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Efficient automatic protein classification is of central importance in ge-
nomic annotation. As an independent way to check the reliability of the clas-
sification, we propose a statistical approach to test if two sets of protein
domain sequences coming from two families of the Pfam database are sig-
nificantly different. We model protein sequences as realizations of Variable
Length Markov Chains (VLMC) and we use the context trees as a signature of
each protein family. Our approach is based on a Kolmogorov–Smirnov-type
goodness-of-fit test proposed by Balding et al. [Limit theorems for sequences
of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic
is a supremum over the space of trees of a function of the two samples; its
computation grows, in principle, exponentially fast with the maximal number
of nodes of the potential trees. We show how to transform this problem into
a max-flow over a related graph which can be solved using a Ford–Fulkerson
algorithm in polynomial time on that number. We apply the test to 10 ran-
domly chosen protein domain families from the seed of Pfam-A database
(high quality, manually curated families). The test shows that the distributions
of context trees coming from different families are significantly different. We
emphasize that this is a novel mathematical approach to validate the auto-
matic clustering of sequences in any context. We also study the performance
of the test via simulations on Galton–Watson related processes.

1. Introduction. The primary structure of a protein is represented by a se-
quence of 20 different symbols called amino acids. Proteins can be composed of
one or more functional regions, called domains; the identification of domains that
occur within a protein can provide insights into its function. For this reason biol-
ogists classify protein domains into families and care about the reliability of the
classification [Stein (2001)]. But in a protein domain database not only the quality
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of the classification is important, the number of proteins encoded by the genomes
that are assigned to the families is also important. This is usually referred to as
proteome coverage. For this reason, usually in most databases there must be some
balance between quality and quantity.

The Pfam database is a large collection of protein domain families [Finn et
al. (2006)]. In its last release of July 2007, the Pfam database comprises 9318
annotated families (Pfam-A) as well as a lower quality, unannotated collection
(Pfam-B). Each Pfam-A family consists of two parts: a manually curated set of
protein domains called seed and a set of automatically detected protein domains
using a profile hidden Markov model (profile HMM), whose parameters are esti-
mated from the seed of the family.

To our knowledge, no independent method to validate the Pfam classification
has been proposed, in spite of problems that the uncertainty in the alignment of se-
quences can lead to [Wong, Suchard and Huelsenbeck (2008)]. We make a step in
this direction by presenting a statistical method to test if two samples from protein
domains come from two different families. If some families are not significantly
different, then the problem of classifying new proteins becomes risky.

We start by modeling protein sequences as Variable Length Markov Chains
(VLMC), a model introduced by Rissanen (1983). A VLMC is a discrete time
stochastic process with the property that the law of the process at any given time
depends on a finite (but not of fixed length) portion of the process at precedent
times [Bühlmann and Wyner (1999)]. As usual in the applications of VLMC,
we assume that the process is a Markov chain of order at most L (finite mem-
ory process). The minimum set of sequences needed to completely specify the
distribution of the next symbol in the sequence is known as a context tree and it
is denoted by t . Calling p the conditional transition probabilities associated to the
nodes of t , the pair (t,p) completely determines the law of the VLMC.

VLMC have been successfully applied to model and classify protein sequences
[Bejerano and Yona (2001)]. As in the case of profile HMM in the construction
of the Pfam families, the VLMC approach of Bejerano and Yona takes, for each
family, a set of already classified protein domains and estimates a VLMC model,
that is, a pair (t,p). Then, the estimated VLMC model is used to classify other
protein sequences into the family. Instead, we treat the context trees of sequences
of a given family as random samples of a distribution associated to the family; this
distribution is used as a signature of the family [Galves et al. (2004), Leonardi et
al. (2007)]. That is, we propose that the context trees of the sequences disregarding
the associated probabilities are sufficient to test if two samples of sequences come
from different Pfam families. We take two samples of protein sequences of size
n and m respectively and for each sequence we construct the estimated context
tree using the PST algorithm introduced by Ron, Singer and Tishby (1996) and
implemented by Bejerano (2004), obtaining two samples of trees t = (t1, . . . , tn),
t′ = (t ′1, . . . , t ′m). We assume that the samples are independent and that the trees
in each sample are independent and identically distributed with laws π and π ′,
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respectively. We test H0 :π = π ′ against HA :π �= π ′ using the test proposed in
Balding et al. (2008) (in what follows we will denote it by BFFS test). Rejection
of the null hypothesis leads us to conclude that the protein families are distinct.

The BFFS test is a Kolmogorov–Smirnov-type goodness-of-fit test. A distance
d defined later in (8) is considered in the space of trees T and the statistic for the
two-sample test is given by

W(t, t′) := sup
t∈T

|d̄(t, t) − d̄(t, t′)|,(1)

where d̄(t, t) = 1
n

∑n
i=1 d(t, ti); that is, W(t, t′) is the supremum over t in the space

of trees T of the difference of the empiric mean distances of t to each of the
two samples t and t′. The null hypothesis is rejected for large values of W(t, t′).
Since the law of W under H0 is not explicitly known, a simulation procedure is
performed to find the p-values.

The computation of the test statistic W(t, t′) is a priori difficult; a naive search
would involve an exponential complexity of the algorithm on the number of po-
tential nodes. A major point of this paper is to show that the problem can be re-
expressed as to find the maximal flow on a graph constructed as a function of the
samples. The approach is inspired by the search for the Maximum a Posteriori in
Bayesian image reconstruction using the Ising model, as proposed by Greig, Por-
teous and Seheult (1989) [see also Kolmogorov and Zabih (2004)], but requires
the introduction of a penalty to guarantee that the solution is in T . The max-flow
problem can be solved in polynomial time on the maximal number of nodes of the
tree, using Ford–Fulkerson type algorithms.

