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It is well known that the product of two independent regularly varying
random variables with the same tail index is again regularly varying with
this index. In this paper, we provide sharp sufficient conditions for the regu-
lar variation property of product-type functions of regularly varying random
vectors, generalizing and extending the univariate theory in various direc-
tions. The main result is then applied to characterize the regular variation
property of products of i.i.d. regularly varying quadratic random matrices
and of solutions to affine stochastic recurrence equations under nonstandard
conditions.

1. Introduction.

1.1. Closure of regular variation under multiplication—The univariate case. Consider a
nonnegative random variable X and assume that X is regularly varying with index α > 0 in
the sense that

(1.1) P(X > x) = L(x)

xα
, x > 0,

where L denotes some slowly varying function; we refer to Bingham et al. [3] for an ency-
clopedic treatment of univariate regularly varying functions and to Resnick [20, 21] for the
case of regularly varying random vectors.

A natural question appears in this context: given Y is a nonnegative random variable in-
dependent of X, under which conditions is the product XY regularly varying with index α?
This is a natural problem indeed: in numerous contexts of applied probability one studies
models which involve products of independent random variables. Among those are classical
time series models such as the ARCH-GARCH family and the stochastic volatility model; see
Andersen et al. [1] for an extensive treatment of these models in financial time series analy-
sis. In both cases, the real-valued time series (Xt) is given via the relation Xt = σtZt , where
(σt ) is a strictly stationary sequence of positive random variables which is either predictable
with respect to the natural filtration of the i.i.d. sequence (Zt ) (such as for ARCH-GARCH)
or (σt ) and (Zt ) are mutually independent (such as for the stochastic volatility model). In
both cases, there is strong interest in the tail behavior of the products Xt = σtZt (notice that,
under the aforementioned conditions, σt and Zt are independent). In the ARCH-GARCH the
condition E[|Z|α] < ∞ (Z stands for a generic element of (Zt )) and the dynamics of the
volatility sequence (σt ) ensure that P(σt > x) ∼ cx−α for some positive constants c, α; see
Section 3 for more details. In turn, the condition E[|Z|α] < ∞ and the so-called Breiman
lemma imply that

(1.2) P(±σtZt > x) ∼ E
[(

Z±)α]
P(σt > x), x → ∞.
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Breiman’s result [4] is contained in the following useful lemma; for a proof, see Appendix C.3
in [5].

LEMMA 1.1. Assume X, Y are independent nonnegative random variables, X is regu-
larly varying with index α > 0 in the sense of (1.1), and E[Yα+δ] < ∞ for some δ > 0 or
P(X > x) ∼ cx−α for some positive c > 0 and E[Yα] < ∞. Then P(XY > x) ∼ E[Yα]P(X >

x) as x → ∞.

Thus the regular variation of X is preserved under multiplication with an independent
nonnegative random variable Y if the corresponding assumptions on Y hold, ensuring that Y

has a lighter tail than X. We already mentioned the case of an ARCH-GARCH process (Xt)

when σt is regularly varying with index α > 0 and Xt inherits this property if E[|Z|α] < ∞. In
the stochastic volatility model, regular variation of Xt may originate from the same property
for σt or Zt . In the former case, Xt is regularly varying with index α > 0 if σt has the same
property and E[|Z|α+δ] < ∞ for some δ > 0, and then (1.2) holds. In the latter case, Xt is
regularly varying with index α > 0 if Zt has this property in the sense that it satisfies a tail
balance condition:

(1.3) P(Z > x) ∼ p+
L(x)

xα
and P(Z < −x) ∼ p−

L(x)

xα

for constants p± such that p+ + p− = 1 and a slowly varying function L, and E[σα+δ
t ] < ∞

for some δ > 0, and then

P(±Xt > x) ∼ E
[
σα

t

]
P(±Z > x), x → ∞.

We mention that power-law tail behavior of a stationary sequence (Xt) is essential for
the asymptotic behavior of their extremes and partial sums, and related point process con-
vergence and functionals acting on them. For example, if (Zt ) is i.i.d. and regularly varying
with index α > 0, then the sequence of the maxima (a−1

n Mn), where Mn = maxi=1,...,n Zi ,
and (an) satisfies nP(Z > an) → 1, converges in distribution to a Fréchet distribution
�α(x) = exp(−x−α), x > 0; see Embrechts et al. [13], Section 3.3. Moreover, the process
of the points (a−1

n Xi)i=1,...,n converges in distribution to an inhomogeneous Poisson process
on (0,∞) with intensity function αx−α−1dx; see Resnick [20, 21], Embrechts et al. [13],
Chapter 5. Similarly, if α ∈ (0,2) and Z is regularly varying in the sense of (1.3) then for
Sn = Z1 + · · · + Zn, (a−1

n (Sn − cn)) converges in distribution (with suitable centering con-
stants (cn)) to an infinite variance α-stable limit; see Feller [14] or Resnick [20]. Moreover,
there is a vast literature that extends these results from the i.i.d. to the dependent case.

It is possible to relax the condition E[Yα+δ] < ∞ in Breiman’s result (Lemma 1.1); see
for example, [7, 11]. For completeness of the presentation we mention some related results
for independent nonnegative random variables X, Y when one or both are regularly varying
with index α. This situation is much more subtle than in the Breiman case but, still, XY is
regularly varying:

LEMMA 1.2. Assume that X, Y are independent nonnegative random variables and X

is regularly varying with index α > 0. Then the following statements hold:

(1) If either Y is regularly varying with index α or P(Y > x) = o(P(X > x)) as x → ∞
then XY is regularly varying with index α.

(2) If E[Yα] = ∞ then limx→∞P(XY > x)/P(X > x) = ∞.
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(3) If E[Yα] < ∞ then the following limit relations are equivalent:

(1.4)

lim
x→∞

P(XY > x)

P(X > x)
= E

[
Yα],

lim
ε→0

lim sup
x→∞

P(XY > x,X ≤ εx)

P(X > x)
= 0.

(4) If Y is also regularly varying with index α, E[Xα + Yα] < ∞ and

c0 = lim
x→∞

P(Y > x)

P(X > x)
∈ [0,+∞),

then the following limit relations are equivalent:

(1.5)

lim
x→∞

P(XY > x)

P(X > x)
= E

[
Yα]+ c0E

[
Xα],

lim
M→∞ lim sup

x→∞
P(XY > x,M < Y ≤ x/M)

P(X > x)

= lim
M→∞ lim sup

x→∞

∫ x/M

M

P(X > x/y)

P(X > x)
P(Y ∈ dy) = 0.

(5) Assume the conditions of (4) and c0 > 0. If limx→∞P(XY > x)/P(X > x) = c < ∞
then c = E[Yα] + c0E[Xα].

The proof of this result is given in Appendix A.1. Note that Lemma 1.2(3) includes the
Breiman lemma: if E[Yα+δ] < ∞ for some δ > 0 then (1.4) holds.

REMARK 1.3. Condition (1.5) is a very technical assumption. To verify it one would
need to have very precise information about the tail behavior of X. This condition does not
follow from the uniform convergence theorem for regularly varying functions; the latter result
ensures that for any M > 0,

lim
x→∞ sup

y≤M

∣∣∣∣P(X > x/y)

P(X > x)
− yα

∣∣∣∣= 0.

However, for the verification of (1.5) we need information about the deviation of P(X >

x/y)/P(X > x) from yα in the range y ∈ [M,x/M] for any M > 0 and large x, that is, for
large values of y. Part (3) was proved as Proposition 3.1 by Davis and Resnick [10] in the
case when X, Y are i.i.d. In this case, (1.5) is necessary and sufficient for P(XY > t)/P(X >

t) → 2E[Xα], and the latter constant is the only possible one; see Chover et al. [6], Foss and
Korshunov [15].

We mention in passing that regular variation of XY does in general not imply regular
variation of X or Y ; see Jacobsen et al. [16].

1.2. Closure of regular variation under multiplication—The multivariate case. Our main
goal in this paper is to extend some of the aforementioned results to the multivariate case. We
start by introducing regular variation of random vectors. For this reason we equip R

dX with
an arbitrary norm ‖ · ‖. A random vector X has a multivariate regularly varying distribution
if ‖X‖ has a univariate regularly varying distribution and is asymptotically independent of
X/‖X‖ given ‖X‖ > x. More precisely, we say that a random vector X ∈ R

dX and its distri-
bution are regularly varying if

(1.6) P

(
X

‖X‖ ∈ ·, ‖X‖
x

∈ ·
∣∣∣‖X‖ > x

)
w→ P(�X ∈ ·)P(Z ∈ ·), x → ∞,
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where Z is Pareto distributed with P(Z > y) = y−α , y > 1, and �X assumes values in the
unit sphere S

dX−1 = {x ∈ R
dX : ‖x‖ = 1}. The distribution of �X is the spectral distribution

of X.
We will often refer to an equivalent formulation of multivariate regular variation. Namely,

a random vector X ∈ R
dX and its distribution are regularly varying if and only if, there exists

a nonnull Radon measure μX on R
dX
0 = R

dX \ {0} such that

μX
t (·) = P(t−1X ∈ ·)

P(‖X‖ > t)

v→ μX(·), t → ∞,

where
v→ denotes vague convergence in the space of measures on R

dX
0 , that is, for any non-

negative continuous compactly supported1 function f on R
dX
0 , for short f ∈ C+

c (R
dX
0 ), we

have

(1.7)
∫

f (x)μX
t (dx)

w→
∫

f (x)μX(dx), t → ∞;

see Resnick [20], Sections 3.3.5 and 6.1.4. It turns out that the limit measure μX has a homo-
geneity property: there exists αX > 0 such that, for any Borel set A ⊂R

dX
0 ,

μX(tA) = t−αXμX(A), t > 0.

We call αX the index of regular variation or tail index of X and write X ∈ RV(αX,μX). Of
course, we necessarily have

(1.8) P
(‖X‖ > x

)= L(x)

xαX
,

for some slowly varying function L. A comparison of (1.6) and (1.7) yields a relation between
�X and μX via the equality, for any r > 0 and Borel set S ⊂ S

dX−1,

μX({x : ‖x‖ > r,x/‖x‖ ∈ S
})= r−αXP(�X ∈ S)

which further implies

(1.9)
∫

f (x)μX(dx) =
∫ ∞

0
αXr−αX−1

E
[
f (r�X)

]
dr, f ∈ C+

c

(
R

dX
0
)
.

