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MODELLING INFORMATION FLOWS BY MEYER-σ -FIELDS IN
THE SINGULAR STOCHASTIC CONTROL PROBLEM OF
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In stochastic control problems delicate issues arise when the controlled
system can jump due to both exogenous shocks and endogenous controls.
Here one has to specify what the controller knows when about the exogenous
shocks and how and when she can act on this information. We propose to use
Meyer-σ -fields as a flexible tool to model information flow in such situations.
The possibilities of this approach are illustrated first in a very simple linear
stochastic control problem and then in a fairly general formulation for the
singular stochastic control problem of irreversible investment with inventory
risk. For the latter, we illustrate in a first case study how different signals on
exogenous jumps lead to different optimal controls, interpolating between the
predictable and the optional case in a systematic manner.

1. Introduction. In stochastic control problems one seeks to influence a given system
in an optimal way while taking into account the dynamically revealed information on this
system. It is clear that this information flow is crucial for the determination of which controls
can be used at all and for what an optimal control looks like. Of particular importance are
moments in time where significant new information becomes available, for instance, on an
impending exogenous jump. If the controller is restricted to predictable controls, she can only
react after the jump has hit the system. In the case of optional controls she can react to jumps
as they happen. Apart from these classical choices, it is perfectly conceivable though that the
controller at times receives a signal on the upcoming jump that she can use for a proactive
intervention and then still react after the jump is fully revealed.

We show how one can use Meyer-σ -fields � (introduced in Lenglart (1980)) embedded
between the optional and predictable σ -field to model information in such situations. As a
toy example, we consider a simple linear control problem, which we also use to introduce
the basic tools from the théorie générale des processus which pertain to Meyer-σ -fields (e.g.,
Bismut and Skalli (1977), Dellacherie and Meyer (1978), Lenglart (1980), El Karoui (1981),
Dellacherie and Meyer (1982)). For a more serious control problem, we discuss in depth
an irreversible investment problem with inventory risk. Irreversible investment problems
have been considered in great detail in the literature before (e.g., Arrow (1966), Dixit and
Pindyck (1994), Bertola (1998), Merhi and Zervos (2007), Riedel and Su (2011), Federico
and Pham (2014), Ferrari (2015), Al Motairi and Zervos (2017), De Angelis, Federico and
Ferrari (2017)). This kind of problem can be formulated as the task to

(1) Maximize Ṽ (C̃) := E

[∫
[0,∞)

Pt dC̃t −
∫
[0,∞)

ρt (C̃t )dRt

]
,

over �-measurable, increasing, right-continuous controls C̃ starting at a given level c0. Here,
the integral over ρ yields a convex risk assessment for a given control with the integrator R
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serving as a risk clock; the process P describes the rewards accrued from an increase in the
control C̃. It is conceivable and, in fact perfectly natural for the examples in this paper, that the
reward process is not fully observable to the controller when she makes her decisions. Instead,
she will work with the reward process’s �-projection �P in (1), which is observable to her.
To ensure existence of optimal controls we impose suitable mathematical semicontinuity
assumptions on the reward process, but we also need to relax the set of controls to include
also increasing controls C which are not right-continuous. We introduce a suitable integral∫
[0,∞)

�P ∗dC for such relaxed controls with possible double jumps (see Definition 3.5) and
show that the ensuing relaxed optimization problem

(2) Maximize V (C) := E

[∫
[0,∞)

�P t
∗dCt −

∫
[0,∞)

ρt (Ct )dRt

]
over suitable increasing �-measurable C has the same value as the original problem (1). An
optimal control for (2) is constructed in terms of the solution of a closely related stochas-
tic representation problem, following an approach first studied in Bank and Riedel (2001).
The general setting here requires a considerably refined argument though, which is based on
a similarly refined version of the representation theorem from Bank and El Karoui (2004)
which we study in the companion paper Bank and Besslich (2018a).

To illustrate this general result by a nontrivial explicit example, we focus on the special
case ρt (c) := 1

2c2 and let P be a discounted compound Poisson process with initial value

p̃, that is, Pt := e−rt P̃t := e−rt (p̃ + ∑Nt

i=1 Yi) with i.i.d. Yi ∈ L2(P), i ∈ N, independent of
the Poisson process N , that also drives our risk clock Rt := ∫

(0,t] e−rs dNs with discount rate
r > 0. Apart from the classical choices of predictable and optional controls, we consider
�η-measurable controls where the Meyer-σ -field �η is defined by

�η := Pσ(Z càdlàg and F̃η-adapted)

for a fixed sensor sensitivity η ∈ [0,∞], where F̃η is generated by P̃ η := P̃− +�P̃1{|�P̃ |≥η}
and P symbolizes that we consider the P-completion of the σ -field at hand (see Definition
and Theorem 2.2 below). A controller with information flow �η may receive a warning
about an impending jump, namely when the jump’s absolute value is at least η. The case
p(η) := P(|Y1| ≤ η) = 1 corresponds to the predictable-σ -field while p(η) = 0 leads to the
optional-σ -field. For any sensitivity η, we derive a closed-form solution to the stochastic rep-
resentation problem associated with this example and thus obtain an explicit optimal control
for the optimization problem. In general, this optimal control turns out to be neither left-
continuous nor right-continuous; instead, it is merely làdlàg. Hence, optimal controls may
exhibit “double jumps” which correspond to the controller’s ability to proactively intervene
to reduce the risk before the risk clock “rings” and to adjust her position afterwards in order
to benefit from higher rewards available then. As one intuitively would expect, we indeed find
a variety of optimal controls as we vary the sensitivity η of the considered jump sensor, al-
lowing us to assess, for instance, how much in extra value for the controller can be generated
by a further improvement in sensor sensitivity.

The article is structured in the following way. In Section 2 we consider a toy example
illustrating the idea of using Meyer-σ -fields in optimal control problems and we introduce
along the way the basic notions from the theory of Meyer-σ -fields. In Section 3 we formulate
a general irreversible investment problem with inventory risk and we show how to reduce it
to a suitable representation problem. In Section 4 we give an explicit example for the solution
of this problem, where the reward process is given by a compound Poisson process. In the
Appendix we collect some results concerning the special ∗dC-integral we have introduced
for làdlàg controls C.
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2. A general optimal control framework with Meyer-σ -fields. In this section we mo-
tivate and develop a continuous-time framework for the flow of information in optimal control
problems by using Meyer-σ -fields. This framework is first illustrated using a toy example and
will be fully exploited in Section 3, where we formulate a singular stochastic control problem,
namely an irreversible investment problem with inventory risk.

Uncertainty is described by a filtered probability space (�,F,F := (Ft )t≥0,P) with F :=∨
t Ft and (Ft )t≥0 satisfying the usual conditions of right-continuity and completeness. The

filtration F can be thought of as the information flow from observing the exogenous noise
driving the controlled system. The immediacy with which this information can be acted upon
by the controller is clearly crucial for the optimization problem to be studied, particularly in
a setting with jumps.

To illustrate this, let us give a toy example and consider a compound Poisson process

P̃t = p̃ +
Nt∑

k=1

Yk, t ≥ 0,

where p̃ ∈ R and where the i.i.d. uniformly distributed jumps Yk ∼ U [−1,1], k = 1,2, . . .

are independent from the Poisson process N with intensity λ > 0. Let F be the augmented
filtration generated by P̃ . Let us study how to maximize

E

[∫
[0,1]

Cs dP̃s

]
over controls C with |Cs | ≤ 1, 0 ≤ s ≤ 1. When restricted to F -predictable controls C,∫
(0,·] Cs dP̃s is obviously an F-martingale and so

E

[∫
[0,1]

Cs dP̃s

]
= 0

for any such control. By contrast, when controls are allowed to be optional, we can estimate

E

[∫
[0,1]

Cs dP̃s

]
≤ E

[ ∑
0≤s≤1

|Cs ||�P̃s |
]

≤ E

[ ∑
0≤s≤1

|�P̃s |
]

= E[N1]E[|Y1|]= λ

2

with equality holding true in all the above estimates for the (then optimal) choice

ĈO
s := sgn(�P̃s), s ∈ [0,1],

with sgn(0) = 0. Of course, it is conceivable that, rather than being able to directly account
for all jumps as in the optional case, the controller can, for lack of a perfect jump sensor, only
react immediately to large enough jumps, say those of absolute value at least η > 0. This
would suggest to consider

(3) Ĉη
s := sgn(�P̃s)1{|�P̃s |≥η}, s ∈ [0,1],

as the optimal choice—but among which controls exactly?
This question can be answered in a precise way by considering Meyer-σ -fields � (see Def-

inition 2.1 below) satisfying P(F) ⊂ � ⊂ O(F), where P(F), O(F) denote, respectively,
the predictable and the optional σ -field associated with F . The theory of Meyer-σ -fields was
initiated in Lenglart (1980). We review and extend some of this material in the companion
paper Bank and Besslich (2018b). Let us recall here the basic concepts and results.

DEFINITION 2.1 (Meyer-σ -field, Lenglart (1980), Definition 2, page 502). A σ -field �

on � × [0,∞) is called a Meyer-σ -field, if the following conditions hold:
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(i) It is generated by some right-continuous, left-limited (RCLL or càdlàg for short)
processes.

(ii) It contains {∅,�} × B([0,∞)), where B([0,∞)) denotes the Borel-σ -field on
[0,∞).

(iii) It is stable with respect to stopping at deterministic time points, that is, for a �-
measurable process Z and for any s ∈ [0,∞), also the stopped process (ω, t) 	→ Zt∧s(ω) is
�-measurable.