Statistical analysis of tree-like data has been performed in several papers. Banks
and Constantine (1998) obtain trees by hierarchical clustering of authors of writ-
ten texts, using search-related features. They assume a parametric model and use
a metric in the space of trees to get a center point and a confidence band around
it. Computation of the distribution’s parameters, center point and spread are feasi-
ble when a distance of the same type as in the BFFS approach is used. Wang and
Marron (2007) analyze a sample of blood vessels in the human brain, represented
by trees. Each node represents a blood vessel, and the edges represent vessel con-
nections. The statistical analysis of this data was based on a Fréchet approach,
which in turn is based on a metric. The Fréchet mean of a data set is the point
which minimizes the sum of the squared distances to the data points. In the spe-
cific application to blood vessels, both the structure of the trees (i.e., connectivity
properties) and the attributes of the nodes (such as the locations and orientations
of the blood vessels) were considered. This is a major difference with the BFFS
approach, where only the structure of the trees enters in the test statistics.

In Section 2 we define trees, describe VLMC and explain how to obtain the
context trees from the observed protein domain sequences. In Section 3 we define
the distance in the tree space and describe the BFFS test. In Section 4 we develop
the algorithm to compute the BFFS test statistics. In Section 5 we describe the
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one-sample test and discuss possible extensions of the approach. In Section 6.1
we perform pairwise comparisons of samples of trees corresponding to 10 Pfam
families. Final remarks are in Section 7 and computing notes in Section 8. At
the end of Section 3 and then in Appendix A.1, we discuss problems related to
the power of the tests. Appendix A.2 contains the proofs of selected results. In
Appendix A.3 we perform the test on several samples of Galton–Watson related
trees obtained with Monte Carlo simulation.

2. Protein related random trees. A protein sequence can be modeled as a
realization of a discrete time stochastic process having as state space the set A

of 20 amino acids. This is the basic idea in the modeling of protein domains by
HMMs or VLMCs. In this section we introduce the basic concepts behind VLMC
and show how the context tree associated to a protein sequence can be estimated
using the Probabilistic Suffix Tree (PST) algorithm proposed by Ron, Singer and
Tishby (1996) and implemented by Bejerano (2004).

Let A be a finite alphabet and V = ⋃∞
�=0 A� the set of sequences of symbols

in A. Denote a
j
� the sequence a�a�+1 · · ·aj . Given a sequence a

j
1 , any sequence

a
j
� with 1 < � ≤ j is called a suffix of a

j
1 . Let T := {t ⊂ V :aj

1 ∈ t implies a
j
2 ∈ t}

be the space of rooted trees with nodes in V ; the empty sequence is the root of
the tree and it is called λ. The edges of t are {(aj

1 , a
j
2 ) :aj

1 ∈ t}. A node of an edge
is a suffix of the other node and the difference in length of the two nodes is one.
Hence, the tree t is identified with its set of nodes.

Let X = (Xn)n∈Z be a stationary stochastic process taking values in A. Define

p(a|a−1
−j ) := P [X0 = a|X−1

−j = a−1
−j ].

A finite sequences a−1
−k ∈ V is sufficient to determine the law of the next symbol if

p(·|a−k−1
−j a−1

−k ) = p(·|a−1
−k ) for all k < j and all a−k−1

−j ∈ Aj−k,(2)

where a−k−1
−j a−1

−k denotes the concatenation of the sequences a−k−1
−j and a−1

−k . We
assume that the process is a Markov chain of order L, that is, that (2) holds for
k = L and all a−1

−L ∈ AL. A finite sequence a−1
−k ∈ Ak is called a context if it satis-

fies (2) and

p(·|a−1
−k ) �= p(·|a−1

−k+1).(3)

We say that X is a VLMC if there are contexts of length less than L, that is, if there
exists a k < L and a sequence a−1

−k satisfying (2) and (3). The set t of contexts and
all their suffixes is called the context tree; each node in the context tree is labeled
by a finite sequence over A. In this finite memory case, a VLMC is simply a
parsimonious representation of a Markov chain of order L that, in its strict sense,
would have (|A|−1)|A|L parameters (a probability distribution associated to each
sequence of fixed length L).
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FIG. 1. An example of stationary conditional probability distributions p over the alphabet
A = {1,2} (a) and the corresponding context tree t (b). p and t completely specify a stationary
VLMC process X = (Xn)n∈Z. We assume 0 < α < 1, α �= 0.5. Each node in the tree (a) is labeled
by a sequence over the alphabet A and has an associated probability distribution over A (see text for
more details). The contexts of the process are the sequences in bold face {111,211,122,222} (note
that 21 and 12 are not contexts in our definition). The context tree in this case is (b), representing the
set {λ,1,2,11,22,111,211,122,222}.

Under the assumption of bounded memory, the pair composed by the context
tree and the set of transition probability distributions associated to the nodes of t

completely specify the law of the stationary process X.
Figure 1 summarizes an example of a context tree and transition probabilities for

a stationary process X over the alphabet A = {1,2}. For 0 < α < 1 the transition
probabilities are given by

p(1|a−1−∞) =
⎧⎪⎨
⎪⎩

α, if a−1
−3 = 111 or a−1

−3 = 122,

1 − α, if a−1
−3 = 211 or a−1

−3 = 222,
0.5, otherwise;

(4)

see Figure 1(a). If α �= 0.5, the set of contexts is {111,122,211,222} and the con-
text tree is t = {λ,1,2,11,22,111,211,122,222}; see Figure 1(b). If α = 0.5, the
context tree is just λ, as the chain is a sequence of i.i.d. (0.5) random variables.