We refer to Resnick [20, 21] as general references to multivariate regular variation and its
applications.

Now consider two independent vectors X and Y with values in R
dX and R

dY , respectively.
Our goal is to establish sufficient conditions under which Z = ψ(X,Y) is also regularly
varying where

ψ : RdX ×R
dY →R

dZ

is continuous, aX-homogeneous with respect to the first argument and aY-homogeneous with
respect to the second one for positive aX, aY, that is, for any x ∈ R

dX and y ∈ R
dY ,

(1.10) ψ(sx, ty) = saX taYψ(x,y), s, t ≥ 0.

Other type of functions where previously treated in [17], see also [9] for the inverse problem.

1In the context of regular variation, the origin is excluded from consideration. Therefore, a set K ⊂ R
dX
0 is

compact if it is compact in R
dX but bounded away from zero.
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EXAMPLE 1.4 (Product of independent random matrices). If dX = n1 · d1 then one can
identify R

dX
0 with the set of nonzero n1 × d1 matrices Mn1×d1 . Similarly, if dY = d1 · m1,

R
dY
0 = Md1×m1 . We define ψ(x,y) = x · y where x · y denotes ordinary matrix multiplication

of an n1 × d1 matrix x with a d1 × m1 matrix y. Then dZ = n1 · m1, aX = aY = 1, and Z is a
product of two independent random matrices X and Y.

In the case when one of the matrices X, Y is regularly varying, regular variation of Z
was proved in Basrak et al. [2], Proposition 5.1; it is a multivariate analog of the Breiman
lemma 1.1: if

X ∈ RV
(
αX,μX) and E

[‖Y‖αX+δ]< ∞ for some δ > 0,

then

P(t−1X · Y ∈ ·)
P(‖X‖ > t)

v→ ξ(·) := E
[
μX({x : x · Y ∈ ·})].

In particular, if ξ is nonnull then Z = X · Y ∈ RV(αX,μZ) where

μZ(·) = ξ(·)
ξ({z : ‖z‖ > 1}) .

EXAMPLE 1.5 (Kronecker products of independent random matrices). Suppose that
dX = n1 · d1 and dY = d2 · n2, so we can identify R

dX
0 =Mn1×n2 , RdY

0 = Md1×d2 . Now define
ψ : RdX ×R

dY →R
n1d1n2d2 = Mn1d1×n2d2 via the Kronecker product ψ(x,y) = x⊗y. As for

ordinary matrix multiplication, we have aX = aY = 1.

EXAMPLE 1.6 (Random quadratic form). If dY = d2
X, identifying R

dY
0 = MdX×dX , we

define ψ : RdX ×R
dY →R by ψ(x,y) = x�yx. In this case, aX = 2 and aY = 1.

1.3. Organization of the article. Our main result (Theorem 2.1) yields sharp sufficient
conditions for regular variation of the homogeneous function ψ(X,Y) acting on independent
regularly varying random vectors X, Y. The proof is given in Section 4. We apply these
results in Section 3. In particular, in Section 3.1 we derive the regular variation properties of
products of i.i.d. regularly varying quadratic matrices while, in Section 3.2, we prove regular
variation of solutions to affine stochastic recurrence equations under nonstandard conditions.

2. Main result. In what follows, X and Y are independent random vectors with values
in R

dX and R
dY , respectively, and we always assume X ∈ RV(αX,μX). We will study the

regular variation property of the aX-aY-homogeneous function Z = ψ(X,Y) (see (1.10)). In
particular, we are interested in the vague limit relation

(2.1) ξt (·) := P(t−1Z ∈ ·)
P(‖X‖aX · ‖Y‖aY > t)

v→ ξ(·),

in R
dZ
0 , and we will charazterize the Radon measure ξ .

We work under three conditions on X, Y which we introduce next.

CONDITION (H).

(H1) X ∈ RV(αX,μX)

(H2) c0 := limx→∞P(‖Y‖aY > x)/P(‖X‖aX > x) = 0

(H3) limx→∞ P(‖X‖aX‖Y‖aY>x)
P(‖X‖aX>x)

= E[‖Y‖αXaY/aX] < ∞.
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Condition (H) is satisfied if X ∈ RV(αX,μX) and E[‖Y‖aYαX/aX+δ] < ∞ for some δ > 0.
Under (H) one may expect that the tail behavior of Z is mainly influenced by that of X.
But we also want to cover the situation when ‖Z‖, ‖X‖aX and ‖Y‖aY have asymptotically
equivalent tails. This is the content of the following condition.

CONDITION (T).

(T1) X ∈ RV(αX,μX), Y ∈ RV(αY,μY)

(T2) c0 := limx→∞ P(‖Y‖aY > x)/P(‖X‖aX > x) ∈ [0,∞)

(T3) E[‖Y‖αXaY/aX + ‖X‖αYaX/aY] < ∞ and

lim
x→∞

P(‖X‖aX‖Y‖aY > x)

P(‖X‖aX > x)
= E

[‖Y‖αXaY/aX
]+ c0E

[‖X‖αYaX/aY
]
.

Whenever (H) or (T) hold a tail balance condition applies: the following finite limits exist:

lim
t→∞

P(‖X‖aX > t)

P(‖X‖aX · ‖Y‖aY > t)
= cX = 1

E[‖Y‖αXaY/aX] + c0E[‖X‖αYaX/aY] ,

lim
t→∞

P(‖Y‖aY > t)

P(‖X‖aX · ‖Y‖aY > t)
= cY = c0cX.

Finally, we introduce a condition that covers nonequivalent tails.

CONDITION (R).

(R1) X ∈ RV(αX,μX), Y ∈ RV(αY,μY)

(R2) P(‖X‖aX > t) + P(‖Y‖aY > t) = o(P(‖X‖aX · ‖Y‖aY > t)).

If (R1) holds and E[‖Y‖αXaY/aX] = E[‖X‖αYaX/aY] = ∞ then (R2) holds.
Now we are ready to formulate the main result of this paper.

THEOREM 2.1. Assume that the R
dX -valued X and the R

dY -valued Y random vectors
are independent. Then (2.1) is satisfied for the aX-aY-homogeneous function Z = ψ(X,Y)

with the following Radon limit measures ξ on R
dY
0 :

(1) Under (R),

(2.2) ξ(·) = E
[
μX({x : ψ(x,	Y) ∈ ·})].

(2) Under (T),

(2.3) ξ(·) = cXE
[
μX({x : ψ(x,Y) ∈ ·})]+ cYE

[
μY({y : ψ(X,y) ∈ ·})].

(3) Under (H),

(2.4) ξ(·) = cXE
[
μX({x : ψ(x,Y) ∈ ·})].

In particular, if ξ is nonnull then Z ∈ RV(αZ,μZ), where

αZ =

⎧⎪⎪⎨⎪⎪⎩
αX

aX
∧ αY

aY
, under (R) and (T),

αX

aX
, under (H),

μZ(·) = ξ(·)
ξ({z : ‖z‖ > 1}) .



HOMOGENEOUS MAPPINGS OF REGULARLY VARYING VECTORS 3005

From Theorem 2.1 we may derive some immediate consequences.

COROLLARY 2.2. Assume that X, Y are independent.

(1) If X ∈ RV(αX,μX), Y ∈ RV(αY,μY) and E[‖Y‖αXaY/aX] = E[‖X‖αYaX/aY] = ∞ then
(R) holds, hence (2.1) with ξ defined in (2.2).

(2) If X ∈ RV(αX,μX), Y ∈ RV(αY,μY) and αX
aX

< αY
aY

then (H) and (T) hold with c0 = 0,
hence (2.1) holds with ξ given in (2.3).

(3) If X ∈ RV(αX,μX) and E[‖Y‖aYαX/aX+δ] < ∞ for some δ > 0 then (H) holds, hence
(2.1) with ξ given in (2.4).

REMARK 2.3. As regards Theorem 2.1(1), one can verify that ξ is symmetric with re-
spect to X and Y. In this case, necessarily αX

aX
= αY

aY
, and we can write

E
[
μX({x : ψ(x,	Y) ∈ ·})]= ∫ ∞

0
αXr−αX−1

P
(
ψ(r	X,	Y) ∈ ·)dr

=
∫ ∞

0
αXr−αX−1

P
(
ψ
(
	X, raX/aY	Y

) ∈ ·)dr

=
∫ ∞

0
αYr−αY−1

P
(
ψ(	X, r	Y) ∈ ·)dr

= E
[
μY({y : ψ(	X,y) ∈ ·})].

3. Applications.

3.1. Products of regularly varying random matrices. In what follows, we consider an
i.i.d. sequence of d × d random matrices (Ai) and we assume that a generic element A ∈
RV(α,μA). We apply Theorem 2.1 to the function ψ(x,y) = x · y and an arbitrary matrix
norm ‖ · ‖.

Next we formulate our findings for a general product �n = A1 · · ·An, n ≥ 1. Here and in
what follows, we also use the notation

�i,j =

⎧⎪⎪⎨⎪⎪⎩
j∏

s=i

As, i ≤ j,

Idd, i > j,

where Idd is the d × d identity matrix.

3.1.1. The case of nonequivalent tails. We first state the results in the case P(‖�n‖ >

t) = o(P(‖�n+1‖ > t)) for all n. The complementary case is treated in Section 3.1.2.

COROLLARY 3.1. Consider an i.i.d. sequence (Ai ) of d × d matrices with A ∈
RV(α,μA). Assume that

(3.1)
P(‖A‖ > t)

P(‖A1‖ · ‖A2‖ > t)
→ 0, t → ∞.

Then for n ≥ 1,

(3.2)
P(‖�n‖ > t)

P(‖A1‖ · · · ‖An‖ > t)
→ E

[‖�A1 · · ·�An
‖α], t → ∞.
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If P(‖�A1 · · ·�An
‖ > 0) > 0 then �n is regularly varying and, as t → ∞,

(3.3)

P

(
�n

‖�n‖ ∈ ·
∣∣∣‖�n‖ > t

)
w→ P(��n ∈ ·) = E

[ ‖�A1 · · ·�An
‖α

E[‖�A1 · · ·�An
‖α]1

(
�A1 · · ·�An

‖�A1 · · ·�An
‖ ∈ ·

)]
.

In particular, if ‖ · ‖ is the operator norm corresponding to the Euclidean norm and A is

orthogonal, ��n

d= �A1 · · ·�An
.

REMARK 3.2. In view of Lemma 1.2(2), (3.1) is satisfied if E[‖A‖α] = ∞.

