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PREDICTIVE LEARNING VIA RULE ENSEMBLES

BY JEROME H. FRIEDMAN1 AND BOGDAN E. POPESCU2

Stanford University

General regression and classification models are constructed as linear
combinations of simple rules derived from the data. Each rule consists of a
conjunction of a small number of simple statements concerning the values of
individual input variables. These rule ensembles are shown to produce pre-
dictive accuracy comparable to the best methods. However, their principal
advantage lies in interpretation. Because of its simple form, each rule is easy
to understand, as is its influence on individual predictions, selected subsets
of predictions, or globally over the entire space of joint input variable val-
ues. Similarly, the degree of relevance of the respective input variables can
be assessed globally, locally in different regions of the input space, or at in-
dividual prediction points. Techniques are presented for automatically iden-
tifying those variables that are involved in interactions with other variables,
the strength and degree of those interactions, as well as the identities of the
other variables with which they interact. Graphical representations are used
to visualize both main and interaction effects.

1. Introduction. Predictive learning is a common application in data mining,
machine learning and pattern recognition. The purpose is to predict the unknown
value of an attribute y of a system under study, using the known joint values of
other attributes x = (x1, x2, . . . , xn) associated with that system. The prediction
takes the form ŷ = F(x), where the function F(x) maps a set of joint values of the
“input” variables x to a value ŷ for the “output” variable y. The goal is to produce
an accurate mapping. Lack of accuracy is defined by the prediction “risk”

R(F) = ExyL(y,F (x)),(1)

where L(y, ŷ) represents a loss or cost for predicting a value ŷ when the actual
value is y, and the expected value is over the joint distribution of all variables (x, y)

for the data to be predicted. Using this definition, the optimal mapping (“target”)
function is given by

F ∗(x) = arg min
F(x)

ExyL(y,F (x)).(2)
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With predictive learning, one is given a “training” sample of previously solved
cases {xi , yi}N1 where the joint values of all variables have been determined. An
approximation F(x) to F ∗(x) is derived by applying a learning procedure to these
data.

2. Ensemble learning. Learning ensembles have emerged as being among
the most powerful learning methods [see Breiman (1996, 2001), Freund and
Schapire (1996), Friedman (2001)]. Their structural model takes the form

F(x) = a0 +
M∑

m=1

amfm(x),(3)

where M is the size of the ensemble and each ensemble member (“base learner”)
fm(x) is a different function of the input variables x derived from the training data.
Ensemble predictions F(x) are taken to be a linear combination of the predictions
of each of the ensemble members, with {am}M0 being the corresponding parameters
specifying the particular linear combination. Ensemble methods differ in choice of
particular base learners (function class), how they are derived from the data, and
the prescription for obtaining the linear combination parameters {am}M0 .

The approach taken here is based on the importance sampled learning ensemble
(ISLE) methodology described in Friedman and Popescu (2003). Given a set of
base learners {fm(x)}M1 , the parameters of the linear combination are obtained by
a regularized linear regression on the training data {xi , yi}N1 ,

{âm}M0 = arg min
{am}M0

N∑
i=1

L

(
yi, a0 +

M∑
m=1

amfm(xi )

)
+ λ ·

M∑
m=1

|am|.(4)

The first term in (4) measures the prediction risk (1) on the training sample, and
the second (regularization) term penalizes large values for the coefficients of the
base learners. The influence of this penalty is regulated by the value of λ ≥ 0. It is
well known that for this (“lasso”) penalty, larger values of λ produce more overall
shrinkage as well as increased dispersion among the values {|âm|}M1 , often with
many being set to zero [see Tibshirani (1996), Donoho et al. (1995)]. Its value is
taken to be that which minimizes an estimate of future prediction risk (1) based on
a separate sample not used in training, or by full (multi-fold) cross-validation. Fast
algorithms for solving (4) for all values of λ ≥ 0, using a variety of loss functions
L(y, ŷ), are presented in Friedman and Popescu (2004).

The base learners {fm(x)}M1 used in (3) and (4) to characterize the ensemble
are randomly generated using the perturbation sampling technique described in
Friedman and Popescu (2003). Each one is taken to be a simple function of the
predictor variables characterized by a set of parameters p = (p1,p2, . . .). That is,

fm(x) = f (x;pm),(5)
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where pm represents a specific set of joint parameter values indexing a specific
function fm(x) from the parameterized class f (x;p). Particular choices for such
parameterized function classes are discussed below.

Given a function class, the individual members of the ensemble are generated
using the prescription presented in Friedman and Popescu (2003) and shown in
Algorithm 1.

ALGORITHM 1 (Ensemble generation).
1 F0(x) = arg minc

∑N
i=1 L(yi, c)

2 For m = 1 to M {
3 pm = arg minp

∑
i∈Sm(η) L(yi,Fm−1(xi ) + f (xi;p))

4 fm(x) = f (x;pm)

5 Fm(x) = Fm−1(x) + ν · fm(x)

6 }
7 ensemble = {fm(x)}M1
In line 3, Sm(η) represents a different subsample of size η < N randomly drawn

without replacement from the original training data, Sm(η) ⊂ {xi , yi}N1 . As dis-
cussed in Friedman and Popescu (2003), smaller values of η encourage increased
dispersion (less correlation) among the ensemble members {fm(x)}M1 by training
them on more diverse subsamples. Smaller values also reduce computation by a
factor of N/η.

At each step m, the “memory” function

Fm−1(x) = F0(x) + ν ·
m−1∑
k=1

fk(x)

contains partial information concerning the previously induced ensemble members
{fk(x)}m−1

1 as controlled by the value of the “shrinkage” parameter 0 ≤ ν ≤ 1. At
one extreme, setting ν = 0 causes each base learner fm(x) to be generated without
reference to those previously induced, whereas the other extreme ν = 1 maximizes
their influence. Intermediate values 0 < ν < 1 vary the degree to which previously
chosen base learners effect the generation of each successive one in the sequence.

Several popular ensemble methods represent special cases of Algorithm 1.
A “bagged” ensemble [Breiman (1996)] is obtained by using squared-error loss,
L(y, ŷ) = (y − ŷ)2, and setting ν = 0, and η = N/2 or, equivalently, choosing
Sm (line 3) to be a bootstrap sample [Friedman and Hall (2007)]. Random forests
[Breiman (2001)] introduce increased ensemble dispersion by additionally ran-
domizing the algorithm (“arg min,” line 3) used to solve for the ensemble mem-
bers (large decision trees). In both cases the coefficients in (3) are set to a0 = ȳ,
{am = 1/M}M1 so that predictions are a simple average of those of the ensemble
members.
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AdaBoost [Freund and Schapire (1996)] uses exponential loss, L(y, ŷ) =
exp(−y · ŷ) for y ∈ {−1,1}, and is equivalent to setting ν = 1 and η = N in Algo-
rithm 1. Predictions are taken to be the sign of the final memory function FM(x).
MART [Friedman (2001)] uses a variety of loss criteria L(y, ŷ) for arbitrary y,
and in default mode sets ν = 0.1 and η = N/2. Predictions are given by FM(x).

Friedman and Popescu (2003) experimented with a variety of joint (ν, η) val-
ues for generating ensembles of small decision trees, followed by (4) to estimate
the linear combination parameters. Their empirical results indicated that small but
nonzero values of ν (ν � 0.01) performed best in this context. Results were seen
to be fairly insensitive to the value chosen for η, provided it was small (η � N/2)
and grew less rapidly than the total sample size N (η ∼ √

N ) as N becomes large
(N � 500).

Although, in principle, most of these procedures can be used with other base
learners, they have almost exclusively been applied with decision trees [Breiman
et al. (1983), Quinlan (1993)].

3. Rule based ensembles. The base learners considered here are simple rules.
Let Sj be the set of all possible values for input variable xj , xj ∈ Sj , and sjm be a
specified subset of those values, sjm ⊆ Sj . Then each base learner takes the form
of a conjunctive rule

rm(x) =
n∏

j=1

I (xj ∈ sjm),(6)

where I (·) is an indicator of the truth of its argument. Each such base learner
assumes two values rm(x) ∈ {0,1}. It is nonzero when all of the input variables
realize values that are simultaneously within their respective subsets {xj ∈ sjm}n1.
For variables that assume orderable values, the subsets are taken to be contiguous
intervals

sjm = (tjm,ujm]
defined by a lower and upper limit, tjm < xj ≤ ujm. For categorical variables as-
suming unorderable values (names), the subsets are explicitly enumerated. Such
rules (6) can be regarded as parameterized functions of x (5), where the parame-
ters pm are the quantities that define the respective subsets {sjm}.