There are several approaches to estimate the context tree and transition prob-
abilities of VLMCs from a finite realization of X. We mention the context algo-
rithm proposed by Rissanen (1983); see also Bühlmann and Wyner (1999) and
Galves et al. (2008). Recently, Csiszár and Talata (2006) proposed the use of the
Bayesian Information Criterion (BIC) and the Minimum Description Length Prin-
ciple (MDL). These algorithms provide consistent estimates of the parameters. Our
work utilizes the PST algorithm and so we provide a brief review here.

Suppose x1, . . . , xl is a sample of a VLMC over A specified by the pair (t,p)

(in our setting x1, . . . , xl represents a protein over the alphabet of 20 amino acids).
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For any sequence a
j
1 ∈ Aj define the counters

N(a
j
1 ) =

l−j∑
i=0

1{xi+j
i+1 = a

j
1 },(5)

where the function 1 takes value 1 if x
i+j
i+1 = a

j
1 and 0 otherwise. For any sequence

a
j
1 ∈ Aj such that N(a

j
1 ) ≥ 1 and any symbol a ∈ A, we define the empirical

transition probabilities p̂(a|aj
1 ) as

p̂(a|aj
1 ) = N(a

j
1a)∑

b∈A N(a
j
1b)

.(6)

To estimate the context tree associated to the sequence, two parameters are
fixed: L, the maximal depth of the estimated tree t̂ and r > 1, a threshold value.
The PST algorithm defines the context tree estimator t̂ as the tree containing all
the sequences a

j
1 , with j ≤ L, N(a

j
1 ) ≥ 1, such that there exists a symbol a ∈ A

satisfying

| log p̂(a|aj
2 ) − log p̂(a|aj

1 )| ≥ log r.(7)

That is, the node a
j
1 is a node of t̂ if the conditional probabilities p̂(·|aj

1 ) and

p̂(·|aj
2 ) are sufficiently far in the sense of (7); this is the empirical version of

(2)–(3). To guarantee that t̂ is a tree, include also all suffixes of included nodes;
that is, a

j
1 ∈ t̂ implies a

j
2 ∈ t̂ .

The PST algorithm uses other parameters to smooth the estimated transition
probabilities given by (6). This smoothing is useful to avoid null estimated proba-
bilities that can damage the prediction step in the classification of new sequences.
Since our interest is to estimate only the context tree, it is sufficient to consider
the parameters L and r . We refer the interested reader to Ron, Singer and Tishby
(1996), Bejerano (2003) and Bejerano (2004) for a full explanation of the PST
algorithm, its implementation and some basic examples.

3. The tree distance and the two-sample test. For the two sample problem,
the BFFS test is based on the supremum (over the space of trees) of the difference
between the empirical mean distance function of each sample to a given tree. More
formally, for a node v ∈ V and a tree t in T denote t (v) = 1{v is a node of t}. Let
φ :V → R

+ be a nonnegative function and consider the distance in T defined by

d(t, t ′) := ∑
v∈V

φ(v)
(
t (v) − t ′(v)

)2
.(8)

Let T be a random tree on T with law π and t = (t1, . . . , tn) a random sample of T

(independent random trees with the same law as T ). Define the empiric expected
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distance of a tree t to the sample by

d̄(t, t) := 1

n

n∑
i=1

d(ti, t).(9)

Consider two samples t and t′ of random trees T and T ′, with laws π and π ′, with
sample sizes n and m respectively. The two-sample problem is to test

H0 :π = π ′, HA :π �= π ′.(10)

BFFS show that, under H0, the process(√
nm

n + m

(
d̄(t, t) − d̄(t, t′)

)
, t ∈ T

)
(11)

converges weakly as min(n,m) → ∞ to a Gaussian process and propose the sta-
tistic

W(t, t′) := sup
t∈T

|d̄(t, t) − d̄(t, t′)|.(12)

Under H0 for large n and m,
√

nm
n+m

W(t, t′) has approximately the law of the supre-
mum over t of a Gaussian process indexed by t ∈ T . Determining the quantiles qα

using the asymptotic law, the null hypothesis is rejected at level α when

|W(t, t′)| > qα.

The quantiles are obtained using permutation-based randomization techniques
[Manly (2007)]. See Section 6.1 for details.

About the power of the BFFS test. Strictly speaking, the null hypothesis of the
BFFS test is

H ′
0 : law of (d(t, T ), t ∈ T ) = law of (d(t, T ′), t ∈ T ).

Of course, rejection of H ′
0 implies rejection of H0, so that we do not need to

worry when rejecting. But the test could accept H ′
0 even when H0 is false. We

give in Appendix A.1 examples of different πs giving rise to the same process
(d(t, T ), t ∈ T ) and show some sufficient conditions on π under which the law of
(d(t, T ), t ∈ T ) determines π .

4. Graph computation of W(t, t′). To compute the test statistic W(t, t′), it
is necessary to find the trees attaining the supremum (12). In this section we show
that the problem can be reformulated in terms of finding the maximal flow on a
graph constructed as a function of the sample.

Denote by t the empiric mean of the sample t:

t(v) := 1

n

n∑
i=1

ti(v).(13)
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Since t(v) is not always an integer, t is not necessarily a tree, but t(av) ≤ t(v) if v

and av are in V . Notice that

d̄(t, t) − d̄(t, t′) = 2L(t) + ∑
v∈V

φ(v)
(
t(v) − t ′(v)

)
,(14)

where

L(t) = ∑
v∈V

φ(v)
(
t ′(v) − t(v)

)
t (v).(15)

Since the last term in (14) does not depend on t , to maximize |d̄(t, t) − d̄(t, t′)|
on T is equivalent to minimize L(t) and −L(t) on T .

