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INTERPRETATION OF INTERACTION: A REVIEW

BY AMY BERRINGTON DE GONZÁLEZ AND D. R. COX
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and Nuffield College, Oxford

Several different types of statistical interaction are defined and distin-
guished, primarily on the basis of the nature of the factors defining the interac-
tion. Illustrative examples, mostly epidemiological, are given. The emphasis
is primarily on interpretation rather than on methods for detecting interac-
tions.

1. Introduction. Interaction is one of the fundamental concepts of statistical
analysis. Establishing the presence or absence of interaction may be a key to cor-
rect interpretation of data. Discussion of interaction falls under three broad head-
ings, namely, its definition, its detection and its interpretation. This paper is mostly
devoted to the last, interpretation. Our illustrations are largely epidemiological; the
relevance of the ideas is much wider.

We consider studies in which on a number of individuals there are observed
one or more response (or outcome) variables and typically several explanatory
variables, conveniently called factors, that are thought possibly to influence the
response. We consider initially interaction between a given pair of factors. From
the statistical perspective, interaction is said to occur if the separate effects of the
factors do not combine additively. That is, interaction is a particular kind of nonad-
ditivity. The terminology is in some ways unfortunate in that there is no necessary
implication of, say, biological interaction in the sense of synergism or antagonism.

When the outcome is measured on a quantitative scale interaction on one scale
may possibly be removed by a nonlinear transformation of the scale. For binary
outcomes, representing say survival and death, interaction is defined via the non-
additivity of some function of the probability of death. When the probability is
small, absence of interaction on the logistic scale implies that to a close approxi-
mation separate explanatory variables combine their effects multiplicatively. From
a public health perspective, it may be preferable to consider instead or, as well,
the probability scale itself when absence of interaction means additivity of effect
[Berkson (1958)]. An interpretation via probabilities is then directly in terms of
differences of numbers of individuals at risk.

Detection of interaction is achieved essentially by comparing the fits of mod-
els with and without interaction terms, or sometimes by estimation of defining
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parameters, and will hardly be discussed here; one of the main issues for choice,
especially when one or both factors have several levels, concerns how general the
interaction terms should be. That is, is it wise to restrict, initially at least, the in-
teraction to particular patterns of effect? For a review of techniques for detecting
interaction, see Cox (1984).

The paper begins by making an important distinction between types of explana-
tory variables. We then discuss a very simple situation not commonly thought of
as illustrating interaction and then discuss the interpretation of the main types of
two-factor interaction that can arise.

2. Types of factor. Factors, or explanatory variables, can be classified in var-
ious ways. First the levels of a factor may be defined by a quantitative variable,
by an ordinal variable or the different levels may be qualitatively different. Exam-
ples are respectively dose level of medication, level of exposure (severe, moderate,
absent) and centers (in a multi-center trial), when these are seen as essentially
providing replication rather than as the focus of particular interest.

More importantly, for our purpose, we classify factors as:

• primary factors or what in some contexts might be called treatments or quasi-
treatments,

• intrinsic factors defining the study individuals,
• nonspecific factors, representing groupings of the study individuals that are of

no intrinsic interest but which may have nonnegligible effect on the response.

This classification is strongly context-specific.
In a randomized experiment the primary factors are those randomized treat-

ments that form the focus of the study. In a comparable observational study they
are broadly those that would have been treatments had randomization been fea-
sible. Comparison of their effect aims at a causal interpretation, although in an
observational study claims of causality have to be approached very cautiously.
Conceptually, at least, for a given study individual, a primary factor might have
been different from the value observed; thus, an individual might have been ran-
domized to a different treatment from that actually encountered.

Intrinsic factors define the study individuals, and hence usually an individual
could not have been randomized to receive a different “intrinsic factor.” In an epi-
demiological context these typically include gender, socio-economic class, educa-
tional and family background. The role of many variables such as smoking status
depends strongly on context; they may be a main focus of interest or be regarded
as intrinsic. Genetic information about an individual may be taken as helping to
define a study individual, and hence intrinsic, but in the study of a potentially
Mendelian disease genetic information may be a primary factor. In the latter case
we implicitly consider the question: what would the health status of this individual
have been had this allele been different from how it is?
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The two-factor interactions of most interest are those in which at least one factor
is a primary factor and there are thus three main cases to consider. First, however,
we discuss a simpler situation which at first sight may not seem to involve the
concept of an interaction at all.