Note that for the case in which the subset of values sjm (real or categorical)
appearing in a factor of (6) is in fact the entire set sjm = Sj , the corresponding
factor can be omitted from the product. In this case the rule (6) can be expressed
in the simpler form

rm(x) = ∏
sjm �=Sj

I (xj ∈ sjm).(7)

The particular input variables xj for which sjm �= Sj are said to be those that “de-
fine” the rule rm(x). For purposes of interpretation, it is desirable that the ensemble
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be comprised of “simple” rules each defined by a small number of variables. As
an example, the rule

rm(x) =
⎧⎨
⎩

I (18 ≤ age < 34)

·I (marital status ∈ {single, living together-not married})
·I (householder status = rent)

is defined by three variables, and a nonzero value increases the odds of frequenting
bars and night clubs.

3.1. Rule generation. One way to attempt to generate a rule ensemble is to
let the base learner f (x;p) appearing in Algorithm 1 take the form of a rule (6)
and then try to solve the optimization problem on line 3 for the respective vari-
able subsets {sjm}. Such a (combinatorial) optimization is generally infeasible for
more that a few predictor variables, although fast approximate algorithms can be
employed [Cohen and Singer (1999), Weiss and Indurkhya (2000)]. The approach
used here is to view a decision tree as defining a collection of rules and take ad-
vantage of existing fast algorithms for producing decision tree ensembles. That
is, decision trees are used as the base learner f (x;p) in Algorithm 1. Each node
(interior and terminal) of each resulting tree fm(x) produces a rule of the form (7).

This is illustrated in Figure 1 which shows a typical decision tree with five termi-
nal nodes that could result from using a decision tree algorithm in conjunction with
Algorithm 1. Associated with each interior node is one of the input variables xj .
For variables that realize orderable values, a particular value of that variable (“split
point”) is also associated with the node. For variables that assume unorderable cat-
egorical values, a specified subset of those values replaces the split point. For the
tree displayed in Figure 1, nodes 0 and 4 are associated with orderable variable x14
with split points u and t respectively, node 1 is associated with categorical variable
x32 with subset values {a, b, c}, and node 2 is associated with categorical variable
x7 with the single value {z}.

Each edge of the tree connecting a “parent”node to one of its two “daughter”
nodes represents a factor in (7) contributing to the rules corresponding to all de-
scendent nodes of the parent. These factors are shown in Figure 1 for each such
edge. The rule corresponding to any node in the tree is given by the product of the
factors associated with all of the edges on the path from the root to that node. Note
that there is no rule corresponding to the root node. As examples, in Figure 1 the
rules corresponding to nodes 1, 4, 6, and 7 are respectively:

r1(x) = I (x14 ≤ u),

r4(x) = I (x14 ≤ u) · I (x32 /∈ {a, b, c}),
r6(x) = I (t < x14 ≤ u) · I (x32 /∈ {a, b, c}),
r7(x) = I (x14 > u) · I (x7 = z).
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FIG. 1. A decision tree. The rule corresponding to each node is given by the product of the indicator
functions associated with all of the edges on the path from the root to that node.

3.2. Rule fitting. The collection of all such rules derived from all of the trees
{fm(x)}M1 produced by Algorithm 1 constitute the rule ensemble {rk(x)}K1 . The
total number of rules is

K =
M∑

m=1

2(tm − 1),(8)

where tm is the number of terminal nodes for the mth tree. The predictive model is

F(x) = â0 +
K∑

k=1

âkrk(x),(9)

with

{âk}K0 = arg min
{ak}K0

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(xi )

)
+ λ ·

K∑
k=1

|ak|.(10)

Fast algorithms for solving (10) for all values of λ ≥ 0, and procedures for choos-
ing a value for λ, are discussed in Friedman and Popescu (2004).

The solution to (10) for λ > 0 is not equivariant under different scaling trans-
formations applied to each of the predicting rules rk(x). Increasing the scale of a
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rule by rk(x) ← bk · rk(x) (bk > 1) and decreasing its corresponding coefficient
ak ← ak/bk produces the same loss in the first term of (10), but reduces its contri-
bution to the second penalty term. Therefore, the coefficients of rules with larger
scales are penalized less than those with smaller scales. The scale of a rule is char-
acterized by its standard deviation

tk = √
sk(1 − sk),(11)

where sk is its support on the training data

sk = 1

N

N∑
i=1

rk(xi ).(12)

A common practice is to give all predictors equal a priori influence, for exam-
ple, by replacing each rule by a normalized version rk(x) ← rk(x)/tk in (10). The
strategy applied here is to use the original unnormalized rules in (10). This places
increased penalty on coefficients of rules with very small support sk � 0 and on
those with very large support sk � 1. The overall effect is to reduce the variance of
the estimated model (9) since rules with such small support, or the complement of
those with such large support, are each defined by a correspondingly small number
of training observations.

3.3. Tree size. As seen in Figure 1 the size of each tree, as characterized by
the number of its terminal nodes, along with the tree topology, determines the
maximum number of factors appearing in the rules (7) derived from that tree. The
topology of each individual tree is determined by the data. However, larger trees
generally allow more complex rules to be produced in terms of the number of
variables (factors) that define them. For example, the smallest trees with only two
terminal nodes (“stumps”) generate rules limited to one factor in (7), whereas an
L terminal node tree can, in principle, generate rules involving up to L− 1 factors.
Thus, controlling tree size directly controls maximum complexity, and indirectly
the average complexity, of the rules that comprise the ensemble.

Controlling tree size, and thereby average rule complexity, also influences the
type of target functions (2) that are most easily approximated by the ensemble.
In order to capture interaction effects involving l variables, the ensemble must
include rules with l or more factors. Thus, targets that involve strong high order
interaction effects require larger trees than those that are dominately influenced by
main effects and/or low order interactions. On the other hand, for a given size K

(8), ensembles comprised of a large fraction of high order interaction rules will
necessarily involve fewer of lower order that are best able to capture main and
low order interaction effects. Therefore, larger trees can be counter productive for
targets of this latter type. The best tree size is thus governed by the nature of the
(unknown) target function.



PREDICTIVE LEARNING VIA RULE ENSEMBLES 923

The strategy used here is to produce an ensemble of trees of varying sizes from
which to extract the rules by letting the number of terminal nodes tm of each tree
be a random variable

tm = 2 + f l(γ ).

Here γ is randomly drawn from an exponential distribution with probability

Pr(γ ) = exp
(−γ /(L̄ − 2)

)
/(L̄ − 2),(13)

and f l(γ ) is the largest integer less than or equal to γ . The quantity L̄ ≥ 2 repre-
sents the average number of terminal nodes for trees in the ensemble. For L̄ = 2,
the entire ensemble will be composed of rules each involving only one of the in-
put variables and thereby capture main effects only. Larger values produce trees of
varying size tm, mostly with tm ≤ L̄, but many with tm > L̄ and some with tm  L̄

producing some rules capable of capturing high order interactions, if present. The
fitting procedure (10) can then attempt to select those rules most relevant for pre-
diction. The use of an exponential distribution (13) counters the tendency of trees
(of a given size) to produce more rules involving a larger number of factors ow-
ing to their hierarchical (binary tree) topology. The overall result is a more evenly
distributed ensemble in terms of the complexity of its rules.

The average tree size L̄ is a “meta”-parameter of the procedure that controls
the distribution of the complexity of the rules {rk(x)}K1 comprising the ensemble.
A choice for its value can be based on prior suspicions concerning the nature of
the target F ∗(x), or one can experiment with several values using an estimate of
future predictive accuracy based on an independent sample or cross-validation.
Also, examination of the actual rules chosen for prediction in (10) can suggest
potential modifications.

3.4. Loss functions. Any predictive learning method involves the specifica-
tion of a loss function L(y,F ) that characterizes the loss or cost of predicting an
outcome or response value F when the actual value is y. As described in Fried-
man and Popescu (2003, 2004), the ensemble procedures presented here can be
implemented with a variety of different loss criteria. Specific choices can have a
substantial effect on predictive models estimated from data, and are appropriate in
different settings. For example, if the deviations from the target F ∗(x) (2) follow
a (homoskedastic) Gaussian distribution

yi ∼ N(F ∗(xi ), σ
2),(14)

then squared-error loss

L(y,F ) = (y − F)2(15)

is most appropriate.
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For other distributions of a numeric outcome variable y, and especially in the
presence of outliers, the Huber (1964) loss

L(y,F ) =
{

(y − F)2/2, |y − F | < δ,
δ(|y − F | − δ/2), |y − F | ≥ δ,

(16)

provides increased robustness, while sacrificing very little accuracy in situations
characterized by (14) [see Friedman and Popescu (2004)]. It is a compromise be-
tween squared-error loss (15) and absolute deviation loss L(y,F ) = |y − F |. The
value of the “transition” point δ differentiates the residuals that are treated as out-
liers being subject to absolute loss, from the other residuals subject to squared-
error loss. Its value is taken to be the αth quantile of the data absolute residuals
{|yi − F(xi )|}N1 , where the value of α controls the degree of robustness (break
down) of the procedure; smaller values produce more robustness. For the simu-
lated regression problems illustrated in the following squared-error loss, (15) is
used, whereas for the real data example Huber loss, (16) with α = 0.9 was em-
ployed to guard against potential outliers.