Like for filtrations, also for Meyer-σ -fields there is a notion of completeness with respect
to a probability measure P:

DEFINITION AND THEOREM 2.2 (P-complete Meyer-σ -field, see Lenglart (1980),
pages 507–508). A Meyer-σ -field � ⊂ F ⊗ B([0,∞)) is called P-complete if any process
Z̃ which is indistinguishable from a �-measurable process Z is itself already �-measurable.
For any Meyer-σ -field �̃ ⊂ F⊗ B([0,∞)) there exists a smallest P-complete Meyer-σ -field
� containing �̃; it is called the P-completion of �̃.

EXAMPLE 2.3 (Lenglart (1980), Example, page 509). Let F̃ := (F̃t )t≥0 be a filtration
on a probability space (�,F,P) and denote by F the smallest filtration containing F̃ that
satisfies the usual conditions. Then the P-completion of the F̃ -predictable σ -field is the
F -predictable σ -field. The P-completion of the F̃ -optional σ -field is contained in the F -
optional σ -field; if F̃ is right-continuous, then the P-completion of the F̃ -optional σ -field is
equal to the F -optional σ -field.

In our example the P-complete Meyer-σ -field encapsulating the jump information in a
convenient manner is given by

(4) �η := Pσ(Z càdlàg and F̃η-adapted)

for a fixed sensor sensitivity η ∈ [0,∞], where F̃η is generated by P̃ η := P̃− +�P̃1{|�P̃ |≥η}
and P symbolizes that we consider the P-completion of the σ -field at hand.

That �η is indeed a Meyer-σ -field can be checked by the following result.

THEOREM 2.4 (Lenglart (1980), Theorem 5, page 509). A σ -field on � × [0,∞) gen-
erated by càdlàg processes is a P-complete Meyer-σ -field if and only if it lies between the
predictable and the optional σ -field of a filtration satisfying the usual conditions.

REMARK 2.5 (Meyer-σ -fields vs. Filtrations). The main advantages of a Meyer-σ -field
� compared to a filtration are technical but powerful tools like the Meyer section theorem be-
low which, for example, gives us uniqueness up to indistinguishability of two �-measurable
processes once they coincide at every �-stopping time (cf. Definition 2.6 below for this
notion). As one can see, for example, in Dellacherie and Meyer ((1978), Remark 91(b),
page 144), adapted processes or even progressively measurable processes cannot in general
be pinned down up to indistinguishability in this way.

Now we can make precise and corroborate our above optimality conjecture by showing
that Ĉη from (3) satisfies

(5) Ĉη ∈ argmax
|C|≤1,C �η-measurable

E

[∫
[0,1]

Cs dPs

]
.

To verify this we will need a generalization of classical stopping times to Meyer- or �-
stopping times.
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DEFINITION 2.6 (Following Lenglart (1980), Definition 1, page 502). A mapping S

from � to [0,∞] is a �-stopping time, if

�S,∞� := {
(ω, t) ∈ � × [0,∞) | S(ω) ≤ t

} ∈ �.

The set of all �-stopping times is denoted by S�. Additionally, we define for each random
mapping S : � → [0,∞] the σ -field

F�
S := σ(ZS | Z is a �-measurable process).

Next, we introduce some classification of random times with respect to a Meyer-σ -field:

DEFINITION AND THEOREM 2.7 (Compare Lenglart (1980), Definition and Theorem 6,
page 510). A random time T : � → [0,∞] is called �-accessible for a Meyer-σ -field � if
there exists a sequence of �-stopping times (Tn)n∈N such that

P

(⋃
n∈N

{Tn = T < ∞}
)

= P(T < ∞).

The random variable T is called totally �-inaccessible if P(S = T < ∞) = 0 for all �-
stopping times S.

Moreover, for � ⊂O(F), where F denotes some filtration satisfying the usual conditions,
there exists for each F -stopping time a partition of {T < ∞}, unique up to P-null-sets, into
two sets A,I ∈ FT , such that TA is �-accessible and TI is �-totally inaccessible. Here, for
example, TA denotes the restriction of T to A given by TA = T on A and TA = ∞ on Ac.

Having introduced totally �-inaccessible stopping times we can now state the following
result, which will be crucial for proving that Ĉη from (3) is optimal.

PROPOSITION 2.8 (Compare Bank and Besslich (2018b), Proposition 2.21). Let � be
P-complete and denote by F := (Ft )t≥0 a filtration satisfying the usual conditions such that
P(F) ⊂ � ⊂ O(F). Then we have P-almost surely for any �-measurable bounded process
C at any totally �-inaccessible F -stopping time T ,

CT = (PC
)
T .

To prove our optimality claim (5), take an arbitrary �η-measurable control C and put
C∞ := 0 for notational convenience. Define furthermore

Tk := inf
{
t ∈ [0,1] | Nt = k

}
(with inf∅ := ∞) and observe that this F -stopping time has the decomposition Tk =
(Tk)Aη

k
∧ (Tk)(Aη

k)c with A
η
k := {|Yk| ≥ η} into a �η-accessible F -stopping time (Tk)Aη

k
and a

totally �η-inaccessible F -stopping time (Tk)(Aη
k)c (see Definition 2.7). By Proposition 2.8 it

then follows that CTk
= PCTk

on (A
η
k)

c almost surely. Therefore,

E[CTk
Yk] = E[C(Tk){|Yk |≥η}Yk] +E

[PC(Tk){|Yk |<η}Yk

]
.

We thus obtain for all �η-measurable C with 0 ≤ |Cs | ≤ 1,

E

[∫
[0,1]

Cs dP̃s

]
=

∞∑
k=1

E[CTk
Yk] =

∞∑
k=1

(
E[C(Tk){|Yk |≥η}Yk] +E

[PC(Tk){|Yk |<η}Yk

])
= E

[ ∑
0≤s≤1

Cs�P̃s1{|�P̃s |≥η}
]

+E

[ ∑
0≤s≤1

PCs�P̃s1{|�P̃s |<η}
]
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= E

[ ∑
0≤s≤1

Cs�P̃s1{|�P̃s |≥η}
]

+ 0(6)

≤ E

[ ∑
0≤s≤1

|�P̃s |1{|�P̃s |≥η}
]

= E[N1]E[|Y1|1{|Y1|≥η}
]= λ

2

(
1 − η2),(7)

where we have used in (6) that the process P̄t := p + ∑Nt

k=1 Yk1{|Yk |<η} defines an F -
martingale and hence

E

[ ∑
0≤s≤1

PCs�P̃s1{|�P̃s |<η}
]

= E

[∫
[0,1]

PCs dP̄s

]
= 0.

To finally conclude (5), we now just have to observe that we have equality in (7) for C = Ĉη

from (3).
Before using Meyer-σ -fields in a more relevant setting than the above toy problem, let

us conclude this section with another two important concepts from the general theory of
stochastic processes that are Meyer-measurable: the Meyer section theorem and the Meyer
projection theorem.

THEOREM 2.9 (Meyer dection theorem, Lenglart (1980), Section Theorem 1, page 506).
Let B be an element of a P-complete Meyer-σ -field �. For every ε > 0, there exists S ∈ S�

such that B contains the graph of S, that is,

B ⊃ �S� := graph(S) := {(
ω,S(ω)

) ∈ � × [0,∞) | S(ω) < ∞}
and

P(S < ∞) > P
(
π(B)

)− ε,

where π(B) := {ω ∈ � | (ω, t) ∈ B for some t ∈ [0,∞)} is the projection of B onto �.

An important consequence is the following corollary:

COROLLARY 2.10 (Lenglart (1980), Corollary, page 507). If Z and Z′ are two �-
measurable processes, such that for each bounded T ∈ S� we have ZT ≤ Z′

T a.s. (resp.
ZT = Z′

T a.s.), then the set {Z > Z′} is evanescent (resp. Z and Z′ are indistinguishable).

Finally, we state an equivalent definition of �-projections. These projections were intro-
duced in Lenglart ((1980), Definition, page 512), and they provide us with a generalization
of the well-known optional and predictable projections.

DEFINITION AND THEOREM 2.11 (Compare Bank and Besslich (2018b), Theorem 2.14).
For any nonnegative F ⊗ B([0,∞))-measurable process Z, there exists a nonnegative �-
measurable process �Z, unique up to indistinguishability, such that

E

[∫
[0,∞)

Zs dAs

]
= E

[∫
[0,∞)

�Zs dAs

]
for any càdlàg, �-measurable, increasing process A. This process �Z is called the �-
projection of Z, and it is also uniquely determined by

�ZS = E
[
ZS | F�

S

]
, S ∈ S�.
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3. Irreversible investment with inventory risk. Naturally, much more intricate infor-
mation dynamics involving jumps can be considered than the simple sensor used in the pre-
vious section (see (4)). It is thus of interest to develop a general approach to optimal control
with Meyer-σ -fields. It is the goal of the present paper to do so for the problem of irreversible
investment, a nonlinear stochastic singular control problem which has been of considerable
interest in the literature; see, for example, Arrow (1966), Dixit and Pindyck (1994), Bertola
(1998), Merhi and Zervos (2007), Riedel and Su (2011), Federico and Pham (2014), Ferrari
(2015), Al Motairi and Zervos (2017), De Angelis, Federico and Ferrari (2017).

Let us consider a controller who can choose her actions based on the information flow
conveyed by a Meyer-σ -field � satisfying P(F) ⊂ � ⊂ O(F), where F is a complete, right-
continuous filtration generated, for example, by the monitoring of exogenous random shocks
hitting the controlled system. So, in our irreversible investment problem, controls are �-
measurable, increasing and (for now) càdlàg processes C starting from a given value

C0− := c0 ∈R.

