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DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE1

BY MICHAEL R. KOSOROK

University of North Carolina at Chapel Hill

We discuss briefly the very interesting concept of Brownian distance co-
variance developed by Székely and Rizzo [Ann. Appl. Statist. (2009), to ap-
pear] and describe two possible extensions. The first extension is for high
dimensional data that can be coerced into a Hilbert space, including certain
high throughput screening and functional data settings. The second extension
involves very simple modifications that may yield increased power in some
settings. We commend Székely and Rizzo for their very interesting work and
recognize that this general idea has potential to have a large impact on the
way in which statisticians evaluate dependency in data.

1. Introduction and assessment. The Brownian distance covariance and cor-
relation proposed by Székely and Rizzo (2009) (abbreviated SR hereafter) is a very
useful and elegant alternative to the standard measures of correlation and is based
on several deep and nontrivial theoretical calculations developed earlier in Székely,
Rizzo and Bakirov (2007) (abbreviated SRB hereafter). We congratulate the group
on this very original and elegant work. The main result is that a single, simple
statistic Vn(X,Y ) can be used to assess whether two random vectors X and Y , of
possibly different respective dimensions p and q , are dependent based on an i.i.d.
sample.

The proposed statistic Vn(X,Y ) estimates an interesting population parame-
ter V(X,Y ) that the authors demonstrate can also be expressed as the covariance
between independent Brownian motions W and W ′, with p and q dimensional in-
dices, evaluated at X and Y , respectively. Specifically, let W : Rp �→ R be a real
valued, tight, mean-zero Gaussian process with covariance |s|p + |t |p − |s − t |p ,
for s, t ∈ R

p , where | · |r is the standard Euclidean norm in R
r . Let W ′ be sim-

ilarly defined but for indices s, t ∈ R
q and norm | · |q . It can be shown that

V(X,Y ) = E[W(X)W(X′)W ′(Y )W ′(Y ′)], where (X′, Y ′) is an independent copy
of (X,Y ), and where W and W ′ are independent of both (X,Y ) and (X′, Y ′). This
justifies the designation “Brownian distance covariance.”

By replacing Brownian motion with other stochastic processes, a very wide
array of alternative forms of correlation between vectors X and Y can be gener-
ated. In the special case where p = q = 1 and the stochastic processes W and W ′
are the nonrandom identify functions centered respectively at E(X) and E(Y ),
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Vn(X,Y ) = E[W(X)W(X′)W ′(Y )W ′(Y ′)] = Cov2(X,Y ), which is the standard
Pearson product-moment covariance squared. Thus, the results obtained by SR not
only have a profound connection to Brownian motion, but also include traditional
measures of dependence as special cases, while, at the same time, having the poten-
tial to generate many useful new measures of dependence through the use of other
stochastic processes besides Brownian motion. This raises the very real possibility
that a broadly applicable and unified theoretical and methodological framework
for testing dependence could be developed.

The SR paper is therefore not only important for the specific results contained
therein but also for the possibly far reaching consequences for future statistical re-
search in both theory and applications. For the remainder of the paper, we describe
two possible extensions of these results. The first extension is for high dimensional
data that can be coerced into a Hilbert space, including certain high throughput
screening and functional data settings. The second extension involves very simple
modifications that may yield increased power in some settings. We first present
some initial results and consequences of SR and SRB that will prove useful in
later developments. We then present the Hilbert space extension with a few exam-
ple applications. Some modifications leading to potential variations in power will
then be described. The paper will then conclude with a brief discussion.

