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An enormous amount of observations on Cosmic Microwave Back-
ground radiation has been collected in the last decade, and much more data
are expected in the near future from planned or operating satellite missions.
These datasets are a goldmine of information for Cosmology and Theoretical
Physics; their efficient exploitation posits several intriguing challenges from
the statistical point of view. In this paper we review a number of open prob-
lems in CMB data analysis and we present applications to observations from
the WMAP mission.

1. Introduction.

1.1. Cosmological background. Cosmology is now developing into a mature
observational science, with a vast array of different experiments that yield datasets
of astonishing magnitude and nearly as great challenges for theoretical and applied
statisticians. Datasets are now available on a large variety of different phenomena,
but the leading part in cosmological research has been played over the last 15 years
by the analysis of Cosmic Microwave Background (CMB) radiation, an area which
has already led to Nobel Prizes for Physics in 1978 and in 2006.

The nature of CMB can be loosely explained as follows [see, e.g., Dodelson
(2003) for a textbook account]. According to the standard cosmological model,
the Universe that we currently observe originated approximately 13.7 billion years
ago in a very hot and dense state, in what of course is universally known as the
Big Bang. Neglecting fundamental physics in the first fractions of seconds, we
can naively imagine a fluid state where matter was completely ionized, that is,
the kinetic energy of electrons was much stronger than the electrical attraction of
protons, so that no stable atomic nuclei could form. It is a consequence of quantum
principles that a free electron has a much larger cross-section than when it is bound
in a nucleus; loosely speaking, as a consequence, the probability of interactions
between photons and electrons is so high that the mean free path of the former was
very short and the Universe was consequently “opaque.” As the Universe expands,
the mean energy content decreases, that is, the fluid of matter and radiation cools
down; the mean kinetic energy of the electrons decreases as well until it reaches
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a critical value where it is no longer sufficient to compensate the electromagnetic
attraction of the protons; stable (and neutral) hydrogen atoms are then formed. This
change of state occurs at the so-called “age of recombination,” which is currently
reckoned to have taken place 3.7 x 10° years after the Big Bang, that is, when the
Universe had only the 0.003% of its current age. At the age of recombination, the
probability of interactions became so small that, as a first approximation, photons
could start to travel freely. Neglecting second order effects, we can assume they
had no further interaction up to the present epoch.

The remarkable consequence of this mechanism is that the Universe is em-
bedded in a uniform radiation that provides pictures of its state nearly 1.37 x
109 years ago; this is exactly the above-mentioned CMB radiation. The existence
of CMB was predicted by G.Gamow in a series of papers in the forties; it was later
discovered fortuitously by Penzias and Wilson in 1965—for this discovery they
earned the Nobel Prize for Physics in 1978. For several years further experiments
were only able to confirm the existence of the radiation, and to test its adherence
to the Planckian curve of blackbody emission, as predicted by theorists. A major
breakthrough occurred with NASA satellite mission COBE, which was launched
in 1989 and publicly released the first full-sky maps of radiation in 1992; for these
maps Smoot and Mather earned the Noble Prize for Physics in 2006 [Smoot et al.
(1992)].

The nature of these maps deserves further explanation. CMB is distributed in
remarkably uniform fashion over the sky, with deviations in the order of 10™*
with respect to the mean value (corresponding to 2.731 Kelvin degrees). The at-
tempts to understand this uniformity have led to very important developments in
cosmology, primarily the inflationary scenario which now dominates the theoreti-
cal landscape. Even more important, though, are the tiny fluctuations around this
mean value, which provided the seeds for stars and galaxies to form out of grav-
itational instability. Measuring and understanding the nature of these fluctuations
has then been the core of an enormous amount of experimental and theoretical
research. In particular, their stochastic properties yield a goldmine of information
on a variety of extremely important issues on astrophysics and cosmology, and on
many problems at the frontier of fundamental physics.

To mention just a few of these problems, we recall the issues concerning the
matter content of the Universe, its global geometry, the existence and nature of
(nonbaryonic) dark matter, the existence and nature of dark energy, which is re-
lated to Einstein’s cosmological constant, and many others. The next experimen-
tal landmark in CMB analysis followed in 2000, when two balloon-borne experi-
ments, BOOMERANG and MAXIMA, yielded the first high-resolution observa-
tions on small patches of the sky (less than 10° squared). These observations led
to the first constraints on the global geometry of the Universe, which was found to
be (very close to) Euclidean. Another major breakthrough followed with the 2003,
2007 and 2008 data releases from another NASA satellite experiment, WMAP (the
data are publicly available on the web site http://lambda.gsfc.nasa.gov/). Such data
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releases yielded measurement of the correlation structure of the random field up
to a resolution of about 0.22 degrees, that is, approximately 30 times better than
COBE (7-10 degrees). Another major boost in data analysis is expected from the
ESA satellite mission Planck, which is now scheduled to be launched on Octo-
ber 31, 2008; data releases for the public are expected in the following 3-5 years.
Planck is planned to provide datasets of nearly 5 x 10'? observations, and this will
allow to settle many open questions with CMB temperature data. New challenging
questions are expected to arise at a faster and faster pace over the next decades; for
instance, Planck will provide high quality for so-called polarization data, which
will set the agenda for the experiments to come. Polarization data can be viewed
as tensor-valued, rather than scalar, observations—that is, what we observe are not
measurements of a scalar quantity such as the temperature, but random quadratic
forms. As such, this entails an entirely new field of statistical research, which is
still in its infancy and will not be discussed in the present paper.

Our aim here is to provide a review of statistical issues arising in CMB data
analysis, with many examples of applications of statistical procedures to real data
from the WMAP experiment. Some of the empirical results we provide are new,
as detailed below. The plan of the paper is as follows: in Section 2 we review
very briefly some background material on map-making, component separation
and spectral representations for the CMB data sets. For brevity’s sake, we do not
provide many details other than the material which is essential for our following
discussion. In Section 3 we are concerned with angular power spectrum estima-
tion, and we discuss procedures to deal with relevant practical questions such as
the presence of observational noise and/or missing observations. In Section 4 we
present some tools to test for Gaussianity and/or isotropy of CMB radiation: we fo-
cus, in particular, on harmonic methods such as the bispectrum, techniques based
on differential geometry such as the local curvature, and spherical wavelets (with
the so-called Spherical Mexican Hat approach). Concerning the latter, we stress
that many other possible approaches to wavelets on the sphere exist, which have
been successfully applied to various parts of cosmological and astrophysical re-
search: nevertheless, the field is still extremely active and very much open for
research (in particular, the derivation of the stochastic properties of wavelets pro-
cedures is still at the very beginning). Finally, we collect in the Appendix some
background mathematical material which we considered necessary for a better un-
derstanding of our proposals.

2. Some preliminary issues.

2.1. Map-making and component separation. To understand more precisely
the nature of the statistical issues involved, we need to introduce some more for-
malization. As explained above, CMB can be viewed as the single realization of a
random field on the surface of the sphere, that is, for each x € Sz, T (x) is a ran-
dom variable on a probability space. Observations are provided by means of elec-
tromagnetic detectors (so-called radiometers and/or bolometers) which measure
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fluxes of incoming radiations (i.e., photons) on a range of different frequencies.
For instance, the above mentioned WMAP experiment is based upon 16 detectors,
centered at frequencies 40.7, 60.8 and 93.5 GHz, which are labeled the Q, V and
W band, respectively. The forthcoming ESA mission Planck will be based upon
70 channels ranging from 30 GHz to 857 GHz. As the satellites scan the sky, ob-
servations are collected as a vector time series, the number of observations being in
the order of 10° for WMAP and 5 x 10'° for Planck. A first issue then relates to the
construction of spherical maps starting from the Time Ordered Data (TOD) pro-
vided by the satellite; this is the so-called map-making challenge; see, for instance,
Keihanen, Kurki-Suonio and Poutanen (2005) and De Gasperis et al. (2005). For
brevity’s sake, we shall provide only the basic framework, and refer to the litera-
ture for more details. In short, we can assume that in each of the p channels we
actually observe