A control C will incur a risk described by

E

[∫
[0,∞)

ρt (Ct )dRt

]
,

where E corresponds to a given fixed probability measure P on the measurable space
(�,F∞ :=∨

t≥0 Ft ) and where ρ and R are as follows.

ASSUMPTION 3.1.

(i) dR is a random Borel measure on [0,∞) with dR({∞}) := 0.
(ii) The stochastic field ρ : � × [0,∞) ×R →R, (ω, t, c) 	→ ρt (ω, c) satisfies:

(a) For ω ∈ �, t ∈ [0,∞), the function ρt (ω, ·) is strictly convex and continuously
differentiable on R with

lim
c↓−∞

∂

∂c
ρt (ω, c) = −∞, lim

c↑∞
∂

∂c
ρt (ω, c) = ∞.

(b) For c ∈ R, the process ρ·(·, c) : � × [0,∞) → R; (ω, t) 	→ ρt (ω, c) is F ⊗
B([0,∞))-measurable.

(c) We have

(8) E

[∫
[0,∞)

∣∣ρt(c)
∣∣dRt

]
< ∞, c ∈ R,

and

(9) E

[∫
[0,∞)

inf
c∈Rρt(c)dRt

]
> −∞.

REMARK 3.2. The process Rt := dR([0, t]), t ≥ 0, can be viewed as a risk clock. Its
jumps correspond to atoms of dR and indicate times of particular importance for a control’s
risk assessment. The random field ρ = ρt(c) can be viewed as a description of, for example,
inventory risk emerging from the inventory level c installed at time t .

The set C̃(c0) of admissible controls consist of all controls C̃ with C̃0− := c0, which exhibit
limited risk in the sense that

(10) E

[∫
[0,∞)

ρt (C̃t )dRt

]
< ∞
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and which have reasonable expected rewards

E

[∫
[0,∞)

(Pt ∧ 0)dC̃t

]
> −∞,

where P denotes a given F⊗B([0,∞))-measurable reward process.
Admissible controls then yield the (possibly infinite) value

Ṽ (C̃) := E

[∫
[0,∞)

Pt dC̃t −
∫
[0,∞)

ρt (C̃t )dRt

]
∈ (−∞,∞]

and we are led to consider the control problem:

(11) Find Ĉ ∈ C̃(c0) attaining sup
C̃∈C̃(c0)

Ṽ (C̃).

In some applications the reward process P may not be fully observable to the controller at
the time of decision making, that is, it may not be �-measurable. As a consequence, also
the running reward

∫
[0,t] Ps dCs may not be observable to the controller unless (Ps)0≤s≤t

is. Hence, the controller may not know immediately about the revenues generated from an
intervention, but, of course, the controller can (and should) form an expectation about these
revenues based on her information flow �. Mathematically, this is captured by the passage to
the �-projection �P of P as introduced in Definition and Theorem 2.11. Thus, denoting by
�P the �-projection of P , we can rewrite the value generated by a control C̃ ∈ C̃(c0) as

Ṽ (C̃) = E

[∫
[0,∞)

�P t dC̃t −
∫
[0,∞)

ρt (C̃t )dRt

]
.

In order to ensure existence of a solution to the optimization problem (11), we impose
the following mild regularity conditions on the reward process P which ensure just the right
form of semicontinuity:

ASSUMPTION 3.3 (Assumptions on the reward process). The reward process P with
P∞ := 0 admits a �-projection �P and it satisfies the following conditions:

(i) �P is of class(D�), that is, the family {�P T | T ∈ S�} is uniformly integrable, and
we have �P S = 0 for any �-stopping time S such that dR([S,∞)) = 0 almost surely.

(ii) We have left-upper-semicontinuity in expectation at any predictable stopping time S

in the sense that for any nondecreasing sequence (Sn)n∈N ⊂ S� with Sn < S on {S > 0} and
limn→∞ Sn = S we have

E[PS] ≥ lim sup
n→∞

E[PSn].
(iii) We have �-dR-right-upper-semicontinuity in expectation at every S ∈ S� in

the sense that for any sequence (Sn)n∈N ⊂ S� with Sn ≥ S for all n ∈ N such that
limn→∞ dR([S,Sn)) = 0 almost surely we have

E[PS] ≥ lim sup
n→∞

E[PSn].

REMARK 3.4. Condition (i) ensures that rewards do not explode and no more rewards
can be expected after all risk has evaporated from the system. Conditions (ii) and (iii) are
needed to rule out obvious counterexamples for the existence of optimal controls.

Assumption 3.3 does not suffice to guarantee existence of an optimal control for (11)
as also shown by the explicitly constructed optimal controls in our later examples. Indeed,
we need to relax to increasing controls which are merely làdlàg and not necessarily right-
continuous. For such controls we introduce the following ∗d-integral inspired by Czichowsky
and Schachermayer (2016):
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DEFINITION 3.5. For an increasing process A = (At )t≥0 with A0− > −∞, we define
the right-continuous, increasing processes for t ∈ [0,∞)

(12)

Ar
t :=∑

s≤t

�+As, Ar
0− := 0,

Al
t :=∑

s≤t

�−As, Al
0− := 0,

Ac
t := At − Al

t − Ar
t−, Ac

0− := A0−,

A
c,l
t := At − Ar

t− = Ac
t + Al

t , A
c,l
0− := A0−,

where �+At := At+ − At , �−At := At − At− and �At := At+ − At− for t ≥ 0. Moreover,
we set, for t ≥ 0,

(13)

∫
[0,t]

φv
∗dAv :=

∫
[0,t]

φv dAc,l
v +

∫
[0,t)

(
φ∗

v

)
dAr

v,∫
[t,∞)

φv
∗dAv :=

∫
[t,∞)

φv dAc,l
v +

∫
[t,∞)

(
φ∗

v

)
dAr

v,

for any measurable process φ with∫
[0,∞)

(φv ∧ 0)dAc,l
v +

∫
[0,∞)

(
φ∗

v ∧ 0
)

dAr
v > −∞.

Here, integration with respect to Ar and Ac,l is to be understood in the usual Lebesgue–
Stieltjes sense; φ∗ is the right-upper-semicontinuous envelope of φ defined by

(14) φ∗
t (ω) := lim sup

s↓t

φs(ω) := lim
n→∞ sup

s∈(t,t+ 1
n
)

φs(ω), t ∈ [0,∞).

Analogously, we define ∗d-integration by replacing in (13) the right-upper-semicontinuous
envelope φ∗ with the right-lower-semicontinuous envelope φ∗ given by

(15) φt∗ := lim inf
s↓t

φs := lim
n→∞ inf

s∈(t,t+ 1
n
)

φs, t ∈ [0,∞).

Some results concerning ∗d-integration and a comparison to similar integrals in the litera-
ture are collected in the Appendix.

Denote by C(c0) the set of nondecreasing (and thus làdlàg), �-measurable controls C

starting in C0− = c0 which incur limited risk in the sense that they satisfy (10) and which
generate reasonable expected rewards in the sense that

(16) E

[∫
[0,∞)

(�P t ∧ 0
) ∗dCt

]
> −∞.

Now we consider the following relaxed optimization problem:

(17) Find Ĉ ∈ C(c0) attaining sup
C∈C(c0)

V (C),

where

V (C) := E

[∫
[0,∞)

�P t
∗dCt −

∫
[0,∞)

ρt (Ct )dRt

]
.

Theorem 3.9 below constructs a solution to this relaxed concave optimization problem, en-
suring in particular existence in this relaxation. The ∗d-integral will turn out to be natural
because we seek to maximize V (C); ∗d-integration would be the choice in a minimization
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problem. The explicit solutions computed in Section 4 reveal that làdlàg controls cannot be
avoided, thus underlining the need to relax the original problem (11). The following proposi-
tion verifies that the relaxed optimization problem (17) admits the same value as our original
problem (11):

PROPOSITION 3.6. Assume P is an F ⊗ B([0,∞))-measurable process such that �P

exists and suppose Assumption 3.1 is satisfied. Then for any làdlàg control C ∈ C(c0) there
are càdlàg controls C̃n ∈ C̃(c0), n ∈ N, such that

(18) V (C) = lim
n→∞ Ṽ

(
C̃n).

In particular, we have

sup
C∈C(c0)

V (C) = sup
C̃∈C̃(c0)

Ṽ (C̃).

For the proof of Proposition 3.6 we will need the following result:

PROPOSITION 3.7. Under the Assumptions of Proposition 3.6 for any C ∈ C(c0) and
C̃ ∈ C̃(c0) we have

V (C) = lim
n→∞V (C ∧ n), Ṽ (C̃) = lim

n→∞ Ṽ (C̃ ∧ n).

PROOF. This result follows via monotone convergence on the reward part and dominated
convergence in the risk part of our target functionals V , Ṽ as by convexity of c 	→ ρs(c) we
have for n ≥ c0 the estimate∣∣ρs(Cs ∧ n)

∣∣≤ max
{
ρs(Cs) ∨ 0, ρs(c0) ∨ 0,−

(
inf
c∈Rρs(c) ∧ 0

)}
. �

PROOF OF PROPOSITION 3.6. By Proposition 3.7, we can assume without loss of gen-
erality that C ∈ C(c0) is bounded. Note, we will also construct bounded C̃n ∈ C̃(c0), n ∈ N

with (18). For such C̃n, n ∈ N, we get via Definition and Theorem 2.11 and admissibility of
C̃n that Ṽ (C̃n) = V (C̃n).