PROOF. We proceed by induction. We will prove that for each n, (3.3), (3.2) and

(3.4) P
(‖A1‖ > t

)+ P
(‖
2,n+1‖ > t

)= o
(
P
(‖A1‖ · ‖
2,n+1‖ > t

))
hold.

For n = 1, (3.3) follows from the regular variation of A, (3.2) follows trivially since 
1 =
A1 and ‖�A‖ = 1, and (3.4) is a consequence of (3.1).

Now suppose that it holds n = k for some k ≥ 1. Since (3.4) holds for n = k the balance
conditions

c�2,k+1 = lim
t→∞

P(‖�k‖ > t)

P(‖A1‖‖�2,k+1‖ > t)
= 0,

cA1 = lim
t→∞

P(‖A1‖ > t)

P(‖A1‖‖�2,k+1‖ > t)
= 0

are satisfied. An application of Theorem 2.1(1) yields

P(t−1A1�2,k+1 ∈ ·)
P(‖A1‖‖�2,k+1‖ > t)

v→ E
[
μA({x : x��k

∈ ·})].
An immediate consequence is

P(‖�k+1‖ > t)

P(‖A1‖‖A2 · · ·Ak+1‖ > t)
→ E

[
μA({x : ‖x��k

‖ > 1
})]= P

(
Y‖�A1��2,k+1‖ > 1

)
= E

[‖�A1��2,k+1‖α]= E[‖�A1 · · ·�Ak+1‖α]
E[‖�A1 · · ·�Ak

‖α] ,

where the Pareto random variable Y , �A1 and ��2,k+1 are independent. Here we also used
the induction assumption on the distribution of �k . Therefore,

P

(
�k+1

‖�k+1‖ ∈ ·
∣∣∣‖�k+1‖ > t

)
w→

E[μA({x : x��k‖x��k
‖ ∈ ·,‖x��k

‖ > 1})]
E[‖�A1 · · ·�Ak+1‖α]/E[‖�A1 · · ·�Ak

‖α]

=
P(

�A1��2,k+1
‖�A1��2,k+1‖ ∈ ·, Y‖�A1��2,k+1‖ > 1)

E[‖�A1 · · ·�Ak+1‖α]/E[‖�A1 · · ·�Ak
‖α]

=
E[‖�A1��2,k+1‖α1(

�A1��2,k+1
‖�A1��2,k+1‖ ∈ ·)]

E[‖�A1 · · ·�Ak+1‖α]/E[‖�A1 · · ·�Ak
‖α]

= E

[ ‖�A1 · · ·�Ak+1‖α

E[‖�A1 · · ·�Ak+1‖α]1
(

�A1 · · ·�Ak+1

‖�A1 · · ·�Ak+1‖
∈ ·
)]

.
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This proves (3.3) for n = k + 1. Finally, we turn to (3.2) for n = k + 1:

P(‖�k+1‖ > t)

P(‖A1‖ · · · ‖Ak+1‖ > t)
= P(‖�k+1‖ > t)

P(‖A1‖‖�2,k+1‖ > t)

P(‖A1‖‖�2,k+1‖ > t)

P(‖A1‖(‖A2‖ · · · ‖Ak+1‖) > t)

→ E[‖�A1 · · ·�Ak+1‖α]
E[‖�A1 · · ·�Ak

‖α] E
[‖�A1 · · ·�Ak

‖α]
= E

[‖�A1 · · ·�Ak+1‖α].
In the last step we used the induction assumption leading to tail equivalence of ‖A2‖‖A3 · · ·
Ak+1‖ and ‖A2A3 · · ·Ak+1‖ with factor E[‖�A1 · · ·�Ak

‖α]. To finish the proof we argue in
favor of (3.4) for n = k + 1. We have shown that

P
(‖�k‖ > t

)∼ E[‖�A1 · · ·�Ak+1‖α]
E[‖�A1 · · ·�Ak

‖α] P
(‖A1‖ · ‖�2,k+1‖ > t

)
which, in combination with (3.4) for n = k, gives P(‖�k‖ > t) = o(P(‖�k+1‖ > t)). Conse-
quently for any M > 0 there exists t0 sufficiently large such that

P
(‖�k+1‖ > t

)≥ MP
(‖�k‖ > t

)
, t > t0.

On the other hand, P(‖A1‖ > t) = o(P(‖A1‖ · ‖�2,k+1‖ > t)) and

P
(‖�k+1‖ > t

)∼ c0P
(‖A1‖ · ‖�2,k+1‖ > t

)
, c0 = E[‖�A1 · · ·�Ak+1‖α]

E[‖�A1 · · ·�Ak
‖α] .

Take η = t−1
0 . We observe as t → ∞ that

P
(‖A1‖ · ‖�2,k+2‖ > t

)≥ P
(‖A1‖ · ‖�2,k+2‖ > t,‖A1‖ ≤ ηt

)
≥ MP

(‖A1‖ · ‖�2,k+1‖ > t,‖A1‖ ≤ ηt
)

≥ M
(
P
(‖A1‖ · ‖�2,k+1‖ > t

)− P
(‖A1‖ > ηt

))
= MP

(‖A1‖ · ‖�2,k+1‖ > t
)(

1 + o(1)
)

= c0MP
(‖�k+1‖ > t

)(
1 + o(1)

)
.

This proves P(‖�k+1‖ > t) = o(P(‖A1‖ · ‖�2,k+2‖ > t)) and finishes the proof of the corol-
lary. �

3.1.2. The case of tail-equivalent tails. We also assume condition (1.5) which turns into

(3.5) lim
M→∞ lim sup

t→∞
P(‖A1‖‖A2‖ > t,M < ‖A1‖ ≤ t/M)

P(‖A‖ > x)
= 0

which is equivalent to

P(‖A1‖ > t)

P(‖A1‖ · ‖A2‖ > t)
→ cA = 1

2E[‖A‖α] .
An appeal to the following corollary shows that this condition causes tail equivalence of all
�n.

COROLLARY 3.3. Consider an i.i.d. sequence (Ai) of d × d matrices such that A ∈
RV(α,μA) and (3.5) holds. Then for any n ≥ 2,

(3.6)
P(‖�n‖ > t)

P(‖A‖ > t)
→

n∑
k=1

E
[‖�k−1�Ak

�k+1,n‖α], t → ∞.
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Additionally, if P(‖�k−1�Ak
�k+1,n‖ > 0) > 0 for some k ≤ n then �n is regularly varying

and as t → ∞,

P

(
�n

‖�n‖ ∈ ·
∣∣∣‖�n‖ > t

)
w→ P(��n ∈ ·)

=
n∑

k=1

pkE

[ ‖�k−1�Ak
�k+1,n‖α

E[‖�k−1�Ak
�k+1,n‖α]1

(
�k−1�Ak

�k+1,n

‖�k−1�Ak
�k+1,n‖ ∈ ·

)]
,

where

pk = E[‖�k−1�Ak
�k+1,n‖α]∑n

k=1 E[‖�k−1�Ak
�k+1,n‖α] , k = 1, . . . , n.

PROOF. We proceed by induction. We will prove (3.6) and

μ�n(·) =
∑n

k=1 E[μA(a : �k−1a�k+1,n ∈ ·)]∑n
k=1 E[‖�k−1�Ak

�k+1,n‖α] .

Since the claim is trivial for n = 1, suppose that it holds for some n ≥ 1. Put c̃n =∑n
k=1 E[‖�k−1�Ak

�k+1,n‖α]. Since ‖A‖ satisfies (3.5) and P(‖�n‖ > t) ∼ c̃nP(‖A‖ > t)

we infer that
P(‖A‖ > t)

P(‖A‖ · ‖�2,n+1‖ > t)
→ cn,A = 1

E[‖�2,n+1‖α] + c̃nE[|A‖α] ,

P(‖�2,n+1‖ > t)

P(‖A‖ · ‖�2,n+1‖ > t)
→ cn,� = c̃n

E[‖�2,n+1‖α] + c̃nE[‖A‖α] .

Theorem 2.1 yields

P(t−1�n+1 ∈ ·)
P(‖A‖ · ‖�2,n+1‖ > t)

→ E[μA({a : a�2,n+1 ∈ ·}) + c̃nμ
�n({π : Aπ ∈ ·})]

E[‖�2,n+1‖α] + c̃nE[‖A‖α] .

Consequently, by the induction hypothesis,

P(t−1�n+1 ∈ ·)
P(‖�n+1‖ > t)

v→ E[μA({a : a�2,n+1 ∈ ·}) + c̃nμ
�n({π : Aπ ∈ ·})]

E[μA({a : ‖a�2,n+1‖ > 1}) + c̃nμ�n({π‖Aπ‖ > 1})]

= E[μA({a : a�2,n+1 ∈ ·}) +∑n
k=1 μA({a : �ka�k+2,n+1 ∈ ·})]

E[μA({a : ‖a�2,n+1‖ > 1}) +∑n
k=1 μA({a : ‖�ka�k+2,n+1‖ > 1})]

=
∑n+1

k=1 E[μA({a : �k−1a�k+1,n+1 ∈ ·})]∑n+1
k=1 E[‖�k−1�Ak

�k+1,n+1‖α] .

With this at hand, the convergence

P

(
�n

‖�n‖ ∈ ·
∣∣∣‖�n‖ > t

)
w→ P(��n ∈ ·)

follows. �

3.2. Stochastic recurrence equations. We turn to the stochastic recurrence equation

(3.7) Rt = AtRt−1 + Bt , t ∈ Z,

where ((At ,Bt ))t∈Z is an i.i.d. sequence with generic element (A,B), A is a d × d random
matrix and B an R

d -valued random vector, possibly dependent on each other. A solution (Rt )

is causal if for every t , Rt is a function only of values ((As,Bs))s≤t , and then it constitutes a
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Markov chain. If a stationary causal solution (Rt ) with generic element R exists its marginal
distribution satisfies the fixed point equation in law

(3.8) R d= AR + B, R independent of (A,B)

and R has the representation in law

(3.9) R d=
∞∑

k=0

�kBk+1 where �k =
k∏

j=1

Aj .

The latter infinite series converges under conditions on the distribution of (A,B), for example
E[log‖A‖] < 0 and E[log+ ‖B‖] < ∞. Under some mild integrability and nondegeneracy
assumptions (3.9) is the unique solution to (3.8). Here and in what follows, we refer to the
monograph Buraczewski et al. [5] for details concerning the existence, uniqueness and other
properties of the solutions to (3.7) and (3.8).