Oi(x)=T(x)+ Fi(x) + N;(x), i:l,...,p,xeSZ;

here, T (-) denotes the CMB signal, F;(x) denotes the so-called foreground emis-
sions by galactic and extragalactic sources of noncosmological nature (for in-
stance, galaxies, quasars, intergalactic dusts and others), and N;(x) instrumental
noise. The crucial point to be understood is that the dependence across the differ-
ent frequency channels of CMB emission is known, and it is different from the
pattern followed by other sources: this capital property makes component separa-
tion possible and allows the construction of filtered maps [see. e.g., Patanchon et al.
(2005) and the references therein]. More precisely, a clear prediction from theoreti-
cal physics, confirmed to amazing accuracy from the very first experiments [Smoot
et al. (1992)], is that CMB radiation should follow the Planckian curve of black-
body radiation, that is, radiation is distributed across frequencies v;, i =1,..., p
according to the function

1 Riv: x) — 8whv? 1
(1) (v;x) = 3 e—hv/kpT(x) _ 1’

where R(v; x) denotes the emission at frequency v for the corresponding temper-
ature T (x) (measured in Kelvin degrees), c is the speed of light in the vacuum
(=2.99798 x 103 m/s), h is Planck’s constant (= 6.6261 x 1077 er g/s), and kp
is Boltzmann’s constant (= 1.3807 x 107'¢ er g/K). In other words, the determi-
nation of 7' (x) is made possible by the inversion of (1): the blackbody pattern can
be estimated due to the presence of multiple detectors and the fact that astrophysi-
cal emissions of noncosmological nature are characterized by a different pattern of
dependence across frequencies. In some regions, however, foreground emissions
are so strong that component separation is still a difficult statistical problem; sev-
eral groups of cosmologists are active in this field and a unique consensus solution
has not been delivered yet. Moreover, in some areas of the sky (e.g., the Galac-
tic plane, i.e., the line of sight of the Milky Way) the problem is considered to
be largely unsolvable, so that there are missing observations in CMB maps (these
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F1G. 1. CMB radiation from WMAP data.

unobserved regions are becoming, however, smaller and smaller with more refined
experiments). In Figure 1 we report a CMB map constructed from (the Q band of)
WMAP data; the missing region around the galactic plane is immediately evident.

Full-sky maps can be constructed by weighted linear interpolation across differ-
ent channels, but they are not considered fully reliable for data analysis, especially
at high frequencies; we report this so-called ILC (Internal Linear Combination)
map in Figure 2, see Bennett et al. (2003) for more details on its construction.

There are several other statistically interesting issues involved with the recon-
struction of the scalar value T (x) from the vector-valued observations { O (x), ...,
Op(x)}; actually the real experimental set-up is more complicated (and interesting)
than this, because each location is observed unevenly, that is, the scanning strat-
egy is such that some regions are more accurately measured than others. Also, the
contaminating noise can have a time-dependent structure [there is indeed strong
evidence for long memory behavior, see, e.g., Natoli et al. (2002)]; the possible
existence of noise correlation across different channels will be discussed below.
These experimental features have sparked in the cosmological literature a very
lively statistical debate on filtering and image reconstruction. We shall come back
to some of these points later.

2.2. Isotropy and spectral representation. In the idealistic case of no experi-
mental noise and perfect map-making, we can focus on the random field {7 (x)},
assuming that it is exactly observed at each location on the unit sphere S2. A cru-

cial assumption on CMB radiation is its isotropic nature, that is, 7'(-) LT, g(),
where £ denotes equality in distribution (in the sense of random fields) and
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Internal Linear Combination Map

FI1G. 2. The so-called Internal Linear Combination map from WMAP data.

g € SO(3) is any element of the group of rotations in R3. More explicitly, the joint
law of CMB radiation is assumed invariant to any change of coordinate; the condi-
tion is viewed by the physicists as a realization of so-called Einstein’s Cosmologi-
cal Principle, that is, the statement that the Universe should “look the same” to an
observer in any arbitrary location. In other words, we could impose isotropy by re-
quiring that the stochastic laws of CMB radiation are invariant with respect to the
choice of coordinates. There is some (quite inconclusive) evidence from WMAP
data that isotropy may fail, that is, some authors have suggested that data on CMB
radiation may show some asymmetries which would be inconsistent with isotropy
[see, e.g., Park (2004), Hansen et al. (2004)]. The existence of these asymmetries
remains highly disputed, though, and it actually provides yet another intriguing
area for statistical research. It is in fact hotly debated whether these asymmetries
should be ascribed to experimental features or truly cosmological causes. From
the theoretical point of view, cosmological models that would produce asymme-
tries do indeed exist, but they are highly nonstandard, ranging from global rotating
solutions of Einstein’s field equations to unconventional topological structures for
the whole Universe. Much more methodological and applied research is needed
in this area, but the question will most probably remain unsolved at least until the
first releases of Planck data are available in a few years’ time. By now, it is fair
to say that a vast majority of cosmologists is still sticking to the isotropy assump-
tion, and this is what we shall do in the present paper. Some of the procedures
we shall consider in Section 4 for testing non-Gaussianity, however, are known to
have also power against nonisotropic behavior; see, for instance, the local curva-
ture approach below.
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We shall hence focus on the statistical analysis of isotropic random fields.
Throughout this paper we shall assume that the CMB random field is mean-square
continuous, as it is always done in the CMB literature. Under the previous assump-
tions, the following spectral representation holds, in the mean square sense

00 )
) T)=Y Y amYim(x)

=0 m——1
3) where a;,, = /2 T(xX)Y 1 (x)dx.
s

Here, the bar denotes complex conjugation and {¥;,,(-)} the spherical harmon-
ics, which form an orthonormal system for L? functions on the sphere. Some ex-
plicit expressions for the spherical harmonics can be found in the Appendix: much
more complete treatment can be found elsewhere; see Varshalovich, Moskalev and
Khersonskii (1988). For [ =m = 0, we have ago = fsz T (x)dx, that is, the first
coefficient is 47 times the sample mean of the random field. This value can be
subtracted from 7T (x), whence we can take the expansion to start from [ = 1; in-
deed, in practice, in the cosmological literature also the coefficients corresponding
to [ = 1 are discarded (the so-called dipole terms), as they have no cosmological
meaning, but they simply reflect the absolute motion of the Earth with respect to
the frame of reference with respect to which CMB radiation is at rest. For [ > 2,
the triangular array {a;,, (-)} represents zero-mean, complex-valued random coeffi-
cients, with variance E|a;,|*> = C; > 0, the angular power spectrum of the random
field. The coefficients are uncorrelated, Eaj m,dim, = C1185128,';112, and, hence, in
the Gaussian case they are independent [note, however, that a;, = (—1)"a;_,].
We have the identity

00 1 2 [e'e) 1
E{Z Z alelm(x)} =Z Z E|alm|2Ylm(x)

1=2m=—1 1=2m=—1
00 ) 00
20+ 1
=Y C Y Vi) =) C e
=2 m——I =2 T

in view of a standard summation formula for spherical harmonics [Varshalovich,
Moskalev and Khersonskii (1988)]. It follows immediately that C;(2/ 4+ 1) must be
summable to ensure finite variance. The angular power spectrum in the Gaussian
case provides a complete characterization of the dependence structure of the ran-
dom field; to its estimation from CMB data we now turn our attention.

