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HORSESHOES IN MULTIDIMENSIONAL SCALING AND LOCAL
KERNEL METHODS

BY PERSI DIACONIS,1 SHARAD GOEL2 AND SUSAN HOLMES3

Stanford University, Yahoo! Research and Stanford University

Classical multidimensional scaling (MDS) is a method for visualizing
high-dimensional point clouds by mapping to low-dimensional Euclidean
space. This mapping is defined in terms of eigenfunctions of a matrix of inter-
point dissimilarities. In this paper we analyze in detail multidimensional scal-
ing applied to a specific dataset: the 2005 United States House of Representa-
tives roll call votes. Certain MDS and kernel projections output “horseshoes”
that are characteristic of dimensionality reduction techniques. We show that,
in general, a latent ordering of the data gives rise to these patterns when one
only has local information. That is, when only the interpoint distances for
nearby points are known accurately. Our results provide a rigorous set of re-
sults and insight into manifold learning in the special case where the manifold
is a curve.

1. Introduction. Classical multidimensional scaling is a widely used tech-
nique for dimensionality reduction in complex data sets, a central problem in pat-
tern recognition and machine learning. In this paper we carefully analyze the out-
put of MDS applied to the 2005 United States House of Representatives roll call
votes [Office of the Clerk—U.S. House of Representatives (2005)]. The results
we find seem stable over recent years. The resultant 3-dimensional mapping of
legislators shows “horseshoes” that are characteristic of a number of dimensional-
ity reduction techniques, including principal components analysis and correspon-
dence analysis. These patterns are heuristically attributed to a latent ordering of
the data, for example, the ranking of politicians within a left-right spectrum. Our
work lends insight into this heuristic, and we present a rigorous analysis of the
“horseshoe phenomenon.”

Seriation in archaeology was the main motivation behind D. Kendall’s discovery
of this phenomenon [Kendall (1970)]. Ordination techniques are part of the ecol-
ogists’ standard toolbox [ter Braak (1985, 1987), Wartenberg, Ferson and Rohlf
(1987)]. There are hundreds of examples of horseshoes occurring in real statis-
tical applications. For instance, Dufrene and Legendre (1991) found that when
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they analyzed the available potential ecological factors scored in the form of pres-
ence/absence in 10 km side squares in Belgium there was a strong underlying
gradient in the data set which induced “an extraordinary horseshoe effect.” This
gradient followed closely the altitude component. Mike Palmer has a wonderful
“ordination website” where he shows an example of a contingency table cross-
ing species counts in different locations around Boomer Lake [Palmer (2008)]. He
shows a horseshoe effect where the gradient is the distance to the water (Palmer).
Psychologists encountered the same phenomenon and call it the Guttman effect
after Guttman (1968). Standard texts such as Mardia, Kent and Bibby (1979),
page 412, claim horseshoes result from ordered data in which only local inter-
point distances can be estimated accurately. The mathematical analysis we provide
shows that by using the exponential kernel, any distance can be downweighted for
points that are far apart and also provide such horseshoes.

Methods for accounting for [ter Braak and Prentice (1988)], or removing gra-
dients [Hill and Gauch (1980)], that is, detrending the axes, are standard in the
analysis of MDS with chisquare distances, known as correspondence analysis.

Some mathematical insights into the horseshoe phenomenon have been pro-
posed [Podani and Miklos (2002), Iwatsubo (1984)].

The paper is structured as follows: In Section 1.1 we describe our data set and
briefly discuss the output of MDS applied to these data. Section 1.2 describes the
MDS method in detail. Section 2 states our main assumption—that legislators can
be isometrically mapped into an interval—and presents a simple model for voting
that is consistent with this metric requirement. In Section 3 we analyze the model
and present the main results of the paper. Section 4 connects the model back to
the data. The proofs of the theoretical results from Section 3 are presented in the
Appendix.

1.1. The voting data. We apply multidimensional scaling to data generated
by members of the 2005 United States House of Representatives, with similarity
between legislators defined via roll call votes (Office of the Clerk—U.S. House
of Representatives). A full House consists of 435 members, and in 2005 there
were 671 roll calls. The first two roll calls were a call of the House by States and
the election of the Speaker, and so were excluded from our analysis. Hence, the
data can be ordered into a 435 × 669 matrix D = (dij ) with dij ∈ {1/2,−1/2,0}
indicating, respectively, a vote of “yea,” “nay,” or “not voting” by Representative
i on roll call j . (Technically, a representative can vote “present,” but for purposes
of our analysis this was treated as equivalent to “not voting.”) We further restricted
our analysis to the 401 Representatives that voted on at least 90% of the roll calls
(220 Republicans, 180 Democrats and 1 Independent), leading to a 401 × 669
matrix V of voting data. This step removed, for example, the Speaker of House
Dennis Hastert (R-IL) who by custom votes only when his vote would be decisive,
and Robert T. Matsui (D-CA) who passed away at the start the term.
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As a first step, we define an empirical distance between legislators as

d̂(li , lj ) = 1

669

669∑
k=1

|vik − vjk|.(1.1)

Roughly, d̂(li , lj ) is the percentage of roll calls on which legislators li and lj dis-
agreed. This interpretation would be exact if not for the possibility of “not voting.”
In Section 2 we give some theoretical justification for this choice of distance, but
it is nonetheless a natural metric on these data.

Now, it is reasonable that the empirical distance above captures the similarity of
nearby legislators. To reflect the fact that d̂ is most meaningful at small scales, we
define the proximity

P(i, j) = 1 − exp(−d̂(li , lj )).

Then P(i, j) ≈ d̂(li , lj ) for d(li, lj ) � 1 and P(i, j) is not as sensitive to noise
around relatively large values of d̂(li , lj ). This localization is a common feature
of dimensionality reduction algorithms, for example, eigenmap [Niyogi (2003)],
isomap [Tenenbaum, de Silva and Langford (2000)], local linear embedding
[Roweis and Saul (2000)] and kernel PCA [Schölkopf, Smola and Muller (1998)].

We apply MDS by double centering the squared distances built from the dissim-
ilarity matrix P and plotting the first three eigenfunctions weighted by their eigen-
values (see Section 1.2 for details). Figure 1 shows the results of the 3-dimensional
MDS mapping. The most striking feature of the mapping is that the data separate

FIG. 1. 3-Dimensional MDS output of legislators based on the 2005 U.S. House roll call votes.
Color has been added to indicate the party affiliation of each Representative.
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into “twin horseshoes.” We have added color to indicate the political party affilia-
tion of each Representative (blue for Democrat, red for Republican and green for
the lone independent—Rep. Bernie Sanders of Vermont). The output from MDS
is qualitatively similar to that obtained from other dimensionality reduction tech-
niques, such as principal components analysis applied directly to the voting ma-
trix V .

In Sections 2 and 3 we build and analyze a model for the data in an effort
to understand and interpret these pictures. Roughly, our theory predicts that the
Democrats, for example, are ordered along the blue curve in correspondence to
their political ideology, that is, how far they lean to the left. In Section 4 we discuss
connections between the theory and the data. In particular, we explain why in the
data legislators at the political extremes are not quite at the tips of the projected
curves, but rather are positioned slightly toward the center.