3. Constancy of variance. Consider a continuous response variable y and,
for simplicity, two treatments. In the absence of further structure in the data, we
have a two-sample problem defined implicitly by two distribution functions F0(y)

and F1(y) corresponding to the two treatments T0 and T1.
There is then a sense in which absence of interaction implies that one distribu-

tion is a translation of the other F1(y) = F0(y − θ).
This interpretation hinges on the notion of unit-treatment additivity. That is,

the response observed on a particular individual is assumed to be the sum of a
contribution characteristic of the individual and a constant defined by the treatment
received. Whatever may be the distribution of the individual characteristics, this
implies the stated translational form.

Thus, if T1 is a potential cholesterol lowering drug and T0 a control, absence of
translational form would imply that on average the drug had a differential effect at
different levels of cholesterol, on the scale in which cholesterol is measured.

There are now two cases. First, if two distribution functions F1(y) and F0(y)

are such that as y takes values over the support of the distributions F1(y) − F0(y)

takes both signs, then we say the distribution functions cross. If the distribution
functions do not cross, it may be shown that a nonlinear transformation of y in-
duces translational form implying consistency with unit-treatment additivity on the
new scale. If, on the other hand, the distribution functions do cross, clearly no such
transformation is possible. In the illustrative example there would at least be the
implication that T1 is beneficial for some individuals and harmful for others.

If the distributions are approximately normal, they are characterized by means
(µ1,µ0) and variances (σ 2

1 , σ 2
0 ) and the distribution functions do not cross if and

only if the variances are equal. Examination of equality of variance is quite com-
monly presented as a technical statistical issue concerned with the validity of tests
of significance. It may often be more fruitful to consider it a substantive issue
concerning implied interaction.

Now a normal distribution can at best be a good approximation and is unlikely
to hold accurately in the extreme tails. Two normal distribution functions will cross
at a probability level �(k), where

k = (µ1 − µ0)/(σ1 − σ0),

so that unless this is in a reasonably central part of the distribution, say, |k| < 2,
the crossing over is unlikely to have sensible substantive interpretation.

An approximate confidence band for the point of intersection can most readily
be found by computing its profile likelihood function.



374 A. BERRINGTON DE GONZÁLEZ AND D. R. COX

4. Removable interaction. We may call an interaction removable if a trans-
formation of the outcome scale can be found that induces additivity. The impor-
tance of this is partly that presentation of the conclusions and the resulting inter-
pretation may be improved by the resulting formal simplification. It would be a
mistake, however, to achieve this simplification by measuring effects on a scale
that is very hard to understand or interpret [Breslow and Day (1980)]. Note also
that removable interactions are inconsistent with average effect reversal. For ex-
ample, absence of interaction with gender on a transformed scale excludes the
possibility that a treatment is on the average beneficial for men and on the average
harmful for women, whatever the transformation of the measurement scale used.

For a continuous and positive response variable, y, the transformations com-
monly used are logarithmic and simple powers, occasionally with a translated ori-
gin. For binary data, the logistic or sometimes probit or complementary log scale
may be effective. While achieving additivity of effects is helpful, interpretability
is the overriding concern. Thus, the transformation from y to y1/3 might remove
an interaction but, unless y was a representation of a volume, y1/3 might well not
be a good basis for interpretation.

Terminology differs somewhat between fields of application; removable inter-
actions are sometimes referred to as quantitative or ordinal interactions, where as
nonremovable interactions are referred to as qualitative, cross-over or disordinal
interactions [see Cronbach and Snow (1981)]. In the remainder of this paper we
use the terminology of quantitative and qualitative interactions.

We now discuss and illustrate with examples the interpretation of the three main
cases of interest, that is, interactions that involve a primary factor.

5. Examples.

5.1. Interaction between two primary factors.

5.1.1. Quantitative interaction. Interpretation of quantitative interaction be-
tween two primary factors is complicated by the fact that, by definition, a quantita-
tive interaction can be removed by transforming the scale of measurement. Results
can be generalized more easily if the interaction is removed, but, as mentioned
above, this should not usually be achieved at the expense of measuring effects on
a scale that is difficult to interpret. Interpretation will often depend upon the aim
of the investigation.