Define the space of configurations

Y := {0,1}V .

This set can be identified with the set of subsets of V , so that T ⊂ Y. In order to
penalize configurations in Y that are not trees, we define the quadratic function
P :Y → N which counts the number of orphan nodes in a configuration:

P (y) = ∑
{v,av}⊂V

y(av)
(
1 − y(v)

)
, y ∈ Y,(16)

where for a node v = a1 · · ·aj , av = aa1 · · ·aj is a son of v. It is clear that
P (y) ≥ 0 and P (y) = 0 if and only if y ∈ T .

The following proposition shows that to maximize |d̄(t, t) − d̄(t, t′)| on T is
equivalent to minimize L(y)+βP (y) and −L(y)+βP (y) on Y for β sufficiently
large.

PROPOSITION 4.1. Let β >
∑

v∈V φ(v). Then

arg max
t∈T

|d̄(t, t) − d̄(t, t′)|
(17)

⊂ arg min
y∈Y

(
L(y) + βP (y)

) ∪ arg min
y∈Y

(−L(y) + βP (y)
)
.

The proof of Proposition 4.1 is given in Appendix A.2. The proposition reduces the
minimization problem on T to the task of minimizing the Hamiltonians L + βP
and −L + βP on Y.

The Hamiltonian L+βP is represented by the oriented graph (Ṽ , Ẽ) given by

Ṽ := V ∪ {s} ∪ {b}, Ẽ := {(v,w) :v,w ∈ Ṽ },(18)

where s (source) and b (sink) are two extra nodes. The graph has the following
capacities associated to the (oriented) edges:

c(v,w) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
φ(v)

(
t(w) − t ′(w)

))+
, if v = s and w ∈ V ,(

φ(v)
(
t(v) − t ′(v)

))−
, if v ∈ V and w = b,

β, if v ∈ V,w = av ∈ V,a ∈ A,
0, otherwise,

(19)
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where x+ = max{x,0}, x− = max{−x,0}. That is, the edges linking a node of V

to its sons have capacity β , the edge linking a node of V to the sink, and the edge
linking the source to a node of V have capacity φ(v)(t(v) − t ′(v)))± according to
the sign of (t(v) − t ′(v)); the other edges have zero capacity.

A configuration y ∈ Y defines a cut of the graph

C(y) := {
(v,w) ∈ Ẽ : c(v,w) > 0, v ∈ (V \ y) ∪ {s},w ∈ y ∪ {b}},(20)

whose capacity c(y) is

c(y) := ∑
(v,w)∈C(y)

c(v,w).(21)

The next result has been proven by Kolmogorov and Zabih (2004), as a generaliza-
tion of an approach of Greig, Porteous and Scheult (1989). We give some details
of the proof in Appendix A.2.

PROPOSITION 4.2. It holds that c(y) = k + L(y) + βP (y) for all y ∈ Y,
where k does not depend on y.

Proposition 4.2 shows that to minimize L(y) + βP (y) it is sufficient to find
a minimum cut in its associated graph. This problem can be solved by means of
the Ford–Fulkerson type of algorithm as proposed by Greig, Porteous and Scheult
(1989). We use the variant and implementation of Kolmogorov and Zabih (2004).

The idea behind the Ford–Fulkerson algorithm is the following. Suppose that
liquid is flowing from source to sink in the graph with nodes Ṽ and pipes Ẽ with
capacities c(·, ·). Take a piece of chalk and draw an arrow in the direction of the
flow over the pipes with positive capacity that are not totally filled. Draw an arrow
in the direction opposite to the flow over the pipes carrying some liquid. Of course
there may be pipes with arrows in both directions! Now try to walk from the source
to the sink, always following your arrows. When you arrive at a dead end, return
to the source. If you never arrive to the sink, the flow is maximal and the nodes y

that you have not visited define a cut C(y) with minimal capacity. If you arrive to
the sink, you can increase the total flow by ε by increasing it by ε in the pipes that
you have walked forward from the source, and decreasing it by the same amount
in the pipes that you walked backward. It turns out that the number of operations
necessary to find the minimal cut is polynomial in the number of nodes.

5. Generalizations.

The one-sample test. Given a sample t of a random tree with law π , the one-
sample test is

H0 :π = π ′, HA :π �= π ′(22)



TESTING STATISTICAL HYPOTHESIS ON RANDOM TREES 551

for a given probability π ′ on T . The BFFS statistic in this case is given by

W(t) := sup
t∈T

|d̄(t, t) − πd(t)|,(23)

where

πd(t) := ∑
t ′∈T

π(t ′)d(t ′, t)(24)

is the expected distance between t and a random tree with law π . The graph com-
putation of W(t) is done exactly as in Section 4, but in the definition (15) of L the
mean occupation value t ′(v) is substituted by

μπ ′(v) := ∑
t

π ′(t)t (v),(25)

the average occupation number of node v under π ′.

More general trees. The BFFS test works for finite or infinite rooted trees
contained in a full tree V . V must satisfy that the number of children per parent is
uniformly bounded by m (say). This condition is necessary for the Proposition 4.1,
which transforms the problem of minimizing the difference of the distances on the
minimization of a Hamiltonian. The nodes in V can be coded with finite sequences
of letters of the alphabet A = {1, . . . ,m} in such a way each node is coded with the
sequence coding of his father plus a letter of A. In our case the letter is added at
the beginning of the sequence so that the sequence corresponding to a parent is a
suffix of those corresponding to its children. Alternatively, the letter can be added
at the end; in this case the parents sequences are prefixes of the children. Any other
labeling would work in the same way, as only the structure of the tree (and not the
labeling of the nodes) is relevant in the construction of the test. The structure of
the tree is the set of nodes and the set of edges; with our coding the set of edges
is deduced from the node coding: E = {(aj

1 , a
j
2 )}, otherwise E must be explicitly

defined.
If V is infinite, V is truncated to nodes with at most L symbols and calling πL

the law of the truncated tree, the null hypothesis is H0 :πL = π ′
L.