For binary classification y ∈ {−1,1}, a variety of loss criteria have been pro-
posed [see Hastie, Tibshirani and Friedman (2001)]. Here we use the squared-error
ramp loss

L(y,F ) = [y − min(−1,max(1,F ))]2(17)

introduced and studied in Friedman and Popescu (2001, 2004). It was shown to
produce comparable performance to other commonly used loss criteria, but with
increased robustness against mislabeled training cases.

4. Accuracy. An important property of any learning method is accuracy as
characterized by its prediction risk (1). As noted in Section 2, decision tree en-
sembles are among the most competitive methods. Friedman and Popescu (2001)
compared the performance of several decision tree ensemble methods in a simu-
lation setting. These included bagging, random forests, boosting, and a variety of
ISLEs using Algorithm 1 to construct the tree ensembles with various joint values
for η and ν, followed by (4) to estimate the linear combination parameters. Here
we compare the performance of rule based ensembles discussed in Section 3 to
best performing tree based ensembles studied there.

The simulation consisted of 100 data sets, each with N = 10000 observations
and n = 40 input variables. Each data set was generated from the model

{yi = F ∗(xi ) + εi}N1 ,(18)

with F ∗(x) being a different target function for each data set. These 100 target
functions were themselves each randomly generated so as to produce a wide vari-
ety of different targets in terms of their dependence on the input variables x. De-
tails concerning this random function generator are presented in Friedman (2001)
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and also in Friedman and Popescu (2003). The input variables were randomly
generated according to a standard Gaussian distribution xj ∼ N(0,1). The irre-
ducible error ε was also randomly generated from a Gaussian, ε ∼ N(0, σ 2), with
σ 2 = Varx F ∗(x) to produce a one-to-one signal-to-noise ratio. In addition to re-
gression, data for binary classification was produced by thresholding the response
values for each data set at their respective medians{

ỹi = sign
(
yi − median({yk}N1 )

)}N
1 .(19)

The resulting optimal decision boundaries for each data set are quite different and
fairly complex.

Here we present a comparison of four methods. The first “MART” [Friedman
(2001)] is a popular tree boosting method. The second “ISLE” is the best perform-
ing tree ensemble considered in Friedman and Popescu (2003) as averaged over
these 100 data sets. It uses Algorithm 1 to generate the trees with η = N/5 and
ν = 0.01, followed by (4) to estimate the linear combination parameters. In both
cases the ensembles consisted of 500 six-terminal node trees. The third method
“RuleFit” here uses exactly the same tree ensemble produced by ISLE to facilitate
comparison, but then extracts the ten rules associated with each of the trees as de-
scribed in Section 3.1. The resulting collection of K = 5000 rules (8) is then used
to form the predictive model (9), (10). The last method RuleFit 200 uses the same
procedure except that only the first 200 trees are used to extract K = 2000 rules for
the final model. Although a large number of rules are used to fit the model in (10),
typically only a small fraction (∼ 10%) have nonzero solution coefficient values
and are thus required for prediction in (9).

The upper left panel of Figure 2 shows the distributions (box plots) of the scaled
absolute error

ejl = Ex[|F ∗
l (x) − Fjl(x)|]

Ex[|F ∗
l (x) − medianF ∗

l (x)|] , l = 1,100,(20)

over the 100 regression data sets for each of the four methods. Here F ∗
l (x) is the

true target function for the lth data set, and Fjl(x) is the corresponding estimate
for the j th method (j = 1,4). One sees that these 100 target functions represent
a wide range of difficulty for all methods and that on average RuleFit provides
slightly better performance. Using rules based on only 200 trees is still competitive
with the 500 tree MART ensemble, but somewhat inferior to the 500 tree ISLE on
these typically fairly complex target functions.

The upper right panel of Figure 2 shows the corresponding distributions of the
comparative absolute error defined by

cjl = ejl/min{ekl}4
k=1.(21)

This quantity facilitates individual comparisons by using the error of the best
method for each data set to calibrate the difficulty of each respective problem. The
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FIG. 2. Inaccuracy comparisons between tree ensemble methods (Mart, ISLE) and rule based en-
sembles (RuleFit, RuleFit 200).

best method j∗ = arg minj {ejl}4
j=1 for each data set receives the value cj∗l = 1,

and the others larger values in proportion to their average error (20) on that data
set. Here one sees that RuleFit based on 500 trees yields the best performance, or
close to it, on nearly all of the 100 data sets. There are a few (∼ 5) for which one
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of the other methods was distinctly better. Of course, there are many for which the
converse holds.

The lower panels of Figure 2 show the corresponding results for the classifica-
tion (19). Here lack of performance is measured in terms of error rate

ejl = ExI [ỹ �= sign(Fjl(x))].(22)

Again, these 100 classification problems present varying degrees of difficulty for
all methods with error rates ranging by roughly a factor of three. Both rule based
methods exhibit slightly superior average classification performance to the tree
based ensembles. This is especially reflected in the corresponding comparative
error rates (21), (22) shown in the lower right panel where RuleFit based on 500
trees was the best on almost every data set, and even RuleFit 200 was substantially
better than either of the tree based ensembles with 500 trees.

The results presented in Figure 2 suggest that the rule based approach to ensem-
ble learning described in Section 3 produces accuracy comparable to that based
on decision trees. Other tree based ensemble methods including bagging and ran-
dom forests were compared to those presented here (MART, ISLE) in Friedman
and Popescu (2003), and seen to exhibit somewhat lower accuracy over these 100
regression and classification data sets. Thus, rule based ensembles appear to be
competitive in accuracy with the best tree based ensembles.

5. Linear basis functions. With ensemble learning there is no requirement
that the basis functions {fm(x)}M1 in (3) and (4) must be generated from the same
parametric base learner (5). Other basis functions can be included, either gener-
ated from another parametric family using Algorithm 1, or by some other means.
For increased accuracy, the different families should be chosen to complement
each other in that each is capable of closely approximating target functions (2)
for which the others have difficulty. For the purpose of interpretation, each such
family should also produce easily understandable basis functions.

Among the most difficult functions for rule (and tree) based ensembles to ap-
proximate are linear functions

F ∗(x) = b0 +
n∑

j=1

bjxj ,(23)

for which a substantial number of the coefficients bj have relatively large absolute
values. Such targets can require a large number of rules for accurate approxima-
tion. Especially if the training sample is not large and/or the signal-to-noise ratio
is small, it may not be possible to reliably estimate models with large enough rule
sets. Also, models with many roughly equally contributing rules are more difficult
to interpret.

These considerations suggest that both accuracy and interpretability might be
improved by including the original variables {xj }n1 as additional basis functions in
(9) and (10) to complement the rule ensemble. In the interest of robustness against
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input variable outliers we use the “Winsorized” versions

lj (xj ) = min(δ+
j ,max(δ−

j , xj )),(24)

where δ−
j and δ+

j are respectively the β and (1 − β) quantiles of the data distri-

bution {xij }Ni=1 for each variable xj . The value chosen for β reflects ones, prior
suspicions concerning the fraction of such outliers. Depending on the nature of the
data, small values (β � 0.025) are generally sufficient.

With these additions, the predictive model (9) becomes

F(x) = â0 +
K∑

k=1

âkrk(x) +
n∑

j=1

b̂j lj (xj ),(25)

with

({âk}K0 , {b̂j }n1) = arg min
{ak}K0 ,{bj }n1

N∑
i=1

L

(
yi, a0 +

K∑
k=1

akrk(xi ) +
n∑

j=1

bj lj (xij )

)

(26)

+ λ ·
(

K∑
k=1

|ak| +
n∑

j=1

|bj |
)
.

In order to give each linear term (24) the same a priori influence as a typical rule,
its normalized version

lj (xj ) ← 0.4 · lj (xj )/std(lj (xj ))

is used in (26), and then the corresponding solution coefficients {b̂j }n1 (and inter-
cept â0) are transformed to reference the original lj (xj ) (24). Here std(lj (xj ))

is the standard deviation of lj (xj ) over the training data and 0.4 is the average
standard deviation (11) of rules with a uniform support distribution sk ∼ U(0,1).

Owing to the selective nature of the lasso penalty in (26), many of the rule co-
efficient estimates âk as well as those b̂j of the less influential linear variables will
often have zero values, and thus need not appear in the final predictive model (25).

5.1. Illustration. To illustrate the potential benefit of including the original
variables (24) as part of the ensemble, we consider simulated data generated from
the model {

yi = 10 ·
5∏

j=1

e
−2x2

ij +
35∑

j=6

xij + εi

}N

i=1

,(27)

with N = 10000 observations and n = 100 input variables, of which 65 have no
influence on the response y. There is a strong nonlinear dependence on the first five
input variables and a linear dependence of equal strength on 30 others. All input
variables were randomly generated from a uniform distribution, xij ∼ U(0,1), and
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FIG. 3. Average absolute error for linear model, rules only model, and combined rules and linear
base learners.

the irreducible noise εi was generated from a Gaussian distribution, εi ∼ N(0, σ 2),
with σ chosen to produce a two-to-one signal-to-noise ratio.