1.2. Multidimensional scaling. Multidimensional Scaling (MDS) is a widely
used technique for approximating the interpoint distances, or dissimilarities, of
points in a high-dimensional space by actual distances between points in a low-
dimensional Euclidean space. See Young and Householder (1938) and Torgerson
(1952) for early, clear references, Shepard (1962) for extensions from distances to
ranked similarities, and Mardia, Kent and Bibby (1979), Cox and Cox (2000) and
Borg and Groenen (1997) for useful textbook accounts. In our setting, applying
the usual centering operations of MDS to the proximities we use as data lead to
surprising numerical coincidences: the eigenfunctions of the centered matrices are
remarkably close to the eigenfunctions of the original proximity matrix. The de-
velopment below unravels this finding, and describes the multidimensional scaling
procedure in detail.

Euclidean points: If x1, x2, . . . , xn ∈ R
p , let

di,j =
√

(x1
i − x1

j )2 + · · · + (x
p
i − x

p
j )2

be the interpoint distance matrix. Schoenberg [Schoenberg (1935)] characterized
distance matrices and gave an algorithmic solution for finding the points given the
distances (see below). Albouy (2004) discusses the history of this problem, tracing
it back to Borchardt (1866). Of course, the points can only be reconstructed up to
translation and rotation, thus, we assume

∑n
i=1 xk

i = 0 for all k.
To describe Schoenberg’s procedure, first organize the unknown points into

a n × p matrix X and consider the matrix of dot products S = XXT , that is,
Sij = xix

T
j . Then the spectral theorem for symmetric matrices yields S = U�UT

for orthogonal U and diagonal �. Thus, a set of n vectors which yield S is given
by X̃ = U�1/2. Of course, we can only retrieve X up to an orthonormal trans-
formation. This reduces the problem to finding the dot product matrix S from the
interpoint distances. For this, observe

d2
i,j = (xi − xj )(xi − xj )

T = xix
T
i + xjx

T
j − 2xix

T
j
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or

D2 = s1T + 1sT − 2S,(1.2)

where D2 is the n × n matrix of squared distances, s is the n × 1 vector of the
diagonal entries of S, and 1 is the n × 1 vector of ones. The matrix S can be
obtained by double centering D2:

S = −1
2HD2H, H = I − 1

n
11T .(1.3)

To see this, first note that, for any matrix A, HAH centers the rows and columns
to have mean 0. Consequently, Hs1T H = H1sT H = 0 since the rows of s1T and
the columns of 1sT are constant. Pre- and post-multiplying (1.2) by H , we have

HD2H = −2HSH.

Since the x’s were chosen as centered, XT 1 = 0, the row sums of S satisfy

∑
j

xix
T
j = xi

(∑
j

xj

)T

= 0

and so S = −1
2HD2H as claimed.

In summary, given an n × n matrix of interpoint distances, one can solve for
points achieving these distances by the following:

1. Double centering the interpoint distance squared matrix: S = −1
2HD2H .

2. Diagonalizing S: S = U�UT .
3. Extracting X̃: X̃ = U�1/2.

Approximate distance matrices: The analysis above assumes that one starts with
points x1, x2, . . . , xn in a p-dimensional Euclidean space. We may want to find an
embedding xi �⇒ yi in a space of dimension k < p that preserves the interpoint
distances as closely as possible. Assume that S = U�UT is such that the diagonal
entries of � are decreasing. Set Yk to be the matrix obtained by taking the first k

columns of the U and scaling them so that their squared norms are equal to the
eigenvalues �k . In particular, this provides the first k columns of X above and
solves the minimization problem

min
yi∈Rk

∑
i,j

(‖xi − xj‖2
2 − ‖yi − yj‖2

2).(1.4)

Young and Householder (1938) showed that this minimization can be realized as
an eigenvalue problem; see the proof in this context in Mardia, Kent and Bibby
(1979), page 407. In applications, an observed matrix D is often not based on
Euclidean distances (but may represent “dissimilarities,” or just the difference of
ranks). Then, the MDS solution is a heuristic for finding points in a Euclidean
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space whose interpoint distances approximate the orders of the dissimilarities D.
This is called nonmetric MDS [Shepard (1962)].

Kernel methods: MDS converts similarities into inner products, whereas modern
kernel methods [Schölkopf, Smola and Muller (1998)] start with a given matrix of
inner products. Williams (2000) pointed out that Kernel PCA [Schölkopf, Smola
and Muller (1998)] is equivalent to metric MDS in feature space when the ker-
nel function is chosen isotropic, that is, the kernel K(x,y) only depends on the
norm ‖x − y‖. The kernels we focus on in this paper have that property. We will
show a decomposition of the horseshoe phenomenon for one particular isotropic
kernel, the one defined by the kernel function k(xi, xj ) = exp(−θ(xi − xj )

′(xi −
xj )).

Relating the eigenfunctions of S to those of D2: In practice, it is easier to think
about the eigenfunctions of the squared distances matrix D2 rather than the recen-
tered matrix S = −1

2HD2H .
Observe that if v is any vector such that 1T v = 0 (i.e., the entries of v sum to 0),

then

Hv =
(
I − 1

n
11T

)
v = v.

Now, suppose w is an eigenfunction of D2 with eigenvalue λ, and let

w̄ =
(

1

n

n∑
i=1

wi

)
1

be the constant vector whose entries are the mean of w. Then 1T (w − w̄) = 0 and

S(w − w̄) = −1

2
HD2H(w − w̄)

= −1

2
HD2(w − w̄)

= −1

2
H(λw − λw̄ + λw̄ − D2w̄)

= −λ

2
(w − w̄) + 1

2

(
1

n

n∑
i=1

wi

)⎡
⎢⎣

r1 − r̄
...

rn − r̄

⎤
⎥⎦ ,

where ri = ∑n
j=1(D2)ij and r̄ = (1/n)

∑n
i=1 ri . In short, if w is an eigenfunction

of D2 and w̄ = 0, then w is also an eigenfunction of S. By continuity, if w̄ ≈ 0
or ri ≈ r̄ , then w − w̄ is an approximate eigenfunction of S. In our setting, it
turns out that the matrix D2 has approximately constant row sums (so ri ≈ r̄), and
its eigenfunctions satisfy w̄ ≈ 0 (in fact, some satisfy w̄ = 0). Consequently, the
eigenfunctions of the centered and uncentered matrix are approximately the same
in our case.
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2. A model for the data. We begin with a brief review of models for this
type of data. In spatial models of roll call voting, legislators and policies are rep-
resented by points in a low-dimensional Euclidean space with votes decided by
maximizing a deterministic or stochastic utility function (each legislator choosing
the policy maximizing their utility). For a precise description of these techniques,
see de Leeuw (2005), where he treats the particular case of roll call data such as
ours.