Case V (C) = ∞: In this case, one of the two right-continuous, admissible controls Cc,l,
Cr (see (12)) generates an infinite value for Ṽ , which then shows (18).

Case V (C) < ∞: In this case, we can use Karatzas and Shreve ((1998), Proposition 2.26,
page 10), to exhaust the jumps of Cr by a sequence of F -stopping times (Tn)n∈N, where
we can assume without loss of generality that the graphs of the stopping times are disjoint.
Indeed, if this is not the case we can consider instead the sequence (T̃n)n∈N given by

T̃1 := T1, T̃n := (Tn)⋃n−1
k=1{Tn �=Tk}, n = 2,3, . . . ,

which exhibits the desired properties. Moreover, by Bank and Besslich ((2018b), Proposi-
tion 3.2(i)), there exists for each n ∈ N a sequence (T k

n )k∈N ⊂ S� such that T k
n ≥ Tn with

∞ > T k
n > Tn on {Tn < ∞}, limk→∞ T k

n = Tn and (�P )∗Tn
= limk→∞ �P T k

n
almost surely.

Now define for k ∈ N, N ∈ N, C̃k,N ∈ C̃(c0) by

C̃
k,N
t := C

c,l
t +

N∑
n=1

�+CTn1�T k
n ,∞�(t), t ∈ [0,∞),

where Cc,l is defined in (12). One can easily see that for a.e. ω ∈ �, t ∈ [0,∞) we have
limN→∞ limk→∞ C̃

k,N
t (ω) = Ct(ω). Hence, using dominated convergence (which is appli-

cable because of (8), (9) and admissibility of C), we obtain by continuity of ρ that

(19) E

[∫
[0,∞)

ρt (Ct )dRt

]
= lim

N→∞ lim
k→∞E

[∫
[0,∞)

ρt

(
C̃

k,N
t

)
dRt

]
.
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Next,

E

[∫
[0,∞)

�Pt dC̃
k,N
t

]
= E

[∫
[0,∞)

�Pt dC
c,l
t

]
+

N∑
n=1

E
[�PT k

n
�+CTn

]
and we have

N∑
n=1

E
[�PT k

n
�+CTn

] k→∞−→
N∑

n=1

E
[(�P

)∗
Tn

�+CTn

] N→∞−→
∞∑

n=1

E
[(�P

)∗
Tn

�+CTn

]
,

where we have used that �P is of class(D�) and that C is bounded to apply Lebesgue’s
theorem twice. Therefore, by V (C) < ∞,

(20) lim
N→∞ lim

k→∞E

[∫
[0,∞)

�Pt dC̃
k,N
t

]
= E

[∫
[0,∞)

�Pt
∗dCt

]
.

Combining (19) and (20) shows that the value V (C) is attained as the limit of Ṽ (C̃k,N),
k,N ∈ N, which finishes our proof. �

An optimal control for (17) will be constructed in terms of a reference process L� emerg-
ing from the following stochastic representation of the reward process, similar to an approach
taken in Bank and Riedel (2001):

LEMMA 3.8. Under Assumptions 3.1 and 3.3, there exists a �-measurable process L�

such that for any �-stopping time S we have

E

[∫
[S,∞)

∣∣∣∣ ∂

∂c
ρt

(
sup

v∈[S,t]
L�

v

)∣∣∣∣dRt

]
< ∞,(21)

�PS = E

[∫
[S,∞)

∂

∂c
ρt

(
sup

v∈[S,t]
L�

v

)
dRt

∣∣∣F�
S

]
.(22)

Here, we can choose L� to be maximal in the sense that for any other �-measurable solu-
tion L̃, satisfying mutatis mutandis the two properties (21), (22), we have L̃S ≤ L�

S at any
�-stopping time S. The maximal solution L� is unique up to indistinguishability and addi-
tionally satisfies

(23) L�
S = essinf

T ∈S�,T >S
��
S,T , S ∈ S�,

where, for any �-stopping time T with S < T , ��
S,T is defined as the (up to a P-nullset)

unique F�
S -measurable random variable solving

(24) E
[
PS − PT | F�

S

]= E

[∫
[S,T )

∂

∂c
ρt

(
��
S,T

)
dRt

∣∣∣F�
S

]
on {P(RT − − RS− > 0 | F�

S ) > 0} and ��
S,T := ∞ elsewhere.

PROOF. Set Xt(ω) := �P t(ω), gt (ω, �) := ∂
∂c

ρt (ω, �), μ(ω,dt) := dRt(ω). Then As-
sumptions 3.1 and 3.3 allow us to apply the representation theorem of Bank and Besslich
(2018a), to obtain L� with the desired properties. �

The next theorem shows that under some additional integrability assumptions on L� the
value in (17) is finite and attained by a control explicitly constructed in terms of L�:
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THEOREM 3.9. Let Assumptions 3.1 and 3.3 be satisfied and let L� be a �-measurable
process satisfying (21), (22). Suppose that the control CL�

defined by

(25) CL�

0− := c0, CL�

t := c0 ∨ sup
v∈[0,t]

L�
v , t ∈ [0,∞),

satisfies

(26) E

[∫
[0,∞)

{
∂

∂c
ρt

(
CL�

t

)(
CL�

t − c0
)}∨ 0 dRt

]
< ∞.

Then CL�
is contained in C(c0) and is optimal for the relaxed problem (17):

CL� ∈ argmax
C∈C(c0)

V (C)

and

(27) V
(
CL�)= E

[∫
[0,∞)

{
∂

∂c
ρt

(
CL�

t

)(
CL�

t − c0
)− ρt

(
CL�

t

)}
dRt

]
< ∞.

REMARK 3.10. One way to motivate the construction of an optimal control via (23) and
(25) is the following. Due to concavity of the problem, first order conditions are necessary and
sufficient for optimality of a control. For our problem, they essentially mean that a control Ĉ

will be optimal if, at any time S, it balances the (perceived) rewards of an intervention with its
impact on a control’s future risk assessment in such a way that, at any decision time S ∈ S�,

�P S ≤ E

[∫
[S,∞)

∂

∂c
ρt (Ĉt )dRt

∣∣∣F�
S

]
with equality holding true if S is an optimal time to intervene. So, if S ∈ S� is such a time,
we get for any time T ∈ S� with T > S that

E
[�P S − �P T | F�

S

]≥ E

[∫
[S,T )

∂

∂c
ρt (Ĉt )dRt

∣∣∣F�
S

]
≥ E

[∫
[S,T )

∂

∂c
ρt (ĈS)dRt

∣∣∣F�
S

]
.

Comparing this with (24) and recalling that T was arbitrary shows that at times of intervention
we must have

ĈS ≤ essinf
T

��
S,T = L�

S ,(28)

where the last identity is just (23). In fact, we even get equality in the above estimates if
T = TS is the next time of intervention after time S. This suggests that equality should hold
true in (28) at times of intervention. Conversely, if S is not a time of intervention, similar
considerations lead to

E
[�P S − �P TS

| F�
S

]≤ E

[∫
[S,TS)

∂

∂c
ρt (Ĉt )dRt

∣∣∣F�
S

]
= E

[∫
[S,TS)

∂

∂c
ρt (ĈS)dRt

∣∣∣F�
S

]
,

and, so, ĈS ≥ ��
S,TS

≥ L�
S . Admissible controls being increasing above c0, we thus expect

Ĉt = c0 ∨ supv∈[0,t] L�
v as in (25) to be optimal, a conjecture confirmed rigorously by our

Theorem 3.9.

The rest of this section is devoted to the proof of Theorem 3.9. We start by showing a
technical result:
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LEMMA 3.11. In the setting of Theorem 3.9, we have for any F -stopping time T on
{�+CL�

T > 0} that

(29)
(

�

(∫
[·,∞)

∂

∂c
ρt

(
CL�

t

)
dRt

))∗

T

=
(

�

(∫
[·,∞)

∂

∂c
ρt

(
sup

v∈[·,t]
L�

v

)
dRt

))∗

T

,

where (·)∗ is defined in (14).

PROOF. For the sake of notational simplicity we will write in the following just L instead
of L�. By monotonicity of �-projections it is clear that “≥” is satisfied and we only have to
prove “≤” in (29).

First, let T̃ := T� for � := {�+CL
T > 0} and consider a sequence of F -stopping times

(Tn)n∈N such that Tn ≥ Tn+1 ≥ T̃ with ∞ > Tn > T̃ on {T̃ < ∞} = � for all n ∈ N and such
that limn→∞ Tn = T̃ . Then, for n ∈ N and t ≥ 0,

0 ∧ ∂

∂c
ρt (c0) ≤ 1[Tn,∞)(t)

∂

∂c
ρt

(
c0 ∨ sup

v∈[Tn,t]
Lv

)
≤
∣∣∣∣ ∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)∣∣∣∣
and

lim
n→∞1[Tn,∞)(t)

∂

∂c
ρt

(
c0 ∨ sup

v∈[Tn,t]
Lv

)
= 1(T ,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈(T̃ ,t]
Lv

)
.

By integrability assumption (21) on L and because (Tn)n∈N was arbitrary, we can use domi-
nated convergence to conclude

(30)
(∫

[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
T̃ +

=
∫
(T̃ ,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈(T̃ ,t]
Lv

)
dRt .

Moreover, we have for a.e. ω ∈ � and all t > T (ω) that

(31) sup
v∈(T (ω),t]

Lv(ω) = sup
v∈[0,t]

Lv(ω).