Figure 3 shows the distribution (box plots) of the scaled absolute error (20) over
100 data sets randomly generated according to the above prescription, for three
ensembles. The first “linear” involves no rules; only the n = 100 linear variables
(24) comprise the ensemble. The second ensemble “rules” consists of K = 2000
rules generated as described in Section 3. The third ensemble “both” is the union
of the first two; it includes the 100 linear variables and the 2000 rules. As seen
in Figure 3, the purely linear model exhibits relatively poor performance; it has
trouble capturing the highly nonlinear dependence on the first five input variables
(27). The ensemble based only on rules provides somewhat improved performance
by being better able to approximate the nonlinearity while crudely approximating
the linear dependence by piecewise constants. The ensemble based on both linear
variables and rules here provides the highest accuracy. The selection effect of the
lasso penalty in (26) tends to give high influence to the best rules for approximat-
ing the nonlinear dependencies as well as to the appropriate linear terms (24) for
capturing the linear component in (27).

This example was constructed to especially illustrate the potential advantage of
including linear basis functions as part of rule based ensembles. In many appli-
cations the corresponding improvement is less dramatic. For example, the target
functions generated by the random function generator used in Section 4 tend to be
very highly nonlinear [see Friedman (2001)] and the performance of the rule based
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ensembles including linear functions (not shown) was virtually identical to that
based on rules alone as shown in Figure 2. Also in many applications the numeric
variables realize a relatively small number of distinct values and the piecewise
constant approximations based on relatively few rules are at less of a disadvantage
at capturing linear dependencies. Including linear functions in the basis provides
the greatest improvement in situations where there are a substantial number of rel-
evant numeric variables, each realizing many distinct values, on which the target
has an approximate linear dependence. However, even in settings unfavorable to
linear basis functions, as in Section 4, their inclusion seldom degrades performance
again owing to the selection effect of the lasso penalty in (26). In all the examples
presented below the ensemble includes the linear functions (24) for all of the input
variables as part of the basis.

6. Rule based interpretation. Rules of the form (7) represent easily under-
standable functions of the input variables x, as do the linear functions (24). Al-
though a large number of such functions participate in the initial ensemble, the
fitting procedure (26) generally sets the vast majority (∼ 80% to 90%) of the cor-
responding coefficient estimates ({âk}K1 , {b̂j }n1) to zero. As noted above, this se-
lection property is a well-known aspect of the lasso penalty in (26). The remaining
predictors [rules (7) or linear (24)] will have varying coefficient values depending
on their estimated predictive relevance.

A commonly used measure of relevance or importance Ik of any predictor in a
linear model such as (25) is the absolute value of the coefficient of the correspond-
ing standardized predictor. For rules, this becomes

Ik = |âk| ·
√

sk(1 − sk),(28)

where sk is the rule support (12). For the linear predictors (24), the corresponding
quantity is

Ij = |b̂j | · std(lj (xj )),(29)

where std(lj (xj )) is the standard deviation of lj (xj ) over the data. Those predic-
tors (rules or linear) with the largest values for (28) and (29) are the most influential
for prediction based on the predictive equation (25). These can then be selected and
examined for interpretation.

The importance measures (28) and (29) are global in that they reflect the average
influence of each predictor over the distribution of all joint input variable values.
A corresponding local measure of influence at each point x in that space is for
rules (7)

Ik(x) = |âk| · |rk(x) − sk|,(30)

and for the linear terms (24)

Ij (xj ) = |b̂j | · |lj (xj ) − l̄j |,(31)
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where l̄j is the mean of lj (xj ) over the training data. These quantities measure the
(absolute) change in the prediction F(x) when the corresponding predictor (rk(x)

or lj (xj )) is removed from the predictive equation (25) and the intercept â0 is
adjusted accordingly. That is, â0 ← â0 − âksk for rules, and â0 ← â0 − b̂j l̄j for
linear predictors. Note that the average (root-mean-square) of (30) and (31) over
all x values equates to the corresponding global measures (28) and (29).

For a given coefficient value |âk|, the importance (30) of the corresponding rule
for a prediction at x depends on its value rk(x) ∈ {0,1} at that point, as well as
its global support (12). A rule is said to “fire” at a point x if rk(x) = 1. From
(30) a rule that generally does not fire over the whole space (sk small) will have
higher importance in regions where it does fire. Conversely, high support rules
that usually fire will be correspondingly more important at points x where they
do not fire, rk(x) = 0. This symmetry is a consequence of the fact that replacing
a particular rule rk(x) by its complement 1 − rk(x) produces an equivalent fitted
linear model, so that either one should be assigned the same influence as reflected
in (28) and (30).

The quantities (30) and (31) permit one to evaluate the relative influence of the
respective predictors (rules or linear) for individual predictions F(x) at x. Those
judged most influential can then be examined for interpreting that particular pre-
diction. These quantities can also be averaged over selected subregions S of the
input variable space

Ik(S) = 1

|S|
∑
xi∈S

Ik(xi ); Ij (S) = 1

|S|
∑
xi∈S

Ij (xij ),(32)

where |S| is the cardinality of S. For example, one might be interested in those
predictors that most heavily influence relatively large predicted values

S = {xi |F(xi ) ≥ u},(33)

where the threshold u might be a high quantile of the predictions {F(xi )}N1 over
the data set. Similarly, one might define S to be the set of lowest predicted values

S = {xi |F(xi ) ≤ t},(34)

with t being a low quantile. In classification, y ∈ {−1,1}, one might be interested
in those rules that most heavily influence the predictions for each of the two respec-
tive classes. In this case S = {xi |yi = 1} or S = {xi |yi = −1} would be appropriate.

As with any linear model, the importance measures defined above are intended
to estimate the influence of each individual predictor (rule or linear) after account-
ing for that of the others appearing in the ensemble. To the extent that the coef-
ficient estimates are accurate, they will reflect the corresponding influence on the
target function (2). These influence measures may or may not reflect the useful-
ness of individual predictors in the absence of others. For example, a predictor on
which the target function (2) has no dependence at all may be useful if it is highly
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correlated with an important predictor, and the latter is removed from the ensem-
ble. The influence measures used here are based on the joint contributions of all
members of the ensemble.

7. Input variable importance. In predictive learning a descriptive statistic
that is often of interest is the relative importance or relevance of the respective
input variables (x1, x2, . . . , xn) to the predictive model. For the models (25) con-
sidered here, the most relevant input variables are those that preferentially define
the most influential predictors (rules or linear) appearing in the model. Input vari-
ables that frequently appear in important predictors are judged to be more relevant
than those that tend to appear only in less influential predictors.

This concept can be captured by a measure of importance Jl(x) of input variable
xl at each individual prediction point x as

Jl(x) = Il(x) + ∑
xl∈rk

Ik(x)/mk.(35)

Here Il(x) is the importance (31) of the linear predictor (24) involving xl , and
the second term sums the importances of those rules (7) that contain xl (xl ∈ rk)
each divided by the total number of input variables mk that define the rule. In this
sense the input variables that define a rule equally share its importance, and rules
with more variables do not receive exaggerated influence by virtue of appearing in
multiple input variable importance measures.

The distribution of {Jl(x)}n1 (35) can be examined to ascertain the relative influ-
ence of the respective input variables locally at particular predictions x. As with
rules, these quantities can be averaged over selected subregions of the input vari-
able space using (32), or over the whole space using (28) and (29), in place of the
corresponding local measures in (35). Illustrations are provided in the data exam-
ples below.

8. Interaction effects. A function F(x) is said to exhibit an interaction be-
tween two of its variables xj and xk if the difference in the value of F(x) as a
result of changing the value of xj depends on the value of xk . For numeric vari-
ables, this can be expressed as

Ex

[
∂2F(x)

∂xj ∂xk

]2

> 0

or by an analogous expression for categorical variables involving finite differences.
If there is no interaction between these variables, the function F(x) can be ex-
pressed as the sum of two functions, one that does not depend on xj and the other
that is independent of xk :

F(x) = f\j (x\j ) + f\k(x\k).(36)
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Here x\j and x\k respectively represent all variables except xj and xk . If a given
variable xj interacts with none of the other variables, then the function can be
expressed as

F(x) = fj (xj ) + f\j (x\j ),(37)

where the first term on the right is a function only of xj and the second is indepen-
dent of xj . In this case F(x) is said to be “additive” in xj .

A function F(x) is said to have an interaction between three (numeric) variables
xj , xk and xl if

Ex

[
∂3F(x)

∂xj ∂xk ∂xl

]2

> 0,

again with an analogous expression involving finite differences for categorical
variables. If there is no such three-variable interaction, F(x) can be expressed as a
sum of three functions, each independent of one of the three variables

F(x) = f\j (x\j ) + f\k(x\k) + f\l(x\l).(38)

Here x\j , x\k and x\l each respectively represent all of the variables except xj ,
xk and xl . Analogous expressions for the absence of even higher order interaction
effects can be similarly defined.