6. Numerical results.

6.1. Testing protein related populations of trees. In this subsection we present
some results obtained by applying the two-sample test over protein domain fami-
lies of the Pfam-A database. As mentioned in the Introduction, our framework is
the following:

• Each family F of protein domains induce a (different, hopefully) probability
distribution π on the space of trees T .
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• Given two families F and F ′, we consider their associated signatures, that is,
the probability laws π and π ′ on the space T .

• For each family Fj we take a sample of protein sequences of size nj , and for
each sequence in the sample we construct the PST context tree estimator, as
described in Section 2. We obtain a sample of size nj of i.i.d. random elements
on T with distribution πj .

• Finally, for each pair of families Fj ,Fj ′ we test if both distributions πj and πj ′
are the same.

To test the approach, we randomly choose families F1, . . . ,F10 whose names
start with letter A and such that their average lengths are larger than 150 amino
acids (this last condition was to ensure some precision in the context tree esti-
mation step). In order to guarantee the quality of the samples, we only choose
sequences in the seed of each family. The chosen families are ABC-2membrane,
ABC-membrane, Amidase, Amidino-trans, AMME-CR1, AOX, ArgK, ASC, Asp-
Arg-Hidrox and Asp-Al-Ex.

We randomly select nj = 50 sequences from each family Fj and compute the
associated PST context tree estimator of each sequence using the PST algorithm
with parameters r = 1.05 [as Bejerano (2001)] and L = 4. In this way we obtain a
sample of 50 trees per family.

We consider the distance function φ(v) = θgen(v), where the function gen(v)

is defined as the length of the sequence labeling node v. That is, if node v cor-
responds to sequence ak

1 , then gen(v) = k. For each θ ∈ {0.001,0.01,0.35} we
run the BFFS test for each pair of families using the corresponding samples of
trees. We also run the tests under the null hypothesis collecting two indepen-
dent samples from the same family. For each pair of samples of trees we esti-
mate the (1 − α)-quantile under the null hypothesis using Monte Carlo random-
ization [Manly (2007)], that is, we permute the pooled sample a thousand times
and compute the test statistic for each of the replicates using half of the permuted
pooled sample for each population. The estimated quantile is therefore the empir-
ical (1 − α)-quantile for the vector of size 1000 built up in this way.

All 45 tests are rejected at level α = 0.001 for the three values of θ . Despite the
conservative level used in the tests, the hypothesis of equal distribution is rejected
in all cases when the samples came from different Pfam-A families, confirming the
discriminative power of the context trees associated to the sequences. In the case
of the same family, but with independent samples of trees, for θ = 0.35 we observe
p-values ranging from 0.15 to 0.87, compatible with the uniform distribution (the
law of the p-values under the null hypothesis). Similar results were obtained with
the other two values of θ .

6.2. Simulation results. We also challenge our method in a small Monte Carlo
simulation for Galton–Watson processes, for three different models, parameters
and sample sizes. The results are reported in Appendix A.3.
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7. Final remarks. We perform the BFFS method to test if two samples of
context trees come from different distributions, and we propose a feasible way to
compute its statistic, allowing the treatment of reasonably big trees. The test rejects
the null hypothesis in the case of high quality, manually curated Pfam families, and
it does not reject on random subsets of the same family. This supports the use of the
test as a method to distinguish different groups of protein domains when a specific
task, as, for example, sequence annotation, does not give conclusive results.

Our results strongly indicate that the context trees associated to protein domain
sequences are sufficient to discriminate between different families in the Pfam
database. In this sense we have benefited from ideas coming from the analysis
of sequences related to linguistics. Galves and collaborators have proposed with
success the use of context trees to discriminate languages from codified written text
[Galves et al. (2004)]. More recently, they have used similar ideas in a preliminary
work to study the phylogeny of protein sequences [Leonardi et al. (2007)].

We emphasize that the test is not restricted to the analysis of samples of con-
text trees. Any space of trees satisfying the assumptions of Section 5 will be suit-
able for using our approach. On the other hand, for particular distributions like
Galton–Watson processes, more simple tailor-made tests can be developed. Our
simulations show that the BFFS test is able to distinguish between distributions
determined by the node-marginal distributions, which is a large family of distribu-
tions for applications. This class includes tree laws with a Markovian hypothesis,
as shown in Proposition A.2. We discuss this item in detail in Appendix A.1.

8. Computing notes. The code to compute the test statistic is available from
Jorge R. Busch (jbusch@fi.uba.ar) upon request. Calculation reported here used
Scilab INRIA (http://www.scilab.org/) and C++ code from Bejerano (2004) and
Kolmogorov and Zabih (2004).

The computational burden for our algorithm allows us to work with trees with up
to 320 nodes. Each p-value involves 1001 test statistic calculations, with a sample
size n = 50 for each family, taking at most 15 minutes to be complete, with a
Pentium Core 2 duo with 2Gb of RAM memory.

APPENDIX

A.1. Mean distances and Markovian hypotheses.