The equations (3.7) and (3.8) have attracted a lot of attention since the seminal paper by
Kesten [18] who proved that R has some regular variation property with tail index α > 0
given by

lim
n→∞

(
E‖�n‖α)1/n = 1.

If d = 1, the latter equation reads as E[|A|α] = 1. In the Kesten setting, it is typically assumed
that E[‖B‖α] < ∞ and E[‖A‖α log+ ‖A‖] < ∞, implying the existence and uniqueness of
the solution (Rt ). Under these and further mild conditions on the distribution of (A,B) one
has R ∈ RV(α,μR) and the tail asymptotics

P
(‖R‖ > t

)∼ c0t
−α for some c0 > 0.

Since E[‖R‖α] = ∞ we have P(‖B‖ > t) = o(P(‖R‖ > t)), and elementary calculations
(Lemma C.3.1 in Buraczewski et al. [5]) show that for μR-continuity sets C,

tαP
(
t−1R ∈ C

)∼ tαP
(
t−1AR ∈ C

)
,

and the multivariate Breiman result Lemma C.3.1 in [5] yields

P(t−1AR ∈ ·)
P(‖R‖ > t)

v→ E
[
μR({x : Ax ∈ ·})].

Hence we have the identity

μR(·) = E
[
μR({x : Ax ∈ ·})].

Using induction on the recursion (3.7) and similar arguments, we find that

μR(·) = E
[
μR({x : �kx ∈ ·})], k ≥ 1.

This relation holds, in particular, if A is regularly varying with index α but the additional
moment condition E[‖A‖α log+ ‖A‖] < ∞ must be satisfied.

Regular variation of (Rt ) may also arise from regular variation of B under the alternative
conditions

(3.10) B ∈ RV
(
α,μB), E

[‖A‖α]< 1 and E
[‖A‖α+δ]< ∞ for some δ > 0.

Then R is regularly varying with index α and

P(t−1R ∈ ·)
P(‖B‖ > t)

v→
∫

μB
({y : zy ∈ ·})ν�(dz),

where ν�(·) =∑∞
k=0 P(�k ∈ ·) is a measure on Md×d ; see Theorem 4.4.24 in [5].
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For our purposes we will treat (A,B) as a random element of Md×d ×R
d equipped with

the norm ‖(a,b)‖ = ‖a‖+‖b‖, where ‖a‖ stands for the operator norm of the matrix a (with
respect to the Euclidean distance) and ‖b‖ is the Euclidean norm of the vector b. We assume
that the following set of conditions on (A,B) holds.

CONDITION (C).

(C1) A regular variation condition holds for some nonnull Radon measure μ(A,B) on
Md×d ×R

d :

(3.11)
P(t−1(A,B) ∈ ·)
P(‖(A,B)‖ > t)

v→ μ(A,B)(·), t → ∞.

(C2) X = ‖(A1,B1)‖ and Y = ‖(A2,B2)‖ satisfy (1.5).
(C3) E[‖A‖α] < 1 and μ(A,B)({(a,b) : ‖a‖ > 1}) > 0.

Some comments.

• Note that

1 = μ(A,B)({(a,b) : ∥∥(a,b)
∥∥> 1

})
≤ μ(A,B)({(a,b) : ‖a‖ > 1/2

})+ μ(A,B)({(a,b) : ‖b‖ > 1/2
})

.

In particular, at least one of the quantities on the right-hand side must be strictly posi-
tive. Hence condition (C1) implies that A or B must be regularly varying. Condition (C3)
ensures that A is regularly varying.

• To the best of our knowledge, except for some univariate cases treated in Damek and
Dyszewski [8] and Kevei [19], not much is known about regular variation of R under
regular variation of A and (C3). Then (3.10) is violated since E[‖A‖α+δ] = ∞ for any
δ > 0.

• In view of Lemma 1.2 condition (C2) implies

P(‖(A1,B1)‖ · ‖(A2,B2)‖ > t)

P(‖(A,B)‖ > t)
→ 2E

∥∥(A,B)
∥∥α

.

The following result is a multivariate counterpart of the results obtained in Damek and
Dyszewski [8].

THEOREM 3.4. Assume (C). Then R given in (3.9) satisfies

P(t−1R ∈ ·)
P(‖(A,B)‖ > t)

v→ ν(·) =
∞∑

n=0

E
[
μ(A,B)({(a,b) : �n(aR0 + b) ∈ ·})].

In particular, if the measure ν on R
d
0 is nonnull then R ∈ RV(α,μR) with

μR(·) = ν(·)/ν({r : ‖r‖ > 1
})

.

The remainder of this section is devoted to the proof of the theorem. A main step in the
proof is provided by the following lemma.

LEMMA 3.5. Assume that the R
d -valued random vector X ∈ RV(α,μX) is independent

of (A,B) which satisfies (C) and there is a positive constant d̃X such that

(3.12)
P(‖X‖ > t)

P(‖(A,B)‖ > t)
→ d̃X, t → ∞.
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Then, as t → ∞,

P(‖AX + B‖ > t)

P(‖(A,B)‖ > t)
→ E

[
μ(A,B)({(a,b) : ‖aX + b‖ > 1

})]
+ d̃XE

[
μX({x : ‖Ax‖ > 1

})]=: C0,

P(t−1(AX + B) ∈ ·)
P(‖AX + B‖ > t)

v→ C−1
0

(
E
[
μ(A,B)({(a,b) : aX + b ∈ ·})]

+ d̃XE
[
μX({x : Ax ∈ ·})]).

PROOF OF LEMMA 3.5. Write 1d = (1, . . . ,1)� ∈R
d , Idd and diag(b), b ∈R

d , in Md×d

for the identity matrix and the diagonal matrix whose consecutive diagonal entries are the
consecutive components of b, respectively. Put

X̂ =
(

X
1d

)
∈ R

2d and Â =
(

A diag(B)

0 Idd

)
∈ M2d×2d,

then X̂ and Â are both regularly varying. Indeed, for X̂ we have

P(t−1X̂ ∈ ·)
P(‖X̂‖ > t)

∼ P(t−1X̂ ∈ ·)
P(‖X‖ > t)

v→ μX̂(·) = μX
({

x ∈ R
d
0 :
(

x
0

)
∈ ·
})

.

For Â, choosing the operator norm ‖ · ‖, we have

P(‖Â‖ > t)

P(‖(A,B)‖ > t)
→ μ(A,B)({(a,b) : ‖a‖ ∨ ∥∥diag(b)

∥∥> 1
})= d̃Â

and thus

P(t−1Â ∈ ·)
P(‖Â‖ > t)

v→ μÂ(·) = 1

d̃Â
μ(A,B)

({
(a,b) :

(
a diag(b)

0 0

)
∈ ·
})

.

To prove the claim we intend to use the fact that

ÂX̂ =
(

AX + B
1d

)
in combination with Theorem 2.1. In view of the tail equivalence condition (3.12) we have

cÂ = lim
t→∞

P(‖Â‖ > t)

P(‖Â‖ · ‖X̂‖ > t)
= d̃Â

d̃ÂE[‖X̂‖α] + d̃XE[‖Â‖α] ,

cX̂ = lim
t→∞

P(‖X̂‖ > t)

P(‖Â‖ · ‖X̂‖ > t)
= d̃X

d̃ÂE[‖X̂‖α] + d̃XE[‖Â‖α] .

Therefore, Theorem 2.1(2) yields

P(t−1ÂX̂ ∈ ·)
P(‖Â‖ · ‖X̂‖ > t)

v→ cÂE
[
μÂ({̂a : âX̂ ∈ ·})]+ cX̂E

[
μX̂({̂x : Âx̂ ∈ ·})]

= cÂd̃−1
Â

E

[
μ(A,B)

({
(a,b) :

(
aX + b

0

)
∈ ·
})]

+ cX̂E

[
μX

({
x :
(

Ax
0

)
∈ ·
})]
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which implies

P(t−1(AX + B) ∈ ·)
P(‖Â‖ · ‖X̂‖ > t)

v→ cÂd̃−1
Â

E
[
μ(A,B)({(a,b) : aX + b ∈ ·})]+ cX̂E

[
μX({x : Ax ∈ ·})]

= E[μ(A,B)({(a,b) : aX + b ∈ ·})] + d̃XE[μX({x : Ax ∈ ·})]
d̃ÂE[‖X̂‖α] + d̃XE[‖Â‖α] .

Both claims now follow since

P(‖Â‖ · ‖X̂‖ > t)

P(‖(A,B)‖ > t)
= P(‖Â‖ · ‖X̂‖ > t)

P(‖Â‖ > t)
· P(‖Â‖ > t)

P(‖(A,B)‖ > t)

→ d̃Â

cÂ
= d̃ÂE

[‖X̂‖α]+ d̃XE
[‖Â‖α]. �

Consider the Markov chain (R0
n)n≥0 given by the recursion (3.7) with R0

0 = 0. Then

R0
n

d=
n−1∑
k=0

�kBk+1
d→ R.

By Lemma 3.5,

P(t−1R0
n ∈ ·)

P(‖(A,B)‖ > t)

v→ νn(·),

and the sequence (νn)n≥0 of measures on R
d
0 satisfies the recursive relation for n ≥ 0,

(3.13) νn+1(·) = E
[
μ(A,B)({(a,b) : aR0

n + b ∈ ·})]+E
[
νn

({x : Ax ∈ ·})],
and ν0 = o is the null measure. We have∥∥∥∥∥

∞∑
k=0

�kBk+1

∥∥∥∥∥≤ R =
∞∑

k=0

‖Bk+1‖
k∏

j=1

‖Aj‖,

where R solves the equation in law

R
d= ‖A‖R + ‖B‖, R independent of (A,B).

From the main result in Damek and Dyszewski [8] (see Lemma A.1 in the Appendix) we also
have under (C),

lim sup
t→∞

P(‖R‖ > t)

P(‖A‖ > t)
≤ lim sup

t→∞
P(R > t)

P(‖A‖ > t)
< ∞,

sup
n

E
[∥∥R0

n

∥∥α]≤ E
[
Rα]< ∞.