2. Some initial results. We now present a few initial results which will be
useful in later sections. For a paired sample of size n, (X1, Y1), . . . , (Xn,Yn), of
realizations of (X,Y ), where X and Y are random variables from arbitrary normed
spaces with respective norms ‖ · ‖X and ‖ · ‖Y , define, analogously to SR,

T1 = 1

n2

n∑
k,l=1

‖Xk − Xl‖X‖Yk − Yl‖Y ,

T2 = 1

n2

n∑
k,l=1

‖Xk − Xl‖X × 1

n2

n∑
k,l=1

‖Yk − Yl‖Y ,

T3 = 1

n3

n∑
k=1

n∑
l,m=1

‖Xk − Xl‖X‖Yk − Ym‖Y ,

and Vn(X,Y ) = T1 + T2 − 2T3. Also define

T10 = E[‖X1 − X2‖X‖Y1 − Y2‖Y ],
T20 = E[‖X1 − X2‖X] × E[‖Y1 − Y2‖Y ],
T30 = E[‖X1 − X2‖X‖Y1 − Y3‖Y ],

and V0(X,Y ) = T10 + T20 − 2T30. Also let Vn(X) = Vn(X,X) and V0(X) =
V0(X,X); and let Vn(Y ) = Vn(Y,Y ) and V0(Y ) = V0(Y,Y ). This allows us
to define also Rn(X,Y ) = Vn(X,Y )/

√
Vn(X)Vn(Y ) and R0(X,Y ) = V0(X,Y )/
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√
V0(X)V0(Y ), provided the denominators are nonzero (and defined to be zero

otherwise). The main distinction between this and the definitions in SR is the use
of arbitrary normed spaces.

Because this has a standard U -statistic structure, we have the following general
result, the proof of which follows from standard theory for U -statistics [see, e.g.,
Chapter 12 of van der Vaart (1998)]:

LEMMA 1. Provided E‖X‖4
X < ∞ and E‖Y‖4

Y < ∞, then Vn(X,Y )
P→

V0(X,Y ), Vn(X)
P→ V0(X) and Vn(Y )

P→ V0(Y ).

REMARK 1. In the special case where X and Y are from finite-dimensional
Euclidean spaces, we know from Theorems 1–4 of SR that Vn(X,Y ), Vn(X),
Vn(Y ), V0(X,Y ), V0(X) and V0(Y ) are all nonnegative; that Vn(X,Y ) ≤√

Vn(X)Vn(Y ) and V0(X,Y ) ≤ √
V0(X)V0(Y ); that V0(X) = 0 or V0(Y ) = 0

only when X or Y is trivial; that Vn(X) = 0 or Vn(Y ) = 0 only when the X’s
or Y ’s in the sample are all identical; that 0 ≤ Rn(X,Y ),R0(X,Y ) ≤ 1; and that
V0(X,Y ) = 0 only when X and Y are independent.

We now wish to generalize the above results in the finite-dimensional context to
a class of norms more broad than Euclidean norms. These results will be useful for
later sections. Let A and B be respectively p × p and q × q symmetric, positive
definite matrices. Let a “tilde” placed over T1, T2, T3, Vn, V0, etc., denote the
quantity obtained by replacing |x|p with ‖x‖A,p = √

x′Ax and |y|q with ‖y‖B,q =√
y′By in Vn, V0, etc. For example, T̃1 = n−2 ∑n

k,l=1 ‖Xk − Xl‖A,p‖Yk − Yl‖B,q .
We now have the following very simple extension:

LEMMA 2. Let A and B be symmetric and positive definite. Then Ṽn(X,Y ),
Ṽn(X), Ṽn(Y ), Ṽ0(X,Y ), Ṽ0(X) and Ṽ0(Y ) are all nonnegative; and all of the
other results in Remark 1 remain true with a “tilde” placed over the given quanti-
ties. Moreover, Ṽ0(X,Y ) = 0 if and only if V0(X,Y ) = 0.

PROOF. For a symmetric, positive definite matrix C, let C1/2 denote the sym-
metric square root of C, that is, C1/2C1/2 = C. Note that such a square root al-
ways exists and, moreover, is always positive definite. Now define U = A1/2X

and V = B1/2Y , and note that |U |p = ‖X‖A,p and |V |q = ‖Y‖B,q . Now replace X

and Y in the quantities listed in Remark 1 with U and V . By the symmetry prop-
erties of these norms, the first part of the lemma up to just before the last sentence
is proved. The last sentence follows from the simple observation that U and V are
independent if and only if X and Y are independent by the positive definiteness
of A1/2 and B1/2. Since V0(X,Y ) = 0 if and only if X and Y are independent,
we now conclude that Ṽ0(X,Y ) = 0 if and only if X and Y are independent. The
entire lemma now follows. �



DISCUSSION 1273

The third initial result involves some nontrivial properties of independent com-
ponents in the finite dimensional setting. Suppose for X ∈ R

p and Y ∈ R
q , where

p = p1 + p2 and q = q1 + q2, we have

X =
(

X(1) + X(2)

X(3)

)
and Y =

(
Y (1) + Y (2)

Y (3)

)
,

where X(1),X(2) ∈ R
p1 , X(3) ∈ R

p2 , Y (1), Y (2) ∈ R
q1 , y(3) ∈ R

q2 ; and suppose
also that the two vectors X̃ = ([X(2)]T , [X(3)]T )T and Ỹ = ([Y (2)]T , [Y (3)]T )T

are mutually independent and also independent of X(1) and Y (1). We have the
following somewhat surprising result:

LEMMA 3. V0(X,Y ) = V0(X
(1), Y (1)).

PROOF. For any t ∈ R
p and s ∈ R

q , with t = (tT1 , tT2 )T , s = (sT
1 , sT

2 )T , t1 ∈
R

p1 , t2 ∈ R
p2 , s1 ∈ R

q1 , and s2 ∈ R
q2 , the independence assumptions and standard

characteristic function properties yield

|E exp(i[tT X + sT Y ]) − E exp(itT X)E exp(isT Y )|
= ∣∣f

X̃
(t)f

Ỹ
(s)

{
E exp

(
i
[
tT1 X(1) + sT

1 Y (1)])
− E exp

(
itT1 X(1))E exp

(
isT

1 Y (1))}∣∣
= ∣∣E exp

(
i
[
tT1 X(1) + sT

1 Y (1)]) − E exp
(
itT1 X(1))E exp

(
isT

1 Y (1))∣∣
= |fX(1),Y (1) (t1, s1) − fX(1) (t1)fY (1) (s1)|.

Combining this with Theorems 1 and 2 of SR, we obtain that

V0(X,Y ) = 1

cpcq

∫
Rp+q

|fX(1),Y (1) (t1, s1) − fX(1) (t1)fY (1) (s1)|2
|t |p+1

p |s|q+1
q

dt ds.

Note that the right-hand side is invariant with respect to the distributions of X̃

and Ỹ and, thus, we can replace X̃ and Ỹ with degenerate random variables fixed
at zero. Doing the same on the left-hand side yields the desired result. �

3. High dimensional extensions. The basic idea we propose is to extend
the results to Hilbert spaces which can be approximated by sequences of finite-
dimensional Euclidean spaces. We will give a few examples shortly. First, we
give the conditions for our results. Assume X is a random variable in a Hilbert
space HX with inner produce 〈·, ·〉X and norm ‖ · ‖X . A superscript ∗ will be used
to denote adjoint. Say that X is “finitely approximable” if there exists a sequence
Xm ∈ HX such that for each m ≥ 1, there exists a linear map Mm :Hx �→ R

pm for
which M∗

mMm is symmetric and positive definite on R
pm , pm is nondecreasing,

Xm = Mm(Um) for some sequence of Euclidean random variables Um, and that
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E‖Xm − X‖2
X → 0 as m → ∞. Note that we can assume that M∗

mMm is the iden-
tity without loss of generality. This follows since we can always replace Um with
Ũm = AmUm and Mm with M̃m = MmA−1

m , where Am = (M∗
mMm)1/2, to yield

Xm = M̃mŨm with M̃∗
mM̃m = A−1

m (M∗
mMm)A−1

m being the identity.

EXAMPLE 1. Let X be functional data with realizations that are functions in
the Hilbert space HX = L2[0,1] consisting of functions f : [0,1] �→ R satisfying
‖f ‖2

X = ∫ 1
0 f 2(t) dt < ∞. Specifically, we will assume that

X(t) =
∞∑
i=1

λiZiφi(t),(1)

where Z1,Z2, . . . are independent random variables with mean zero and vari-
ance 1, φ1, φ2, . . . form an orthonormal basis in L2[0,1], and λ1, λ2, . . . are fixed
constants satisfying

∑n
i=1 λ2

i < ∞. This formulation can yield a large variety of
tight stochastic processes and can be a realistic model for some kinds of functional
data.