3. Angular power spectrum estimation.

3.1. Power spectrum estimation under idealistic circumstances. As noted be-
fore, having observed the random field 7 (x), the coefficients {a;,, ()} can be re-
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covered by means of the inverse Fourier transform (3). In practice, with real data
the integral is replaced by finite sums by means of (exact or approximate) cuba-
ture formulae, which are implemented in standard packages for CMB data analysis
such as HealPix or GLESP [see Gorski et al. (2005), Doroshkevich et al. (2005)].
The angular power spectrum can then be estimated by

4) C = 21+1Z|zm|

This simple estimator highlights a very important issue when dealing with CMB
data. It is indeed readily seen that the estimator is consistent in the Gaussian case,
as | — oo; more precisely,

EC/ =C,
~ 2
C 2 1 2 l 2
E{—l—l} =—— B[ _ 142} il _
C @I+1) C el C
2 ey
= — =0 s
2141
because alo/Cl Xl andform=1,...,1, 2a12m/C1 £ i.id. X22, where X,% denotes

a standard chi-square random Varlable With n degrees of freedom. In the Gaussian
case with fully observed maps, the issue of angular power spectrum estimation can
thus be considered trivial, and indeed, the previous expressions not only ensure
consistency but they also provide exact confidence intervals: it is immediate to see
that

/

I
2 2 2| 4 2
> laml* = lawl* + Y 2lam| }~cz X Xon41-

m=—I m=—1

However, we must stress that these results rely heavily on the Gaussian assump-
tion. Indeed, Baldi and Marinucci (2007) and Baldi, Marinucci and Varadarajan
(2007) have shown that under isotropy the coefficients a;,, can only be indepen-
dent in the Gaussian case, despite the fact that they are always uncorrelated by
construction: in other words, sampling independent, non-Gaussian random coeffi-
cients to generate maps according to (2) will always yield an anisotropic random
field. The correlation structure of the coefficients {a;;,} is in general quite compli-
cated, despite the fact that it can be very nicely characterized in terms of group
representation properties for SO(3) [Marinucci and Peccati (2007)]. In view of
this, to derive any asymptotic result for C; under non-Gaussianity is by no means
trivial; indeed, even the possible consistency (as [ — oo) of the estimator (4) in
non-Gaussian circumstances is still an open issue for research.
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3.2. Dealing with instrumental noise. We shall now try to make our analy-
sis more realistic by considering the effect of noise and missing observations.
Starting from the former, we shall consider the case where we observe O(x) :=
T(x) + N(x), N(x) denoting instrumental noise; for simplicity, we shall follow
the cosmological literature, assuming N (x) to be also a zero mean, mean square
continuous and isotropic random field on the sphere. Whereas the assumptions of
zero-mean and mean square continuity are basically immaterial, isotropy of the
noise may need to be relaxed if the sky is unevenly observed. We shall also as-
sume that 7 (x) and N(x) are independent. Performing the spherical harmonic
transform, we obtain, in an obvious notation,

Ui = /S AT @) + NV (x) dx = af,, +apy,

which leads to

. 1 l l l 3
clz—zm[ S+ Y Ia,]\,;Iz—I—ZRe{ > ,;;;H
m=-—I m=-I m=-—1

It is immediate to see that the resulting estimator is biased, E 61 =C IT +C IN ; the
variance is easily seen to be given by

2c! + My
20+ 1

In the cosmological literature, the standard procedure to address this bias is to
assume that the noise correlation structure can be derived by Monte Carlo simu-
lations or instrumental calibration; under this assumption, it is possible to subtract
the bias from 61 and obtain a correct estimator with variance (5). An obvious ques-
tion is then to test whether the assumption that C lN is known does not introduce
some spurious effect into the analysis (namely, some unaccounted bias). A pro-
posal in this direction was put forward by Polenta et al. (2005). To understand this
idea, we must get back to the multi-channel setting, where we observe

) Var{C/} =

O;(x) :=T(x)+ N;(x), i=1,...,p,

which in the harmonic domain leads to

T Ni
Qisim *= Ay + Appy -
Note that the temperature component of the random spherical harmonics coef-
ficients does not depend on the observing channel. We assume that the noise is
independent over channels, which is believed to be consistent with the actual ex-
perimental set-ups of current datasets. Testing noise correlation across different

channels is yet another open challenge for research. For a given noise structure, an
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obvious estimator for C; is

1 &~ A
=—> {Cu—C"},
P
(6)
il3 2l+1 Zlazlm|

The estimator C ZA is known in the literature as the auto-power spectrum. Simple
computations yield [Polenta et al. (2005)]
EC lA =y,
~ 2 2C 2G;
Var{C}'} = CF+ C c,c, .
(¢} 21+1{l Zz p4112:11 l}
Of course, the natural question that arises at this stage is the possible existence of

misspecification, that is, some errors in the bias-correction term C lN . A solution
for this issue was proposed by Polenta et al. (2005). The idea is to focus on the
cross-power spectrum estimator

- - 1 !

p(p

The underlying rationale for GZCP is easy to gather: under the assumption that noise
is independent across a different channel, the estimator is unbiased, regardless of

the value of the C}* ;' . More precisely,

z 1 : T Niy =T | =Nj
Z m - E(alm+alm)(alm+alm)

Similar manipulations yield

2C
Var(Cf }_21—+1{ P+ ’ZCz I)QZ > ¢ }

i=1 j=i+1

Merely for notational simplicity, we also assume that the noise variance is constant
across detectors. It is then readily seen that

2l+1{ (1—1)

Var{C£P} — Var{C}'} = (C,N)Z}.
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More explicitly, the auto-power spectrum estimator is more efficient that the cross-
power spectrum; however, the latter is robust to noise misspecification. This is
the classical setting which makes the implementation of a Hausman-type test for
misspecification feasible [Hausman (1978)]. Indeed, it is possible to consider the
statistic

Hy = [Var{CFF — CAN~YVACEP - Cy,

e = LS 2SS 8 e

i=1 j=i+l1

Under the null of exact bias correction, it is readily seen that H; —4 N (0, 1), as
[ — o00. On the other hand, in the presence of misspecification, that is, when the
actual noise variance is equal to CZN ' 4+ 8 for some i, § > 0, then we expect E Hj to
diverge with rate /18 as [ — oo.

It is also possible to consider a functional form of the same test, focusing on

[Lr]
BL(r) = ZH;, re0,1].

It is standard to show that By (r) converges weakly to a standard Brownian motion,
as L — oo. A test for noise misspecification can then be constructed along the
lines of standard Kolmogorov—Smirnov or Cramér—Von Mises statistics. We refer
again to Polenta et al. (2005) for a much more detailed discussion and an extensive
simulation study.

The methods discussed above rely on a basic identification assumption, that
is, the condition that instrumental noise be independent across different channels.
This is an assumption which is commonly entertained in the cosmological liter-
ature; suitable statistical issues to test its validity are still lacking and represent
an open issue for research. A more challenging research task was mentioned be-
fore: the previous discussion was entirely led under the assumption that the CMB
field (and thus the corresponding spherical harmonics coefficients) are Gaussian.
It is very important to stress that relaxing this assumption has much deeper conse-
quences here than it is usually the case in statistical inference. Indeed, it follows
from results in Baldi and Marinucci (2007) that if the field is isotropic, the coeffi-
cients (aj;) cannot be independent unless they are Gaussian. It follows that even
the simple consistency (as [ — o0) of the estimator C; remains an open issue to
address, in general non-Gaussian circumstances. We shall not go further into this
issue here, but we rather focus on another important feature of realistic datasets:
the presence of unobserved regions, which make the exact evaluation of the inverse
Fourier transform (3) unfeasible.
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3.3. Missing observations. The presence of missing observations, that is, re-
gions of the sky where the CMB is deeply contaminated by astrophysical fore-
grounds, posits serious challenges to angular power spectrum estimation. The first
consequence is that the sample spherical harmonics coefficients

v _
ain= | sy TOT ) dx

lose their uncorrelation properties (here, M denotes the unobserved region and,
for notational simplicity, we came back to the case of a single detector with no
instrumental noise). Indeed, we have

Eal/:/lmlﬁgmz = E{(/:?HM T(x)?llml(x) dx) </82/M T () Yiym, (y) dy)}

= X B ([, )Ty (013)

limy lomy
(7
X (/ Yl/m’()’)lemz(y)dy>
S2/M
= Z C[ Wlm[]m] Wlmlsz ’
Im
where

Wlmllml = /:S‘Z/M Ylm(x)?llml(x)dx-

In case the spherical random field is fully observed, then M = & (the empty set)
and by standard orthonormality properties of the spherical harmonics Y7,,, we ob-
tain Wipni,m, = 8111 8, and, therefore, Eaym dym, = C1811128,'212. In the presence of
missing observations, the random coefficients are no longer uncorrelated neither
over [ nor over m. In the physical literature the values of {Wiuim, }i,m iom, are
computed numerically, exploiting the a priori knowledge on the geometry of the
unobserved regions; the resulting coupling matrices can then be used to decon-
volve the estimated values Cj, a procedure which has become extremely popular
under the name of MASTER [see Hivon et al. (2002) for details]. In practice, it is
not possible to identify by this method the value of the angular power spectrum at
every single multipole /; it is then customary to proceed with binning techniques,
where the values of C; at nearby frequencies are averaged and only these smoothed
values are actually estimated. Plots for the estimates of the C; derived along these
lines can be found, for instance, on the web site of WMAP; a comparison with an-
gular power spectrum estimate from several other experiments (based upon smaller
patches of the observed sky) is also entertained.