Gustavsson et al. (2002), for example, conducted a prospective study to investi-
gate whether there was evidence of interaction between exposure to asbestos and
smoking with respect to the risk of lung cancer. They performed two tests for in-
teraction between these two primary factors: one for departure from an additive
model and one for departure from a multiplicative model (equivalent to testing for
additivity on the log scale). The relative risks for each exposure group compared
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TABLE 1
Estimated relative risks of lung cancer from Gustavsson et al. (2002)

Asbestos exposure Current smoker Relative risk (95% CI)

No No 1.0 –
No Yes 21.7 (14.3, 32.6)
2.5+ fiber-years No 10.2 (2.5, 41.2)
2.5+ fiber-years Yes 43.1 (20.1, 88.6)

to those subjects who were not exposed to either risk factor (noncurrent smokers
who were not exposed to asbestos) are shown in Table 1.

The observed relative risk for the joint effect of the two risk factors (43.1) was
significantly less than would have been expected under a multiplicative model
(21.7 × 10.2 = 221.3), but was slightly greater than expected under the additive
model (21.7 + 10.2 − 1 = 30.9). However, departure from the additive model was
not statistically significant. Hence, these results could either be interpreted as ev-
idence that the effects of exposure to asbestos and tobacco could be additive with
respect to the risk of lung cancer (i.e., act independently on this scale) or that there
is a quantitative, sub-multiplicative interaction (i.e., they interact negatively) on a
probability scale. Since biological or other information to support one scale over
the other is rarely available [see Siemiatycki and Thomas (1981) for an example],
it is not possible to choose between these two interpretations.

In this example the authors’ aim was not to try to elucidate biological mecha-
nisms but to inform policy. In particular, they were interested in whether special
efforts should be made to help asbestos-exposed persons to stop smoking. Be-
cause the data were found to be consistent with the additive model for the joint
effect of asbestos and smoking, this suggests that such a program is not neces-
sary, as asbestos-exposed persons have approximately the same absolute increase
in lung cancer risk from smoking as nonexposed persons. Several authors refer to
this as absence of ‘public health interaction’ [Blot and Day (1979) and Rothman
et al. (1980)].

5.1.2. Qualitative interaction. Although it could be said that qualitative inter-
action is the only ‘essential’ statistical interaction, because it is nonremovable, if
we use this approach, in practice, we would accept only effect reversal as evidence
of interaction. Interesting and important quantitative interactions could therefore
be over-looked. Qualitative interactions are relatively rare, but when they do occur
they are usually of considerable interest. For example, in the Million Women UK
cohort study there was evidence of qualitative interaction (effect reversal) between
two primary factors: use of cyclic-combined hormone-replacement therapy (HRT)
and body mass index, with respect to the risk of developing endometrial cancer
[Beral et al. (2005)]. Women who were of normal body weight (body mass index
< 25 kg/m2) had a significantly increased risk of endometrial cancer if they had
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TABLE 2
Estimated relative risk of endometrial cancer in relation to cyclic-combined HRT use, according to

body mass index [Beral et al. (2005)]

HRT use Body mass index Relative risk (95% CI)

ever vs never <25 kg/m2 1.54 (1.20, 1.99)
ever vs never 25–29 kg/m2 1.07 (0.82, 1.40)
ever vs never 30+ kg/m2 0.67 (0.49, 0.91)

ever used this type of HRT, whereas women who were obese (body mass index
of 30+ kg/m2) had a significantly reduced risk of endometrial cancer if they had
ever used this type of HRT compared to never users. A formal test should usually
be performed to assess whether the qualitative interaction could be due to chance
variation; see, for example, Azzalini and Cox (1984).

Note that the approach used to analyze and display the data will impact on the
interpretation. The approach of a single baseline group (Table 1) allows for easy
examination of the consistency with different models, such as the additive versus
the multiplicative model, but does not reveal immediately whether there is qual-
itative interaction. The opposite is true for the approach of multiple contingency
tables (Table 2).

5.1.3. Continuous scale interactions. Some special considerations apply in
considering interaction between two primary factors both with levels specified
quantitatively. An example would concern the levels of two different atmospheric
pollutants, the outcome being some measure of disease incidence. For given lev-
els of other explanatory variables, interaction between the two quantitative factors
with levels x1 and x2 amounts to departure from the so-called generalized additive
model [Hastie and Tibshirani (1990)]

E{Y(x1, x2)} = a1(x1) + a2(x2),

where Y(x1, x2) is the outcome for an individual with the specified levels of the
explanatory variables.