Since Coombs (1964), it has been understood that there is usually a natural left-
right (i.e., unidimensional) model for political data. Recent comparisons [Burden,
Caldeira and Groseclose (2000)] between the available left-right indices have
shown that there is little difference, and that indices based on multidimensional
scaling [Heckman and Snyder (1997)] perform well. Further, Heckman and Snyder
(1997) conclude “standard roll call measures are good proxies of personal ideology
and are still among the best measures available.”

In empirical work it is often convenient to specify a parametric family of utility
functions. In that context, the central problem is then to estimate those parame-
ters and to find “ideal points” for both the legislators and the policies. A robust
Bayesian procedure for parameter estimation in spatial models of roll call data
was introduced in Clinton, Jackman and Rivers (2004), and provides a statistical
framework for testing models of legislative behavior.

Our cut-point model is a bit different and is explained next. Although the empir-
ical distance (1.1) is arguably a natural one to use on our data, we further motivate
this choice by considering a theoretical model in which legislators lie on a regular
grid in a unidimensional policy space. In this idealized model it is natural to iden-
tify legislators li 1 ≤ i ≤ n with points in the interval I = [0,1] in correspondence
with their political ideologies. We define the distance between legislators to be

d(li, lj ) = |li − lj |.
This assumption that legislators can be isometrically mapped into an interval is
key to our analysis. In the “cut-point model” for voting, each bill 1 ≤ k ≤ m on
which the legislators vote is represented as a pair

(Ck,Pk) ∈ [0,1] × {0,1}.
We can think of Pk as indicating whether the bill is liberal (Pk = 0) or conservative
(Pk = 1), and we can take Ck to be the cut-point between legislators that vote “yea”
or “nay.” Let Vik ∈ {1/2,−1/2} indicate how legislator li votes on bill k. Then, in
this model,

Vik =
{

1/2 − Pk, li ≤ Ck ,
Pk − 1/2, li > Ck .

As described, the model has n+ 2m parameters, one for each legislator and two
for each bill. These parameters are not identifiable without further restrictions.
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Adding ε to li and Ck results in the same votes. Below we fix this problem by
specifying values for li and a distribution on {Ck}.

We reduce the number of parameters by assuming that the cut-points are inde-
pendent random variables uniform on I . Then,

P(Vik 
= Vjk) = d(li, lj ),(2.1)

since legislators li and lj take opposites sides on a given bill if and only if the cut-
point Ck divides them. Observe that the parameters Pk do not affect the probability
above.

The empirical distance (1.1) between legislators li and lj generalizes to

d̂m(li, lj ) = 1

m

m∑
k=1

|Vik − Vjk| = 1

m

m∑
k=1

1Vik 
=Vjk
.

By (2.1), we can estimate the latent distance d between legislators by the empirical
distance d̂ which is computable from the voting record. In particular,

lim
m→∞ d̂m(li, lj ) = d(li, lj ) a.s.,

since we assumed the cut-points are independent. More precisely, we have the
following result:

LEMMA 2.1. For m ≥ log(n/
√

ε)/ε2,

P
(|d̂m(li , lj ) − d(li, lj )| ≤ ε ∀1 ≤ i, j ≤ n

) ≥ 1 − ε.

PROOF. By the Hoeffding inequality, for fixed li and lj ,

P
(|d̂m(li, lj ) − d(li, lj )| > ε

) ≤ 2e−2mε2
.

Consequently,

P

( ⋃
1≤i<j≤n

|d̂m(li, lj ) − d(li, lj )| > ε

)
≤ ∑

1≤i<j≤n

P
(|d̂m(li, lj ) − d(li, lj )| > ε

)

≤
(

n

2

)
2e−2mε2

≤ ε

for m ≥ log(n/
√

ε)/ε2, and the result follows. �

We identify legislators with points in the interval I = [0,1] and define the dis-
tances between them to be d(li, lj ) = |li − lj |. This general description seems to
be reasonable not only for applications in political science, but also in a number of
other settings. The points and the exact distance d are usually unknown, however,
one can often estimate d from the data. For our work, we assume that one has
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access to an empirical distance that is locally accurate, that is, we assume one can
estimate the distance between nearby points.

To complete the description of the model, something must be said about the
hypothetical legislator points li . In Section 3 we specify these so that d(li, lj ) =
|i/n − j/n|. Because of the uniformity assumption on the bill parameters and
Lemma 2.1, aspects of the combination of assumptions can be empirically tested.
A series of comparisons between model and data (along with scientific conclu-
sions) are given in Section 4. These show rough but good accord; see, in partic-
ular, the comparison between Figures 3, 6, 7 and Figure 9 and the accompanying
commentary.

Our model is a simple, natural set of assumptions which lead to a useful analysis
of these data. The assumptions of uniform distribution of bills implies identifiabil-
ity of distances between legislators. Equal spacing is the mathematically simplest
assumption matching the observed distances. In informal work we have tried vary-
ing these assumptions but did not find these variations led to a better understanding
of the data.

3. Analysis of the model.

3.1. Eigenfunctions and horseshoes. In this section we analyze multidimen-
sional scaling applied to metric models satisfying

d(xi, xj ) = |i/n − j/n|.
This corresponds to the case in which legislators are uniformly spaced in I : li =
i/n. Now, if all the interpoint distances were known precisely, classical scaling
would reconstruct the points exactly (up to a reversal of direction). In applications,
it is often not possible to have globally accurate information. Rather, one can only
reasonably approximate the interpoint distances for nearby points. To reflect this
limited knowledge, we work with the dissimilarity

P(i, j) = 1 − exp(−d(xi, xj )).

As a matrix,

P =

⎛
⎜⎜⎜⎝

0 1 − e−1/n . . . 1 − e−(n−1)/n

1 − e−1/n 0
. . .

...
...

. . .
. . . 1 − e−1/n

1 − e−(n−1)/n . . . 1 − e−1/n 0

⎞
⎟⎟⎟⎠ .

We are interested in finding eigenfunctions for the doubly centered matrix

S = −1
2HPH = −1

2(P − JP − PJ + JPJ ),

where J = (1/n)11T . To prove limiting results, we work with the scaled matri-
ces Sn = (1/n)S. Approximate eigenfunctions for Sn are found by considering a
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limit K of the matrices Sn, and then solving the corresponding integral equation∫ 1

0
K(x,y)f (y) dy = λf (x).

Standard matrix perturbation theory is then applied to recover approximate eigen-
functions for the original, discrete matrix.

When we continuize the scaled matrices Sn, we get the kernel defined for
(x, y) ∈ [0,1] × [0,1]

K(x,y) = 1
2

(
e−|x−y| −

∫ 1

0
e−|x−y| dx −

∫ 1

0
e−|x−y| dy +

∫ 1

0

∫ 1

0
e−|x−y| dx dy

)

= 1
2

(
e−|x−y| + e−y + e−(1−y) + e−x + e−(1−x)) + e−1 − 2.

Recognizing this as a kernel similar to those in Fredholm equations of the second
type suggests that there are trigonometric solutions, as we show in Theorem A.2
in the Appendix. The eigenfunctions we derive are in agreement with those arising
from the voting data, lending considerable insight into our data analysis problem
and, more importantly, the horseshoe phenomenon. The sequence of explicit di-
agonalizations and approximations developed in the Appendix leads to the main
results of this section giving closed form approximations for the eigenvectors (The-
orem 3.1) and eigenvalues (Theorem 3.2), the proofs of these are also in the Ap-
pendix.