Knowing which variables are involved in interactions with other variables, the
identities of the other variables with which they interact, as well as the order and
strength of the respective interaction effects can provide useful information about
the predictive process as represented by the target function F ∗(x) (2). To the extent
that the predictive model F(x) (25), (26) accurately represents the target, one can
infer these properties by studying its interaction effects.

As noted in Section 3.3, in order for the predictive model F(x) (25) to capture
an interaction among a specified subset of its variables, it is necessary that it con-
tain rules (7) jointly involving all of the variables in the subset. This is, however,
not a sufficient condition for the presence of such an interaction effect in F(x). Dif-
ferent rules jointly involving these variables can combine to substantially reduce
or possibly even eliminate various interaction effects between them as reflected in
the overall model. Thus, the mere presence of rules involving multiple variables
does not guarantee the existence of substantial interactions between the respec-
tive variables that define them. In order to uncover actual interaction effects, it is
necessary to analyze the properties of the full predictive equation, not just indi-
vidual components. Here we use the properties of partial dependence functions
[Friedman (2001)] to study interaction effects in the predictive model.

8.1. Partial dependence functions. Given any subset xs of the predictor vari-
ables indexed by s ⊂ {1,2, . . . , n}, the partial dependence of a function F(x) on
xs is defined as

Fs(xs) = Ex\s [F(xs,x\s)],(39)
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where xs is a prescribed set of joint values for the variables in the subset, and
the expected value is over the marginal (joint) distribution of all variables x\s not
represented in xs . Here x = (xs,x\s) is the entire variable set. Partial dependence
functions were used in Friedman (2001) to graphically examine the dependence of
predictive models on low cardinality subsets of the variables, accounting for the
averaged effects of the other variables. They can be estimated from data by

F̂s(xs) = 1

N

N∑
i=1

F(xs,xi\s),(40)

where {xi\s}N1 are the data values of x\s . Here we use the properties of centered
partial dependence functions to uncover and study interaction effects. In this sec-
tion all partial dependence functions as well as the predictive model F(x) (25) are
considered to be centered to have a mean value of zero.

If two variables xj and xk do not interact, then from (36) the partial dependence
of F(x) on xs = (xj , xk) can be decomposed into the sum of the respective partial
dependences on each variable separately:

Fjk(xj , xk) = Fj (xj ) + Fk(xk).(41)

Furthermore, if a given variable xj does not interact with any other variable, then
from (37) one has

F(x) = Fj (xj ) + F\j (x\j ).(42)

Here F\j (x\j ) is the partial dependence of F(x) on all variables except xj .
If variables xj , xk and xl do not participate in a joint three-variable interaction,

then from (38) the partial dependence of F(x) on these three variables can be
expressed in terms of the respective lower order partial dependencies as

Fjkl(xj , xk, xl) = Fjk(xj , xk) + Fjl(xj , xl) + Fkl(xk, xl)
(43)

− Fj (xj ) − Fk(xk) − Fl(xl).

Analogous relationships can be derived for the absence of higher order interac-
tions. These properties (41)–(43) of partial dependence functions are used to con-
struct statistics to test for interaction effects of various types.

To test for the presence of an interaction between two specified variables
(xj , xk), the statistic

H 2
jk =

N∑
i=1

[F̂jk(xij , xik) − F̂j (xij ) − F̂k(xik)]2
/ N∑

i=1

F̂ 2
jk(xij , xik)(44)

can be used based on (41) and the empirical estimates (40). It measures the fraction
of variance of F̂jk(xj , xk) not captured by F̂j (xj ) + F̂k(xk) over the data distribu-
tion. It will have a value of zero if the predictive model F(x) (25), (26) exhibits no
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interaction between xj and xk and a correspondingly larger value for a stronger in-
teraction effect between them. Similarly, a statistic for testing whether a specified
variable xj interacts with any other variable would be from (42)

H 2
j =

N∑
i=1

[F(xi ) − F̂j (xij ) − F̂\j (xi\j )]2
/ N∑

i=1

F 2(xi ).(45)

This quantity will differ from zero to the extent that xj interacts with one or more
other variables. By examining the values of {Hj }n1, one can identify those vari-
ables that participate in interaction effects. For each variable xj so identified, the
statistics {Hjk}k �=j (44) can be used to identify the variables that interact with xj .
Note that only those variables that are deemed globally relevant via (28), (29) and
(35) need be considered for interaction effects. This is often a small subset of all n

predictor variables.
If a particular variable xj is seen to interact with more than one other vari-

able using (44), it is of interest to ascertain the order of these interactions. That
is, whether xj interacts separately with each of them or whether subsets of these
variables jointly participate in higher order interactions. Let xk and xl be two vari-
ables that are identified as interacting with xj . This could represent separate two-
variable interactions between (xj , xk) and (xj , xl) only, or the additional presence
of a three-variable interaction involving (xj , xk, xl). A statistic for testing these
alternatives is from (43)

H 2
jkl =

N∑
i=1

[F̂jkl(xij , xik, xil) − F̂jk(xij , xik)

− F̂j l(xij , xil) − F̂kl(xik, xil) + F̂j (xij )(46)

+ F̂k(xik) + F̂l(xil)]2
/ N∑

i=1

F̂ 2
jkl(xij , xik, xil).

This quantity tests for the presence of a joint three-variable interaction between xj ,
xk , and xl by measuring the fraction of variance of F̂jkl(xj , xk, xl) not explained
by the lower order interaction effects among these variables. Analogous statistics
testing for even higher order interactions can be derived, if desired.

By considering the fraction of unexplained variance, the statistics (44) and (46)
test for the presence of the corresponding interaction effects in the predictive model
F(x) but do not necessarily reflect the importance of these effects to the overall
variation of F(x). It is possible for an interaction effect to be highly significant
(see Section 8.3) but not very influential when compared to the other effects in the
model. If for interpretational purposes one would like to uncover these as well as
the more influential interactions, these statistics (44), (46) are appropriate. If it is
desirable to ignore them so as to concentrate only on the highly influential interac-
tions, then the statistics can be modified accordingly. Replacing the denominators
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in (44) and (46) with that in (45) will cause the resulting statistics to more closely
reflect the importance of the corresponding interaction effects to the overall model
F(x).

8.2. Spurious interactions. The strategy outlined in the previous section is ap-
plied to the predictive model F(x) (25) (26). As such, it will uncover interaction
effects present in that model. However, interest is in interaction effects present in
the target function F ∗(x) (2) representing the true underlying predictive relation-
ships among the predictor variables x. It is possible that even a highly accurate
predictive model can contain substantial interaction effects that are not present in
the target F ∗(x). These spurious interactions can occur when there is a high de-
gree of collinearity among some (or all) of the predictor variables in the training
data {xi}N1 .

For example, if the target function exhibits a nonlinear additive dependence
(37) on a variable xj , this dependence on xj can be equivalently approximated by
a corresponding additive contribution to the model involving that variable alone,
or by incorporating interaction effects involving other variables highly correlated
with it. Thus, it is not possible to easily distinguish between low and higher order
interactions among subsets of variables that are highly correlated with each other.
If interpretive value is to be placed on the presence of various interaction effects,
then such spurious interactions should not be reported.

One way to discourage spurious interactions is to restrict their entry into the
predictive model F(x) (25), (26). Interactions enter the model through rules (7)
involving more than one predictor variable. Such rules are derived from trees that
have splits on different variables at nodes along the path from the root node to the
nodes that define the respective rules (see Figure 1). Thus, one can discourage the
entry of unneeded interaction effects by placing an incentive for fewer variables
along each such path.

Trees are built in a top-down greedy fashion where the variable chosen for split-
ting at each node is the one that yields the maximal estimated improvement to tree
predictions as a result of the split. The improvement Zj by potentially splitting the
node on variable xj is estimated for all variables, and the one

j∗ = arg max
1≤j≤n

Zj

is chosen for splitting the node in question. Spurious interactions can be discour-
aged by modifying this splitting strategy so as to place an incentive for repeated
splits on the same variable. Specifically,

j∗ = arg max
1≤j≤n

κj · Zj

is used to split the node where κj = 1 if the variable xj does not appear as a split-
ting variable at any ancestor node on the path from the root to the node being
split, and κj = κ (κ > 1) if it does. This places a preference on fewer variables
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defining splits along such paths, and thereby defining the rules derived from the
tree. In particular, once a variable xj is chosen for splitting a node, other variables
that are highly correlated with it will be discouraged from splitting its descendants
and thus appearing with it in the same rule. Note that this strategy does not neces-
sarily discourage those variables that are highly correlated with xj from entering
the overall predictive model F(x) (25), (26). They are not discouraged from split-
ting nodes in the same tree that do not contain a split on xj at an ancestor node,
and from being used for splitting in different trees. This strategy only discourages
highly correlated variables from defining the same rule (not different rules) and
thereby suppresses spurious interaction effects in the predictive model caused by
collinearity.