Let us now prove “≤” in (29). By Bank and Besslich ((2018b), Proposition 3.7), we know

(32) �

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt

)∗

T

≤ O
(∫

(·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt

)
T

.

Since � ∈FT , we obtain

(33)

O
(∫

(·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt

)
T

1�

(31)= E

[(∫
(T ,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈(T ,t]
Lv

)
dRt

)
1�

∣∣∣FT

]
(30)= E

[(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
T +

1�

∣∣∣FT

]

= O
((∫

[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
+

)
T

1�.

Now, we can apply again Bank and Besslich ((2018b), Proposition 3.7), to obtain on � that

(34) O
((∫

[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
+

)
T

≤ �

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
T ∗

,

where (·)∗ denotes the right-lower-semicontinuous envelope defined in (15). Next, we will
need the following claim, which we will prove at the end:
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CLAIM. There exists a sequence (Tn)n∈N ⊂ S� such that for n ∈ N we have Tn ≥ Tn+1 ≥
T̃ , Tn > T̃ on {T̃ < ∞}, LTn ≥ c0 on {Tn < ∞} and limn→∞ Tn = T̃ .

Using the sequence of �-stopping times from the previous claim leads on � to

(35)

�

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
T ∗

≤ lim sup
n→∞

�

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[·,t]
Lv

)
dRt

)
Tn

= lim sup
n→∞

�

(∫
[·,∞)

∂

∂c
ρt

(
sup

v∈[·,t]
Lv

)
dRt

)
Tn

≤ �

(∫
[·,∞)

∂

∂c
ρt

(
sup

v∈[·,t]
Lv

)
dRt

)∗

T

.

Combining (32), (33), (34) and (35) completes the proof of “≤” in (29) once we have proven
the above claim.

PROOF OF THE CLAIM. The proof is analogous to the proof of Bank and Besslich
((2018b), Proposition 3.2(i)). For n ∈N we set εn := 2−n and

Bn := �T̃ ,∞� ∩
�

0, T̃ + 1

n

�
∩ {L ≥ c0} ∈ �.

Then there exists by the Meyer section theorem (see Theorem 2.9) for each n ∈ N a �-
stopping time Sn such that the graph of Sn is contained in Bn and P(Sn < ∞) > P(π(B)) −
εn. Now we set Tn := mink∈{1,...,n} Sk , n ∈ N. Using π(Bn) = �, a Borel–Cantelli argument
shows that the sequence (Tn)n∈N ⊂ S� will satisfy the desired properties. �

Now we have our tools at hand to prove the main result of this section:

PROOF OF THEOREM 3.9. For the sake of notational simplicity, we will again just write
L instead of L�. We start with the observation that convexity of ρ = ρt(c) in c gives

inf
c∈Rρ(c) − ρt(c0) ≤ ρ

(
CL)− ρ(c0) ≤ ∂

∂c
ρ
(
CL)(CL − c0

)
.

So, (26) in conjunction with (8) and (9) implies that ∂
∂c

ρ(CL)(CL − c0) is P⊗ dR-integrable
and that CL of (25) has finite risk in the sense of (10). In particular, the expectation in (27) is
finite.

As L solves (22) we obtain by monotonicity of �-projections

�P ≤ �

(∫
[·,∞)

∂

∂c
ρt

(
CL

t

)
dRt

)
.

Therefore, we get for any bounded C ∈ C(c0) that

E

[∫
[0,∞)

�P s
∗dCs

]
≤ E

[∫
[0,∞)

�

(∫
[·,∞)

∂

∂c
ρt

(
CL

t

)
dRt

)
s

∗dCs

]
(36)

= E

[∫
[0,∞)

∫
[s,∞)

∂

∂c
ρt

(
CL

t

)
dRt

∗dCs

]

= E

[∫
[0,∞)

∂

∂c
ρt

(
CL

t

)
(Ct − c0)dRt

]
.(37)
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Here, by boundedness of C and integrability conditions (8), (9) and (21), we were allowed to
use in the first equality the projection identity of Proposition A.4 and in the second equality
the Fubini-like Proposition A.3. The preceding estimate together with convexity of ρ yields

V (C) ≤ E

[∫
[0,∞)

{
∂

∂c
ρt

(
CL

t

)
(Ct − c0) − ρt(Ct )

}
dRt

]

≤ E

[∫
[0,∞)

{
∂

∂c
ρt

(
CL

t

)(
CL

t − c0
)− ρt

(
CL

t

)}
dRt

]
.

Using Proposition 3.7, we thus have found an upper bound on the value V (C) generated by
an arbitrary admissible control C ∈ C(c0).

It remains to prove that CL satisfies the admissibility condition (16) and the identity in
(27). For admissibility note first that

(38)
∫
[0,t]

∣∣∣∣ ∂

∂c
ρt

(
CL

t

)∣∣∣∣ ∗dCL
s =

∣∣∣∣ ∂

∂c
ρt

(
CL

t

)∣∣∣∣(CL
t − c0

) ∈ L1(P⊗ dR).

Thus, we can apply Fubini’s theorem for ∗d-Integrals (see Proposition A.3) to deduce that

(39) E

[∫
[0,∞)

∫
[s,∞)

∣∣∣∣ ∂

∂c
ρt

(
CL

t

)∣∣∣∣dRt
∗dCL

s

]
< ∞.

It follows that

∞ > E

[∫
[0,∞)

∫
[s,∞)

∂

∂c
ρt

(
CL

t

)∨ 0 dRt
∗dCL

s

]

≥ E

[∫
[0,∞)

�

(∫
[s,∞)

∂

∂c
ρt

(
CL

t

)∨ 0 dRt

)
∗dCL

s

]

≥ E

[∫
[0,∞)

�

(∫
[s,∞)

∂

∂c
ρt

(
sup

v∈[s,t]
Lv

)
dRt

)
∨ 0 ∗dCL

s

]
(22)= E

[∫
[0,∞)

�Ps ∨ 0 ∗dCL
s

]
,

where we have used Proposition A.4 in the first estimate. Hence,

E

[∫
[0,∞)

�Ps ∨ 0 ∗dCL
s

]
< ∞,

and so we can use monotone convergence to obtain analogously to (37) that

E

[∫
[0,∞)

∣∣�P s

∣∣ ∗dCL
s

]
= lim

n→∞E

[∫
[0,∞)

∣∣�P s

∣∣ ∗d
(
CL

s ∧ n
)]

≤ E

[∫
[0,∞)

∣∣∣∣ ∂

∂c
ρt

(
CL

t

)(
CL

t − c0
)∣∣∣∣dRt

]
< ∞,

which shows that CL is admissible.
Clearly, for the identity in (27), we now only have to show equality in (36) for C = CL,

that is,

(40)

E

[∫
[0,∞)

�

(∫
[·,∞)

∂

∂c
ρt

(
sup

v∈[·,t]
Lv

)
dRt

)
s

∗dCL
s

]

= E

[∫
[0,∞)

�

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt

)
s

∗dCL
s

]
.

To this end, note first that the latter expectation is well defined due to (38) and (39).
Let us split the ∗dCL-integral in (40) into the contributions coming from (CL)r and from

(CL)c,l (see (12)). For the (CL)r-contribution (see (12)) to (40) we obtain by Karatzas and
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Shreve ((1998), Proposition 2.26, page 10), that there exists a sequence (Tn)n∈N of F -
stopping times with disjoint graphs (exactly as in the proof of Proposition 3.6) which exhaust
the jumps of (CL)r. Hence, we obtain∫

[0,∞)

�

(∫
[·,∞)

∂

∂c
ρt

(
sup

v∈[·,t]
Lv

)
dRt

)∗

s

d
(
CL)r

s

=
∫
[0,∞)

�

(∫
[·,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt

)∗

s

d
(
CL)r

s,

by application of Lemma 3.11 to Tn for n ∈ N. We will argue at the end that the contribution
from (CL)c,l satisfies

(41)

∫
[0,∞)

∫
[s,∞)

∂

∂c
ρt

(
sup

v∈[s,t]
Lv

)
dRt d

(
CL)c,l

s

=
∫
[0,∞)

∫
[s,∞)

∂

∂c
ρt

(
c0 ∨ sup

v∈[0,t]
Lv

)
dRt d

(
CL)c,l

s .

Granted this identity, we get by Proposition A.4 and (39) that we can drop the projections in
(40), which completes our proof of identity (40).