THEOREM 3.1. Consider the centered and scaled proximity matrix defined by

Sn(xi, xj ) = 1

2n

(
e−|i−j |/n + e−i/n + e−(1−i/n) + e−j/n + e−(1−j/n) + 2e−1 − 4

)
for 1 ≤ i, j ≤ n.

1. Set fn,a(xi) = cos(a(i/n − 1/2)) − (2/a) sin(a/2), where a is a positive solu-
tion to tan(a/2) = a/(2 + 3a2). Then

Snfn,a(xi) = 1

1 + a2 fn,a(xi) + Rf,n, where |Rf,n| ≤ a + 4

2n
.

2. Set gn,a(xi) = sin(a(i/n− 1/2)), where a is a positive solution to a cot(a/2) =
−1. Then

Sngn,a(xi) = 1

1 + a2 gn,a(xi) + Rg,n, where |Rg,n| ≤ a + 2

2n
.

That is, fn,a and gn,a are approximate eigenfunctions of Sn.

THEOREM 3.2. Consider the setting of Theorem 3.1 and let λ1, . . . , λn be the
eigenvalues of Sn.
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1. For positive solutions to tan(a/2) = a/(2 + 3a2),

min
1≤i≤n

∣∣∣∣λi − 1

1 + a2

∣∣∣∣ ≤ a + 4√
n

.

2. For positive solutions to a cot(a/2) = −1,

min
1≤i≤n

∣∣∣∣λi − 1

1 + a2

∣∣∣∣ ≤ a + 2√
n

.

In the Appendix we prove an uncentered version of this theorem (Theorem A.3)
that is used in the case of uncentered matrices which we will need for the double
horseshoe case of the next section.

In the results above, we transformed distances into dissimilarities via the expo-
nential transformation P(i, j) = 1 − exp(−d(xi, xj )). If we worked with the dis-
tances directly, so that the dissimilarity matrix is given by P(i, j) = |li − lj |, then
much of what we develop here stays true. In particular, the operators are explicitly
diagonalizable with similar eigenfunctions. This has been independently studied
by physicists in what they call the crystal configuration of a one-dimensional An-
derson model, with spectral decomposition analyzed in Bogomolny, Bohigas and
Schmit (2003).

3.1.1. Horseshoes and twin horseshoes. The 2-dimensional MDS mapping is
built out of the first and second eigenfunctions of the centered proximity matrix.
As shown above, we have the following approximate eigenfunctions:

• f1(xi) = fn,a1(xi) = sin(3.67(i/n − 1/2)) with eigenvalue λ1 ≈ 0.07,
• f2(xi) = fn,a2(xi) = cos(6.39(i/n − 1/2)) with eigenvalue λ2 ≈ 0.02,

where the eigenvalues are for the scaled matrix. Figure 2 shows a graph of these
eigenfunctions. Moreover, Figure 3 shows the horseshoe that results from plotting
� :xi �→ (

√
λ1f1(xi),

√
λ2f2(xi)). From � it is possible to deduce the relative or-

der of the Representatives in the interval I . Since −f1 is also an eigenfunction, it is
not in general possible to determine the absolute order knowing only that � comes
from the eigenfunctions. However, as can be seen in Figure 3, the relationship be-
tween the two eigenfunctions is a curve for which we have the parametrization
given above, but which cannot be written in functional form, in particular, the sec-
ond eigenvector is not a quadratic function of the first as is sometimes claimed.

With the voting data, we see not one, but two horseshoes. To see how this can
happen, consider the two population state space X = {x1, . . . , xn, y1, . . . , yn} with
proximity d(xi, xj ) = 1 − e−|i/n−j/n|, d(yi, yj ) = 1 − e−|i/n−j/n| and d(xi, yj ) =
1. This leads to the partitioned proximity matrix

P̃2n =
[

Pn 1

1 Pn

]
,

where Pn(i, j) = 1 − e−|i/n−j/n|.
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FIG. 2. Approximate eigenfunctions f1 and f2.

COROLLARY 3.1. From Theorem A.3 we have the following approximate
eigenfunctions and eigenvalues for −(1/2n)P̃2n:

• f1(i) = cos(a1(i/n − 1/2)), for 1 ≤ i ≤ n f1(j) = − cos(a1((j − n)/n − 1/2))

for (n + 1) ≤ j ≤ 2n, where a1 ≈ 1.3 and λ1 ≈ 0.37.

FIG. 3. A horseshoe that results from plotting � :xi �→ (
√

λ1f1(xi),
√

λ2f2(xi)).
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• f2(i) = sin(a2(i/n−1/2)), for 1 ≤ i ≤ n f2(j) = 0 for (n+1) ≤ j ≤ 2n, where
a2 ≈ 3.67 and λ2 ≈ 0.069.

• f3(i) = 0, for 1 ≤ i ≤ n, f3(j) = sin(a2((j −n)/n−1/2)) for (n+1) ≤ j ≤ 2n,
where a2 ≈ 3.67 and λ3 ≈ 0.069.

PROOF.

− 1

2n
P̃2n =

[
An 0

0 An

]
− 1

2n
11T ,

where An(i, j) = (1/2n)e−|i/n−j/n|. If u is an eigenvector of An, then the vector
(u,−u) of length 2n is an eigenvector of − 1

2n
P̃2n since

([
An 0

0 An

]
− 1

2n
11T

)(
u

−u

)
= λ1

(
u

−u

)
+ 0.

If we additionally have that 1T u = 0, then, similarly, (u, �0) and (�0, u) are also
eigenfunctions of − 1

2n
P̃2n. �

Since the functions f1, f2 and f3 of Corollary 3.1 are all orthogonal to constant
functions, by the discussion in Section 1.2 they are also approximate eigenfunc-
tions for the centered, scaled matrix (−1/2n)HP̃2nH . These functions are graphed
in Figure 4, and the twin horseshoes that result from the 3-dimensional mapping
� : z �→ (

√
λ1f1(z),

√
λ2f2(z),

√
λ3f3(z)) are shown in Figure 5. The first eigen-

vector provides the separation into two groups, this is a well known method for
separating clusters known today as spectral clustering [Shi and Malik (2000)].

FIG. 4. Approximate eigenfunctions f1, f2 and f3 for the centered proximity matrix arising from
the two population model.
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FIG. 5. Twin horseshoes in the two population model that result from plotting
� : z �→ (

√
λ1f1(z),

√
λ2f2(z),

√
λ3f3(z)).

For a nice survey and consistency results see von Luxburg, Belkin and Bousquet
(2008).

REMARK. The matrices An and P̃2n above are centrosymmetric [Weaver
(1985)], that is, symmetrical around the center of the matrix. Formally, if K is
the matrix with 1’s in the counter (or secondary) diagonal,

K =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
0 0 . . . 1 0
...

...