There are two broad situations. In one x1 and x2 are very different kinds of fac-
tors which may individually have effects on response that are quite complicated,
but which may act virtually independently inducing additivity. In such a situation
interaction would be tested formally by introducing a term, or possibly a small
number of additional terms, into the model. These might, for example, be a simple
product such as x1x2 or possibly better, â1(x1)â2(x2), where âj (xj ) is a prelimi-
nary estimate of aj (xj ).

In a contrasting situation (x1, x2) are coordinates specifying points in a factor
space and other coordinate systems may possibly be more interpretable. A notion
stemming from the industrial response surface literature is that in the absence of
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quantitative background knowledge it may be best to think of the expected re-
sponse as a function of (x1, x2) that within a restricted region can be expanded in a
Taylor series around some central reference level. From this perspective, if a model
linear in the explanatory variables is inadequate, it will be sensible to add terms
in (x2

1 , x1x2, x
2
2), of which the middle one represents interaction. In this context

the generalized additive model may not be reasonable; generality of the functions
aj (xj ) combined with exclusion of product (interaction) terms would probably
be justified only as a device for transforming the individual xj to some relatively
simple form for which interpretation via a first-order model is available. For stud-
ies of behavior near a local stationary value, use of at least second-order terms is
needed, absence of interaction would mean that the local quadratic approximation
had principal axes along the coordinate axes and, in general, there seems to be
no reason to expect this. In such situations it may be best to abandon the main
effect-interaction framework as a basis for interpretation and to concentrate on the
expected response as a function to be estimated in some hopefully enlightening
form [Box and Draper (2007)].

5.2. Interaction between a primary and intrinsic factor. The interpretation of
interaction between a primary and an intrinsic factor may be quite straightforward.
A pattern of effects has to be studied to some extent separately at the different
levels of the intrinsic factor; this is sometimes also referred to as examination
of effect-modification. Typically, if interaction is present, the main effect of the
primary factor, while it may sometimes provide a useful qualitative synthesis, is
not relevant for detailed interpretation. It involves an averaging over levels of the
intrinsic factor which may be essentially meaningless. However, if it is found that
the main effect of the primary factor is stable across the levels of the intrinsic
factor, this implies that the findings are more generalizable.

Although the statistical methods for evaluating interaction between a primary
and intrinsic factor are essentially the same as those for the evaluation of interac-
tion between two primary factors, the route to interpretation is different, because
the roles of the primary and the intrinsic factor are asymmetrical.

If the intrinsic factor has quantitative levels, more elaborate models may aid
interpretation. In these the nature of an interaction may change smoothly, or indeed
linearly, with the level of the intrinsic variable.

For example, Ascherio et al. (2004) found evidence that high coffee consump-
tion was associated with a significantly reduced risk of Parkinson’s disease for
men, but there was no evidence of such an effect for women (Table 3). Hence, it
is not appropriate to summarize these results without reference to sex. The aver-
age risk of Parkinson’s disease from high level coffee consumption for men and
women combined would be meaningless. The asymmetry between the primary and
the intrinsic factor can be understood here by considering what the interpretation
would be if they had presented the relative risk of Parkinson’s disease associated
with sex according to level of coffee consumption. This is clearly not a sensible
biological viewpoint.
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TABLE 3
Estimated relative risk of Parkinsons disease in relation to coffee consumption, according to sex

[Ascherio et al. (2004)]

Coffee consumption Sex Relative risk (95% CI)

6+ vs 0 cups/week males 0.34 (0.16, 0.75)
6+ vs 0 cups/week females 1.09 (0.61, 1.93)

5.3. Interaction between a primary and a nonspecific factor. Suppose for sim-
plicity of discussion that there are two alternative treatments T and C and that an
estimate of the treatment contrast can be found separately at a number of centers,
these being regarded as defining nonspecific factors in the sense explained above.

Two rather different situations need consideration. In one an internal estimate of
the precision of these individual contrasts is available, either from explicit replica-
tion within centers or from implicit replication, for instance, a reasoned assumption
of binomial or Poisson variability. If the treatment by center interaction is appre-
ciable and clearly statistically significant, there is unexplained additional variation
present affecting the primary treatment contrast. This should be explained if at all
possible, for example, by regression on whole-center features.