The previous procedures can be computationally extremely demanding and we
would like here to introduce an alternative strategy, which was basically put for-
ward in Baldi et al. (2006). The idea is to implement power spectrum estimation
by means of new kinds of spherical wavelets, called needlets [see also Narcowich,
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Petrushev and Ward (2006a), Narcowich, Petrushev and Ward (2006b), Marinucci
et al. (2008) and Baldi et al. (2007)]. Needlets can be described as a convolution
of the spherical harmonics basis by means of a suitable kernel function b(-); more
precisely, the general element of the needlet frame can be written down as

Yo = fhg b b(5) S Vi (0P 60
|=BJ—1 m=—I

where {£,} denotes a set of grid points on the sphere, B > 1 is a bandwidth para-
meter, b(-) is compactly supported and an infinitely differentiable function which
satisfies the partition-of-unity property, that is,

(8) Zb2< ) 1 foralll>1,

and {A jx, & i} (the cubature points and cubature weights) can be chosen in such a
way that

2 Yy €500 s €004 = / Yigmy ()Y ymy () dx = 52812,

More detalls on this construction and its underlying rationale can be found in Baldi
et al. (2006) and are not reported here for brevity’s sake; see also Kerkyacharian et
al. (2007) and Guilloux, Fay and Cardoso (2007) for further work in this area. The
corresponding random needlets coefficients are provided by the analysis formula

Bitl
Fio= [ Tewpdy =i 3 5 b( B])azmnm@,k)
|=Bj-1m=—I

whereas the synthesis expression is given as

B/l

Jz’];ﬂjk‘ﬁjk(x) > Z (BJ> (;2]>l|m|Yl|m1(x)

J L=Bi-lm==1

BJ+1 I

X Z Z ZYllml(éjk)?lzmz(g-jk))“jk

[2:BJ'*1 mo=—Ilp k

Bj+l

S SISl ST A IE-S P

J L=Bi-1m==l

7+1

x Z Z 5260

ly=Bi=1my=—1I

oo

Z Z aim Yim (x) =T (x),

l_
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using (8). For our purposes, it is sufficient to recall the main properties of the
needlets construction:

o needlets enjoy excellent localization properties in the real domain, each ¢ (x)
being quasi-exponentially localized around its center & ;. As such, needlets co-
efficients have been shown to be minimally influenced by the presence of miss-
ing observations.

o the needlets system is compactly supported in the harmonic domain; as such,
the random needlets coefficients are uncorrelated for j — j* > 2. Much more
surprisingly, the random needlets coefficients are asymptotically uncorrelated
for any fixed angular distance, as the frequency j diverges to infinity. This prop-
erty implies that (in the Gaussian case) it is possible to derive a growing array
of asymptotically i.i.d. observations out of a single realization of an isotropic
random field. This opens the way to a plethora of statistical procedures.

In particular, it is possible to suggest the estimator

=§B?k—2{ BZ Zfb( )azmhm(s,w}z

|=Bi—-1m=-—I
BIit! b _
- Z ) b(B]) (5 )azlmlabmz{x,«kZYlm@jk)Yzm(sjw}
Bi—1my,mj k
Bj+l
=y bz( )c,(21+1)
I=Bi~!

for which it is simple to show that

Bt

©) ET;= ) b2< )C1(21+1)

|=BJj-1

Equation (9) shows that r j provides an unbiased estimator for a smoothed version
of the angular power spectrum; the advantage with respect to the standard proce-
dure is that not only unbiasedness, but even uncorrelation over different scales is
asymptotically conserved in the presence of missing observations, making the im-
plementation of confidence intervals and testing procedures viable [see again Baldi
et al. (2006) for details]. Also, even in the presence of a masked region, the sum-
mands {3 jk} are still asymptotically independent (over k) as j — oo, whereas we
have seen in (7) that this is not the case for the random coefficients {a;,, }. The price
for such robustness properties is clearly connected to the smoothing, that is, in the
presence of missing observations it turns out to be unfeasible to estimate each
angular power spectrum mode C; by itself, and one must stick to a slightly less
ambitious goal, that is, the estimation of joint values averaged over some subset of
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frequencies (chosen by the data analyst). There is, of course, a standard trade-off
in the choice of the bandwidth parameter B: values closer to unity entail a much
better resolution, but this brings about worse localization properties on the sphere
and therefore a possibly higher contamination from spurious observations; on the
other hand, higher values of B yield more robust, but less informative estimates.

Spherical wavelets in general, and needlets in particular, allow for many sta-
tistical applications, which go much beyond angular power spectrum estimation.
One example is the analysis of cross-correlation between CMB and Large Scale
Structure (LSS) maps; this is a key prediction of many cosmological models en-
tailing some form of dark energy and has been implemented on real data by
Pietrobon, Balbi and Marinucci (2006). Other applications may include testing
for non-Gaussianity and isotropy, bootstrap/subsampling evaluation of confidence
intervals for CMB statistics [Baldi et al. (2007)], component separation and many
others. Given such a wide array of applications, we stress the need for a more care-
ful analysis of their theoretical underpinnings, with special reference to the effect
of the Gaussianity assumption on our conclusions. This and many other related
issues are left as topics for further research.

3.4. Parameter estimation. In this paper we shall neglect almost completely
another crucial issue in CMB data analysis, which is very tightly coupled to the
estimation of the angular power spectrum, that is, cosmological parameter esti-
mation. More precisely, the theoretical angular power spectrum can be written as
a function of a number of cosmological parameters, such as the baryon, matter
and dark energy densities Q2p, 2, Q24, the optical depth t, the spectral index ng,
the Hubble constant Hy and others; of course, the numbers of parameters to be
estimated varies across different cosmological models, typically ranging from 6
to 16; see again Dodelson (2003) for more details. There are no known closed-
form expressions yielding the theoretical angular power spectrum C; as an explicit
function of these parameters (which we write for brevity as ©); however, there are
indeed very fast numerical routines which solve the associated partial differential
equations and provide as an output C; after a specific value of ¢ has been supplied
[see Seljak and Zaldarriaga (1996)].

Once the set of estimated values 61 has also been derived, there are basically
two approaches that have been implemented to obtain estimates for the set of para-
meters, namely, some form of minimum distance estimators, where the parameters
are calibrated to minimize a weighted distance between C;(¢) and C;, and ap-
proximate maximum likelihood methods, where suitable approximations for the
likelihood functions are derived and the estimates are consequently derived. In
practice, both methods are implemented by means of a heavy use of numerical
techniques (especially MCMC), and a lively debate is growing on the construc-
tion of the most efficient algorithms. Likewise, an extensive discussion is growing
on the construction of confidence intervals for the parameters, where fundamental
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issues such as the differences between Bayesian and frequentist viewpoints are of-
ten called upon (the distinction between these two approaches is not perceived in
the cosmological community in the same manner as in the statistical one; just to
give an example, maximum likelihood estimates are nearly unanimously labeled a
Bayesian procedure in the CMB literature).

For brevity’s sake, we are unable to go deeper into these issues, which are still
quite far from a satisfactory solution. We refer, for instance, to Hamann and Wong
(2008) and the references therein for more discussion and recent proposals in this
area.