0 1 . . . 0 0
1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

then a matrix B is centrosymmetric iff BK = KB . A very useful review by Weaver
(1985) quotes I. J. Good (1970) on the connection between centrosymmetric ma-
trices and kernels of integral equations: “Toeplitz matrices (which are examples of
matrices which are both symmetric and centrosymmetric) arise as discrete approx-
imations to kernels k(x, t) of integral equations when these kernels are functions
of |x − t |.” (Today we would call these isotropic kernels.) “Similarly if a kernel is
an even function of its vector argument (x, t), that is, if k(x, t) = k(−x,−t), then
it can be discretely approximated by a centrosymmetric matrix.”

Centrosymmetric matrices have very neat eigenvector formulas [Cantoni and
Butler (1976)]. In particular, if the order of the matrix, n, is even, then the first
eigenvector is skew symmetric and thus of the form (u1,−u1) and orthogonal to
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the constant vector. This explains the miracle that seems to occur in the simplifi-
cation of the eigenvectors in the above formulae.

4. Connecting the model to the data. When we apply MDS to the voting
data, the first three eigenvalues are as follows:

• 0.13192,
• 0.00764,
• 0.00634.

Observe that as our two population model suggests, the second and third eigenval-
ues are about equal and significantly smaller than the first.

Figure 6 shows the first, second and third eigenfunctions f1, f2 and f3 from the
voting data. The 3-dimensional MDS plot in Figure 1(a) is the graph of � :xi �→
(
√

λ1f1(xi),
√

λ2f2(xi),
√

λ3f3(xi)). Since legislators are not a priori ordered, the
eigenfunctions are difficult to interpret. However, our model suggests the following
ordering: Split the legislators into two groups G1 and G2 based on the sign of
f1(xi); then the norm of f2 is larger on one group, say, G1, so we sort G1 based
on increasing values of f2, and similarly, sort G2 via f3. Figure 7 shows the same
data as does Figure 6, but with this judicious ordering of the legislators. Figure 8
shows the ordered eigenfunctions obtained from MDS applied to the 2004 roll call
data. The results appear to be in agreement with the theoretically derived functions
in Figure 4. This agreement gives one validation of the modeling assumptions in
Section 2.

The theoretical second and third eigenfunctions are part of a two-dimensional
eigenspace. In the voting data it is reasonable to assume that noise eliminates
symmetry and collapses the eigenspaces down to one dimension. Nonetheless, we

FIG. 6. The first, second and third eigenfunctions output from MDS applied to the 2005 U.S. House
of Representatives roll call votes.
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FIG. 7. The re-indexed first, second and third eigenfunctions output from MDS applied to the 2005
U.S. House of Representatives roll call votes. Colors indicate political parties.

would guess that the second and third eigenfunctions in the voting data are in the
two-dimensional predicted eigenspace, as is seen to be the case in Figures 7 and 8.

Our analysis in Section 3 suggests that if legislators are in fact isometrically em-
bedded in the interval I (relative to the roll call distance), then their MDS derived
rank will be consistent with the order of legislators in the interval. This appears
to be the case in the data, as seen in Figure 9, which shows a graph of d̂(li , ·)

FIG. 8. The re-indexed first, second and third eigenfunctions output from MDS applied to the 2004
U.S. House of Representatives roll call votes. Colors indicate political parties.
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FIG. 9. The empirical roll call derived distance function d̂(li , ·) for selected legislators
li = 1,90,181,182,290,401. The x-axis orders legislators according to their MDS rank.

for selected legislators li . For example, as we would predict, d̂(l1, ·) is an increas-
ing function and d̂(ln, ·) is decreasing. Moreover, the data seem to be in rough
agreement with the metric assumption of our two population model, namely, that
the two groups are well separated and that the within group distance is given by
d(li, lj ) = |i/n − j/n|. This agreement is another validation of the modeling as-
sumptions in Section 2.

Our voting model suggests that the MDS ordering of legislators should corre-
spond to political ideology. To test this, we compared the MDS results to the as-
sessment of legislators by Americans for Democratic Action [Americans for De-
mocratic Action (2005)]. Each year ADA selects 20 votes it considers the most
important during that session, for example, the Patriot Act reauthorization. Legis-
lators are assigned a Liberal Quotient: the percentage of those 20 votes on which
the Representative voted in accordance with what ADA considered to be the lib-
eral position. For example, a representative who voted the liberal position on all
20 votes would receive an LQ of 100%. Figure 10 below shows a plot of LQ vs.
MDS rank.
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FIG. 10. Comparison of the MDS derived rank for Representatives with the Liberal Quotient as
defined by Americans for Democratic Action.

For the most part, the two measures are consistent. However, MDS separates
two groups of relatively liberal Republicans. To see why this is the case, consider
the two legislators Mary Bono (R-CA) with MDS rank 248 and Gil Gutknecht
(R-MN) with rank 373. Both Representatives received an ADA rating of 15%,
yet had considerably different voting records. On the 20 ADA bills, both Bono
and Gutknecht supported the liberal position 3 times—but never simultaneously.
Consequently, the empirical roll call distance between them is relatively large con-
sidering that they are both Republicans. Since MDS attempts to preserve local dis-
tances, Bono and Gutknecht are consequently separated by the algorithm. In this
case, distance is directly related to the propensity of legislators to vote the same on
any given bill. Figure 10 results because this notion of proximity, although related,
does not correspond directly to political ideology. The MDS and ADA rankings
complement one another in the sense that together they facilitate identification of
two distinct, yet relatively liberal groups of Republicans. That is, although these
two groups are relatively liberal, they do not share the same political positions.

Like ADA, the National Journal ranks Representatives each year based on their
voting record. In 2005, The Journal chose 41 votes on economic issues, 42 on so-
cial issues and 24 dealing with foreign policy. Based on these 107 votes, legislators
were assigned a rating between 0 and 100—lower numbers indicate a more liberal
political ideology. Figure 11 is a plot of the National Journal vs. MDS rankings,
and shows results similar to the ADA comparison. As in the ADA case, we see that
relatively liberal Republicans receive quite different MDS ranks. Interestingly, this
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FIG. 11. Comparison of the eigendecomposition derived rank for Representatives with the National
Journal’s liberal score.

phenomenon does not appear for Democrats under either the ADA or the National
Journal ranking system.

Summary. Our work began with an empirical finding: multidimensional scal-
ing applied to voting data from the US house of representatives shows a clean
double horseshoe pattern (Figure 1). These patterns happen often enough in data
reduction techniques that it is natural to seek a theoretical understanding. Our main
results give a limiting closed form explanation for data matrices that are double-
centered versions of

P(i, j) = 1 − e−θ |i/n−j/n|, 1 ≤ i, j ≤ n.

We further show how voting data arising from a cut-point model developed in
Section 3 gives rise to a model of this form.

In a followup to this paper, de Leeuw (2007) has shown that some of our results
can be derived directly without passing to a continuous kernel. A useful byproduct
of his results and conversations with colleagues and students is this: the matrix
Pi,j above is totally positive. Standard theory shows that the first eigenvector can
be taken increasing and the second as unimodal. Plotting these eigenvectors ver-
sus each other will always result in a horseshoe shape. Perhaps this explains the
ubiquity of horseshoes.
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APPENDIX: THEOREMS AND PROOFS FOR SECTION 3

We state first a classical perturbation result that relates two different notions of
an approximate eigenfunction. A proof is included here to aid the reader. For more
refined estimates, see Parlett (1980), Chapter 4, page 69.