If that is not possible, it may be unavoidable to treat the additional variation
as random and to introduce an additional component of variance. The presence of
this component will inflate the standard error of the primary treatment contrast,
and, unless the centers contribute essentially equal amounts of information, will
move the weighting to be attached to the different centers in the direction of equal
weighting. The implicit treatment contrast of concern is now an average over an
ensemble of repetitions. Note that if the degrees of freedom available to estimate
this additional component of variance are small, estimation of it, while formally
possible, is extremely fragile and it is likely to be wiser either simply to list esti-
mates center by center or to use a sensitivity analysis of dependence on the poorly
estimated component.

The inclusion of an additional component of variance will typically inflate, pos-
sibly appreciably, the estimated standard error of the overall effect. Such an analy-
sis is often described as treating centers as a random effect. This is a little mislead-
ing, however, in that centers are unlikely to be a random sample from a meaningful
population. Rather, it is the unexplained interaction that is being modeled as gen-
erated stochastically.

If, however, there is no effective replication within centers then the treatment by
center interaction provides a base for error estimation; the simplest special case is
the standard analysis of a randomized block design.

Duijts et al. (2003), for example, conducted a meta-analysis of epidemiological
studies of stressful life events and the risk of breast cancer. When the results from
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TABLE 4
Estimated summary odds ratios for breast cancer and stressful life events, according to confounding

adjustment [Duijts et al. (2003)]

Stressful life events Adjusted for key confounders? Odds ratio (95% CI)

yes vs no no 1.04 (0.90, 1.20)
yes vs no yes 2.22 (1.39, 3.56)

all eleven published epidemiological studies were combined the summary odds ra-
tio for ever versus never having had a stressful life event was 1.77 (95% CI: 1.31
to 2.40). However, there was evidence of significant heterogeneity between the re-
sults from the eleven studies (i.e., interaction with the nonspecific factor ‘study’).
The authors investigated whether several study level primary and intrinsic factors
might explain this between study heterogeneity. The results in Table 4 show that
the summary odds ratios were found to vary significantly according to whether
there had been adjustment for the key confounding factors (p < 0.001). Between
the studies that had adjusted for the key confounding factors there was still, how-
ever, significant heterogeneity that could not be explained by other study level
factors. This additional heterogeneity, having no known deterministic explanation,
was then treated as random and incorporated as an additional component of vari-
ance using a random effects model.

The use of the random effects model implicitly allows for the possibility of qual-
itative interactions between the primary and nonspecific factor. Some have argued
against the use of this approach, because, as noted earlier, qualitative interactions
should be relatively uncommon [Peto (1982)]. There are in any case substantial
difficulties in combining studies where the supplementary variables used to ad-
just, say, the odds ratio, are very different for the distinct studies. More generally,
the conceptual difficulties in treating replication in space or time as random were
clearly set out in one of the earliest treatments of the summarization of evidence
from repeated studies [Yates and Cochran (1938)].

5.4. Higher-order interaction. The difficulty of interpreting interactions in-
creases rapidly with the number of factors involved, even if, in principle, the points
made in connection with two-factor interactions cover many of the ideas needed.
For example, Znaor et al. (2003) conducted a study of risk factors for oral can-
cer in Indian men. There was evidence that the joint effect of the three primary
risk factors of interest (tobacco smoking, tobacco chewing and alcohol drinking)
was approximately additive, but was significantly less than multiplicative (additive
on the log-scale). Interpretation of the source of the sub-multiplicative three-way
interaction can be aided by investigation of its source. Table 5 shows the odds
ratios for each combination of the three risk factors compared to those that were
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TABLE 5
Odds ratio (OR) for interaction for combinations of smoking, chewing tobacco and alcohol for the

risk of oral cancer [Znaor et al. (2003)]

Smoking Chewing tobacco Alcohol Odds Ratio (and 95% CI)

No No No 1.00 (–)
No Yes No 9.27 (6.79–12.66)
Yes No No 2.45 (1.94–3.10)
No No Yes 2.56 (1.42–4.64)
Yes Yes No 8.53 (6.13–11.89)
No Yes Yes 24.28 (14.87–39.65)
Yes No Yes 4.81 (3.74–6.19)
Yes Yes Yes 16.34 (12.13–22.00)

not exposed to any of the three factors. The observed odds ratio for the joint ef-
fect of all three risk factors (16.34) was significantly less than would have been
expected under the multiplicative model (58.14). Examination of each of the two-
factor interactions shows that the joint effect of smoking and chewing tobacco was
much lower than would have been expected under the multiplicative model (8.53
compared to 22.71). The joint effect of smoking and alcohol was also slightly
lower than expected (4.81 compared to 6.27), but the observed joint effect of chew-
ing tobacco and alcohol was consistent with the expected multiplicative joint ef-
fect (24.28 compared to 23.73). Hence, the main source of the sub-multiplicative
three-way interaction appears to be the sub-multiplicative two-way interaction be-
tween smoking and chewing tobacco, but the sub-multiplicative interaction be-
tween smoking and alcohol may have contributed also. For binary data a formal
test of 3 factor interactions in a 2 × 2 × 2 table was given by Bartlett (1935).