For the proof of (41), we fix ω ∈ �. We will show the result separately for the left jumps of
C and for its continuous part Cc (see (12)). First, we get for s ∈ [0,∞) with CL

s−(ω) < CL
s (ω)

that Ls(ω) > c0 ∨ supv∈[0,s) Lv(ω) and therefore supv∈[s,t] Lv(ω) = c0 ∨ supv∈[0,t] Lv(ω) for
t ≥ s. For the dCc-contribution we can restrict to points s ∈ [0,∞) such that �Rs(ω) = 0
as for fixed ω the process R can have only countably many jumps. Moreover, the measure
dCc(ω) is supported by the set {s ∈ [0,∞) | Cc

t (ω) > Cc
s (ω) for all t > s}. So, let s ∈ [0,∞)

such that �Rs(ω) = 0 and for all t > s we have Cc
s (ω) < Cc

t (ω). Then we get for any t >

s that supv∈(s,t] Lv(ω) > c0 ∨ supv∈[0,s] Lv(ω) and therefore again supv∈[s,t] Lv(ω) = c0 ∨
supv∈[0,t] Lv(ω). Hence,∫

(s,∞)

∣∣∣∣ ∂

∂c
ρt

(
ω, sup

v∈[s,t]
Lv(ω)

)∣∣∣∣dRt(ω) =
∫
(s,∞)

∣∣∣∣ ∂

∂c
ρt

(
ω,CL

t (ω)
)∣∣∣∣dRt(ω)

and the rest follows because �Rs(ω) = 0. �

4. Optimal irreversible investment in a compound Poisson setting with jump sen-
sor. In this section we will illustrate in a compound Poisson process framework how differ-
ent Meyer-σ -fields lead to different optimal controls in an irreversible investment problem
that can be solved explicitly using Theorem 3.9. Specifically, let us fix a probability space
(�,F,P) with a compound Poisson process P̃ starting in p̃ of the form, that is,

P̃t = p̃ +
Nt∑

k=1

Yk, Pt := e−rt P̃t , t ∈ [0,∞), P∞ := P̃∞ := 0,

where p̃ ∈ R, r > 0, N is a Poisson process with intensity λ > 0, independent of the i.i.d.
sequence of (Yk)k∈N ⊂ L2(P) with mean m := E[Y1] ∈ R and P(Y1 = 0) = 0. Let F :=
(Ft )t≥0 be the P-augmented filtration generated by P̃ . Define the risk clock

Rt :=
∫
(0,t]

e−rs dNs, t ∈ [0,∞),

and, furthermore, choose ρt (c) := 1
2c2, so that obviously ∂

∂c
ρt (c) = c, c ∈ R. One can readily

check that Assumption 3.1 is satisfied.
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We want to allow immediate reactions by our controller only for sufficiently large jumps
and thus restrict controls to be �η-measurable, where

(42) �η := Pσ(Z càdlàg and F̃η-adapted)

for a fixed sensitivity threshold η ∈ [0,∞], where F̃η is generated by P̃ η := P̃− +
�P̃1{|�P̃ |≥η} and P symbolizes that we consider the P-completion of the σ -field at hand.
The probability with which the controller’s sensor fails to alert is thus

(43) p(η) := P
(|Y1| < η

) ∈ [0,1].
The optimization problem (17) now takes the form

(44) sup
C∈C(c0)

E

[∫
[0,∞)

�η

P t
∗dCt − 1

2

∫
[0,∞)

C2
t dRt

]
.

In this problem, our controller is confronted with a reward process P that will jump due to
external shocks (Yk)k∈N hitting at exponential times that also trigger the risk assessments
in the clock R. For large enough shocks (when |Yk| ≥ η) the controller receives a warning
signal from a sensor that affords her the opportunity to adjust the control C before the risk
assessment is done; for smaller shocks, though, the controller receives no such signal and can
only react after they have struck.

We want to construct an optimal control for problem (44) via Theorem 3.9. For that we
need that the �η-projection of P satisfies Assumption 3.3. This will not hold true in the
optional case p(η) = 0 which we will cover separately in Section 4.3 below. For a fallible
sensor, that is, in the case p(η) > 0, the following proposition characterizes the �η-projection
and shows that Theorem 3.9 will indeed lead to an optimal control. Moreover, it shows that
the maximal solution L�η

to (21) is a function of the reward process and the sensor:

LEMMA 4.1. (i) For all η ∈ [0,∞] we have at every �η-stopping time T that

�NT = 1{|YNT
|≥η}∩{�NT >0}, P-a.s.,(45)

�η

P̃T = P̃T , P-a.s.,(46)

and we have P-almost surely that
�η

(�N)t = 1{|YNt |≥η}∩{�Nt>0},(47)

�η

P t = �η

P̃ te
−rt = P̃

η
t e−rt := (P̃t− + �P̃t1{|�P̃t |≥η})e

−rt , t ∈ [0,∞).(48)

In the case p(η) = 0 (resp. p(η) = 1), we have �η = O(F) (resp. �η = P(F)).
(ii) If the sensor is imperfect, that is, if p(η) > 0 (see (43)), then �η

P satisfies Assump-
tion 3.3. The maximal solution L�η

to (21) and (22) is given by

(49) L�η

t = �η(�η

P̃t ,
�η

(�N)t
)=

{
�η(P̃t−,0), |�Pt | ≥ η,

�η(P̃t ,1), |�Pt | < η,
t ∈ [0,∞),

where, for p ∈ R, � ∈ {0,1},
(50) �η(p,�) := inf

0<T ∈S�η
�T (p,�) > −∞

and, for random times T > 0,

(51) �T (p,�) := (1 −E[e−rT ])p −E[e−rT ∑NT

k=1 Yk]
E[RT −] + �

,

with the convention ·
0 = ∞. Moreover, the corresponding control CL�η

from (25) satisfies

(26) and it is optimal with a finite value V (CL�η

) < ∞.



2940 P. BANK AND D. BESSLICH

PROOF. Proof of (i). First, it is well known that PN = N− up to indistinguishability.
Next for T ∈ S�η

and A := {|�P̃T | ≥ η} = {|YNT
| ≥ η} ∩ {�NT > 0} one can see that the

F -stopping time TA is a �η-stopping time and TAc is �η-totally inaccessible (see Defini-
tion 2.7). Hence, we get by Proposition 2.8 that

(52) �η

P̃T = P̃T 1A + P P̃T 1Ac = �P̃T 1{|�P̃T |≥η} + P̃T −,

which implies (48) by Corollary 2.10 of the Meyer section theorem. Moreover, from PN =
N− we get

P P̃T 1Ac = P̃T −1Ac =
(
p̃ +

NT −∑
k=1

Yk

)
1Ac =

(
p̃ +

NT∑
k=1

Yk

)
1Ac = P̃T 1Ac,

which shows in combination with (52) equation (46). The same argument also shows (45),
which then implies again by Corollary 2.10 equation (47).

Case p(η) = 0. In this case we have for any F -stopping time T that P̃T = P̃
η
T , almost

surely, which implies, by a corollary of the Meyer section theorem (see Corollary 2.10), that
P̃ and P̃ η are indistinguishable. Hence, by Definition and Theorem 2.2, the process P̃ is
�η-measurable. Moreover, using Dellacherie and Meyer ((1978), Theorem 97(a), page 147),
we get

O(F̃) = P(F̃) ∨ σ(P̃ ) ⊂ �η ⊂O(F).

This finishes our proof, as by Lenglart ((1980), Example 1◦, page 509), the P-completion of
an optional σ -field with respect to a right-continuous filtration is the optional σ -field with
respect to the augmented filtration.

Case p(η) = 1. In this case we have for any F -stopping time T that P̃T − = P̃
η
T , almost

surely, which implies, by a corollary of the Meyer section theorem (see Corollary 2.10), that
P̃− and P̃ η are indistinguishable. Hence, by Definition and Theorem 2.2 the process P̃ η

is P(F)-measurable. Next, one can derive analogously to Dellacherie and Meyer ((1978),
Theorem 97(a), page 147), that �̃η = P(F̃) ∨ σ(P̃ η). As P̃ η is P(F)-measurable we obtain

P(F̃) ⊂ �̃η = P(F̃) ∨ σ
(
P̃ η)⊂ P(F).

The rest follows now by Lenglart ((1980), Example 2◦, page 509), which gives us that the
P-completion of P(F̃) is given by P(F).

Proof of (ii). �η
P obviously satisfies (i) of Assumption 3.3. Property (ii) of this assumption

holds by Fatou’s lemma via PN = N−. Finally, for (iii) of Assumption 3.3 note that for �η-
stopping times S, T we have P(dR([S,T )) > 0|F�η

S ) > 0 on {T > S} by (43). Hence, any
sequence of �η-stopping times as considered in condition (iii) must decrease to S almost
surely and therefore Assumption 3.3 is satisfied by right-continuity of P and Fatou’s lemma.

Now, the process L�η
exists by Lemma 3.8 and CL�η

is optimal by Theorem 3.9 since it
satisfies the integrability conditions as verified next:

(26) is satisfied. As L�η
satisfies (23) we see that

L�η

S ≤ ��η

S,∞ =
�η

P̃S

E[R∞−] + �η
(�N)S

≤ |�η
P̃S |

E[R∞−] = r

λ

∣∣P̃ η
S

∣∣, S ∈ S�η

,

and, hence, (26) follows by Y1 ∈ L2(P) and E[R∞−] = λ
r

< ∞.
Equation (49). We claim that it is enough to show

(53) L�η

S = inf
0<T ∈S�η

(1 −E[e−rT ])�η
P̃S −E[e−rT ∑NT

k=1 Yk]
E[RT −] + �η

(�N)S
, S ∈ S�η

.
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Indeed, by (53) and Corollary 2.10 it then suffices to establish that the right hand side of (49)
defines a �η-measurable process or, equivalently, that �η is measurable. As � admits only
two values we only have to argue why p 	→ �η(p,�) is measurable for fixed �, which is clear
as it is concave. Moreover, if for fixed � ∈ {0,1} we have �η(p̄,�) = −∞ for some p̄ ∈ R,
then also �η(p,�) = −∞ for all p ≤ p̄. By (53) this would then contradict the representation
property (22) of L�η

. It follows that indeed �η(p,�) > −∞ for all � ∈ {0,1} and p ∈R.
Proof of (53). Let S ∈ S�η

. By (23), we know that

L�η

S = essinf
T >S,T ∈S�η

��η

S,T .