Two lemmas provide trigonometric identities that are useful for finding the
eigenfunctions for the continuous kernel. Theorem A.2 states specific solutions
to this integral equation. We then provide a proof for Theorem 3.1. The version of
this theorem for uncentered matrices (Theorem A.3) follows and is used in the two
horseshoe case.

THEOREM A.1. Consider an n×n symmetric matrix A with eigenvalues λ1 ≤
· · · ≤ λn. If for ε > 0

‖Af − λf ‖2 ≤ ε

for some f,λ with ‖f ‖2 = 1, then A has an eigenvalue λk such that |λk − λ| ≤ ε.
If we further assume that

s = min
i:λi 
=λk

|λi − λk| > ε,

then A has an eigenfunction fk such that Afk = λkfk and ‖f − fk‖2 ≤ ε/(s − ε).

PROOF. First we show that mini |λi −λ| ≤ ε. If mini |λi −λ| = 0, we are done;
otherwise A − λI is invertible. Then,

‖f ‖2 ≤ ‖(A − λI)−1‖ · ‖(A − λ)f ‖2

≤ ε‖(A − λI)−1‖.
Since the eigenvalues of (A−λI)−1 are 1/(λ1 −λ), . . . ,1/(λn −λ), by symmetry,

‖(A − λI)−1‖ = 1

mini |λi − λ| .
The result now follows since ‖f ‖2 = 1.

Set λk = argmin|λi − λ|, and consider an orthonormal basis g1, . . . , gm of the
associated eigenspace Eλk

. Define fk to be the projection of f onto Eλk
:

fk = 〈f,g1〉g1 + · · · + 〈f,gm〉gm.

Then fk is an eigenfunction with eigenvalue λk . Writing f = fk + (f − fk), we
have

(A − λI)f = (A − λI)fk + (A − λI)(f − fk)

= (λk − λ)fk + (A − λI)(f − fk).

Since f − fk ∈ E⊥
λk

, by symmetry, we have

〈fk,A(f − fk)〉 = 〈Afk,f − fk〉 = 〈λkfk, f − fk〉 = 0.
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Consequently, 〈fk, (A − λI)(f − fk)〉 = 0 and by Pythagoras,

‖Af − λf ‖2
2 = (λk − λ)2‖fk‖2 + ‖(A − λI)(f − fk)‖2

2.

In particular,

ε ≥ ‖Af − λf ‖2 ≥ ‖(A − λI)(f − fk)‖2.

For λi 
= λk , |λi − λ| ≥ s − ε. The result now follows since for h ∈ E⊥
λk

‖(A − λI)h‖2 ≥ (s − ε)‖h‖2. �

REMARK A.1. The second statement of the theorem allows nonsimple eigen-
values, but requires that the eigenvalues corresponding to distinct eigenspaces be
well separated.

REMARK A.2. The eigenfunction bound of the theorem is asymptotically
tight in ε as the following example illustrates: Consider the matrix

A =
[
λ 0
0 λ + s

]
with s > 0. For ε < s, define the function

f =
[√

1 − ε2/s2

ε/s

]
.

Then ‖f ‖2 = 1 and ‖Af − λf ‖2 = ε. The theorem guarantees that there is an
eigenfunction fk with eigenvalue λk such that |λ − λk| ≤ ε. Since the eigenvalues
of A are λ and λ + s, and since s > ε, we must have λk = λ. Let Vk = {fk :Afk =
λkfk} = {ce1 : c ∈ R}, where e1 is the first standard basis vector. Then

min
fk∈Vk

‖f − fk‖2 = ‖f − (f · e1)e1‖ = ε/s.

The bound of the theorem, ε/(s − ε), is only slightly larger.

We establish an integral identity in order to find trigonometric solutions to Kf =
λf where K is the continuized kernel of the centered exponential proximity matrix.

LEMMA A.1. For constants a ∈ R and c ∈ [0,1],∫ 1

0
e−|x−c| cos[a(x − 1/2)]dx

= 2 cos[a(c − 1/2)]
1 + a2 + (e−c + ec−1)(a sin(a/2) − cos(a/2))

1 + a2

and ∫ 1

0
e−|x−c| sin[a(x − 1/2)]dx

= 2 sin[a(c − 1/2)]
1 + a2 + (e−c − ec−1)(a cos(a/2) + sin(a/2))

1 + a2 .
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PROOF. The lemma follows from a straightforward integration. First split the
integral into two pieces:∫ 1

0
e−|x−c| cos[a(x − 1/2)]dx

=
∫ c

0
ex−c cos[a(x − 1/2)]dx +

∫ 1

c
ec−x cos[a(x − 1/2)]dx.

By integration by parts applied twice,∫
ex−c cos[a(x − 1/2)]dx = aex−c sin(a(x − 1/2)) + ex−c cos(a(x − 1/2))

1 + a2

and∫
ec−x cos[a(x − 1/2)]dx = aec−x sin(a(x − 1/2)) − ec−x cos(a(x − 1/2))

1 + a2 .

Evaluating these expressions at the appropriate limits of integration gives the first
statement of the lemma. The computation of

∫ 1
0 e−|x−c| sin[a(x − 1/2)]dx is anal-

ogous, and so is omitted here. �

We now derive eigenfunctions for the continuous kernel.

THEOREM A.2. For the kernel

K(x, y) = 1
2

(
e−|x−y| + e−y + e−(1−y) + e−x + e−(1−x)) + e−1 − 2

defined on [0,1] × [0,1], the corresponding integral equation∫ 1

0
K(x, y)f (y) dy = λf (x)

has solutions

f (x) = sin
(
a(x − 1/2)

)
, a cot(a/2) = −1

and

f (x) = cos
(
a(x − 1/2)

) − 2

a
sin(a/2), tan(a/2) = a

2 + 3a2 .

In both cases, λ = 1/(1 + a2).

PROOF. First note that both classes of functions in the statement of the theo-
rem satisfy

∫ 1
0 f (x) dx = 0. Consequently, the integral simplifies to∫ 1

0
K(x, y)f (y) dy = 1

2

∫ 1

0

(
e−|x−y| + e−y + e−(1−y))f (y) dy.
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Furthermore, since e−y + e−(1−y) is symmetric about 1/2 and sin(a(y − 1/2)) is
skew-symmetric about 1/2, Lemma A.1 shows that

∫ 1

0
K(x,y) sin

(
a(y − 1/2)

)
dy

= 1

2

∫ 1

0
e−|x−y| sin

(
a(y − 1/2)

)
dy

= sin[a(c − 1/2)]
1 + a2 + (e−c − ec−1)(a cos(a/2) + sin(a/2))

2(1 + a2)
.