In the previous discussion we have not suggested interpretations directly based
on the formal parameters used in representing interactions in a model, regarding
such models as more useful for testing for interaction than for its interpretation.
In some applications, however, the pattern of, say, two-factor interactions, may be
of prime concern. The stability of that pattern, for example, over replication of a
nonspecific factor is then of interest.

An example is the study of social mobility where the primary data are essen-
tially square contingency tables with the rows labeled by class of origin and the
columns by class of destination. Interest may lie not in the changes in the marginal
distribution between origin and destination, but rather in the pattern of interactions
and in the stability of that pattern across time or countries.

This can be represented as follows. In one study let πij be the probability that
an individual is in origin class i and destination class j . Write

πij = πi.π.jψij ,

where πi., π.j are marginal probabilities and the ψij satisfy the appropriate con-
straints. Now suppose that there is a third factor, say, a nonspecific factor. When
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this takes level k, we write the corresponding probability πij ;k ; that is, for each
fixed k, this defines a probability distribution over the corresponding square table.
Then a model in which the pattern of interaction is essentially the same for each
level of k but the magnitude of the interaction effect varies is represented in the
form

πij ;k = πi.;kπ.j ;kρkψij .

This is one of a quite wide range of special models that can be considered for mul-
tiple contingency tables [Agresti (1990) and Goodman (1985)]. We do not discuss
here the directly related, although conceptually different, literature of interaction
in multiple contingency tables in which the different dimensions of the table are
treated on an equal footing. The connection between log linear models and additive
models [Lancaster (1969) and Darroch 1974] parallels the present discussion.

A rather different aspect of higher-order interaction for binary observations con-
cerns the possible reversal of association as between marginal and conditional as-
sociation, the Yule–Simpson effect [Yule (1903)]. A related issue is the possibility
of spurious allelic association [Cardon and Palmer (2003)] where an observed de-
pendence arises from mixing individuals, say, from different ethnic groups within
each of which independence holds. This in turn is related to latent class analysis
[Lazarsfeld and Henry (1968)] in which the aim is to represent observed multi-
variate dependencies by a small set of latent classes within each of which indepen-
dence holds. A quantitative discussion of the modifying effect of marginalizing in
this context is given by Cox (2003).

6. Epistasis. We return to the relatively simple situation in which we con-
centrate on a two-way table showing the mean response at various levels of two
factors, at least one a primary factor. Our primary route to interpretation is via the
notion of the no-interaction model as a reference model with departures from it, if
they are present, described essentially verbally. There are, however, other possible
representations that are in a sense just as simple as the no-interaction model. In
genetics these are described as epistasis; different authors use the term somewhat
differently.

Suppose, for simplicity, that there are two two-level factors specified by i =
−1,1 and j = −1,1 and that the mean response at level (i, j ) is

µij = µ + αi + βj + γ ij.

Then the no-interaction model has γ = 0.
One simple epistatic model has

µ11 = ν + λ, µij = ν (otherwise).

This is a two-parameter model, as contrasted with the three parameter no-
interaction model. Yet the epistatic model is not a special case of the no-interaction
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model. The totally null case λ = 0 is typically of no interest in this context and we
assume that the data strongly exclude this.

Comparison of the models is most fruitfully achieved by testing separately con-
sistency with the two models, leading to the conclusion, assessed by p-values, that
the data are consistent with one, both or neither model.

We deal in outline with the simplest case of normally distributed data with equal
sample sizes and constant variance but the details are not essentially different if,
for instance, the data are represented by logistic models for probabilities.

Consistency with the no-interaction model can be tested only in effect by the
least-squares estimate of γ in the full model. Consistency with the epistatic model
is tested by the mutual consistency of the three means excluding µ11 leading to a
variance-ratio test with upper degrees of freedom equal to two. Unless there is fur-
ther information, such as that the two factors are expected to have approximately
equal effects of the same sign, α = β , there is no basis for extracting a single
degree of freedom.