The value chosen for the incentive parameter κ should be large enough to ef-
fectively discourage spurious interactions, but not so large as to inhibit genuine
interactions from entering the predictive model. It should be set to the largest value
that does not degrade predictive performance as estimated by a left out test set or
full cross-validation.

8.3. Null distribution. In order to use the statistics presented in Section 8.1
for measuring the strength of various kinds of interaction effects, one must have
an idea of their value in the absence of such effects. Even if a particular interac-
tion effect is absent from the target F ∗(x), the sample based estimate of the corre-
sponding statistic will not necessarily be zero. Sampling fluctuations can introduce
apparent interactions in the estimated model F(x). In addition, there are types of
associations among the predictor variables other than collinearity that if present
can also induce spurious interactions in the model [Hooker (2004)] for which the
strategy discussed in Section 8.2 is less effective.

Here we present a variant of the parametric bootstrap [Efron and Tibshirani
(1993)] that can be used to derive a reference (null) distribution for any of the in-
teraction test statistics presented in Section 8.1. The idea is to repeatedly compute
these statistics on a series of artificial data sets generated from the training data,
and then use the distribution of test statistic values so derived as a reference for the
corresponding test statistic value obtained from the original data set.

For regression, each artificial data set is given by {xi , ỹi}N1 , where

ỹi = FA(xi ) + (
yp(i) − FA

(
xp(i)

))
.(47)

Here {p(i)}N1 represents a random permutation of the integers {1,2, . . . ,N} and
FA(x) is the closest function to the target containing no interaction effects. For
classification y ∈ {−1,1}, the corresponding response values are

ỹi = 2bi − 1,(48)

where bi is a Bernoulli random variable generated with

Pr(bi = 1) = max
(
0,min

(
1,

(
1 + FA(xi )

)
/2

))
,(49)
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and FA(x) is derived using (17). The “additive” model FA(x) can be estimated
from the original training data set {xi , yi}N1 by restricting the rules used in (25) and
(26) to each involve only a single predictor variable. This is, in turn, accomplished
by restricting the trees produced by Algorithm 1 to all have tm = L̄ = 2 terminal
nodes. Other techniques for estimating additive models could also be used [see
Hastie and Tibshirani (1990)].

By construction, each data set generated from (47) or (48) has a target FA(x)

containing no interaction effects. It has the same predictor variable joint distribu-
tion as the original training data. It also has the same (marginal) distribution of the
residuals {yi − F ∗(xi )}N1 under the null hypothesis F ∗(x) = FA(x).

For each artificial data set {xi , ỹi}N1 (47), (48), a full predictive model F̃ (x)

is obtained by applying the identical procedure (modeling parameters, etc.) used
to obtain the predictive model F(x) on the original training data {xi , yi}N1 . The
various interaction test statistics of interest obtained from F(x) are computed on
F̃ (x). The collection of these computed values over all artificially generated data
sets can then be used as a reference distribution for the corresponding values ob-
tained from F(x), under the null hypothesis of no interaction effects in the target
F ∗(x). Illustrations are provided in the data examples below.

8.4. Discussion. The general strategy of using partial dependence functions to
detect and analyze interaction effects can be applied to any function F(x), not just
to those of the form (25) and (26). All that is required to compute partial depen-
dence functions (40) is the value of F(x) at various prediction points x. Thus, this
approach can be used with “black-box” prediction models derived by any method
providing a way to estimate FA(x) (47) (49). The strategy for discouraging spuri-
ous interactions outlined in Section 8.2 can only be used with tree based methods
however. Inhibiting spurious interactions can help to make the strategy more sen-
sitive to the presence of genuine interaction effects in the target F ∗(x).

9. Illustrations. In this section we present applications of the interpretational
tools described in Sections 6–8 to two data sets. The first is artificially gener-
ated so that results can be compared to known truth. The second is one that is
often used as a test bed for evaluating prediction methods. Following Friedman
and Popescu (2003), the tree ensemble generation parameters used in Algorithm 1
were ν = 0.01 and η = min(N/2,100 + 6

√
N), where N is the training sample

size. The average tree size (13) was taken to be L̄ = 4 terminal nodes. Rules were
derived from ensembles of 333 trees producing approximately 2000 rules used in
(26) to produce the predictive model (25). These “default” parameter settings are
used here for illustration; it is possible that individual results could be improved
by selective tuning of some of them.
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9.1. Artificial data. This data set consists of N = 5000 observations with
n = 100 predictor variables. To somewhat realistically emulate actual data, the
predictor variables were generated with ten discrete values xij ∈ {k/10}9

0, with the
integers k randomly generated from a uniform distribution. Each response value
was taken to be

yi = F ∗(xi ) + εi,(50)

where the target function is

F ∗(x) = 9
3∏

j=1

exp
(−3(1 − xj )

2) − 0.8 exp
(−2(x4 − x5)

)
(51)

+ 2 sin2(π · x6) − 2.5(x7 − x8)

and εi ∼ N(0, σ 2) with the value of σ was chosen to produce a two-to-one signal-
to-noise ratio. Note that this target depends on only eight of the predictor variables;
the other 92 are pure noise variables having no effect on the response. The coef-
ficients multiplying each of the terms in (51) were chosen so as to give each of
the first eight variables approximately equal global influence (28), (29), (35). The
target function is seen from (51) to involve a strong three-variable interaction ef-
fect among (x1, x2, x3), a somewhat different two-variable interaction between x4

and x5, a highly nonlinear additive dependence on x6, and linear dependencies of
opposite sign on x7 and x8.

Applying RuleFit to these data produced a model (25) involving 351 terms
(rules + linear) with nonzero coefficients. The average absolute error

aae = Exy |y − F(x)|
Exy |y − median(y)|(52)

was aae = 0.49 as estimated with 50000 independently generated test observa-
tions. The corresponding error for a model involving main effects only (L̄ = 2)
(13) was 0.61. Using only linear basis functions (24) in (25) and (26) produced
aae = 0.69. Thus, including additive nonlinear terms in the model improves pre-
diction accuracy by ∼ 12% over a purely linear model, and allowing interaction
effects produces another ∼ 20% improvement. However, these prediction errors
include the irreducible error caused by the additive random component εi in (50).
The corresponding errors (20) in estimating the actual target function F ∗(x) it-
self are respectively 0.18, 0.43, and 0.58. Thus, including interactions improved
estimation accuracy by 58% over a purely additive model. Of course, with actual
rather than artificially generated data, one can only estimate (52) and estimation
inaccuracy on the target (20), while decreasing monotonically with (52), is un-
known.
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TABLE 1
Simulated example: six most important rules—all predictions

Imp. Coeff. sup. Rule

100 0.57 0.49 0.25 ≤ x6 < 0.75
99 0.79 0.15 x1 ≥ 0.35 and x2 ≥ 0.45 and x3 ≥ 0.45
83 −0.81 linear: x7
63 0.61 linear: x8
61 0.34 0.51 0.35 ≤ x6 < 0.85
58 −0.38 0.25 x4 < 0.35 and x5 ≥ 0.45

9.1.1. Rule importance. Table 1 displays the six globally most important
terms (28), (29) resulting from the RuleFit model (25), (26) in order of their es-
timated importance. Column 1 gives the respective importances scaled so that the
highest estimate receives a value of 100. Column 2 shows the corresponding co-
efficients (â, b̂). For rules (7) the coefficient (â) value represents the change in
predicted value if the rule is satisfied (“fires”). For linear terms (24) the coefficient
is its corresponding slope parameter b̂. The third column gives the support (12),
where appropriate, for the respective rules displayed in column 4.

Comparing Table 1 with the (here known) target function (51), one sees that
these six most important terms (out of 351 total) provide a reasonable qualitative
description of its dependence on the 100 predictor variables. None of these terms
include any of the noise variables {xi}100

9 . The first and fifth rules indicate larger
target function values when x6 is in the middle of its range of values. The second
rule produces larger target values when x1, x2 and x3 simultaneously realize high
values. The third and fourth terms reflect the linear dependences on x7 and x8. The
sixth rule indicates smaller target values when x4 is small and x5 is large.

9.1.2. Input variable importance. The upper left frame of Figure 4 shows the
relative importance of the ten most important input predictor variables (35), as av-
eraged over all predictions (28) and (29), in descending order of estimated impor-
tance. By construction, the target (51) depends on each of the first eight variables
x1–x8 with roughly equal (global) strength and has no dependence on x9–x100.
Even though the standard deviation of the irreducible error ε is here one half of
that of the target function, one sees that none of the 92 noise variables has esti-
mated relative importance greater than 5% of that for the eight relevant variables.