4. Testing for non-Gaussianity. Among the several statistical issues which
arise in connection to the analysis of Cosmic Microwave Background radiation, a
lot of attention has been drawn by non-Gaussianity tests. These tests have several
motivations. The first is connected to the need for a statistical validation for the
predictions of the so-called inflationary scenario, which is currently the leading
incumbent as a standard model for the Big Bang dynamics; see Dodelson (2003)
for discussions and explanations. Under this labeling, there exist an enormous va-
riety of different physical models, which in a vast majority of circumstances lead
to expressions such as

(10) T(x) = Tg(x) + fvrdTE(x) — ETE(x)},

where T (x) denotes as before CMB, T¢(x) is an underlying Gaussian field, fuy,
is a nonlinearity parameter and the unit of measurements are such that the non-
Gaussian part TCZ; (x) — ET(Z; (x) is 10_4/10_5 times smaller than TG (x). (10)
should be viewed as a strong simplification, for several reasons: in particular, we
are considering exclusively the primordial dynamics, thus neglecting later interac-
tions through the gravitational potential; also, we are ruling out more complicated
models, where higher order terms or multiple subordinating fields may be present;
and, of course, we are neglecting a whole plethora of observational issues, where
possible non-Gaussianities may be formed by secondary effects, such as the inter-
actions of incoming photons at more recent epochs. Despite all these simplifying
conditions, (10) does provide an extremely good guidance for features to be ex-
pected and, indeed, it makes up a benchmark model against which many proce-
dures have been tested in the last few years. In particular, considerable attention
has been drawn by the possibility to constrain the value of fyr, as this depends on
constants from fundamental physics [Bartolo et al. (2004)] and as such it allows to
probe many features of cosmological models.

Among several statistical procedures which have been proposed in the literature,
we shall focus on three main families, namely, tests based upon the bispectrum,
tests based upon geometric features of Gaussian random fields (local curvature)
and tests based upon spherical wavelets (in this case, so-called Spherical Mexican
Hat Wavelets).
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4.1. The angular bispectrum. It is obvious that, under Gaussianity, the se-
quence {a;,}, m =0,...,] makes up an array of independent Gaussian random
variables (complex-valued for m # 0), so that a natural first option for a test
of Gaussianity is to consider their sample skewness aj,m,ai,m,a1;m; and check
whether it is significantly different from zero. This simple idea is made much more
sophisticated by the necessity to impose rotational invariance on the sample coef-
ficients. Such invariance can be imposed by demanding that the probability law of
the CMB field be invariant with respect to the action of the rotation group. More
formally, let g € SO(3) be any element of the rotation group in R3; the assumption
of isotropy can then be written as

T (x) 4 T(gx) forall x € SZ,

whereas in terms of the spectral representation, we have

00 ) 00 )
(11) SN WY@ L3S @ Yim(g).
1=0m=—1 1=0m=-1

As explained, for instance, in Hu (2001) and Marinucci and Peccati (2007),
from (11) it follows that the bispectrum of a rotational invariant random field must
take the form

i b B(h b I
Eallm1a12m2a13m3:(0 0 0><m1 o m3)bzlzzz3,

where by,;,1, (the reduced bispectrum) conveys the physical information and does
not depend on m1, my, m3. The Wigner’s 3j symbols appearing on the right-
hand side are discussed in the Appendix; many more details can be found, for
instance, in Varshalovich, Moskalev and Khersonskii (1988), Marinucci (2006)
and Marinucci (2008), whereas generalization to higher order cumulant spectra
are described in Marinucci and Peccati (2008). A feasible, rotationally invariant
estimator for the (normalized) bispectrum is provided by

l l [ aj aj aj
Iy, = (—D)BH2t/2 R (11 2 3>w

my m3 VCi,CrLCy,

mimoms3

and its studentized version is of course

T l] lz l3 allm1a12m2a13m3
Iy 11y = (=D (1HRHB)/2 3 < e
1 m2 m3 /Cl1 C12C13

The sample bispectrum is discussed, for instance, by Hu (2001); asymptotic prop-
erties are provided by Marinucci (2006) and Marinucci (2008), where the phase
factor (—1)1+2+13)/2 jq 4150 introduced. In particular, it can be shown that the se-
quences {/;,1,1;} and { El 115} converge to Gaussian independent random variables
in the high frequency limit where min(/y, [, /3) 1 co. The limiting behavior of
the bispectrum ordinates, however, is perhaps not the most significant instrument

mypmams3
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for the implementation of statistical procedures. More precisely, it seems more
promising to combine the different ordinates into a single statistic, by means of
the integrated bispectra

[Lr]

1 K
UNGEDYS {«/—f > 111+k,1212}, Jop(r) =
k=1

h=1

(Lr]

Iy
I=1
Convergence to Brownian motion for both these statistics was established in
Marinucci (2006). The underlying rationale can be briefly motivated as follows:
in both cases we combine several different ordinates into a single functional statis-
tic, capable of keeping track of the frequency location for possible deviations from
Gaussianity. The different combination of multipoles in J17 (-), J21 (-) corresponds
to the two well-known classes of squeezed and equilateral configurations, as dis-
cussed again by Marinucci (2006), Babich, Creminelli and Zaldarriaga (2004) and
many others. It is also possible to provide some results on the asymptotic behav-
ior of these statistics under non-Gaussian circumstances; in particular, results in
Marinucci (2006) suggest that Ji; will provide consistent testing procedures (as
L — 00) under model (10), whereas tests based upon Jo; will have asymptoti-
cally negligible power, for all values of fyr. These theoretical findings have been
validated by Monte Carlo simulations in Cabella et al. (2006); the integrated bis-
pectrum has also been shown to compare favorably with alternative statistical pro-
cedures in some internal statistical challenges within the Planck collaboration.

In Figure 3 we report the results obtained by implementing Ji (r) on the data
from the (2003) and (2007) WMAP data releases. We stress that the simulations
are calibrated in a realistic experimental setting, that is, they do take into account
features such as the presence of noise and missing observations. More precisely,
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F1G. 3. The behavior of J11, (r) on WMAP data.
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we used 1000 simulated maps of CMB signal plus noise; we took into account the
modulation of noise on the maps given by WMAP scanning strategy, the presence
of a masked region to avoid the emission from the Milky Way and point sources,
and we considered the optical transfer function of the telescopes. To comply with
the cosmological literature, the shaded region represents the 68% confidence in-
terval (1o) as evaluated by means of Monte Carlo simulations for various values
of r € [0, 1]: we fixed L = 500 because WMAP data allow a reliable coverage up
to this multipoles; see Bennett et al. (2003) and Hinshaw et al. (2008) for more
technical details on the experiment (it should be noted that in the x-axis we report
rL). The dotted and dashed lines represent Monte Carlo expected values for our
statistics with fyr = £100, ..., 500, respectively. It is possible to check that the
boundary value of fyr to ensure detection is in the order of 200 or larger, that is,
with a signal to noise ratio in the order of a few percentage points. This is indeed
confirmed by a more detailed study in Cabella et al. (2006). Finally, triangles (2003
dataset) and squares (2007 dataset) represent the evaluation of the statistic on real
data, on the basis of the previously mentioned WMAP releases. It is clear that the
evidence for non-Gaussianity is rather weak, and, indeed, the statistics get closer
to zero as the observations increase. We must stress, however, that the level of
non-Gaussianity favored by theorists is well below 100, and this is still consistent
with observations at the current resolution. Note that the signal to noise ratio for
the non-Gaussian signal is in the order of fyy/ 10%, so that these values are really
difficult to detect.