Let pm = m, Um = (λ1Z1, . . . , λmZm)T , and, for any vector a ∈ R
pm , Mm(a) =∑m

i=1 aiφi(t). Clearly, Xm = Mm(Um) is in HX almost surely, since ‖Xm‖X =∑m
i=1 λ2

i Z
2
i is bounded almost surely. Moreover, for any f ∈ L2[0,1], it can be

shown that

M∗
m(f ) =

⎛
⎜⎝

∫ 1
0 φ1(s)f (s) ds

...∫ 1
0 φm(s)f (s) ds

⎞
⎟⎠ ,

and, thus, M∗
mMm is the identity by the orthonormality of the basis and is therefore

positive definite. Since
∑∞

i=1 λ2
i < ∞,

E‖X − Xm‖2
X = E

∥∥∥∥∥
∞∑

i=m+1

λiZiφi(t)

∥∥∥∥∥
2

X

=
∞∑

i=m+1

λ2
i

→ 0,

as m → ∞. Thus, X is finitely approximable.

EXAMPLE 2. This is basically the same as Example 1, except that we will
not require the basis functions to be orthogonal. Specifically, let X(t) be as given
in (1), with the basis functions satisfying

∫ 1
0 φ2

i (s) ds = 1, for all i ≥ 1, but not
necessary being mutually orthogonal. Let ai,j = ∫ 1

0 φi(s)φj (s) ds, for i, j ≥ 1, and
define Am to be the m × m matrix with entry ai,j for row i and column j for
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1 ≤ i, j ≤ m. Assume that AM is positive definite for each m ≥ 1 and also assume
that limm→∞

∑∞
i,j=m+1 λiλjai,j = 0. If we now follow parallel calculations to

those done in Example 1, we can readily deduce that with Xm = ∑m
i=1 λiZiφi(t),

we have Mm and M∗
m defined as before, but with M∗

mMm = Am instead of the
identity, while E‖X−Xm‖2

X → 0 also as before. The increased flexibility enlarges
the scope of stochastic processes achievable to include, for example, Brownian
motion.

EXAMPLE 3. Let X = (X(1),X(2), . . .)T be an infinitely long Euclidean vec-
tor in �2, that is,

∑∞
i=1[X(i)]2 < ∞ almost surely; and assume that, after permuting

the indices if necessary,
∞∑

i=m+1

E
[
X(i)]2 → 0,

as m → ∞. It is fairly easy to see that if we let Xm be a vector with the first m

elements being identical to the first m elements of X but with all remaining ele-
ments equal to zero, then E‖X −Xm‖2

X → 0, as m → ∞, and all of the remaining
conditions for finite approximability are satisfied. This example may be applicable
to certain high throughput screening settings where the vector of measurements
may be arbitrarily high-dimensional.

The following lemma tells us that the range-related properties of Brownian dis-
tance covariance are preserved for finitely approximable random variables:

LEMMA 4. Assume that X and Y are both finitely approximable ran-
dom variables in Hilbert spaces. Then Vn(X,Y ), Vn(X), Vn(Y ), V0(X,Y ),
V0(X) and V0(Y ) are all nonnegative, Vn(X,Y ) ≤ √

Vn(X)Vn(Y ), V0(X,Y ) ≤√
V0(X)V0(Y ), and 0 ≤ Rn(X,Y ),R0(X,Y ) ≤ 1.