Due to our convention ·
0 = ∞, we can write

��η

S,T = (1 −E[e−r(T −S) | F�η

S ])�η
P̃S −E[(P̃T − P̃S)e−r(T −S) | F�η

S ]
erSE[RT − − RS | F�η

S ] + �η
(�N)S

.(54)

We will argue next how to reduce the analysis to the special case S = 0 which will become
possible by results of Dellacherie and Meyer ((1978), pages 145–149) and Courrège and
Priouret (1965) on the general theory of processes when working on the canonical space
with lifetime. For this, we now assume, without loss of generality, that � is the space of
R∪ {†}-valued càdlàg paths with lifetime (see Dellacherie and Meyer ((1978), Definition 94,
page 145). We let P̃ denote the canonical process P̃t (ω) = ω(t) with its natural filtration F̃ ;
P is the probability under which P̃ follows the same compound Poisson process dynamics
considered above. We define, the process Xη : � × [0,∞) →R by

X
η
0(ω) = ω0, X

η
t (ω) := ωt− + �ωt1{|�ωt |≥η}, ω ∈ �, t ∈ (0,∞).

Here, † denotes some point isolated from R, ω† is the element of � with X(ω†) ≡ † and
B† the σ -field on R ∪ {†} generated by B(R). We have that X̄η := (�,ω†, (X

η
t )t∈[0,∞),R ∪

{†},B†,†) is a stochastic function with cemetery taking values in (R,B(R)) (see Courrège
and Priouret ((1965), Definition 0.3, pages 248–249), and Courrège and Priouret ((1965),
A 1.3, pages 267–268). Moreover, one can check that X̄η satisfies the linking property (see
Courrège and Priouret ((1965), Definition 5.1, page 263). As a consequence, we can apply
Lemma 4.3 and Theorem 5.3 in Courrège and Priouret (1965) for X̄η, which clarify the
structure of F̃η-stopping times, where F̃η is the filtration generated by Xη. To obtain results
on the stopping times of the Meyer-σ -field

�̃η := σ {Z is càdlàg and F̃η-adapted}
we adapt Dellacherie and Meyer ((1978), Theorem 97, page 147), which is only stated for
the predictable and optional-σ -field. This adaptation can be done via the mapping(

h
η
t (ω)

)
s := (

κt (ω)
)
s1{|�tω|<η} + (

αt(ω)
)
s1{|�tω|≥η}, ω ∈ �,s, t ∈ [0,∞),

where κ denotes the killing operator and α the stopping operator of Dellacherie and Meyer
((1978), Definition 95, page 146). For this operator one can show that (ω, t) 	→ h

η
t (ω) is �̃η-

measurable and F̃η
t = (h

η
t )

−1(F̃∞), which then implies as in the proof of Dellacherie and
Meyer ((1978), Theorem 97, page 147), that a process is �̃η-measurable, if and only if it is
F̃η-adapted. In particular, for S : � → [0,∞] we have

(55) S is a �̃η-stopping time if and only if it is an F̃η-stopping time.

Finally, recall that �η (see (42)) is the P-completion (see Definition and Theorem 2.2) of �̃η,
that is,

(56) �η = P�̃η = P
(
σ {Z is càdlàg and F̃η-adapted}).
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Proof of “≤” in (53). Let T ∈ S�η
with T > 0. By Lenglart ((1980), Theorem 3,

page 508), and (56) we have that S and T are almost surely equal to �̃η-stopping times S̃,
T̃ and, hence, F̃η-stopping times (see (55)). Define U(ω) := T̃ (P̃ (ω) − P̃0(ω) + p̃), ω ∈ �.
One can readily check (or use Courrège and Priouret (1965), Theorem 1.3, page 251 to see)
that U(·) is an F̃η-stopping time. Hence,

T̂ (ω) := S̃(ω) + U
(
θ
S̃
(ω)

)
> S̃(ω), ω ∈ �,

defines an F̃η-stopping time by Courrège and Priouret ((1965), Lemma 4.3, page 260). It is
also a �̃η-stopping time (see (55)) and thus in particular a �η-stopping time. We will argue
next that almost surely

(57) ��η

S,T̂
= (1 −E[e−rT̂ ])�η

P̃S −E[e−rT̂ ∑N
T̂

k=1 Yk]
E[R

T̂ −] + �η
(�N)S

which readily yields “≤” in (53). For (57) we need to manipulate the conditional expectations
in (54). For the sake of brevity, we will do so only for the most complicated one:

E
[
(P̃

T̂
− P̃S)e−r(T̂ −S) | F�η

S

]= E
[
E
[
(P̃

S̃+U(θ
S̃
)
− P̃

S̃
)e−rU(θ

S̃
) | F̃

S̃

] | F̃η

S̃

]
= E

[
E

P̃
S̃

[
(P̃U − P̃0)e

−rU ] | F̃η

S̃

]
= E

[
Ep̃

[
(P̃

T̃
− p̃)e−rT̃ ] | F̃η

S̃

]= E
[
(P̃T − p̃)e−rT ].

Here, we used for the first equality that, by (55), we can replace the F�η
-conditional expec-

tation by an F̃η

S̃
-conditional expectation and that F̃η

S̃
⊂ F̃

S̃
; the second equality is due to the

strong Markov property of P̃ with respect to F̃ ; the third equality is due to the Lévy property
of P̃ and the choice of U ; for the final identity we recall that under P the canonical process
P̃ starts in p̃ almost surely and T = T̃ almost surely.

Proof of “≥” in (53). Let T ∈ S�η
with T > S. Again by Lenglart ((1980), Theorem 3,

page 508), and (56), we have that S and T are almost surely equal to �̃η-stopping times S̃, T̃

and, hence, F̃η-stopping times (see (55)). By Courrège and Priouret ((1965), Theorem 5.3,
page 264), there thus exists an F̃η

S̃
⊗ F̃η∞-measurable mapping Ũ : � × � → [0,∞] such

that, for every ω ∈ �, we have

T̃ (ω) = S̃(ω) + Ũ
(
ω,θ

S̃
(ω)

)
and also that ω′ 	→ Ũ (ω,ω′) > 0 is an F̃η-stopping time. We have to mention here that
Courrège and Priouret ((1965), Theorem 5.3, page 264) actually assumes that T is an F̃η

+-
stopping time and then ω′ 	→ Ũ (ω,ω′) also would be an F̃η

+-stopping time. If T is even
an F̃η-stopping time, one can prove along the same lines as given in Courrège and Priouret
((1965), Theorem 5.3, page 264), that Ũ can be found such that ω′ 	→ Ũ (ω,ω′) > 0 is even
an F̃η-stopping time. Now, we need again to manipulate the conditional expectations in (54).
For instance, we get that, for ω ∈ �,

E
[
e−r(T −S) | F�η

S

]
(ω) = E

[
e−r(T̃ −S̃) | F̃η

S̃

]
(ω)

= E
[
e−rŨ(·,θ

S̃
(·)) | F̃η

S̃

]
(ω) = E

P̃
S̃(ω)

[
e−rŨ(ω,·)],

where we have used that Ũ is F̃η

S̃
-measurable in the first component and then the Markov

property of P̃ . Letting Tω denote the F̃η-stopping time Tω := Ũ (ω, · − p̃ + P̃
S̃
(ω)), we can

use the Lévy property of P̃ to write the last expectation as E[e−rTω ]. The other conditional
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expectations from (54) can be treated similarly with the same stopping time Tω, which by
(55) is a �η-stopping time. �

The previous lemma shows that if (43) is satisfied, an optimal control to (44) exists. Ad-
ditionally, one can see that for an explicit calculation of such an optimal control it suffices
to find the maximal solution L�η

to (21) and (22) or, equivalently, to find �η from (50). In
Section 4.3 we show that also in the case p(η) = 0 an optimal control can be constructed, but
via a slight change of P .

4.1. Optimal predictable controls. We start now with the simplest case and assume that
P(|Y1| < η) = p(η) = 1. This corresponds to our controller operating without any sensor and
using predictable controls: �η = P = �∞; see Lemma 4.1(i).

THEOREM 4.2 (Optimal predictable control). In the case p(η) = 1, an optimal control
for (44) is given by

CP
t := c0 ∨ sup

v∈[0,t]
LP

v , t ∈ [0,∞),

with

(58) LP
t = a(P̃t− − b), t ∈ [0,∞),

where the constants a, b are given by

a := 1

E[R∞−] = r

λ
, b := sup

0<T ∈SP

E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ] .

In fact, the process LP from (58) is the maximal solution to (21), (22).

PROOF. From (49) and P P̃ = P̃−, P(�N) ≡ 0 (see Lemma 4.1(i)) we get that the maxi-
mal solution LP to (21), (22) satisfies

LP = inf
0<T ∈SP

�T (P̃−,0) = inf
0<T ∈SP

1 −E[e−rT ]
E[RT −]

(
P̃− − E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ]

)

= inf
0<T ∈SP

r

λ

(
P̃− − E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ]

)
= r

λ

(
P̃− − sup

0<T ∈SP

E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ]

)
,

where the third equality holds because for any predictable stopping time T one has

E[RT −] = E[RT ] = λE

[∫
[0,T ]

e−rt dt

]
= λ

r

(
1 −E

[
e−rT ]). �

PROPOSITION 4.3. (i) The constant b from Theorem 4.2 can also be obtained by taking
a supremum over all stopping times and it has an alternative representation in terms of the
running supremum over P̃−:

(59) b = sup
0<T ∈S

E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ] = E[∫[0,∞)(supv∈[0,t] P̃v− − p̃)dRt ]

E[R∞−] .