Very recently, in Yadav and Wandelt (2007) it has been claimed a detection
of a nonzero fyr (=~ 80) by means of a modified bispectrum estimator, which is
constructed to take into account the presence of noise and missing observations,
at the same time keeping computational costs at a feasible level. This proposal
is indeed very interesting; the results, however, are quite close to the boundary
level and as such they must probably be considered not conclusive. The general
consensus in the community seems to be that new releases of data from more
sophisticated experiments such as Planck, and possibly more efficient statistical
procedures yet to be devised, will indeed be necessary to settle the question on the
possible existence of non-Gaussianity in CMB. It should be stressed, in particular,
that the bispectrum requires the evaluation of the inverse Fourier transform (3), and
as such it is known to be severely affected by the presence of missing observations
(there is some evidence that the detection level could reach fyz >~ 10 or lower
for fully observed sky maps). Improving the performance of the bispectrum for
partial sky coverage is a priority of current research in view of the forthcoming
satellite data: for instance, in Lan and Marinucci (2008) the bispectrum approach is
combined with the needlets construction described in the previous section. Rather
than considering these further developments in the bispectrum literature, we move
to other methods which have a local nature, and are thus expected to be more robust
in the presence of missing data.
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4.2. Local curvature. The next approach to constraining possible non-Gaus-
sianities is based upon an analysis of the local features of Gaussian random fields.
This is an issue which has a long tradition in probability, as summarized, for in-
stance, in the recent book by Adler and Taylor (2007). In this respect, many ef-
forts have focused on excursion sets and other procedures from convex geometry
(the so-called Minkowski functionals); these ideas have found many fruitful ap-
plications in CMB data analysis; see, for instance, Hikage et al. (2008) and the
references therein.

However, our approach here will be different, and more directly rooted to dif-
ferential geometry; we collect in the Appendix some background material to un-
derstand better the notation and the approach. The intuition can be explained as
follows. At any point x € S? on the sphere, it is possible to investigate the local
curvature of the random field 7 by focusing on its covariant Hessian matrix; in
particular, we can study whether this Hessian defines a positive definite bilinear
form (in which case we will label x as lake point), a negative definite form (in
which case we will label x as hill point) or neither of the two (in which case we
will label x as saddle point). This approach was proposed by Dore’, Colombi and
Bouchet (2003), in the standard Euclidean circumstances, and then applied to the
spherical case by Hansen et al. (2004) and Cabella et al. (2005). Here, a crucial step
is to ensure that the Hessian is defined in such a way to have an intrinsic meaning,
that is, the geometric characterization of the points must be independent from the
choice of coordinates. The appropriate instrument for this point is the notion of
covariant derivative, which we recall briefly in the Appendix. We are finally in the
position to evaluate the covariant Hessian of any random field on the sphere, which
is provided by

o ( T.p» T.py/sind )

(12) T.yy/sint} T;W/sinzﬁ
Ty (T 9y —cot®T )/ sint} )

- ((TJ;(/) —cotT y)/sintt (T 4y +sinttcos?T y)/ sin® 9
where for a, b = ¥, ¢ we have
82
da db

0
Tap:= Zalelm,ab and Yy q = a_Ylm, Yim.ab = Im-
I,m a
Explicit expressions for partial derivatives of the spherical harmonics can be found

in Varshalovich, Moskalev and Khersonskii (1988); we have, for instance,
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In particular, the eigenvalues of the Hessian matrix H are intrinsic quantities and
do not depend on the choice of coordinates; hence, points can be classified as hills,
lakes or saddles by checking whether both eigenvalues are positive, both negative
or with opposite sign, respectively. The next step in the procedure is to focus on
thresholded random fields, that is, to consider only those values where 7 > v,
for some level v which is taken between 30 from zero (o denoting as usually
the standard deviation of 7). The relative proportion of any two of the curvature
typologies can then be evaluated as a function of a threshold value v; that is, if we
consider hills 4 (v) and lakes /(v) we get
#xi A1 (H(xi)), Aa(H (%)) 20, T (x;) = v}

Ar) = # T () = 1) ’

I(v) = #{xi 1 A1 (H(x;)), Aa(H(x;)) <0, T (x;) > v}
o #xi T (x;) > v} ’
where A1 (H (x;)), A2(H (x;)) denote the two eigenvalues of H (-) at the location x;,
{x;} denoting any discretization of the sphere as provided, for instance, by HealPix.
The same procedures can then be evaluated on a grid of different threshold values

vj, j=1,...,q, and this leads to normalized statistics
I(v; h(v;
Vo) o= 20D gy 2 SO
El(v;) Eh(v})

It must be stressed that Dore’, Colombi and Bouchet (2003) provided some ana-
lytic results for EI(v;), Eh(v;) in the standard Euclidean case; as these procedures
depend only on local features, these analytic results provide excellent approxima-
tions even in the spherical case, as shown in Cabella et al. (2005). On the other
hand, currently there is no rigorous result on the asymptotic distribution of such
statistics, which must hence be calibrated by simulations.

In Figures 4 and 5 we report the 1o confidence regions for the hills and
lakes densities at various thresholds, evaluated as before by simulations on 1000
Gaussian random fields which mimics the expected behavior of CMB radiations
[see again Cabella et al. (2005) for details]. As in the previous subsection, the
dotted and dashed lines represent Monte Carlo expected values for the values of
our statistics for fy; = £100, ..., 500, respectively. We also report our estimates
based on the WMAP 2003 (crosses) and 2007 (squares) data releases. The general
conclusions seem rather close to what we found for the bispectrum: the evidence
for non-Gaussianity is apparently weak. On the other hand, the non-Gaussian sim-
ulations seem to suggest that the power here may be slightly weaker than for the
bispectrum, and in any case insufficient to detect values of fx; smaller than 100, as
predicted by the theorists. Again, the new data releases from Planck are mandatory
to reach firmer conclusions in this area.

As a final remark, we stress that local curvature methods entail a possibility
which is ruled out by the bispectrum: as the methods are local, they can be used
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to test for isotropy, for instance, comparing the behavior of the local curvature
on different hemispheres of the CMB sky. This is indeed the approach pursued
by Hansen et al. (2004), where the results on WMAP data are compared with
Monte Carlo simulations, presenting some boundary evidence that the assumption
of isotropy may fail. The literature on the possible existence of these asymmetries
has grown enormously in the last 4 years, but no consensus has been reached. As
mentioned earlier, the existence of asymmetries would have very profound conse-
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quences on cosmological theory, and again, much progress in this area is awaited
in the next decade.

4.3. Spherical Mexican Hat Wavelets. Many different proposals have been put
forward for the implementation of spherical wavelets systems on the sphere: for
the approaches which are more directly connected to the cosmological commu-
nity, see, for instance, Antoine and Vandergheynst (2007), McEwen et al. (2007),
Wiaux, McEwen and Vielva (2007) and the references therein. The construction by
Antoine and Vandergheynst (1999), later developed by Wiaux, Jacques and Van-
dergheynst (2005) has become especially popular; application to CMB data with
the aim of testing for possible non-Gaussianity is due to Cruz et al. (2007) and
Cruz et al. (2006). We shall focus here on a version of the same approach, that is,
the so-called Spherical Mexican Hat Wavelets (hereafter SMHW). The idea of the
construction can be explained as follows: in general, a wavelet system on R can be
characterized by means of dilations and translations of a fundamental function (the
mother wavelet). On the sphere, the idea is to replace the translations by rotations,
that is, elements of the group SO(3). To implement dilations, we note that around
the North Pole the latter can be implemented by considering usual dilations in the
tangent plane, which are lifted on the sphere by inverse stereographic projections
from the South Pole. More precisely, after the identification of the tangent plane at
the North Pole with the complex line C, the projection of a point w = (9, ¢) is pro-
vided by ®(w) =: ¢ = 2¢'¥ tan %. So a stereographic dilation D, : S — §? reads
D, (9, ¢) = (¥4, ¢), where 9, : tan % = atan %, that is, ¥, := arctan{2a tan %}.

More explicitly, the procedure to implement SMHW can be described as fol-
lows. In R?, the continuous Mexican Hat Wavelet can be written as

Y(x, R):= \/%R [2 — (%)Q] exp(_|x|2/2R),

which satisfies the standard compensation and admissibility conditions

W (x, R)?
/ V(x,R)dx =0, / ———dx=:Cy < 00,
R? R? X
the hat denoting Fourier transform. For a given scale R and location x € S2, the
definition of the (continuous) Spherical Mexican Hat Wavelet transform can then
be entertained in three steps:

e A change of coordinates is performed, to rotate x into the North Pole.

e A stereographic projection on the tangent plane is implemented, so that y :=
2tan(%), ¥ denoting as usual the radial distance from the North Pole. We then
implement the MHW on y.

e A rotation is performed to transform back the wavelet coefficients to the original
location.