PROOF. Let Xm and Ym be sequences such that E‖X − Xm‖2
X → 0 and

E‖Y − Ym‖2
Y → 0 as m → ∞. Using simple algebra, we can verify that

V0(Xm,Ym) → V0(X,Y ) which implies V0(X,Y ) ≥ 0. Similar arguments verify
the desired results for V0(X), V0(Y ) and R0(X,Y ). Now, for a sample of size n,
(X1, Y1), . . . , (Xn,Yn), we can create a sequence of samples (X1m,Y1m), . . . ,

(Xnm,Ynm), such that
∑n

i=1(E‖Xi − Xim‖2
X + E‖Yi − Yim‖2

Y ) → 0 by finite ap-

proximability. Let V
(m)
n (X,Y ) be the same as Vn(X,Y ) but with the mth approx-

imating sample replacing the sample observations. Since convergence in mean
implies convergence in probability, we can apply basic algebra to verify that

V
(m)
n (X,Y )

P→ Vn(X,Y ) as m → ∞. Similar arguments verify the desired results
for Vn(X), Vn(Y ) and Rn(X,Y ), and this completes the proof. �

Our ultimate goal in this section, however, is to show that R0(X,Y ) has the same
implications for assessing dependence for finitely approximable Hilbert spaces as
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it does for finite dimensional settings. This is actually quite challenging, and we
are only able to achieve part of the goal in this paper. The following is our first
result in this direction:

LEMMA 5. Suppose X and Y are random variables in finitely approximable
Hilbert spaces. Then R0(X,Y ) > 0 implies that X and Y are dependent.

PROOF. Assume that R0(X,Y ) > 0 but that X and Y are independent. By fi-
nite approximability, there exists a sequence of paired random variables (Xm,Ym)

such that Xm and Ym are independent for each m ≥ 0, E‖X − Xm‖2
X → 0, and

E‖Y − Ym‖2
Y → 0. This implies that R0(Xm,Ym) = 0 for all m ≥ 0. Since also

R0(Xm,Ym) → R0(X,Y ), we have a contradiction. Hence, X and Y are depen-
dent. �

If we could also show that R0(X,Y ) = 0 implies independence, we would have
essentially full homology with the finite dimensional case. It is unclear how to
show this in general, and it may not even be true in general. However, it is certainly
true for an interesting special case which we now present.

Let X and Y be random variables in finitely approximable Hilbert spaces.
Suppose there exists linear maps M :HX �→ HX and N :HY �→ HY with ad-
joints for which both M∗M and N∗N are identities, and that MX = X1 + X2

and NY = Y1 + Y2, where X1 ∈ H
(1)
X and Y1 ∈ H

(1)
Y , H

(1)
X and H

(2)
Y are finite-

dimensional subspaces of HX and HY , respectively, and that X2 and Y2 are mutu-
ally independent and independent of (X1, Y1). We will call a random pair (X,Y )

that satisfies these conditions “at most finitely dependent.” For example, paired
functional data (X,Y ) could be at most finitely dependent if all possible depen-
dencies between the two populations X and Y are attributable to at most a few
principle functions (or principle components) in each population and that the re-
maining components are independent noise.

EXAMPLE 4. Suppose that we are interested in determining whether X and Y

are independent, where X is either a functional observation or some other very high
dimensional observation and Y is a continuous outcome of interest such as a time
to an event. Suppose also that X is finitely approximable and that any potential
dependence of Y on X is solely due to a latent set of finite principle components
of X. Such a pair (X,Y ) would be at most finitely dependent.

The following lemma on finitely dependent data is the final result of this section:

LEMMA 6. Suppose that X and Y are finitely approximable random variables
in Hilbert spaces and that (X,Y ) is at most finitely dependent. Then R0(X,Y ) ≥ 0
and the inequality is strict if and only if X and Y are dependent.
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PROOF. Note first that ‖MX‖2
X = 〈MX,MX〉X = 〈M∗MX,X〉X = 〈X,

X〉X = ‖X‖2
X and, similarly, ‖NY‖Y = ‖Y‖Y . Since R0(X,Y ) is a function in-

volving only the norms of X and Y , we can assume without loss of generality
that N and M are identities. Thus, we will simply assume that X = X1 + X2 and
Y = Y1 + Y2 hereafter. Let (X2m,Y2m) be a sequence of paired random variables
in HX × HY such that E‖X2 − X2m‖2

X → 0 and E‖Y2 − Y2m‖2
Y → 0, and where,

for each m ≥ 1, X2m and Y2m are mutually independent and also independent of
(X1, Y1).

