedule.

6. Conclusion. The aim of this paper is first to discuss the challenges in com-
paring cross-period MYEs. Due to the way in which MYEs are constructed, it is
apparent that 1y, 3y and 5y MYEs are different time series—and not just time-
lagged or smoothed versions of some underlying series; they are estimates of
different fundamental quantities (see Section 2). Nevertheless, this fact does not
preclude a user from making cross-period comparisons, any more than it would be
forbidden to search for common trends in economic or demographic data. There-
fore, the second aim of this paper is to quantitatively assess what sorts of math-
ematical and statistical problems will arise in such comparisons (see Sections 3
and 4). As a third aim, the weighted averages method can be used to reduce the
bias inherent in such cross-period comparisons [under certain quasi-linear assump-
tions such as (1)]; even so, the statistical variation in MYEs is such that sizeable
discrepancies can still crop up, as demonstrated in Section 5.

In summary, the author wishes to echo the strong cautions against making
cross-period comparisons issued by the U.S. Census Bureau [see Beaghen and
Weidman (2008) and Citro and Kalton (2007)]. At this point the weighted aver-
age methodology mainly serves to identify fairly egregious types of false conclu-
sions derived from such unwarranted comparisons, but perhaps it can also serve as
a building block for future work on comparability and usability issues in the ACS.
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SUPPLEMENTARY MATERIAL

Income, Divorce and Age Data with Trend Calculations (DOI: 10.1214/09-
AOAS259SUPP; .zip). This file contains the Income, Divorce and Age data of
Table 1 in Excel format. Also provided are the linear trend weighted averages
along with compatibility measures NSR, encoded as Excel formulas.
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