Do the mean distances determine a measure? Recall the mean distance πd

is defined in (24). Our test is universally consistent within the class of distribu-
tions for which (πd(t), t ∈ T ) determine the probability π . That is, whatever is
the law of the families, the test will asymptotically detect the difference. We show
in Lemma A.1 that πd determines the law of the marginals (T (v), v ∈ V ). Propo-
sition A.2 says that, under Markov type hypotheses, the marginal distributions
determine the measure.

http://www.scilab.org/
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For a random tree T with law π recall μπ(v) is the mean occupancy node v

defined in (25) and define σ 2
π(v), the variance of T (v), by

σ 2
π(v) = μπ(v)

(
1 − μπ(v)

)
.(A.1)

LEMMA A.1. Let π and π ′ be measures on T . Then, πd = π ′d if and only if
μπ = μπ ′ .

The proof is given later in this section.
Different measures may have the same mean distances. For instance, consider

A = {1,2} and π , π ′ defined by

π(∅) = 1
2 ; π({λ}) = π({λ,1}) = π({λ,2}) = π({λ,1,2}) = 1

8 ,

π ′(∅) = 1
2 ; π ′({λ}) = π ′({λ,1,2}) = 1

4 .

Then, μπ(v) = μπ ′(v) for all v ∈ V .
Lemma A.1 implies that in general the functions πd and π ′d do not help to

solve the discrimination problem. But in some cases these functions do discrimi-
nate. To show that, we need some extra notation. For a set I of nodes denote TI the
restriction of T to I and TI = 1 means that T (v) = 1 for all v ∈ I , while TI = 0
means that T (v) = 0 for all v ∈ I .

Let v be a node, and a, b ∈ A. We shall call v father of av, av son of v, and av

brother of bv. Let f :V \ {λ} → V be a function such that, for each v �= λ, f (v)

is father or brother of v, and f n(v) = λ for some n = n(v) ∈ N. Notice that, in
this case, f −1(v) is empty or formed up by brothers and sons of v. We call such a
function a tree-shift. Consider, for instance, the function f that assigns to a node
its father.

Let T be a random tree with law π . We say that T satisfies a Markov hypothesis
if there exists a tree-shift f such that if v = f (w), then

(a) 0 < μπ(w) < μπ(v) < 1,
(b) P(T (w) = 1|T (v) = 0) = 0,
(c) let I, J ⊂ V be such that if v ∈ I , w /∈ I ∪ J and P(TI = 1, TJ = 0) > 0,

then

P
(
T (w) = 1|TI = 1, TJ = 0

) = P
(
T (w) = 1|T (v) = 1

)
.(A.2)

PROPOSITION A.2. Under the Markov hypotheses, the marginals (μπ(v), v ∈
V ) determine the probabilities (π(t), t ∈ T ).

The proof is given later in this section.
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Examples of measures satisfying the Markov hypotheses. The alphabet for the
following examples is A = {1, . . . ,m}.

1. Let f be defined by f (av) = v, a ∈ A. Let k(v) be such that
f k(v)−1(v) = 1, for v ∈ V . If μπ(v) = pk(v) (0 < p < 1), we obtain a tree with
π({λ}) = p, and when T (v) = 1, T (av) is Bernoulli with parameter p, for a ∈ A.
We call such tree distributions pseudo Galton–Watson processes.

2. Let f be defined by f (1v) = v, and f ((a +1)v) = av for 1 ≤ a < m. That
is, v = f (w) if w is the eldest brother and v is the father of w, or if v is the nearest
older brother of v. Let now p0, . . . , pm be given probabilities, with p0 > 0 and
p0 + · · · + pm = 1. If

μπ(1v) = (p1 + · · · + pm)μπ(v),

μπ((a + 1)v) = pa+1 + · · · + pm

pa + · · · + pm

μπ(av) (1 ≤ a ≤ m − 1),

we obtain the classical Galton–Watson process, with parameter probabilities
p0, . . . , pm.

If π is a distribution on T , and T is a random tree with distribution π , then by
a simple computation,

πd(t) = ∑
v∈V

φ(v)
(
μπ(v) − t (v)

)2 + ∑
v∈V

φ(v)σ 2
π(v)(A.3)

= ∑
v∈V

φ(v)μπ(v)
(
1 − 2t (v)

) + ∑
v∈V

φ(v)t (v).(A.4)

PROOF OF LEMMA A.1. Notice first that from (A.4) it follows that

πd(t) − π ′d(t) = ∑
v∈V

φ(v)
(
μπ(v) − μπ ′(v)

)(
1 − 2t (v)

)
,(A.5)

which implies that if μπ(v) = μπ ′(v) for all v ∈ V , then πd(t) = π ′d(t). This
proves sufficiency.

To prove necessity, we proceed by induction. When πd(t) = π ′d(t) for all
t ∈ T , from (A.5) we obtain

0 = ∑
v∈V

φ(v)
(
μπ(v) − μπ ′(v)

)(
1 − 2t (v)

)
(A.6)

= −∑
v∈t

φ(v)
(
μπ(v) − μπ ′(v)

) + ∑
v /∈t

φ(v)
(
μπ(v) − μπ ′(v)

)
for all t ∈ T . Letting t = ∅, the empty tree, and t = {λ} in (A.6), we obtain

0 = ∑
v∈V

φ(v)
(
μπ(v) − μπ ′(v)

)
,(A.7)

0 = −φ(λ)
(
μπ(λ) − μπ ′(λ)

) + ∑
v �=λ

φ(v)
(
μπ(v) − μπ ′(v)

)
.(A.8)
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Substracting (A.7) and (A.8) and using that φ(v) > 0, we get μπ(λ) = μπ ′(λ).