(3.14)

LEMMA 3.6. Assume (C). Then

νn(·) v→ ν(·) =
∞∑

k=0

E
[
μ(A,B)({(a,b) : �k(aR0 + b) ∈ ·})]︸ ︷︷ ︸

=ηk

,

where ν is a Radon measure on R
d
0 .
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PROOF OF LEMMA 3.6. For k ≤ n write �
↓
n,k = AnAn−1 · · ·Ak . We have by (3.13),

νn(·) =
n∑

k=1

E
[
μ(A,B)({(a,b) : �↓

n,k+1

(
aR0

k−1 + b
) ∈ ·})]︸ ︷︷ ︸

=ηn,k

.

We intend to show νn
v→ ν or, equivalently,

∫
f dνn → ∫

f dν for any f ∈ C+
c (Rd

0). There
are cf ,Mf > 0 such that

(3.15) supp(f ) ⊆ {
z ∈ R

d : c−1
f ≤ ‖z‖ ≤ cf

}
and sup

z∈Rd

f (z) ≤ Mf .

Our strategy is to use the following approximations:∫
f dνn

(1)≈
∫

f d

( ∑
n/2<k≤n

ηn,k

)
(2)≈
∫

f d

( ∑
0<k≤n/2

ηk

)
(3)≈
∫

f dν.

In what follows, we will make these approximations precise.
Approximations (1) and (3). For (1), we will show that

(3.16)
lim

n→∞

∫
f d

( ∑
k≤n/2

ηn,k

)
= lim

n→∞

[n/2]∑
k=1

E

[∫
f
(
�

↓
n,k+1

(
aR0

k−1 + b
))

μ(A,B)(d(a,b)
)]

= 0.

For c = c−1
f and k ≤ [n/2] we have

E
[
μ(A,B)({(a,b) : ∥∥�↓

n,k+1

(
aR0

k−1 + b
)∥∥> c

})]
≤ E

[∥∥�↓
n,k+1

∥∥α]
E
[
μ(A,B)({(a,b) : ∥∥aR0

k−1 + b
∥∥> c

})]
≤ (

E
[‖A‖α])n−k(

E
[
μ(A,B)({(a,b) : ∥∥aR0

k−1

∥∥> c/2
})]

+ μ(A,B)({(a,b) : ‖b‖ > c/2
}))

≤ (
E
[‖A‖α])n−k(

E
[∥∥R0

k−1

∥∥α]
μ(A,B)({(a,b) : ‖a‖ > c/2

})
+ μ(A,B)({(a,b) : ‖b‖ > c/2

}))
.

Now, by (3.14) we can take a constant const big enough such that

E
[∥∥R0

k−1

∥∥α]
μ(A,B)({(a,b) : ‖a‖ > c/2

})+ μ(A,B)({(a,b) : ‖b‖ > c/2
})≤ const

for all k to obtain

E
[
μ(A,B)({(a,b) : ∥∥�↓

n,k+1

(
aR0

k−1 + b
)∥∥> c

})]≤ const
(
E
[‖A‖α])n−k

.

Now (3.16) is immediate in view of condition E[‖A‖α] < 1 and since f ≤ Mf . The proof of

lim
n→∞

∫
f d

( ∑
k>n/2

ηk

)
= lim

n→∞
∞∑

k=[n/2]+1

E

[∫
f
(
�k(aR0 + b)

)
μ(A,B)(d(a,b)

)]= 0,

goes along similar lines. We have

E
[
μ(A,B)({(a,b) : ∥∥�k(aR0 + b)

∥∥> c
})]

≤ E
[‖�k‖α]

E
[
μ(A,B)({(a,b) : ‖aR0 + b‖ > c

})]
≤ (

E
[‖A‖α])k(

E
[
μ(A,B)({(a,b) : ‖aR0‖ > c/2

})]+ μ(A,B)({(a,b) : ‖b‖ > c/2
}))

≤ const · (E[‖A‖α])k.
The fact that ν is a Radon measure is proved by using the above estimates.
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Approximation (2). We have

(3.17)

∣∣∣∣∫ f d

( ∑
n/2<k≤n

ηn,k − ∑
0<k≤n/2

ηk

)∣∣∣∣
=
∣∣∣∣∫ f d

( ∑
n/2<k≤n

(ηn,k − ηn−k)

)∣∣∣∣
=
∣∣∣∣∣

n∑
k=[n/2]+1

(
E

[∫
f
(
�

↓
n,k+1

(
aR0

k−1 + b
))

μ(A,B)(d(a,b)
)]

−E

[∫
f
(
�n−k(aR0 + b)

)
μ(A,B)(d(a,b)

)])∣∣∣∣∣,
and we will show that the right-hand side converges to zero as n → ∞. By uniform continuity
of f ,

(3.18) for any ε > 0 there is δ > 0 such that ‖s − r‖ ≤ δ =⇒ ∣∣f (r) − f (s)
∣∣≤ ε.

Let (�′
i ) be an independent copy of (�i ). For [n/2] < k ≤ n and fixed a ∈ Md×d write

Ak,δ(a) =
{∥∥∥∥∥�′

n−ka
∞∑

j=k−1

�j Bj+1

∥∥∥∥∥> δ

}
.

Since �
↓
n,k+1

d= �n−k we have∣∣∣∣E[∫ f
(
�

↓
n,k+1

(
aR0

k−1 + b
))

μ(A,B)(d(a,b)
)]

−E

[∫
f
(
�n−k(aR0 + b)

)
μ(A,B)(d(a,b)

)]∣∣∣∣
≤
∫

E

[
(1Ak,δ(a) + 1Ac

k,δ(a))

×
∣∣∣∣∣f
(
�′

n−k

(
a

k−2∑
j=0

�j Bj+1 + b

))
− f

(
�′

n−k

(
a

∞∑
j=0

�j Bj+1 + b

))∣∣∣∣∣
]

× μ(A,B)(d(a,b)
)

= H
(1)
k + H

(2)
k .

We will first treat H
(1)
k . Using f ∈ [0,Mf ] for the first inequality and the homogeneity of

μ(A,B) for the equality, we have

H
(1)
k ≤ MfE

[
μ(A,B)

({
(a,b) : ∥∥�′

n−k

∥∥‖a‖
∞∑

j=k−1

‖�j Bj+1‖ > δ

})]

= MfE
[‖�n−k‖α] ·E[( ∞∑

j=k−1

‖�j Bj+1‖
)α]

δ−αμ(A,B)({(a,b) : ‖a‖ > 1
})

.

Note that E[‖�n−k‖α] ≤ (E[‖A‖α])n−k and

∞∑
j=k−1

‖�j Bj+1‖ ≤ ‖�k−1‖ ·
∞∑

j=k−1

‖�k,j Bj+1‖ ≤ ‖�k−1‖ ·
∞∑

j=k−1

‖Bj+1‖
j∏

i=k

‖Ai‖,
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where the series appearing on the right-hand side is distributed as R. The last two observa-
tions yield

E

[( ∞∑
j=k−1

‖�j Bj+1‖
)α]

≤ (
E
[‖A‖α])k−1 ·E[Rα].

This constitutes an upper bound on H
(1)
k of the form

H
(1)
k ≤ const

(
E
[‖A‖α])n−1

δ−α,

for a sufficiently large constant const. Turning our attention to H
(2)
k , we first note that∥∥∥∥∥�′

n−k

(
a

k−2∑
j=0

�j Bj+1 + b

)∥∥∥∥∥∨
∥∥∥∥∥�′

n−k

(
a

∞∑
j=0

�j Bj+1 + b

)∥∥∥∥∥≤ ∥∥�′
n−k

∥∥(‖a‖R + ‖b‖).
Recall (3.15) and put c = c−1

f . On the event {‖�′
n−k‖(‖a‖R + ‖b‖) < c},

f

(
�′

n−k

(
a

k−2∑
j=0

�j Bj+1 + b

))
= f

(
�′

n−k

(
a

∞∑
j=0

�j Bj+1 + b

))
= 0

which justifies

H
(2)
k =

∫
E
[| · · · |1(Ac

k,δ(a) ∩ {∥∥�′
n−k

∥∥‖a‖R > c
})]

μ(A,B)(d(a,b)
)
.

Now use (3.18) and the homogeneity of μ(A,B) to get

H
(2)
k ≤ ε

(
E
[‖A‖α])n−k

μ(A,B)({(a,b) : ‖a‖R + ‖b‖ > c
})≤ ε const

(
E
[‖A‖α])n−k

for a sufficiently large constant const. These computations yield

n∑
k=�n/2�+1

(
H

(1)
k + H

(2)
k

)≤ constn
(
E
[‖A‖α])n−1

δ−α + ε const.

This bound shows that the right-hand side of (3.17) converges to zero by first letting n → ∞
and then ε → 0. �

FINAL STEPS IN THE PROOF OF THEOREM 3.4. Choose f ∈ C+
c (Rd

0) and fix constants
cf ,Mf > 0 such that (3.15) holds. By uniform continuity of f , we can choose ε, δ > 0 such
that (3.18) holds. Write

An,t =
{∥∥∥∥∥

∞∑
j=n

�j Bj+1

∥∥∥∥∥> δt

}
.

We have∣∣E[f (t−1R
)− f

(
t−1R0

n

)]∣∣ ≤ E
[∣∣f (t−1R

)− f
(
t−1R0

n

)∣∣]
= E

[∣∣∣∣∣f (t−1R
)− f

(
t−1

n−1∑
j=0

�j Bj+1

)∣∣∣∣∣(1(An,t ) + 1
(
Ac

n,t

))]

= H̃1(t) + H̃2(t).
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Both terms are asymptotically negligible. Indeed, for the first one,

lim sup
t→∞

H̃1(t)

P(‖(A,B)‖ > t)
≤ Mf lim sup

t→∞
P(‖�′

n‖R > δt)

P(‖(A,B)‖ > t)

≤ const
(
E
[‖A‖α])nδ−α.

The right-hand side converges to zero as n → ∞, since E[‖A‖α] < 1. As regards H̃2(t) first
note that ∥∥∥∥∥

n−1∑
j=0

�j Bj+1

∥∥∥∥∥∨ ‖R‖ ≤ R

and so with c = c−1
f , where cf is given in (3.15), we have on the event {t−1R < c},

f

(
t−1

n−1∑
j=0

�j Bj+1

)
= f

(
t−1R

)= 0.

Using (3.18), we can write

H̃2(t)

P(‖(A,B)‖ > t)
= E[|f (t−1R) − f (t−1∑n−1

j=0 
j Bj+1)|1(Ac
n,t )1(R > ct)]

P(‖(A,B)‖ > t)

≤ ε
P(R > ct)

P(‖(A,B)‖ > t)
≤ const ε.