The upper right frame in Figure 4 shows the relative importance of the first eight
predictor variables plus the two most relevant noise variables for a single prediction
point {xj = 0.5}100

1 (30), (31), (35). Here one sees varying importance for each
of the relevant predictor variables with the (additive) variables {x6, x7, x8} being
somewhat more influential. The lower left and right frames respectively show the
corresponding relative variable importances for the 10% lowest (32), (34), (35) and



PREDICTIVE LEARNING VIA RULE ENSEMBLES 941

FIG. 4. Input variable relative importances for the simulated data as averaged over all (upper left),
the 10% lowest (lower left) and 10% highest (lower right) predictions, and for the single prediction
point {xj = 0.5}n1 (upper right).

10% highest (32), (33), (35) predicted target values. Here one sees that variables
x1, x2 and x3 dominately influence the highest predicted values, whereas x4–x8 are
most influential for the lowest predictions.

9.1.3. Interaction effects. Figure 5 displays the strengths of the interaction ef-
fects involving each of the first ten predictor variables. The height of each bar
represents the corresponding value of

H̃j = Hj − H̄
(0)
j ,(53)

where Hj is given by (45) for each respective variable xj based on the original

data, and H̄
(0)
j is the mean (null) value of the same statistic averaged over ten runs
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FIG. 5. Total interaction strength in excess of expected null value of the first ten input variables for
the simulated data. The lower dark bars represent the null standard deviations.

of the parametric bootstrap as described in Section 8.3. Thus, each bar reflects
the value of Hj in excess of its expected value under the null hypothesis of no
interaction effects. The dark bars shown in Figure 5 are the values of the standard
deviations σ

(0)
j of the respective null distributions, so that one can visually gauge

the significance of each corresponding interaction. The dark bars are plotted over
the lighter ones so that the absence of a light bar indicates that the corresponding
value of Hj is less than or equal to one standard deviation above its null mean

value H̄
(0)
j .

The results shown in Figure 5 suggest that variables x1, x2 and x3 are each
heavily involved in interactions with other variables. Variables x4 and x5 also sub-
stantially interact with other variables, but to a somewhat lesser extent. There is no
evidence of any interaction effects involving variables x6–x10.

After identifying those variables that interact with others, it is of interest to
determine the particular other variables with which each one interacts. The upper
frame of Figure 6 displays the values of {H̃1k}10

2 , where

H̃jk = Hjk − H̄
(0)
jk .(54)

Here Hjk is given by (44) for the respective variables (xj , xk) and H̄
(0)
jk is the

corresponding expected null value averaged over ten replications of the paramet-
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FIG. 6. Two-variable interaction strengths of variables interacting with x1 (upper) and
three-variable interaction strengths of variables interacting with x1 and x2 (lower) in excess of their
expected null value for the simulated data. The lower dark bars represent the corresponding null
standard deviations.

ric bootstrap (Section 8.3). The dark bars plotted over the light ones reflect the
corresponding null standard deviations σ

(0)
jk .

Here one sees that x1 is dominately interacting with x2 and x3 and there is no
strong evidence of x1 interacting with variables other than x2 and x3.

Since x1 is seen to interact with more than one other variable, one can pro-
ceed to determine the orders of the corresponding interactions. The lower frame of
Figure 6 shows {H̃12l}10

3 with

H̃jkl = Hjkl − H̄
(0)
jkl(55)

being the null mean adjusted analog of (46), along with {σ (0)
12l }10

3 (dark bars). This
plot reveals that x1 and x2 jointly interact with x3, but with no other variables, im-
plying a three-variable interaction among these three variables but no other three-
variable interactions involving x1 and x2.

The upper frame of Figure 7 shows {H̃4k}k �=4 (54) along with the corresponding

σ
(0)
4k (dark) for the first ten predictor variables. Here one sees that x4 tends to only

interact with x5. The lower frame shows the corresponding interaction plot for x5,
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FIG. 7. Two-variable interaction strengths of variables interacting with x4 (upper) and x5 (lower)
in excess of expected null value for the simulated data. The lower dark bars represent the null stan-
dard deviations.

which is seen to only interact with x4. Thus, x4 and x5 interact only with each
other and there is no evidence that they interact with any other variables.

The conclusion to be drawn from this analysis of interactions is that these data
provide strong evidence for a three-variable interaction effect between x1, x2 and
x3, and a two-variable interaction between x4 and x5. There is no evidence for
any other interaction effects. Note that the noise variables x9 and x10 that were
judged from (35) to be irrelevant are seen to be inconsequential in the analysis of
interaction effects and thus need not have been considered.

The particular target function (51) generating these data was chosen to illustrate
the properties the test statistics used to uncover various types of interactions. As
such, it involved strong interaction effects among some of the variables and none
at all among others. Target functions occurring in practice seldom have such sharp
distinctions. Often the various predictor variables tend to be involved in a wide va-
riety of interaction effects of varying types and strength, and the goal is to uncover
those (if any) that are sufficiently important.

9.1.4. Partial dependencies. Figure 8 displays partial dependence (40) plots
on selected variables as suggested by the analysis of interactions above. For dis-
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FIG. 8. Plots of partial dependence functions on selected single variables and variable pairs for
the simulated example.

play purposes, all partial dependence functions are translated to have a minimum
value of zero. The partial dependencies on (x1, x3) and (x2, x3) are very similar
to that shown for (x1, x2) in the upper left frame, and that for x8 is very similar
to that shown in the lower right frame for x7 but with opposite slope. Comparing
these with the actual target function (51), one sees that they provide a fairly repre-
sentative pictorial description of the dependence of the response on the predictor
variables.

9.2. Boston housing data. This is a well-known public data set often used to
compare the performance of prediction methods. It consists of N = 506 neigh-
borhoods in the Boston metropolitan area. For each neighborhood, 14 summary
statistics were collected [Harrison and Rubinfield (1978)]. The goal is to predict
the median house value (response) in the respective neighborhoods as a function
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of the n = 13 other (predictor) variables. Here we investigate the nature of the de-
pendence of the response (measured in units of $1000) on these predictors using
the tools described in Sections 6–8.

Applying RuleFit to these data produced a model (25) involving 215 terms
(rules + linear) with nonzero coefficients. The average absolute prediction error
(52) was aae = 0.33, as estimated, by 50-fold cross-validation. The corresponding
error for an additive model restricted to main effects only (L̄ = 2) (13) was 0.37,
and that for a model involving only linear terms (24) was aae = 0.49. Thus, the
target function appears to be highly nonlinear with some evidence for interaction
effects.

9.2.1. Rule importance. Table 2 shows the nine globally most important terms
(28), (29) resulting from the RuleFit model (25), (26), in the same format as Ta-
ble 1. The most important term by a substantial margin is the linear function of
LSTAT (percent of lower status population). Its coefficient b̂ is negative, indicating
that neighborhoods with larger values of LSTAT tend to have lower valued homes.
The linear predictor AGE (fraction of houses build before 1940) has a similar effect
to a lesser degree.

The coefficient â of the most important rule is roughly five times larger in ab-
solute value than that of the others and indicates neighborhoods with exceptionally
high housing values. These neighborhoods are characterized by being very close to
Boston employment centers (DIS), high pupil-teacher ratio (PTRATIO), and very
small LSTAT . This rule describes only five of the 506 neighborhoods: two of the
six neighborhoods in Back Bay, and all three in Beacon Hill. The other rules in Ta-
ble 2 indicate that neighborhoods with larger houses (number of rooms RM) and
lower pollution (concentration of nitric oxide NOX), as well as larger houses and
lower PTRATIO, tend to have higher valued homes. Neighborhoods not very close
to employment centers, combined with smaller houses and higher tax rates (TAX),
as well as combined with high PTRATIO, tend to have lower valued homes.

TABLE 2
Boston housing data: nine most important rules

Imp. Coeff. Sup. Rule

100 −0.40 linear: LSTAT
37 −0.036 linear: AGE
36 10.1 0.0099 DIS < 1.40 and PTRATIO > 17.9 and LSTAT < 10.5
35 2.26 0.23 RM > 6.62 and NOX < 0.67
26 −2.27 0.88 RM < 7.45 and DIS > 1.37 and TAX > 219.0
25 −1.40 0.41 DIS > 1.30 and PTRATIO > 19.4
20 2.58 0.049 RM > 7.44 and PTRATIO < 17.9
19 1.30 0.21 RM > 6.64 and NOX < 0.67
18 2.15 0.057 RM > 7.45 and PTRATIO < 19.7
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FIG. 9. Input variable relative importances for the Boston housing data as averaged over all (upper
left), the 10% lowest (lower left), and 10% highest (lower right) predictions, and for predicting the
single neighborhood of Manchester (upper right).