Now let X̂m = X1 + X2m and Ŷm = Y1 + Y2m, and note that both X̂m and Ŷm

are finite dimensional with R0(X̂m, Ŷm) → R0(X,Y ). Let p1 and q1 be the respec-
tive dimensions of X1 and Y1, p2m and q2m be the respective dimensions of X2m

and Y2m, and let pm = p1 + p2m and qm = q1 + q2m. Let X
(1)
2m be the projection of

X2m onto H
(1)
X , Y (1)

2m be the projection of Y2m onto H
(1)
Y , and let X

(2)
2m = X2m −X

(1)
2m

and Y
(2)
2m = Y2m − Y

(1)
2m . By the finite-dimensionality of X1, X2m, Y1 and Y2m,

there exists linear maps A1 : Rp1 �→ H
(1)
X , A2m : Rp2m �→ HX , B1 : Rq1 �→ H

(1)
Y ,

and B2m : Rq2m �→ HY , such that A∗
1A1, A∗

2mA2m, B∗
1 B1 and B∗

2mB2m are all

identities and that X1 = A1U1, X
(1)
2m = A1U

(1)
2m , X

(2)
2m = A2mU

(2)
2m , Y1 = B1Z1,

Y
(1)
2m = B1Z

(1)
2m, and Y

(2)
2m = B2mZ

(2)
2m, for random vectors U1,U

(1)
2m ∈ R

p1 , U
(2)
2m ∈

R
p2m , Z1,Z

(1)
2m ∈ R

q1 , and Z
(2)
2m ∈ R

q2m , where U2m = ([U(1)
2m ]T , [U(2)

2m ]T )T and

Z2m = ([Z(1)
2m]T , [Z(2)

2m]T )T are mutually independent and independent of (U1,Z1).

If we let Ûm = ([U1 + U
(1)
2m ]T , [U(2)

2m ]T )T and Ẑm = ([Z1 + Z
(1)
2m]T , [Z(2)

2m]T )T ,
the above formulation yields that ‖X̂m‖X = |Ûm|pm and ‖Ŷm‖Y = |Ẑm|qm . By
Lemma 3, we now have that R0(Ûm, Ẑm) = R0(U1,Z1) which does not depend
on m. Since A∗

1A1 and B∗
1 B1 are both identities, we also have that R0(U1,Z1) =

R0(X1, Y1) and, thus, R0(X̂m, Ŷm) = R0(Ûm, Ẑm) → R0(X1, Y1), as m → ∞.
This now implies that R0(X,Y ) = R0(X1, Y1), which yields the desired result.

�

4. Increasing power. We now briefly discuss the issue of power of tests based
on Rn(X,Y ). By Lemma 2, we observe that there are many different versions of
the statistic Rn(X,Y ), based on different choices of matrices A and B in the norms
‖ ·‖A,p and ‖ ·‖B,q , that all have the ability to assess general dependence. Is it pos-
sible to choose A and B in a way that provides optimal power for certain fixed or
contiguous alternatives? The answer should be yes since it appears that A and B

could potentially be selected to emphasize dependence for certain subcomponents
of X and Y while de-emphasizing dependence for other subcomponents. The an-
swer to this question, unfortunately, seems to be very hard to pin down rigorously.
We do not pursue this further here, but it does seem to be a potentially important
issue that deserves further attention.
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5. Discussion. We have briefly proposed two generalizations of the Brownian
distance covariance, one based on alternative norms to Euclidean norms, and the
other based on infinite dimensional data. The first generalization raises the possi-
bility of fine-tuning the statistics proposed in SR to increase power, and the second
generalization opens the door for applicability of the results in SR to a broader
array of data types, including infinite dimensional data and data with dimension
increasing with sample size. However, for both of these generalizations, there re-
main many open questions that could lead to important further improvements. In
either case, the results of SR are very important both practically and theoretically
and should result in many important future developments in both the application
and theory of statistics.
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