This establishes the first statement of the theorem. We examine the second. Since∫ 1
0 K(x,y) dy = 0,

∫ 1

0

(
e−|x−y| + e−y + e−(1−y))dy = (

4 − 2e−1 − e−x − e−(1−x))
and also, by straightforward integration by parts,

∫ 1

0
e−y cos

(
a(y − 1/2)

)
dy =

∫ 1

0
e−(1−y) cos

(
a(y − 1/2)

)
dy

= a sin(a/2)(1 + e−1)

1 + a2 + cos(a/2)(1 − e−1)

1 + a2 .

Using the result of Lemma A.1, we have

1

2

∫ 1

0

[
e−|x−y| + e−y + e−(1−y)][cos

(
a(y − 1/2)

) − 2

a
sin(a/2)

]
dy

= cos[a(x − 1/2)]
1 + a2 + (e−x + ex−1)(a sin(a/2) − cos(a/2))

2(1 + a2)

+ a sin(a/2)(1 + e−1)

1 + a2 + cos(a/2)(1 − e−1)

1 + a2

− 1

a
sin(a/2)

(
4 − 2e−1 − e−x − e−(1−x))

= cos[a(x − 1/2)]
1 + a2 − 2 sin(a/2)

a(1 + a2)
+ φ(x)

a(1 + a2)
,

where

φ(x) = 2 sin(a/2) + a(e−x + ex−1)
(
a sin(a/2) − cos(a/2)

)
/2

+ a2 sin(a/2)(1 + e−1) + a cos(a/2)(1 − e−1)

− (1 + a2) sin(a/2)
(
4 − 2e−1 − e−x − e−(1−x)).
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The result follows by grouping the terms of φ(x) so that we see

φ(x) = [
2 − 4 + 2e−1 + e−x + e−(1−x)] sin(a/2)

+ [
e−x/2 + ex−1/2 + 1 + e−1 − 4 + 2e−1 + e−x + e−(1−x)]a2 sin(a/2)

+ [−e−x/2 − ex−1/2 + 1 − e−1]a cos(a/2)

= [−e−x/2 − ex−1/2 + 1 − e−1]
× [a cos(a/2) − 2 sin(a/2) − 3a2 sin(a/2)]. �

Theorem A.2 states specific solutions to our integral equation. Now we show
that in fact these are all the solutions with positive eigenvalues. To start, observe
that for 0 ≤ x, y ≤ 1, e−1 ≤ e−|x−y| ≤ 1 and e−1 + 1 ≤ e−x + e−(1−x) ≤ 2e−1/2.
Consequently,

−1 < 3
2e−1 + 1 + e−1 − 2 ≤ K(x,y) ≤ 1

2 + 2e−1/2 + e−1 − 2 < 1

and so ‖K‖∞ < 1. In particular, if λ is an eigenvalue of K , then |λ| < 1. Now
suppose f is an eigenfunction of K , that is,

λf (x) =
∫ 1

0

[1
2

(
e−|x−y| + e−x + e−(1−x) + e−y + e−(1−y)) + e−1 − 2

]
f (y) dy.

Taking the derivative with respect to x, we see that f satisfies

λf ′(x) = 1
2

∫ 1

0

(−e−|x−y|Hy(x) − e−x + e−(1−x))f (y) dy,(A-1)

where Hy(x) is the Heaviside function, that is, Hy(x) = 1 for x ≥ y and Hy(x) =
−1 for x < y. Taking the derivative again, we get

λf ′′(x) = −f (x) + 1
2

∫ 1

0

(
e−|x−y| + e−x + e−(1−x))f (y) dy.(A-2)

Now, substituting back into the integral equation, we see

λf (x) = λf ′′(x) + f (x) +
∫ 1

0

[1
2

(
e−y + e−(1−y)) + e−1 − 2

]
f (y) dy.

Taking one final derivative with respect to x, and setting g(x) = f ′(x), we see

g′′(x) = λ − 1

λ
g(x).(A-3)

For 0 < λ < 1, all the solutions to (A-3) can be written in the form

g(x) = A sin
(
a(x − 1/2)

) + B cos
(
a(x − 1/2)

)
with λ = 1/(1 + a2). Consequently, f (x) takes the form

f (x) = A sin
(
a(x − 1/2)

) + B cos
(
a(x − 1/2)

) + C.
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Note that since
∫ 1

0 K(x,y) dy = 0, the constant function c(x) ≡ 1 is an eigenfunc-
tion of K with eigenvalue 0. Since K is symmetric, for any eigenfunction f with
nonzero eigenvalue, f is orthogonal to c in L2(dx), that is,

∫ 1
0 f (x) dx = 0. In

particular, for 0 < λ < 1, without loss, we assume

f (x) = A sin
(
a(x − 1/2)

) + B

[
cos

(
a(x − 1/2)

) − 2

a
sin(a/2)

]
.

We solve for a, A and B . First assume B 
= 0, and divide f through by B . Then
f (1/2) = 1− (2/a) sin(a/2). Since K(x, ·) is symmetric about 1/2 and sin(a(x −
1/2)) is skew-symmetric about 1/2, we have

λf (1/2) = 1 − (2/a) sin(a/2)

1 + a2

=
∫ 1

0

[
1

2

(
e|y−1/2| + e−y + e−(1−y)) + e−1/2 + e−1 − 2

]
f (y) dy

= 1

2

∫ 1

0

(
e|y−1/2| + e−y + e−(1−y)) cos

(
a(y − 1/2)

)
dy

+ 2

a
sin(a/2)(e−1/2 + e−1 − 2)

= 1

1 + a2 + e−1/2(a sin(a/2) − cos(a/2))

1 + a2

+ a sin(a/2)(1 + e−1)

1 + a2 + cos(a/2)(1 − e−1)

1 + a2

+ 2

a
sin(a/2)(e−1/2 + e−1 − 2).

The last equality follows from Lemma A.1. Equating the sides, a satisfies

0 = 2 sin(a/2) + e−1/2a
(
a sin(a/2) − cos(a/2)

) + a2 sin(a/2)(1 + e−1)

+ a cos(a/2)(1 − e−1) + 2(1 + a2) sin(a/2)(e−1/2 + e−1 − 2)

= (1 − e−1/2 − e−1)
(
a cos(a/2) − 2 sin(a/2) − 3a2 sin(a/2)

)
.

From this it is immediate that tan(a/2) = a/(2 + 3a2). Now we suppose A 
= 0
and divide f through by A. Then f ′(1/2) = a and from (A-1)

λf ′(1/2) = a

1 + a2

= −1

2

∫ 1

0
e−|y−1/2|Hy(1/2)f (y) dy

= −1

2

∫ 1

0
e−|y−1/2|Hy(1/2) sin

(
a(y − 1/2)

)
dy
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= − e−1/2

1 + a2

(
a cos(a/2) + sin(a/2)

) + a

1 + a2 .

In particular, a cot(a/2) = −1.
The solutions of tan(a/2) = a/(2 + 3a2) are approximately 2kπ for integers k

and the solutions of a cot(a/2) = −1 are approximately (2k + 1)π . Lemma A.2
makes this precise. Since they do not have any common solutions, A = 0 if and
only if B 
= 0. This completes the argument that Theorem A.2 lists all the eigen-
functions of K with positive eigenvalues.