84 P. CABELLA AND D. MARINUCCI

It should be noted how the same formalism can be fully justified without the
need for stereographic projections, and resorting instead to group representation
theory; we refer to Antoine and Vandergheynst (1999) and Wiaux, Jacques and
Vandergheynst (2005) for more details. Following this route, the SMHW basis
that we implement is given at the North Pole by

W(x, R) = m[l + (%)T[z _ (%)2] exp(—x2/2R),

with corresponding random coefficients

w(R) := /;2 T(x)¥(x, R)dx,

where N(R) is a normalizing constant and x denotes the polar angle obtained
with the stereographic projection; see also Vielva et al. (2003), Cruz et al. (2007)
and Cruz et al. (2006). SMHW do not represent a tight frame, so no exact re-
construction formula is available. Their stochastic properties are currently under
investigation to establish whether their random coefficients are asymptotically un-
correlated, as it was the case for needlets. On the other hand, SMHW do enjoy
very good localization properties [see Marinucci et al. (2008) for a comparison
with needlets], they are simple to implement and they have been very widely used
for Gaussianity and isotropy testing. For completeness, we thus implement the re-
sulting coefficients as a test of non-Gaussianity, to be compared with our previous
findings. In particular, we considered skewness and kurtosis for the SMHW ran-
dom coefficients, which we calibrated by means of Gaussian simulations. For the
skewness, the result are reported in Figure 6; for kurtosis, they are not reported,
as the resulting power properties where worse. The shaded area, the dotted and
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FIG. 6. The behavior of SMHW on WMAP data.
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dashed lines, the crosses (2003) and the squares (2007) have the same meaning
as before: it should be noted that in the x-axis is reported the scale factor R, so
that when moving from left to right we are approaching larger scales (i.e., smaller
frequencies, the opposite than for the bispectrum, which is a frequency-domain
statistic).

As before, the evidence for non-Gaussianity is weak; worse than that, here simu-
lations suggest that much larger values of fj; would be needed to ensure detection.
It seems thus that this class of methods cannot outperform procedures such as the
bispectrum when looking for non-Gaussianity. It must be recalled, however, that
wavelets do enjoy a very important advantage on pure harmonic methods: indeed,
their localization properties in the real domain allow the detection of unexpected
features which may signal anisotropic behavior. A striking example of this pos-
sibility is provided by Cruz et al. (2007) and Cruz et al. (2006), where a form
of SMHW has been used to detect a Cold Spot in CMB radiation. The existence
and possible explanations for such features are again very widely debated—there
seems to be a tight relationship with the evidence on asymmetries which was men-
tioned earlier [Park (2004) and Hansen et al. (2004)]. This is one more area where
new statistical challenges will take place on Planck data, and the most suitable
forms of spherical wavelets will certainly provide valuable contributions.

APPENDIX

A.1. Isotropy and Wigner’s coefficients. A proper derivation of the spheri-
cal bispectrum expression would require a considerable effort and some nontrivial
background on group representation theory. We report here just the basic facts,
and refer to the literature for a more detailed discussion [see, e.g., Varshalovich,
Moskalev and Khersonskii (1988), Vilenkin and Klymik (1991), Hu (2001) and
Marinucci (2006, 2008)].

The spherical harmonics are defined by

2041 (1 —m)!
dr (I +m)!
Yim©,9) = (=1)"Y 1m0, 9)  form <0,

Yim(@, ) = Py (cos9) exp(img) form > 0,

where P, (cosf) denotes the associated Legendre polynomial of degree /, m, that
1s,

1

am d
—(_ _ w2m/2 % _ - 2 !
Pin(x) = (1" (1 =22 Pi), P = 5 P = 1),

m=0,1,2,...,1, [=1,2,3,....
Here, 0 < ¢ <m and 0 <9 < 27 denote the usual spherical coordinates on the

sphere; more explicit expressions for Y, (-) are given below [see (14)]. The spher-
ical harmonics provide an orthonormal system for the space of square integrable
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functions L?(S?) with the uniform measure. Now let g € SO(3) be an arbitrary
rotation of R3 (i.e., a change of coordinate). It is a well-known fact in spherical
geometry that the action of the rotation group can be parametrized by the three
Euler angles g = (o, 8,¥), 0 <a <2m,0< B8 <m, 0 <y < 2m. The action of
SO(3) on the spherical harmonics can instead be expressed as

I
(13) Yim(gx)= Y Dl (8) Yy (x),

m'=—I

where {Dfn/ ()} are the so-called Wigner’s D matrices, which provide an irre-
ducible representation of the group of rotations SO(3). In coordinates, an explicit
expression for the elements of the D-matrices is provided by

D'(a,B,y)=1{D., (@ B, v Vmrmei...q =™ (B)™ Vot mei....I»
where
d’, () = (=171 4+ m)!I = m)!(I +n)!I —n)/?

y Z(_l)k (COS (0/2))m+n+2k (Sin(ﬁ/z))Zl—m—n—Zk |
T Kl —m—KI(—n—k!m+n+k)!

and the sum runs over all k& such that the factorials are nonnegative; see
Varshalovich, Moskalev and Khersonskii (1988) and Vilenkin and Klymik (1991)
for a huge collection of alternative expressions. The proof of (13) is based upon
group representation theory techniques and we do not provide it here; we simply
recall that the elements of D!(«, 8, y) are related to the spherical harmonics by
the relationship

I m 4 dr —
(14)  Dgy,(a,B,y)=(=1) 21+1Y1—m(ﬂ,0¢)= mYzm(ﬂ,a)-

By exploiting (13), it is readily seen that isotropy (i.e., rotational invariance in law)
entails

oo I oo I
Z Z alelm(x)iZ Z aim Yim (8x)

[=0m=—1 [=0m=—1

o0

l )
=3 > am > D) Yim (x)
m=—I

=0 m'=—I
00 [ [

=> > (Z asz;/m<g))Yzm/<x>,
1=0 m'=—1 \m=—1I

that is,

(15) @) < (D'(9a), 1=1,2,...,
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where the identity in law holds jointly over / and (a;.) denotes the 2/ 4+ 1 vector
(ai—m, - .., am). We now recall the expression for the so-called Gaunt integral

[, Y GO Yoo () Yiams ()
ae

:\/(211+1)(2lz+1)(2l3+1)<11 b 13>(11 b z3>

A7 0 0 0/\m my mj3

which again requires a group-theoretical proof; indeed, the so-called Wigner’s 3j
coefficients can be viewed as elements of the unitary matrices which alternate rep-
resentation of the group of rotations; see Varshalovich, Moskalev and Khersonskii
(1988), Vilenkin and Klymik (1991), Marinucci (2006) and Marinucci and Peccati
(2007) for a more detailed discussion and explicit expressions.

From (13) we have that under an arbitrary rotation the spherical harmonics
transform as

(17) i =Y Db ()i,
m/
and
~ ~ ~ 1 [ I
Eal1m1alzm2al3m3 = Z D"]llm/l (g)D,sz/z (g)Dnigmg (g)Eallm’lalgm/zahmg
_ [y 1) I3
= 2 Dy @D, (D, . (2)
mymyms

L I I3 L L I3
X(O 0 O)(m/1 m m%)bl‘hl3

(h b LB\(hL b l3b
“\0 0 O0/)\m mp m3 hisls>

where we have used the identity

LW b Iz I I I3
Z(ml v ) Do D7, (D0, )
mymyms

_(h L I
“\myp my m3)’

For a proof of (18), it suffices to use (16) and note that

L b I3 I b I
Z/(mfl A LA OOl

(18)

/ /
mynmyiny

_{(11 I 13) (2ll+1)(2l2+1)(213+1)}_1
- 0O 0 O 47
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[ [
<] D @Dl ©Dh T Vi Vi |

m 1 mzm3

oL 3\ QL+ DL+ D+
B {(6 02 8)\/ : 2_7-[ - ] /Sz[YllmIYIZM2YI3m3]dx

(L L I
T \my mp m3)’

For the first step to be justified, we need to ensure the Wigner’s 3 coefficients
within the curly brackets is indeed different from zero; this condition is fulfilled
provided /1 + [» + I3 = even and the so-called triangle conditions are met, namely,
li +1; < for all choices of i, j,k=1,2, 3.