Inductive step. Let t ∈ T , and h ∈ V \ {t} such that t ∪ {h} ∈ T . We show that
if μπ(v) = μπ ′(v) for all v ∈ t , then μπ(h) = μπ ′(h). First, we obtain from (A.6)

0 = ∑
v /∈t

φ(v)
(
μπ(v) − μπ ′(v)

)
,(A.9)

0 = −φ(h)
(
μπ(h) − μπ ′(h)

) + ∑
v /∈t∪{h}

φ(v)
(
μπ(v) − μπ ′(v)

)
,(A.10)

and it follows that μπ(h) = μπ ′(h). �

It is easy to prove the following lemma

LEMMA A.3. If T is a random tree satisfying the Markov hypotheses with
tree-shift f , then, given T (v) = 1, the variables T (w) :w ∈ f −1(v) are indepen-
dent. Furthermore, if v = f (w),

P
(
T (w) = 1|T (v) = 1

) = μπ(w)

μπ(v)
.(A.11)

PROOF OF PROPOSITION A.2. First, notice that

π(∅) = 1 − μπ(λ).(A.12)

From Lemma A.3,

π({λ}) = μπ(λ)
∏

h∈f −1(λ)

(
1 − μπ(h)

μπ(λ)

)
.(A.13)

Let t ∈ T \ {∅,V } and h be a node such that h /∈ t and v = f (h) ∈ t . We shall
show that

π(t ∪ {h}) = π(t)
μπ(h)

μπ(v) − μπ(h)
.(A.14)

First, we have

π(t ∪ {h}) = P
(
Tt = 1, T (h) = 1, T(t∪{h})c = 0

)
= P

(
T (h) = 1|Tt = 1, T(t∪{h})c = 0

)
P

(
Tt = 1, T(t∪{h})c = 0

)
(A.15)

= P
(
T (h) = 1|T (v) = 1

)
P

(
Tt = 1, T(t∪{h})c = 0

)
.

On the other hand,

π(t) = P
(
Tt = 1, T (h) = 0, T(t∪{h})c = 0

)
= P

(
T (h) = 0|T (v) = 1

)
P

(
Tt = 1, T(t∪{h})c = 0

)
(A.16)

= (
1 − P

(
T (h) = 1|T (v) = 1

))
P

(
Tt = 1, T(t∪{h})c = 0

)
.
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From (A.15) and (A.16) it follows that

π(t ∪ {h}) = π(t)
P(T (h) = 1|T (f (h)) = 1)

1 − P(T (h) = 1|T (f (h)) = 1)
.(A.17)

This shows (A.14). Our main statement follows now by induction from (A.13) and
(A.14), noticing that any finite tree may be constructed from {λ} in this way. �

A.2. Redefining the minimization problem. In this subsection we prove
Propositions 4.1 and 4.2. Call �(v) = (t(v) − t ′(v)) so that

L(t) = ∑
v∈V

φ(v)�(v)t (v).(A.18)

Recall the space of configurations Y = {0,1}V . Trees minimizing L will
also minimize L + βP for all positive β: If t ∈ T ∩ arg miny∈Y L(y), then
t ∈ arg miny∈Y(L(y)+βP (y)) for all β > 0. On the other hand, if β is big enough,
we expect the configurations minimizing L + βP to be trees. Since on the set of
trees the form P vanishes, the minimizing trees should also minimize L. This is
proven in the following lemma.

LEMMA A.4. If β >
∑

v∈V φ(v), then

arg min
t∈T

L(t) = arg min
y∈Y

(
L(y) + βP (y)

)
.(A.19)

PROOF. Observe that minimizing configurations in Y satisfy

y′ ∈ arg min
y∈Y

L(y) if and only if y′(v) =
{

0, if �(v) > 0,
1, if �(v) < 0.

(A.20)

Let Lmin and Lmax be the values of the minimum and maximum of L over Y, that
is,

Lmin = ∑
v:�(v)<0

φ(v)�(v), Lmax = ∑
v:�(v)>0

φ(v)�(v).(A.21)

Notice that

Lmax − Lmin = ∑
v∈V

φ(v)|�(v)| ≤ ∑
v∈V

φ(v).(A.22)

For all y ∈ Y it holds

L(y) + βP (y) ≥ Lmin + β
∑

v:y(v)=0

∑
a∈A

y(av)
(
1 − y(v)

)
.(A.23)

If y is not a tree, there exists v ∈ V and a ∈ A such that y(v) = 0 and y(av) = 1,
hence,

L(y) + βP (y) ≥ Lmin + β > Lmin + ∑
v∈V

φ(v) ≥ Lmax(A.24)
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by (A.22). On the other hand, L(t)+βP (t) = L(t) ≤ Lmax for any tree t . Hence,
for these values of β , if y is not a tree, then L(y) + βP (y) > maxt∈T (L(t) +
βP (t)) and the result follows. �

PROOF OF PROPOSITION 4.1. It follows from (14), (15) and the above lemma
applied to L and −L. �

PROOF OF PROPOSITION 4.2. The proof follows from a simple algebra. More
generally, the Hamiltonian H :Y → R given by

H(y) = ∑
v∈V

Hv(y(v)) + ∑
v,w∈V

Hv,w(y(v), y(w))(A.25)

is said regular if the quadratic terms satisfy

Hv,w(0,0) + Hv,w(1,1) ≤ Hv,w(0,1) + Hv,w(1,0).(A.26)

Theorem 4.1 of Kolmogorov and Zabih (2004) says that regular Hamiltonians are
graph representable, meaning that it is possible to associate capacities to the graph
(Ṽ , Ẽ) defined in (18) in such a way that

C(y) = k + H(y), y ∈ Y,(A.27)

where C(y) is the capacity of the cut defined by y [see (21)] and k is a constant.
The Hamiltonian L + βP is regular because Hv,av(t (v), t (av)) = βt(av)(1 −

t (v)) satisfy (A.26). The graph (18) with capacities (19) is the Kolmogorov and
Zabih representation of the Hamiltonian L + βP . �

A.3. Simulation results. In this subsection we perform the test for the two-
sample problem (10) using samples t and t′ with distribution π and π ′ on T , trees
with maximal depth L = 8. We compute the BFFS statistic W given in (12) using
the approach of Section 4. We use the distance (8) with φ(v) = θgen(v) for various
values of θ . Since in this case we know π and π ′, we estimate the quantiles directly
by Monte Carlo simulation, as follows:

Quantile
1. Generate two samples of size n both from 1

2π + 1
2π ′, a fair mixture of the

laws. Label them sample 1 and sample 2. Compute the test statistic W using
the samples.