LEMMA A.2. 1. The positive solutions of tan(a/2) = a/(2 + 3a2) lie in the
set

∞⋃
k=1

(2kπ,2kπ + 1/3kπ),

with exactly one solution per interval. Furthermore, a is a solution if and only if
−a is a solution.

2. The positive solutions of a cot(a/2) = −1 lie in the set

∞⋃
k=0

(
(2k + 1)π, (2k + 1)π + 1/(kπ + π/2)

)
,

with exactly one solution per interval. Furthermore, a is a solution if and only if
−a is a solution.

PROOF. Let f (θ) = tan(θ/2) − θ/(2 + 3θ2). Then f is an odd function, so a

is a solution to f (θ) = 0 if and only if −a is a solution. Now,

f ′(θ) = 1

2
sec2(θ/2) + 3θ2 − 2

(3θ2 + 2)2

and so f (θ) is increasing for θ ≥ √
2/3. Recall the power series expansion of tan θ

for |θ | < π/2 is

tan θ = θ + θ3/3 + 2θ5/15 + 17θ7/315 + · · · .
In particular, for 0 ≤ θ < π/2, tan θ ≥ θ . Consequently, for θ ∈ (0, π/2),

f (θ) ≥ θ

2
− θ

2 + 3θ2 > 0.

So f has no roots in (0, π/2), and is increasing in the domain in which we are
interested. Furthermore, for k ≥ 1,

f (2kπ) < 0 < +∞ = lim
θ→(2k+1)π− f (θ).
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The third and fourth quadrants have no solutions since f (x) < 0 in those regions.
This shows that the solutions to f (θ) = 0 lie in the intervals

∞⋃
k=1

(2kπ,2kπ + π),

with exactly one solution per interval. Finally, for k ∈ Z≥1,

f
(
2kπ + 1/(3kπ)

) ≥ tan
(
kπ + 1/(6kπ)

) − 1

6kπ

= tan(1/(6kπ)) − 1

6kπ

≥ 0,

which gives the result.
To prove the second statement of the lemma, set g(θ) = θ cot(θ/2). Then g

is even, so g(a) = −1 if and only if g(−a) = −1. Since g′(θ) = cot(θ/2) −
(θ/2) csc2(θ/2), g(θ) is negative and decreasing in third and fourth quadrants (as-
suming θ ≥ 0) and furthermore,

g
(
(2k + 1)π

) = 0 > −1 > −∞ = lim
θ→2(k+1)π− g(θ).

The first and second quadrants have no solutions since g(x) ≥ 0 in those regions.
This shows that the solutions to g(x) = −1 lie in the intervals

∞⋃
k=0

(
(2k + 1)π, (2k + 1)π + π

)
,

with exactly one solution per interval. Finally, for k ∈ Z≥0,

g
(
(2k + 1)π + 1/(kπ + π/2)

)
= (

(2k + 1)π + 1/(kπ + π/2)
)

cot
(
kπ + π/2 + 1/(2kπ + π)

)
= (

(2k + 1)π + 1/(kπ + π/2)
)

cot
(
kπ + π/2 + 1/(2kπ + π)

)
= (

(2k + 1)π + 1/(kπ + π/2)
)

cot
(
π/2 + 1/(2kπ + π)

)
= −(

(2k + 1)π + 1/(kπ + π/2)
)

tan
(
1/(2kπ + π)

)
< −1,

which completes the proof. �

The exact eigenfunctions for the continuous kernel yield approximate eigen-
functions and eigenvalues for the discrete case. Here we give the proof of Theo-
rem 3.1.
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PROOF OF THEOREM 3.1. That f and g are approximate eigenfunctions for
the discrete matrix follows directly from Theorem A.2. Suppose K is the continu-
ous kernel. Then,

Snfn,a(xi) =
n∑

j=1

Sn(xi, xj )
[
cos

(
a(j/n − 1/2)

) − (2/a) sin(a/2)
]

=
∫ 1

0
K(xi, y)

[
cos

(
a(y − 1/2)

) − (2/a) sin(a/2)
]
dy + Rf,n

= 1

1 + a2 fn,a(xi) + Rf,n,

where the error term satisfies

|Rf,n| ≤ M

2n
for M ≥ sup

0≤x≤1

∣∣∣∣ d

dx
K(xi, y)

[
cos

(
a(y − 1/2)

) − (2/a) sin(a/2)
]∣∣∣∣

by the standard right-hand rule error bound. In particular, we can take M = a +
4 independent of j , from which the result for fn,a follows. The case of gn,k is
analogous. �

The version of this theorem for uncentered matrices is as follows:

THEOREM A.3. For 1 ≤ i, j ≤ n, consider the matrices defined by

An(i, j) = 1

2n
e−|i−j |/n and Sn(i, j) = An − 1

2n
11T .

1. Set fn,a(xi) = cos(a(i/n − 1/2)), where a is a positive solution to a tan(a/

2) = 1.
Then

Anfn,a(xi) = 1

1 + a2 fn,a(xi) + Rf,n where |Rf,n| ≤ a + 1

2n
.

2. Set gn,a(xi) = sin(a(i/n− 1/2)), where a is a positive solution to a cot(a/2) =
−1.
Then

Sngn,a(xi) = 1

1 + a2 gn,a(xi) + Rg,n where |Rg,n| ≤ a + 1

2n
.

That is, fn,a and gn,a are approximate eigenfunctions of An and Sn.

The proof of Theorem A.3 is analogous to Theorem 3.1 by way of Lemma A.1
and so is omitted here.
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PROOF OF THEOREM 3.2. Let f̃n,a = fn,a/‖fn,a‖2. Then by Theorem 3.1,∣∣∣∣Knf̃n,a(xi) − 1

1 + a2 f̃n,a(xi)

∣∣∣∣ ≤ a + 4

2n‖fn,a‖2

and, consequently,∥∥∥∥Knf̃n,a(xi) − 1

1 + a2 f̃n,a(xi)

∥∥∥∥
2
≤ a + 4

2
√

n‖fn,a‖2
.

By Lemma A.2, a lies in one of the intervals (2kπ,2kπ + 1/3kπ) for k ≥ 1. Then

|fn,a(xn)| = | cos(a/2) − (2/a) sin(a/2)|
≥ cos(1/6π) − 1/π

≥ 1/2.

Consequently,

‖fn,a‖2 ≥ |fn,a(xn)| ≥ 1/2

and so the first statement of the result follows from Theorem A.1. The second
statement is analogous. �
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SUPPLEMENTARY MATERIAL

Supplementary files for “Horseshoes in multidimensional scaling and lo-
cal kernel methods” (DOI: 10.1214/08-AOAS165SUPP; .tar). This directory
[Diaconis, Goel and Holmes (2008)] contains both the matlab (mds_analysis.m)
and R files (mdsanalysis.r) and the original data(voting_record2005.txt,voting
_record_description.txt, house_members_description.txt,house_members2005.
txt,house_party2005.txt) as well as the transformed data (reduced_voting_
record2005.txt,reduced_house_party2005.txt).
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