Parallel tests based on the relevant log likelihood functions are available more
generally.

7. Interaction in balanced factorial designs. Historically many of the ideas
about interaction were first formulated in detail in connection with randomized fac-
torial experiments, including those of quite complicated form. For such factorial
experiments, at least those with a continuous and approximately normally distrib-
uted outcome, the powerful technique of analysis of variance allows the simulta-
neous inspection of interactions of all orders. Moreover, the distinction between
factors describing the structure of the experimental units, block factors, and those
determining the randomized treatments corresponds to the distinction between in-
trinsic and nonspecific factors contrasted with primary factors.

The role of analysis of variance in such contexts is partly in establishing via
the table of degrees of freedom the logical structure of the data, and partly in
indicating how the error to be attached to any type of contrast is to be estimated.
This last is particularly important when treatments and experimental units have
relatively complicated structure and lead to different sources of error, all based in
effect on interactions between treatment and components of nonspecific variation.

In the absence of special reasons to the contrary, it will be sensible to start
the formal analysis of such data by finding the full analysis of variance table to-
gether with all two- and some three-way tables of means and associated standard
errors. This involves typically calculation of interactions of many different orders.
Significance of many interactions involving, in particular, an intrinsic factor often
suggests splitting the data into separate sections on the basis of that factor, for ex-
ample, analyzing male and female sections separately. Use of other than the full
analysis of variance table, or in other words, pooling of terms, may be needed to
enhance error estimation, but this is to be regarded as a second-order effect.
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The special feature of analysis by the standard normal-theory linear model is
that the decomposition of the observational vector into orthogonal components,
and therefore the additivity of sums of squares, typically allows assessment of ef-
fects of all orders virtually simultaneously. Analogous procedures, for example,
log likelihood decompositions, are available for more general models and unbal-
anced data, but are typically contingent on a full model specification. That is, omis-
sion of certain terms from a model changes estimates of the other parameters. This
tends to make an approach starting from a very general model with many interac-
tion terms impracticable in such situations. It is the analysis strategy for detecting
interactions that is changed rather than any issue of interpretation.

8. Interaction detection in relatively large systems. The emphasis in this
paper is on the interpretation of interactions rather than on their detection, but we
now comment briefly on interaction-detection in analyses in which the primary
emphasis is on the representation of dependency of outcome on a fairly large num-
ber of explanatory variables. This is often in the first place specified by some form
of linear regression representing main effects of the explanatory variables, in par-
ticular, identifying those with major effects on the outcome. It will be essential in
interpreting such relations to distinguish between the various kinds of explanatory
factors and to ensure that the relation fitted is consistent with any internal structure
among the primary explanatory variables [Cox and Wermuth (1996)].

Subject to that, a search for interactions among the explanatory variables, will
often be confined to interaction involving at least one primary factor. In some cases
it may be feasible to fit all such interactions simultaneously, as, for example, in the
previous section. More commonly, in large observational studies it is likely to be
preferable to fit relevant interactions as single degrees of freedom at a time and to
make a normal probability plot from the resulting t statistics [Cox and Wermuth
(1994)].

9. Ill-specified interactions. It has been implicit in the previous discussion
that each interaction of potential interest can be encapsulated if not in a single pa-
rameter at least in a very small number. This is desirable for, among other reasons,
incisive interpretation. This fails if, for example, the data are essentially, after ad-
justment for other effects, in the form of an r × c table suggesting an interaction
test having (r − 1)(c − 1) degrees of freedom. If one or both r and c are not small,
the resulting procedure has some sensitivity against a general class of departures
from additivity, but poor properties for specific kinds of departure which may have
special plausibility. One route is to take an interaction defined by the product of
scores attached separately to the rows and columns. In the absence of scores de-
rived, for example, from the ordinal character of the levels, products of estimated
main row and column effects may be used [Tukey (1949)]. See also Yates (1948).

It is a matter of context whether importance lies primarily in establishing and in-
terpreting interaction or in showing its effective absence. Absence of interpretable
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interaction of an important primary factor with intrinsic and nonspecific factors is
a partial base for hope that any conclusion is generalizable to new situations and
applicable to specific individuals. One of the broad themes of the paper is that the
importance of the notion of interaction is in no way confined to relatively com-
plicated issues connected with multiple contingency tables and complex factorial
experiments.
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