9.2.2. Input variable importance. The upper left frame of Figure 9 shows the
global relative importances of the 13 predictor variables (28), (29), (35) averaged
over all neighborhoods. In addition to those variables presented in Table 2, there
is some indication that crime rate (CRIM) has some influence on housing values.
The upper right frame shows the corresponding importances for predicting median
home value in the single neighborhood comprising the town of Manchester (30),
(31), (35). Here RM and TAX are relatively more influential for this prediction
than on average, whereas LSTAT is considerably less influential. The lower left
and right frames respectively show the corresponding relative variable importances
for those neighborhoods with the 10% lowest (32), (34), (35) and 10% highest
(32), (33), (35) predicted housing values. For the lowest predictions, the variable
LSTAT dominates, being more than twice as important than any other variable. For
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the highest predicted values, RM is the most important variable and PTRATIO is
nearly as important as LSTAT . Pollution NOX seems to be roughly equally relevant
everywhere.

9.2.3. Interaction effects. Figure 10 shows the values of {H̃j }13
1 (53), along

with the corresponding null standard deviations, for the Boston housing predic-
tor variables. There is strong evidence for interactions involving NOX, RM, DIS,
PTRATIO and LSTAT . Here we investigate further the nature of those involving
RM and LSTAT .

The upper frame of Figure 11 displays the values of {H̃RM,k}k �=RM (54) along
with the corresponding null standard deviations. One sees strong evidence for an
interaction effect between RM and NOX and between RM and PTRATIO. The
lower frame shows the corresponding plot for LSTAT indicating substantial in-
teraction effects involving LSTAT and NOX, and LSTAT and DIS. Since RM and
LSTAT are each seen to interact with more than one other variable, one can use (55)
to investigate the presence of three-variable interactions. In this case, however, the
analysis revealed no evidence for any three-variable interactions involving RM or
LSTAT . This strategy can be continued to potentially uncover additional interaction
effects if any.

9.2.4. Partial dependencies. Figure 12 displays partial dependence functions
(40) on the four variable pairs indicated above as participating in two-variable in-
teractions. From these plots one can study the detailed nature of the corresponding
interaction effects. For example, the lower right plot indicates that housing values
sharply increase when LSAT and DIS simultaneously have very small values.

FIG. 10. Total interaction strength in excess of expected null value of the input variables for the
Boston housing data. The lower dark bars represent the null standard deviations.
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FIG. 11. Two-variable interaction strengths of variables interacting with RM (upper) and LSTAT
(lower) in excess of expected null value for the Boston housing data. The lower dark bars represent
the null standard deviations.

10. Related work. Predictive methods based on rules have a long history in
the machine learning literature [see Mitchell (1997)]. Quinlan (1993) designed a
variant of C4.5 (“C4.5 Rules”) where the final model consists of a set of rules.
A single large decision tree is induced and then converted to a set of rules, one
for each terminal node. Each such rule is subsequently pruned by removing the
conditions (indicator functions) that improve its estimated prediction accuracy. Fi-
nally, the pruned rules {rm(x)} are each assigned a class label and then listed in
ascending order of their estimated accuracy. To obtain a prediction at a point x,
the single rule highest in this list for which rm(x) = 1 is used. Although there are
fundamental differences, this approach is connected to the work presented here in
that a decision tree induction algorithm is employed as a greedy mechanism for
generating the rules.

A different rule induction paradigm used in classification context is sequen-
tial covering, that underlies the Inductive Logic Programming (ILP) algorithms
[Lavrač and Džeroski (1994)]. The generic sequential covering algorithm induces
a disjunctive set of rules by learning one rule at a time. After each rule is derived,
the algorithm removes from the training data set the “positive” examples (specified
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FIG. 12. Plots of partial dependence functions on selected variable pairs for the Boston housing
data.

y-value) covered by the rule. The process is then iterated on the remaining training
observations. As with C4.5 Rules, the generated rule set is ordered and the single
rule highest in the list that covers a point x is used for its prediction. Actual ILP
algorithms such as CN2 [Clark and Niblett (1989)], RIPPER [Cohen (1995)], and
PROGOL [Muggleton (1995)] differ with respect to the detailed techniques that
implement the generic paradigm.

Although rule based, RuleFit produces fundamentally different models than
the methods described above, both with respect to the methodology employed to
derive the final model and the structure of this model. RuleFit models (25) are
additive in rules (7) and linear terms (24) with optimized weights (coefficients),
whereas the above methods produce disjunctive sets of rules using only one in the
set for each prediction.
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Classification ensembles that combine simple “weak” learners that are unions
of conjunctive rules can be found in algorithmic implementations of the stochastic
discrimination paradigm [Kleinberg (1996)]. Each weak learner is produced by a
random mechanism (e.g., a finite union of rectangular boxes where each box is
generated using a random set of variables, random centering, and random length
edges). The corresponding weak learners chosen for the final model are required to
satisfy certain “enrichment” and “uniformity” conditions. Details are presented in
Ho and Kleinberg (1996) and Kleinberg (2000). [See also Pfahringer et al. (2004)].
As with RuleFit, stochastic discrimination combines its base (weak) learners in an
additive manner. The major differences are the mechanism employed to generate
the additive terms and the fact that stochastic discrimination performs a simple
averaging, whereas the coefficients of RuleFit models are fit through a regularized
regression (26).

SLIPPER [Cohen and Singer (1999)] uses the AdaBoost strategy to produce a
weighted ensemble of boosted RIPPER rules. While generally outperforming stan-
dard rule induction methods, this approach tends not to match the performance of
boosted tree ensembles [Weiss and Indurkhya (2000)]. Light weight rule induction
[LRI, Weiss and Indurkhya (2000)] uses a simple heuristic strategy based on the
boosting concept to produce unweighted rule ensembles having an equal number
of rules for each class. They provide evidence that this approach tends to outper-
form SLIPPER and single trees for small rule sets, and with larger ensembles was
competitive with the best methods available at the time. Both SLIPPER and LRI
sequentially induce relatively small rule sets, all of which are used for prediction.
RuleFit initially induces a large number of rules and then employs regularized
regression (10), (26) to produce and weight the smaller set comprising the final
predictive model.

Designed for problems involving binary valued features, logic regression
[Ruczinski, Kooperberg and LeBlanc (2003)] uses regression to fit the coefficients
of a model that is additive in rules “logic trees.” A set of admissible operations
is defined for modifying the logic trees and the model building process involves
randomly applying these operations in a simulated annealing context. Due to the
intensive nature of the computation involved with the simulated annealing ap-
proach, logic regression can accommodate models involving relatively few logic
terms. Also, generalizations to numeric and multiple-valued categorical variables
complicate this approach.

Closer to the approach presented here is that of Rosset and Inger (2000). They
constructed binary classification models using (unregularized) linear logistic re-
gression where the predictors were taken to be the original input variables along
with manually selected and modified C4.5 rules based on those variables.

Ruckert and Kramer (2006) propose the use of regularized regression to con-
struct weighted rule ensembles for classification. An initial set of rules is defined
without reference to the outcome variable y. At each step one additional rule from
this set is introduced into the model in a (user) predefined order. A regularized
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regression is performed on the rules currently in the model, and a upper bound on
the true (population) value of the fitting criterion is computed based on its empiri-
cal value and the current number of rules. These steps are repeated until all of the
initial rules have been included. The model in this sequence achieving the low-
est upper bound on the criterion is then used for prediction. Three fitting criteria
were proposed with the margin minus variance (MMV), with an l1 constraint on
the weights being preferred among the three. Principal differences between this
approach and RuleFit are that the latter uses information in the outcome variable
y to preferentially generate a good initial rule set (Algorithm 1), and the order
of rule entry is determined by the data directly through the regularized regression
procedure (10), (26).

For interpretation, Breiman et al. (1983) proposed a predictor variable impor-
tance measure for (single) trees. The relative importance for each variable was
taken to be the sum of the improvements in squared-error risk on the training data
at each nonterminal node split on that variable. Friedman (2001) and Breiman
(2001) extended this measure to tree ensembles by simply averaging it over the
trees appearing in the ensemble (“Gini” measure). Breiman (2001) also suggested
a permutation based variable importance measure. The relevance of each variable
was taken to be the increase in prediction risk of the model, as averaged over the
training data, when the values of that variable were randomly permuted among the
observations. Like those described in Sections 6 and 7, these measures reflect the
marginal influence of each respective variable in the presence of the other vari-
ables. They need not reflect usefulness in the absence of other variables. Also, the
permutation measure is essentially global in nature and is not readily extended to
produce corresponding local measures at individual predictions (30), (31), (35).
However, the Gini measure could be so extended.

Roosen (1995), Owen (2001) and Jiang and Owen (2001) study interaction ef-
fects in “black-box” models using the functional ANOVA decomposition of F(x)

and product measure. Hooker (2004) discusses the limitations of using product
measure in the context of observational data and proposes alternatives that are in-
tended to mitigate this constraint. Our approach to interactions based on partial de-
pendence functions (Section 8.1) does not involve the functional ANOVA decom-
position. Hooker (2004) observes that associations among the predictor variables
can sometimes introduce distortion in partial dependence estimates based on em-
pirical models. This motivates our approach of suppressing spurious interactions
presented in Section 8.2, and using null distributions as derived in Section 8.3 to
calibrate observed interaction effects.
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