In view of Lemma 3.6, first letting t → ∞, then n → ∞ and ε → 0, we may conclude that

E[f (t−1R)]
P(‖(A,B)‖ > t)

→
∫

f (r)ν(dr).

Since f is arbitrary the theorem follows. �

4. Proof of Theorem 2.1. Throughout this section we consider an R
dX-valued X ∈

RV(αX,μX) random vector independent of an R
dY -valued Y and we will write for shorthand

αX = α, aX = a, αY = β, aY = b.

Recall that Z = ψ(X,Y) ∈ R
dZ and the definition of ξt from (2.1). Then (2.1) can be re-

formulated as

lim
t→∞

E[f (t−1Z)]
P(‖X‖a · ‖Y‖b > t)

= lim
t→∞

∫
f (z)ξt (dz) =

∫
f (z)ξ(dz), f ∈ C+

c

(
R

dZ
0
)
.

Since ψ is continuous

Mψ = sup
{∥∥ψ(x,y)

∥∥ : ‖x‖ = 1,‖y‖ = 1
}
< ∞.

It is also a-b-homogeneous and therefore∥∥ψ(x,y)
∥∥≤ Mψ‖x‖a‖y‖b.

Then we also have for any set Ar = {z : ‖z‖ > r}, r > 0, in view of regular variation of
‖X‖a‖Y‖b,

sup
t>0

ξt (Ar) ≤ P(Mψ‖X‖a‖Y‖b > rt)

P(‖X‖a‖Y‖b > t)
< ∞.
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It follows from Resnick [21], Proposition 3.16, that (ξt ) is vaguely relatively compact. Hence
(ξtk ) converges vaguely along sequences tk → ∞ as k → ∞, and it remains to show that
these limits coincide with ξ .

The proof of the theorem is given through several auxiliary results which we provide first.
The main steps of the proof are given at the end of this section.

Limits of E[f (t−1ψ(X,Y)) | Y]. By regular variation of X we have

(4.1) μX
t (·) = P(t−1X ∈ ·)

P(‖X‖ > t)

v→ μX(·), t → ∞.

Define

(4.2) gt (y) = E[f (t−1ψ(X,y))]
P(‖X‖a > t)

=
∫

f
(
ψ(x,y)

)
μX

t1/a (dx), y ∈ R
dY, t > 0.

In view of (4.1) we expect that the right-hand side converges as t → ∞ to

(4.3) g(y) =
∫

f
(
ψ(x,y)

)
μX(dx) < ∞, y ∈ R

dY .

However, for some choices of y ∈ R
dY , the function x �→ f (ψ(x,y)) may not have compact

support and therefore some additional argument is needed.

LEMMA 4.1. Relation (4.3) holds for any f ∈ C+
c (R

dZ
0 ).

PROOF OF LEMMA 4.1. Fix y ∈ R
dY . Since f is compactly supported there are constants

Mf ,cf > 0 such that

(4.4) supp(f ) ⊆ {
z ∈ R

dZ : c−1
f ≤ ‖z‖ ≤ cf

}
and sup

z∈RdZ

f (z) ≤ Mf .

For r ≥ 1 choose any continuous function ϕr : RdX → [0,1] such that

ϕr(x) =
{

1, ‖x‖ ≤ r,

0, ‖x‖ ≥ 2r.

We have

gt (y) =
∫

f
(
ψ(x,y)

)
ϕr(x)μX

t1/a (dx) +
∫

f
(
ψ(x,y)

)(
1 − ϕr(x)

)
μX

t1/a (dx) = I1 + I2.

The contribution of the second term is negligible since in view of (4.1),

0 ≤ lim
r→∞ lim sup

t→∞
I2

≤ Mf lim
r→∞ lim

t→∞μX
t1/a

({
x : ‖x‖ > r

})
= Mf lim

r→∞μX({x : ‖x‖ > r
})= 0.

Thus it suffices to prove limr→∞ limt→∞ I1 = g(y). The function x �→ f (ψ(x,y))ϕr(x) is
continuous and nonnegative for any choice of y ∈R

dY and r > 1, and its support is contained
in {x ∈ R

dX : (Mψ‖y‖bcf )−1/a ≤ ‖x‖ ≤ 2r} which is a compact subset of RdX
0 . Regular vari-

ation of X and monotone convergence allow one to take the successive limits

lim
r→∞ lim

t→∞ I1 = lim
r→∞

∫
f
(
ψ(x,y)

)
ϕr(x)μX(dx) = g(y)

=
∫
‖x‖≥(Mψ‖y‖bcf )−1/a

f
(
ψ(x,y)

)
μX(dx) ≤ Mf

(
Mψ‖y‖bcf

)α/a
< ∞. �

The next result presents a continuity bound for gt .
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LEMMA 4.2. Let f ∈ C+
c (R

dZ
0 ). For any ε > 0 one can choose δ > 0 and t0 > 0 such

that, for any s, r ∈ S
dY−1 with ‖s − r‖ ≤ δ and any t > t0,

(4.5)
∣∣gt (r) − gt (s)

∣∣≤ ε.

PROOF OF LEMMA 4.2. Fix ε1 > 0. Choose Mf ,cf > 0 from (4.4). By uniform conti-
nuity of f we can choose η ∈ (0, ε1) such that ‖z1 − z2‖ ≤ η implies ‖f (z1) − f (z2)‖ ≤ ε1.
Since ψ is uniformly continuous on S

dX−1 × S
dY−1 we can find δ > 0 such that for

r, s ∈ S
dY−1 with ‖r − s‖ < δ,∥∥ψ(x, r) − ψ(x, s)

∥∥< η2, ‖x‖ = 1.

Then by homogeneity of ψ ,∥∥ψ(x, r) − ψ(x, s)
∥∥< ‖x‖aη2, x ∈ R

dX,

and we can write for t > 0 and ‖r − s‖ < δ,∣∣gt (s) − gt (r)
∣∣ ≤ ∫ ∣∣f (ψ(x, s)

)− f
(
ψ(x, r)

)∣∣μX
t1/a (dx)

=
∫
‖x‖≥(Mψcf )−1/a

∣∣f (ψ(x, s)
)− f

(
ψ(x, r)

)∣∣μX
t1/a (dx)

≤
∫
‖x‖>ε

−1/a
1

∣∣f (ψ(x, s)
)− f

(
ψ(x, r)

)∣∣μX
t1/a (dx)

+
∫
‖x‖≤η−1/a,‖x‖≥(Mψcf )−1/a

∣∣f (ψ(x, s)
)− f

(
ψ(x, r)

)∣∣μX
t1/a (dx)

≤ 2Mf μX
t1/a

({
x : ‖x‖ > ε

−1/a
1

})+ ε1μ
X
t1/a

({
x : ‖x‖ ≥ (Mψcf )−1/a})

= J1 + J2.

Choose t0 = t0(ε) sufficiently large such that, for t > t0,

J1 ≤ 4Mf μX({x : ‖x‖ > ε
−1/a
1

})
= 4Mf εa

1μX({x : ‖x‖ > 1
})= 4Mf εa

1 ,

J2 ≤ 2ε1μ
X({x : ‖x‖ ≥ (Mψcf )−1/a})= 2ε1Mψcf .

Then, for given ε > 0 and ε1 sufficiently small,∣∣gt (s) − gt (r)
∣∣≤ 4Mf εa

1 + 2ε1Mψcf ≤ ε. �

Note that by continuity of f and ψ , g is also continuous on R
dY , hence also uniformly

continuous on the unit sphere S
dY−1. We will use this comment in the proof of the next

lemma.

LEMMA 4.3. Let f ∈ C+
c (R

dZ
0 ). Then gt → g as t → ∞ uniformly on S

dY−1.

PROOF OF LEMMA 4.3. Fix ε > 0 and choose δ > 0, t0 > 0 as in the formulation of
Lemma 4.2 and such that

‖s − r‖ ≤ δ ⇒ ∣∣g(r) − g(s)
∣∣≤ ε.

There exist N = N(δ) and a collection of points {rk}Nk=1 ⊂ S
dY−1 such that SdY−1 ⊆⋃N

k=1{y :
‖rk − y‖ ≤ δ}. Take t1 > 0 so large that

max
1≤k≤N

∣∣gt (rk) − g(rk)
∣∣≤ ε, t > t1.
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Then for any s ∈ S
dY−1 we have ‖s − rk‖ ≤ δ for some k, and for t > t0 ∨ t1 we have∣∣gt (s) − g(s)

∣∣≤ ∣∣gt (s) − gt (rk)
∣∣+ ∣∣gt (rk) − g(rk)

∣∣+ ∣∣g(rk) − g(s)
∣∣≤ 3ε.

This finishes the proof of the lemma. �

Before we proceed with the final steps in the proof of Theorem 2.1 we observe that homo-
geneity of μX and ψ implies for any r > 0 and y ∈ R

dY ,

(4.6) g(ry) = r
αb
a g(y).

We will first prove Theorem 2.1 in the case when only one of the vectors is assumed to be
regularly varying.

PROOF OF THEOREM 2.1 UNDER (H). Take an arbitrary f ∈ C+
c (R

dZ
0 ) and fix cf ,Mf >

0 such that (4.4) holds. Note that

f
(
t−1ψ(X,Y)

)= f
(
t−1ψ(X,Y)

)
1{Mψcf ‖X‖a‖Y‖b>t}.

Take ϕ : RdX → [0,1] such that ϕ(x) = 1 if ‖x‖a > 1 and ϕ(x) = 0 if ‖x‖a < 1/2. For ε > 0
write∫

f (z)ξt (dz) = E[f (t−1ψ(X,Y))(1 − ϕ((tε)−1/aX))]
P(‖X‖a · ‖Y‖b > t)

+ E[f (t−1ψ(X,Y))ϕ((tε)−1/aX)]
P(‖X‖a · ‖Y‖b > t)

= K1 + K2.

Recall (H3):

lim
t→∞

P(‖X‖a > t)

P(‖X‖a · ‖Y‖b > t)
= cX = 1

E‖Y‖αb/a

which, by Lemma 1.2(3), is equivalent to

lim
ε→∞ lim sup

t→∞
P(‖X‖a‖Y‖b > t,‖X‖a ≤ εt)

P(‖X‖a · ‖Y‖b > t)
= 0.

Then

lim
ε→0

lim sup
t→∞

K1 ≤ lim
ε→0

lim sup
t→∞

Mf

P(Mψcf ‖X‖a‖Y‖b > t,‖X‖a ≤ εt)

P(‖X‖a · ‖Y‖b > t)
= 0.