We now turn to the issue of sample estimators. We can indeed show immediately
that (4) is invariant to rotations; we have, in fact,

2

> D (®)aim

m=—I11m'

y+1Z'M|_y+1

21+1 Z Qi @lmy Z Dmrnl(g)Dmm’z( )

miy,my m=—I[

1

=T Aim, 1m2m1=21+12|1m|

my,m;
in view of the orthonormality property Varshalovich, Moskalev and Khersonskii
(1988)

I}

m=—I

A similar argument exploiting (18) and (17) shows indeed that the sample bispec-
trum is itself invariant to rotations. We refer again to Hu (2001), Marinucci (2006)
and Marinucci (2008) for a much wider discussion and more properties.

A.2. Some background on differential geometry.

A.2.1. Scalars, vectors and tensors. Our purpose is to establish intrinsic mea-
sures of the local curvature of a random field. Here, by intrinsic we mean “inde-
pendent from the choice of coordinates,” much the same way as our bispectrum
statistics in the previous section. To clarify this issue, we recall some basic defi-
nition from differential geometry on the sphere; there exist many beautiful books
on this issue [Adler and Taylor (2007), Bishop and Goldberg (1980)], and we refer
to these for a proper account: we just report some basic facts to make the local
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curvature approach intuitive. Let M be a smooth manifold and write T, for the
tangent plane at x € M; we label T the cotangent plane, that is, the dual space of
T, [refer again to Adler and Taylor (2007) and Bishop and Goldberg (1980) for
details and definitions]. Let ¢ : M — R be some smooth function on the manifold;
we say ¢ is a scalar function if it transforms under a change of coordinate g as

d(gx) =p(x) VxeM, thatis, p:=¢oh .

A rank one covariant tensor is a linear operator on the vector space Ty with com-
ponents { f; ()} which transform according to the rule

Fimn=>_fi( )a—xi
where we wrote y := {yl, LY ={g1(x), ..., g.(x)}. Likewise, a rank one con-

travariant tensor of dimension n is a linear operator { f; (-)};=1,...., whose compo-
nents transform according to the rule

.....

ay’
axi’

n
o=
i=1
where we wrote as before y = gx.
It is then possible to extend this definition to higher orders—for our purposes,
rank 2 suffices. A rank two covariant tensor of dimension # is a bilinear operator

{Tyv}u v=1,...n Wwhose components transform according to the rule
— " oxP 9x4
(19) Tw(y) = Z qu(x)a—u—v'
gl y* dy

Likewise, we can define contravariant and mixed rank two vectors, denoted by 7"
and T}/ respectively. It is immediately seen from (19) that the usual Hessian matrix
of a scalar function is a rank two covariant tensor.

The previous concepts assume a nontrivial meaning in the presence of manifolds
with a nonzero intrinsic curvature, such as the sphere. In such spaces, we can
introduce the metric tensor {g,»(-)} by imposing that the length of a vector X :=
{x!,...,x"} be given by

n
2. b
IXN7 = ) gap(x)xx”.
a,b=1
Thus, {gap(x)}a.p=1,...n is a rank two tensor. Some examples:
e Euclidean case: we have

n
IX1% = > xxbsh  thatis, gy =8P.
a,b=1
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e The two sphere S2: in spherical coordinates, for Q := {19, ¢} the usual metric is
given by

1 0
20) (gar@laimro =g guty )
The contravariant or reciprocal metric tensor {gab (x)}a.p=1,...n 1s defined by the

requirement that

> g% (x)gpe(x) =8,
b

that is, it represents the elements of the inverse matrix g~'. By means of this
tensor operator, we can define more generally contravariant vectors, denoting, for
instance,

T, := Z ga»T? and  consequently, T¢ = Z g,
b

so that we ensure invariance, that is,

{Ta)a=1.... n||g—ZT T —ZgabT“Tb > T Ty =t I{T Yozt llg-
a,b

Covariant tensors can be likewise introduced, that is,
Tl;l — ZgacTaC, Tab — ZgaCch — Zgacgbd Tcd-
c c c,d

Let us now investigate the behavior of second order derivatives under coordinate
transformations. We have

i’¢ 0 <a$>
ayuayv_ayu ayv

9 " oxP
”(2% ' 3y”>
dx? o "
= Y bl >axv o PR

p.q=1

It is therefore clear that for nonlinear coordinate transformations (i.e., such that
{92xP /3y*dy?} # 0) standard second order derivatives do not act as a rank two
tensor, that is, they depend on the coordinate choice and do not represent intrin-
sic quantities. To overcome this problem, we need to introduce the well-known
Christoffel coefficients Ff «» Which, by assumption, satisfy the transformation laws

—J dx/ ax™ dy! 3%x/ oy
r,= r’ - . —.
ik Z jm dy! ayk dxn + ; dy! ayk ox/J

m,n,j
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It is then easy to check that

=l — dx/ 9x™ 9%xJ
2T = Uinbny s +2.9i5 70k
! l m,n, j m dy' dy j dy' dy
and, hence,
- =/ dx/ dx™
Gik— Y Lip(Lnp) = Z<¢j,m - F;!m¢n> PR
) m,j n

thatis, {¢jm — X, l";?m(ﬁn} is actually a rank two tensor. The previous discussion
motivates the following:

DEFINITION. The covariant derivative of the rank one tensor 7; is given by

Tik=Tix — » T,
)

where T; y = 0T;/ 9xk denotes standard derivative.

Let us now specify the previous definition to the sphere. In terms of the metric
tensor, the Christoffel symbols can be shown to be equal to

kl
8
(21 Iy = Z{ T(gki,j + 8kj,i — gij,k)}-
k
For instance, in the Euclidean case gii ; = gkj,i = &ij,k = 0, hence, Ffj = 0;

thus, covariant derivatives coincide with standard calculus operators. On the con-
trary, for the sphere S2, we have gyy = g7 =1, 8oy = sin? 9 = (g¥%)~,
89 = g”% = 0. Hence, we obtain

890,90 = 890,90 = &9¢,9 = 899,90 = 8pp.9p =0

and gy 9 = 2sin?¥ cos ¥}; to summarize, the Christoffel symbols on the sphere are

0 ¢
Py =Tyy =0,

g¥? .
e, =2 + — = 2sin? cos ¥ = cot 1,
oV ) {8000 + 8pv.0 — 8pv.0} PRI
232 4%

8 8
FZ& = T{gwﬂ,ﬁ + 8o, — g(pﬁ,ﬁ} + T{ggogo,z? + gv¢,0 — g(pz?,go} =0,

g§0¢’

F&a = Tgw,w =0,

90
_g .
Fgw =~ {809,0 T 8pv,0 — 8o, 9} = —sin ¥ cos V.
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Hence, we obtain the following results for the covariant derivatives of the spherical
harmonics:

Yim:oo = Yim,00,

— 0
Ylm;z?(p = Ylm,ﬁ(p - Fzﬂylm,(p - F(pl}Ylm,ﬁ = Ylm,ﬁ(p - COtﬁYlm,q),
— 0 .
Yim:po = Yim,pp — Fg(lem,qJ —TuYim,p = Yim,pp +sin 0 cos Yy 9.
The previous expressions provide the clue for the computation of the bilinear form

(22) H* — (T;l%? T;l?(p) _ (Zlm alelm;ﬁz? Zlm alelm;z9¢)
Ty Tpy 2im UmYim:99  2im UmYim:pp

To obtain (12), we need to introduce a final, quite subtle point. (22) defines a
bilinear form H*: (T x T) — R acting on the tensor product of the tangent plane
with itself; in order to be able to evaluate consistently the eigenvalues, we must
transform this form into the corresponding linear operator H : T — T, where H :=
g~V H* [actually we considered the symmetrized expression H := g~ /2 H*g~1/2,
where g denotes as before the metric tensor on the sphere, see (20)]. This explains
the appearance of the sin ¢} factors at the denominators in (12)—we refer again to
Bishop and Goldberg (1980) for more details and explanations.
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