2. Repeat the above procedure a fixed number of times N .
3. Order the computed statistics values increasingly and define the quantile q(1 −

α) as the statistic in place (1 − α)N .
4. Calculate the quantiles for several values of α and sample sizes n.

Power
1. Generate sample 1 from π , sample 2 from π ′ and compute W using them.
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TABLE 1
Model 1. Power of the tests with p = 0.5 and p′ = 0.6, 0.7, 0.8, sample size n = 31, 51, 125

n = 31 n = 51 n = 125

α/p′ 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.01 0.101 0.504 0.923 0.122 0.744 0.999 0.466 0.994 0.9999
0.05 0.242 0.708 0.986 0.313 0.889 0.9999 0.661 0.999 0.9999
0.1 0.325 0.806 0.998 0.426 0.935 0.9999 0.743 0.9999 0.9999

2. Compare the obtained value against the quantile, and reject the null hypothesis
with level α if W > q(1 − α).

3. Repeat the last two steps a fixed number of times and compute the per-
centage of rejections for each value of α as a measure of the power of the
test.

MODEL 1: BINOMIAL. Let π be the law of a Galton–Watson process with
offspring distribution Binomial(2,p) and π ′ is the same with parameter p′. We
use p = 0.5 and p′ = 0.6, 0.7, 0.8. Table 1 shows the percentage of rejection
over 1000 tests of level α = 0.10, 0.05, 0.01 for sample sizes n = 31,51,125.
The results show the consistency of the BFFS test for alternatives with any value
of p �= 0.5. For this simple model, small sample sizes are enough to get high
power.

MODEL 2: MIXTURE OF BINOMIALS. Let π be the law of a Galton–
Watson process with offspring distribution a mixture of Binomials. Indepen-
dently at each node with probability q use a Binomial(2,p1), otherwise a
Binomial(2,p2). For π ′ we use q ′, p′

1 and p′
2. But we take q = q ′ = 0.5 in the

examples.

MODEL 2.1. Take p1 = 0.45, p2 = 0.5 and p′
1 = 0.1, p′

2 = 0.85. Figure 2
shows histograms of the test statistic values obtained in 1000 iterations, for sam-
ple sizes 31 (left) and 131 (right) respectively. We have plotted the test statistic
under null hypothesis on red and the one under the alternative on blue. The dis-
tance parameter was θ = 0.35. The expected mean at each node is the same
because p1 + p2 = p′

1 + p′
2; the distributions under the null and alternative hy-

pothesis are close to each other but the BFFS test needs only a moderate sam-
ple size to give high power to the test. In Table 2 we evaluate the power of
the test for three different values of the test level (α, as 0.01, 0.05 and 0.1), in
the same way as in Table 1. The left plot on Figure 3 shows 5 curves of 1000
p-values each, for sample sizes N = 31,51,71,101,131, and the distance para-
meter θ = 0.35. The right one shows the same results when the distance parameter
is changed to θ = 0.49. Increasing the parameter θ decreases the power of the
test.
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FIG. 2. Model 2.1. Histogram of the test statistic under null hypothesis (black plot) and alternative
(white plot), with sample sizes 31 and 131.

MODEL 2.2. The parameters p1 = 0.3, p2 = 0.65, p′
1 = 0.45 and p′

2 = 0.5
give a different scenario, since the distributions of the populations are very close.
Figure 4 shows slow changes in the empirical distribution as the sample size grows.
At the left is the histogram of the 1000 values of the test statistic under the null
(red plot) and alternative hypothesis (blue plot) for sample size N = 50. For the
right histogram the sample size is N = 500. In Figure 5 we consider larger sample
sizes for Model 2.2. We fix θ = 0.35 and plot the p-values computed over 1000
replications for sample sizes N = 50, 250 and 500 (left plot) and the percentage
of rejection as a function of the sample size, each curve computed with a different
α level. Besides sample fluctuations, the percentage of rejection increases with
sample size, but at a quite slow rate.

TABLE 2
Model 2.1. Power of the tests of level α for 1000 replications, with α = 0.05, 0.01, 0.1.

Sample sizes are 31, 51, 71, 101, 131. Parameter θ = 0.35

α 31 51 71 101 131

0.01 0.045 0.108 0.325 0.594 0.819
0.05 0.288 0.363 0.747 0.887 0.973
0.1 0.438 0.642 0.857 0.976 0.990
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FIG. 3. Model 2.1. p-values calculated 1000 times; sample sizes 31, 51, 71 and 131. Left plot:
parameter θ = 0.35. Right plot: parameter θ = 0.49. Increasing the parameter θ decreases the power
of the test.

FIG. 4. Model 2.2. Histogram of the test statistic under null hypothesis (black plot) and alternative
(white plot); left plot size = 50 and right plot size = 500. Parameter θ = 0.35.
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FIG. 5. Model 2.2. Left plot: p-values computed 1000 times, each curve related to a different sample
size 50, 250 and 500. Right plot: percentage of rejection as a function of the sample size, each curve
computed with a different α level, 0.01 in dotted line, 0.05 in dashed line and 0.1 in interpolated line.
Parameter θ = 0.35.
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