As regards K2, we observe that

K2 = cX
(
1 + o(1)

) ∫ E[f (t−1ψ(X,y))ϕ((tε)−1/aX)]
P(‖X‖a > t)

P(Y ∈ dy)

= cX
(
1 + o(1)

) ∫ ∫
f
(
ψ(x,y)

)
)ϕ
(
ε−1/ax

)
μX

t1/a (dx)P(Y ∈ dy).

The expression appearing under the first integral is bounded by Mf
P(‖X‖a>εt/2)
P(‖X‖a>t)

. Hence we
can let t → ∞, pass with it under the integral and use regular variation of X to obtain

lim
t→∞K2 = cX

∫ ∫
f
(
ψ(x,y)

)
ϕ
(
ε−1/ax

)
μX(dx)P(Y ∈ dy)

= cXE

[∫
f
(
ψ(x,Y)

)
ϕ
(
ε−1/ax

)
μX(dx)

]
.
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Finally, letting ε → 0, monotone convergence yields

lim
ε→0

lim
t→∞K2 = cXE

[∫
f
(
ψ(x,Y)

)
μX(dx)

]
,

which concludes the proof. �

In what follows, we assume that X ∈ RV(αX,μX), Y ∈ RV(αY,μY) and define functions
ht : RdX → [0,+∞) by

ht (x) =
∫

f
(
ψ(x,y)

)
μY

t1/b(dy) = E[f (t−1ψ(x,Y))]
P(‖Y‖b > t)

, x ∈R
dX, t > 0.

By a symmetry argument, interchanging the roles of Y and X, we conclude that ht → h as
t → ∞ point-wise in R

dX and uniformly on S
dX−1 where

(4.7) h(x) =
∫

f
(
ψ(x,y)

)
μY(dy), x ∈ R

dX .

The limiting function is also homogeneous, that is, for r > 0 and x ∈ R
dX ,

(4.8) h(rx) = r
βa
b h(x).

We will now treat the cases (T) and (R) of Theorem 2.1. Using the conditions (T3) and
(R2) it is possible to give two separate, but shorter proofs. However, since both cases will use
the same decomposition of {‖X‖a · ‖Y‖b > t}, we prefer the simultaneous approach.

PROPOSITION 4.4. Assume that the RdX -valued X ∈ RV(α,μX) and the RdY-valued Y ∈
RV(β,μY) random vectors are independent and the following balance condition is satisfied
for positive a, b:

(4.9) lim
t→∞

P(‖X‖a > t)

P(‖X‖a · ‖Y‖b > t)
= cX, lim

t→∞
P(‖Y‖b > t)

P(‖X‖a · ‖Y‖b > t)
= cY.

Then the following relation holds for any f ∈ C+
c (R

dZ
0 ):

lim
t→∞

E[f (t−1ψ(X,Y))]
P(‖X‖a · ‖Y‖a > t)

= (
1 − cXE

[‖Y‖αb/a]− cYE[‖X‖aβ/b)
E
[
g(	Y)

]
+ cXE

[
g(Y)

]+ cYE
[
h(X)

]
,

where g : RdY →R and h : RdX →R are given in (4.3) and (4.7), respectively.

PROOF. Choose Mf > 0 from (4.4) and consider the following decomposition, for η ∈
(0,1):

E
[
f
(
t−1ψ(X,Y)

)]= E
[
f
(
t−1ψ(X,Y)

)
1
(‖Y‖b ≤ ηt

)]
+E

[
f
(
t−1ψ(X,Y)

)
1
(‖X‖a ≤ ηt,‖Y‖b > ηt

)]
+E

[
f
(
t−1ψ(X,Y)

)
1
(‖X‖a > ηt,‖Y‖b > ηt

)]
= J1(t) + J2(t) + J3(t).

Since f is bounded and X, Y are independent we have J3(t) = o(P(‖X‖a · ‖Y‖b > t)). Thus
it remains to investigate J1 and J2. We begin with the analysis of the first term, since it
requires more work.
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Analysis of J1. We claim that

lim
η→0

lim inf
t→∞

J1(t)

P(‖X‖a · ‖Y‖b > t)

= lim
η→0

lim sup
t→∞

J1(t)

P(‖X‖a · ‖Y‖b > t)

= (
1 − cXE‖Y‖αb/a − cYE‖X‖βa/b)

E
[
g(	Y)

]+ cXE
[
g(Y)

]
.

Below we will present a detailed argument for

(4.10)
lim
η→0

lim sup
t→∞

J1(t)

P(‖X‖a · ‖Y‖b > t)

≤ (
1 − cXE‖Y‖αb/a − cYE‖X‖βa/b)

E
[
g(	Y)

]+ cXE
[
g(Y)

]
.

The lower bound can be established in a similar fashion. Write for y �= 0, ỹ = y/‖y‖, and

J1(t) =
∫
‖y‖b≤ηt

E
[
f
(
t−1ψ(X,y)

)]
P(Y ∈ dy)

=
∫
‖y‖b≤ηt

E

[
f

(‖y‖b

t
ψ(X, ỹ)

)]
· P(‖X‖a > t/‖y‖b)

P(‖X‖a > t/‖y‖b)
P(Y ∈ dy)

=
∫
‖y‖b≤ηt

g t

‖y‖b
(̃y)P

(‖X‖a · ‖y‖b > t
)
P(Y ∈ dy),

where gt is given via (4.2). By virtue of Lemma 4.3, for any ε > 0 there is a sufficiently small
η > 0 such that ∣∣∣∣J1(t) −

∫
‖y‖b≤ηt

g(̃y)P
(‖X‖a · ‖y‖b > t

)
P(Y ∈ dy)

∣∣∣∣
≤
∫
‖y‖b≤ηt

∣∣g t

‖y‖b
(̃y) − g(̃y)

∣∣P(‖X‖a · ‖y‖b > t
)
P(Y ∈ dy)

≤ εP
(‖X‖a · ‖Y‖b > t

)
.

Thus, since ε is arbitrary, we only need to investigate the expectation

I (t) = E
[
g(Ỹ)1

(‖X‖a · ‖Y‖b > t,‖Y‖b ≤ ηt
)]

.

If E[g(Ỹ)] = 0 then by homogeneity of g, g(Y) = 0 a.s. which implies E[g(Y)] = 0 and
E[g(	Y)] = 0, so the claim follows trivially. Now assume E[g(Ỹ)] > 0. Let Y ′ be a random
variable independent of X and Y with distribution given by

P
(
Y ′ ∈ ·)= E

[
g(Ỹ)

E[g(Ỹ)]1
(‖Y‖b ∈ ·)].

Then, by regular variation of Y, as t → ∞,

P(Y ′ > t)

P(‖Y‖b > t)
= E

[
g(Ỹ)

E[g(Ỹ)]
∣∣∣‖Y‖b > t

]
→ E[g(	Y)]

E[g(Ỹ)] .

Therefore, for any δ > 0 there exists T = T (δ) such that

(4.11) (1 − δ)
E[g(	Y)]
E[g(Ỹ)] ≤ P(Y ′ > t)

P(‖Y‖b > t)
≤ (1 + δ)

E[g(	Y)]
E[g(Ỹ)] , t ≥ T .
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Without loss of generality we may assume that T ↑ ∞ when δ ↓ 0. Consider the following
decomposition:

I (t)

E[g(Ỹ)] = P
(‖X‖aY ′ > t,Y ′ ≤ ηt

)
= P

(‖X‖aY ′ > t,Y ′ > T
)+ P

(‖X‖aY ′ > t,Y ′ ≤ T
)− P

(‖X‖aY ′ > t,Y ′ > ηt
)

= I1(t) + I2(t) − I3(t).

By Breiman’s lemma 1.1 and definition of cX we have

lim
T →∞ lim

t→∞
E[g(Ỹ)]I2(t)

P(‖X‖a‖Y‖b > t)
= lim

T →∞ lim
t→∞

E[g(Ỹ)]I2(t)

P(‖X‖a > t)

P(‖X‖a > t)

P(‖X‖a‖Y‖b > t)

= lim
T →∞ cXE

[
g(Ỹ)

]
E
[(

Y ′)α/a1
(
Y ′ ≤ T

)]
= cXE

[
g(Ỹ)‖Y‖αb/a]

= cXE
[
g(Y)

]
.

For the first term we have, by (4.11),

E
[
g(Ỹ)

]
I1(t) = E

[
g(Ỹ)

] ∫
P
(
Y ′ > T ∨ (

t/‖x‖a))
P(X ∈ dx)

≤ (1 + δ)E
[
g(	Y)

] ∫
P
(‖Y‖b > T ∨ (

t/‖x‖a))
P(X ∈ dx)

= (1 + δ)E
[
g(	Y)

]
P
(‖X‖a‖Y‖b > t,‖Y‖b > T

)
= (1 + δ)E

[
g(	Y)

][
P
(‖X‖a‖Y‖b > t

)
− P

(‖X‖a‖Y‖b > t,‖Y‖b ≤ T
)]

∼ (1 + δ)E
[
g(	Y)

]
P
(‖X‖a‖Y‖b > t

)
×
[
1 −E

[‖Y‖αb/a1
(‖Y‖a ≤ T

)] P(‖X‖a > t)

P(‖X‖a‖Y‖b > t)

]
.

In the last step we used Breiman’s result as t → ∞. Now, recalling the definition of cY, we
conclude that

lim
T →∞ lim sup

t→∞
E[g(Ỹ)]I1(t)

P(‖X‖a‖Y‖b > t)

≤ (1 + δ)E
[
g(	Y)

][
1 − cXE

[‖Y‖αb/a]],
and the corresponding lower bound can be derived in an analogous way for any small δ > 0.

Finally, we deal with the third term. First we observe that, by regular variation,

(4.12)

lim
η↓0

lim
t→∞

P(‖X‖a > η−1,‖Y‖b > ηt)

P(‖X‖a · ‖Y‖b > t)

= lim
η↓0

P
(‖X‖a > η−1)η−β/b lim

t→∞
P(‖Y‖b > t)

P(‖X‖a · ‖Y‖b > t)

= cY lim
η↓0

P
(‖X‖a > η−1)η−β/b = 0.

Indeed, if E[‖X‖βa/b] = ∞ then cY = 0 and therefore the right-hand side is zero; see
Lemma 1.2(2). On the other hand, if E[‖X‖βa/b] < ∞ then

P
(‖X‖a > η−1)= P

(‖X‖aβ/b > η−β/b)= o
(
ηβ/b), η ↓ 0,

and therefore the right-hand side in (4.12) is zero.
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With (4.11) and Breiman’s result at hand, we have as t → ∞,

E
[
g(Ỹ)

]
I3(t)

≤ (1 + δ)E
[
g(	Y)

]
P
(‖X‖a‖Y‖b > t,‖Y‖b > ηt

)
= (1 + δ)E

[
g(	Y)

]
× [

P
(‖X‖a > η−1,‖Y‖b > ηt

)+ P
(‖X‖a ≤ η−1,‖X‖a · ‖Y‖b > t

)]
∼ (1 + δ)E

[
g(	Y)

][
P
(‖X‖a > η−1,‖Y‖b > ηt

)
+E

[‖X‖aβ/b1
(‖X‖a ≤ η−1)]]

P
(‖Y‖b > t

)
, t → ∞.

Now an application of (4.12) and the definition of cY yield

lim
η↓0

lim sup
t→∞

E[g(Ỹ )]I3(t)

P(‖X‖a · ‖Y‖b > t)
≤ cY(1 + δ)E

[
g(	Y)

]
E
[‖X‖aβ/b].

This establishes an upper bound; the corresponding lower bound is completely analogous.
This proves (4.10).

Analysis of J2. This term can be handled in a significantly simpler way. Similarly to J1 we
have

J2(t) =
∫
‖x‖a≤ηt

h t
‖x‖a

(̃x)P

(
‖Y‖b ·

(
1

η
∧ ‖x‖a

)
> t

)
P(X ∈ dx),

where x̃ = x/‖x‖ for x �= 0. Appealing to the dominated convergence theorem, we obtain

lim
t→∞

J2(t)

P(‖X‖a‖Y‖b > t)
=
∫
R

dX
h(̃x)cY

(
1

η
∧ ‖x‖a

)β/b

P(X ∈ dx).

Now monotone convergence yields

lim
η→0

lim
t→∞

J2(t)

P(‖X‖a‖Y‖b > t)
= cY

∫
R

dX
h(̃x)‖x‖aβ/b

P(X ∈ dx) = cYEh(X),

where the last equality employs the homogeneity of h stated in (4.8). �

APPENDIX

A.1. Proof of Lemma 1.2. (1) was proved in Embrechts and Goldie ([12], page 245).
We start with (2). Observe that for any M > 0, by the uniform convergence theorem for
regularly varying functions,

P(XY > x)

P(X > x)
≥
∫ M

0

P(X > x/y)

P(X > x)
P(Y ∈ dy) →

∫ M

0
yα

P(Y ∈ dy), x → ∞.

If E[Yα] = ∞ we can make the right-hand side arbitrarily large by letting M → ∞.
Since (3) and (4) can be proven with the same arguments we only present a proof for the

latter. We follow the lines of the proof of Proposition 3.1 in Davis and Resnick [10] who
consider the case of i.i.d. X, Y . Choose any M > 1. Then

P(XY > t)

= P(XY > t,X ≤ M) + P(XY > t,M < X ≤ t/M) + P(XY > t,X > t/M)

= I1(t) + I2(t) + I3(t).
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In view of Breiman’s lemma 1.1 we have, as t → ∞,

I3(t)

P(X > t)
= P(X(Y ∧ M) > t)

P(X > t)
→ E

[
(Y ∧ M)α

]
,

I1(t)

P(X > t)
= P(YX1(X ≤ M) > t)

P(Y > t)

P(Y > t)

P(X > t)
→ c0E

[
Xα1{X≤M}

]
,

where c0 = limt→∞P(Y > t)/P(X > t) is assumed finite. By an appeal to the monotone
convergence theorem

lim
M→∞ lim

t→∞
I3(t)

P(X > t)
= E

[
Yα],

lim
M→∞ lim

t→∞
I1(t)

P(X > t)
= c0E

[
Xα],

and thus

lim
t→∞

P(XY > t)

P(x > t)
= E

[
Yα]+ c0E

[
Xα]

if and only if

lim
M→∞ lim sup

t→∞
I2(t)

P(X > t)
= 0.

We continue with (5). Denote

c = lim inf
t→∞

P(X1X2 > t)

P(X > t)
, c = lim sup

t→∞
P(X1X2 > t)

P(X > t)
,

where X1 and X2 are independent copies of X. Fix ε > 0 and take M > 1 such that

(A.1) c0(1 − ε) ≤ P(Y > t)

P(X > t)
≤ c0(1 + ε) for t > M,

where c0 = limt→∞P(Y > t)/P(X > t) is assumed finite and positive. Then

P(XY > t) = P(XY > t,Y ≤ M) + P(XY > t,M < Y) = Ĩ1(t) + Ĩ2(t).

In view of Breiman’s lemma 1.1 we have, as t → ∞,

Ĩ1(t)

P(X > t)
= P(YX1(Y ≤ M) > t)

P(X > t)
→ E

[
Yα1{Y≤M}

]
.

The second term can be bounded from above in the following fashion, using (A.1):

Ĩ2(t)

P(X > t)
=
∫∞

0 P(Y > M ∨ tx−1)P(X ∈ dx)

P(X > t)

≤ c0(1 + ε)

∫∞
0 P(X > M ∨ tx−1)P(X ∈ dx)

P(X > t)

= c0(1 + ε)
P(X1X2 > t,X1 > M)

P(X > t)

= c0(1 + ε)

(
P(X1X2 > t)

P(X > t)
− P(X1X2 > t,X1 ≤ M)

P(X > t)

)
.

Yet another appeal to Breiman’s lemma 1.1 yields

P(X1X2 > t,X1 ≤ M)

P(X > t)
→ E

[
Xα1{X≤M}

]
.
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If we put everything together we get the upper bound

c = lim
t→∞

P(XY > t)

P(X > t)
≤ lim

ε→0
lim

M→∞
(
E
[
Yα1{Y≤M}

]+ c0(1 + ε)
(
c −E

[
Xα1{X≤M}

]))
= E

[
Yα]+ c0

(
c −E

[
Xα]).

If one goes back to the analysis of Ĩ2(t) and uses the lower bound in (A.1), similar arguments
as above yield the bound

c = lim
t→∞

P(XY > t)

P(X > t)
≥ E

[
Yα]+ c0

(
c −E

[
Xα]).

Since c0 > 0 then the above in particular implies that c < ∞ and

E
[
Yα]+ c0

(
c −E

[
Xα])= c = E

[
Yα]+ c0

(
c −E

[
Xα]).

This implies that

c = c = c −EYα

c0
+E

[
Xα]

which means in particular that

lim
t→∞

P(X1X2 > t)

P(X > t)
= c −EYα

c0
+E

[
Xα]< ∞.

An appeal to [15], Theorem 3, yields that the only possible value of the limit above is 2EXα

which in turn gives

c = c0EXα +EYα

as claimed.

A.2. A result from [8]. We state some part of Theorem 3.1 from [8] applied to the
Lipschitz function �(t) = ‖A‖t + ‖B‖.

LEMMA A.1. Assume that ‖A‖ is regularly varying with index α > 0, E[‖A‖α] < 1,
P(‖B‖ > t) = O(P(‖A‖ > t)), and

P(‖A1‖ · ‖A2‖ > t)

P(‖A‖ > t)
→ 2E

[‖A‖α], t → ∞.

Then R = ∑∞
k=0 ‖Bk+1‖∏k

j=1 ‖Aj‖ is finite and satisfies P(R > t) = O(P(‖A‖ > t)) as
t → ∞. In particular, E[Rα] < ∞.
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Paper No. 51, 12. MR3533283 https://doi.org/10.1214/16-ECP9

[20] RESNICK, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in
Operations Research and Financial Engineering. Springer, New York. MR2271424

[21] RESNICK, S. I. (2008). Extreme Values, Regular Variation and Point Processes. Springer Series in Opera-
tions Research and Financial Engineering. Springer, New York. MR2364939

http://www.ams.org/mathscinet-getitem?mr=1894253
https://doi.org/10.1016/S0304-4149(01)00156-9
http://www.ams.org/mathscinet-getitem?mr=0898871
https://doi.org/10.1017/CBO9780511721434
http://www.ams.org/mathscinet-getitem?mr=3497380
https://doi.org/10.1007/978-3-319-29679-1
http://www.ams.org/mathscinet-getitem?mr=0348393
https://doi.org/10.1007/BF02790433
http://www.ams.org/mathscinet-getitem?mr=0847385
https://doi.org/10.1007/BF00344720
http://www.ams.org/mathscinet-getitem?mr=3860678
https://doi.org/10.1080/10236198.2018.1505881
http://www.ams.org/mathscinet-getitem?mr=3317361
https://doi.org/10.1239/jap/1417528478
http://www.ams.org/mathscinet-getitem?mr=0808161
https://doi.org/10.1016/0304-4149(85)90214-5
http://www.ams.org/mathscinet-getitem?mr=2382943
https://doi.org/10.1239/jap/1197908822
http://www.ams.org/mathscinet-getitem?mr=0566289
http://www.ams.org/mathscinet-getitem?mr=1458613
https://doi.org/10.1007/978-3-642-33483-2
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2303954
https://doi.org/10.1214/009117906000000647
http://www.ams.org/mathscinet-getitem?mr=2498677
https://doi.org/10.1214/08-AAP540
http://www.ams.org/mathscinet-getitem?mr=2281913
https://doi.org/10.2298/PIM0694171J
http://www.ams.org/mathscinet-getitem?mr=0440724
https://doi.org/10.1007/BF02392040
http://www.ams.org/mathscinet-getitem?mr=3533283
https://doi.org/10.1214/16-ECP9
http://www.ams.org/mathscinet-getitem?mr=2271424
http://www.ams.org/mathscinet-getitem?mr=2364939
https://doi.org/10.1017/CBO9780511721434
https://doi.org/10.1016/0304-4149(85)90214-5

	Introduction
	Closure of regular variation under multiplication-The univariate case
	Closure of regular variation under multiplication-The multivariate case
	Organization of the article

	Main result
	Applications
	Products of regularly varying random matrices
	The case of nonequivalent tails
	The case of tail-equivalent tails

	Stochastic recurrence equations
	Some comments


	Proof of Theorem 2.1
	Appendix
	Proof of Lemma 1.2
	A result from damek:dyszewski:2018

	Acknowledgments
	References