(ii) For η ∈ [0,∞] with p(η) > 0 and � ∈ {0,1}, we have �η(p,�) < 0 if and only if
p < b.
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PROOF. (i) The first equation in (59) follows from Theorem 4.2 as any T ∈ S�η
can be

approximated by (Tn)n∈N ⊂ SP defined by Tn := T + 1
n

, n ∈ N. It remains to show that b

satisfies also the second equality. For that fix a predictable stopping time S and remember
LP = a(P P̃ − b) = a(P̃− − b). Then we obtain by the strong Markov property of Lévy
processes, PNS = E[NS |FS−] = NS− and (22) that

P̃S−e−rS = PP S = E

[∫
[S,∞)

sup
v∈[S,t]

LP
v dRt

∣∣∣FS−
]

= E

[∫
(S,∞)

sup
v∈[S,t]

LP
v dRt

∣∣∣FS−
]

= aE

[∫
(S,∞)

sup
v∈[S,t]

(P̃v− − P̃S−)dRt

∣∣∣FS−
]

+ aE
[
(P̃S− − b)(R∞− − RS) | FS−

]

= aE

[∫
[0,∞)

(
sup

v∈[0,t]

Nv−∑
k=1

Yk

)
dRt

]
e−rS + a(P̃S− − b)e−rS

E[R∞−].

Solving for b and recalling that E[R∞−] = λ
r

= 1
a

gives the second equality for b.
(ii) By definition of �η (see (50)) we get

�η(p,�) = inf
0<T ∈S�η

1 −E[e−rT ]
E[RT −] + �

(
p − E[e−rT ∑NT

k=1 Yk]
1 −E[e−rT ]

)
,

which shows (ii) by (i). �

4.2. Optimal controls for an imperfect sensor. Next we consider controls that can use an
imperfect jump sensor, that is, a sensor with probability of failing to alert p(η) = P(|Y1| <

η) ∈ (0,1). In this class, we find the following optimal control:

THEOREM 4.4 (Optimal control with η-sensor). In the case p(η) ∈ (0,1), an optimal
control for (44) is

C�η

t := c0 ∨ sup
v∈[0,t]

L�η

v , t ∈ [0,∞),

with the maximal solution L�η
to (21) and (22) given explicitly by

(60) L�η

t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, P̃
η
t ≥ b,

∣∣�P̃
η
t

∣∣≥ η,
r

λ

(
P̃

η
t − b

)
, P̃

η
t ≥ b,

∣∣�P̃
η
t

∣∣< η,

inf
γ 0∈(0,B

η
0 ·(b−P̃

η
t ))

f
η
1

(
γ 0,0, P̃

η
t

)
< 0, P̃

η
t < b,

∣∣�P̃
η
t

∣∣≥ η,

inf
γ 1∈(−B

η
1 ·(b−P̃

η
t ),0)

f
η
0

(
0, γ 1, P̃

η
t

)
< 0, P̃

η
t < b,

∣∣�P̃
η
t

∣∣< η.

Here, b is as in Corollary 4.3,

(61) B
η
0 := 1 − λr

λ + r
· 1 − p(η)

r + λ(1 − δ)
< 1, B

η
1 := 1 − λp(η) + (λ+r)λ

r
(1 − δ)

λp(η)
> 0

with

(62) δ := E
[
e−rT 0]

for T 0 := inf

{
t ≥ 0

∣∣∣∣ Nt∑
k=1

Yk ≥ 0,Nt ≥ 1

}
;

moreover, for � ∈ {0,1}, the functions f
η
� :R×R×R →R are given by

(63) f
η
�

(
γ 0, γ 1,p

) := (1 −E[e−rT η(γ 0,γ 1)])p −E[e−rT η(γ 0,γ 1)∑N
T η(γ 0,γ 1)

k=1 Yk]
λ
r
(1 −E[e−rT η(γ 0,γ 1)]) −E[e−rT η(γ 0,γ 1)1{|�P̃

T η(γ 0,γ 1)
|≥η}] + �

,
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with

(64)
T η(γ 0, γ 1) := inf

{
t ∈ {�η

N > 0
} | (|�P̃t | < η and P̃t− − p̃ ≥ γ 0)

or
(|�P̃t | ≥ η and P̃t − p̃ ≥ γ 1)}.

The proof of the previous theorem will be given at the end of this section. A separate result
on the optional case p(η) = 0 is obtained in Section 4.3 and an illustration of all our findings
is deferred to Section 4.4. Before proceeding to the proof of this theorem, let us note how
the minimal storage level L�η

approaches that of the predictable case LP when the sensor
becomes more and more useless as its failure probability tends to 1.

COROLLARY 4.5. In the setting of Theorem 4.4, consider a sequence (ηn)n∈N ⊂ [0,∞]
such that limn p(ηn) = 1. Then the solution L�ηn , n ∈ N, converges to LP (see Theorem 4.2)
for n → ∞:

lim
n→∞L�ηn

t (ω) = LP
t (ω), t ∈ [0,∞),ω ∈ �.

PROOF. For ω ∈ � and t ∈ [0,∞), we have for any η ≥ �P̃t (ω) that P̃
η
t (ω) = P̃t−(ω)

and �η
(�N)t (ω) = 0. Hence, due to (49), we only have to show limn→∞ �ηn(p,0) =

�∞(p,0) for any p ∈ R. In case p ≥ b, we have by (58) and (60) that �η(p,0) = �∞(p,0)

for any η ∈ [0,∞]. Assume henceforth p < b. By definition of �η we have that η 	→
�η(p,0) is increasing. Hence, we infer that �ηn(p,0) ≤ �∞(p,0) and it suffices to show
limn→∞ �ηn(p,0) ≥ �∞(p,0). We obtain by Theorem 4.2 and the characterization of a from
Corollary 4.9 below that

(65) �∞(p,0) = 1 −E[e−rT 0]
λ
r
(1 −E[e−rT 0])(p − b).

In order to conclude our assertion, we will show next how to find a lower bound for �η(p,0) =
infγ1<0 f

η
0 (0, γ1,p), η ∈ [0,∞], from (63) which converges to �∞(p,0) when p(η) → 1. For

γ1 < 0, we have T 0 ≥ T η(0, γ1), η ∈ [0,∞], and therefore, using also

b ≥ 1

1 −E[e−rT η(0,γ 1)]E
[

e−rT η(0,γ 1)

N
T η(0,γ 1)∑
k=1

Yk

]
,

establishes

(66) f
η
0

(
0, γ 1,p

)≥ 1 −E[e−rT 0]
λ
r
(1 −E[e−rT η(0,γ 1)]) −E[e−rT η(0,γ 1)1{|�P̃

T (0,γ 1)
|≥η}]

(p − b).

Comparing (65) and (66) shows that it remains to prove that the denominator in (66) con-
verges to the denominator in (65) uniformly in γ1 < 0 when p(η) → 1:

lim
p(η)→1

sup
γ1<0

∣∣∣∣λr (E[e−rT 0]−E
[
e−rT η(0,γ 1)])−E

[
e−rT η(0,γ 1)1{|�P̃

T (0,γ 1)
|≥η}

]∣∣∣∣= 0.

This uniform convergence is a consequence of the estimates

0 ≤ E
[
e−rT (0,γ 1)1{|�P̃

T (0,γ 1)
|≥η}

]≤ 1 − p(η),0 ≤ E
[
e−rT (0,γ 1) − e−rT 0]≤ 1 − p(η),

which hold for any γ1 < 0. �

The rest of this section is devoted to the proof of Theorem 4.4. From Lemma 4.1 we know
that we only have to determine �η from (50). Let us prepare this by some auxiliary results
for �η.
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PROPOSITION 4.6. If p(η) > 0, the functions �η(·,0) and �η(·,1) are both continuous,
increasing and concave on R. Moreover, on (−∞, b), both functions are strictly increasing
and satisfy �η(·,0) < �η(p,1) < 0. On [b,∞), �η(·,0) and �η(·,1) are determined by

�η(p,0) = a(p − b) ≥ 0 = �η(p,1), p ∈ [b,∞),

where a, b are the constants from Theorem 4.2.

PROOF. For � ∈ {0,1} we obtain easily from (50), (51) that p 	→ �η(p,�) is increas-
ing. Moreover, concavity follows as the infimum of affine functions is concave. Moreover, as
�η(·,0), �η(·,0) are concave functions taking real-values, we have that they are also continu-
ous.

Next, we obtain from Corollary 4.3 that for p ∈ R, � ∈ {0,1}, we have �η(p,�) < 0 if
and only if p < b. Moreover, in the case p < b we can restrict in (50) to 0 < T ∈ S�η

with
�T (p,�) < 0. This immediately shows �η(p,0) < �η(p,1) < 0 for p < b.

�η(·,1) for p ≥ b: We get with Tn = 1
n

in (50) that 0 ≤ �η(p,1) ≤ limn→∞ � 1
n
(p,1) = 0.

�η(·,0) for p = b: We have by Theorem 4.2 and Lemma 4.1(ii), that �∞(p,0) = 0 and
0 ≤ �η(p,0) ≤ �∞(p,0) = 0.

�η(·,0) for p > b: If p > b, we get from Theorem 4.2, Lemma 4.1(ii) and (59) that

�∞(p,0) ≥ �η(p,0) ≥ inf
0<T ∈S�

1 −E[e−rT ]
E[RT −] (p − b)

≥ inf
0<T ∈S�

1 −E[e−rT ]
E[RT ] (p − b) = r

λ
(p − b) = �∞(p,0);

so, we must have equality everywhere and, in particular, �η(p,0) = �∞(p,0) > 0.
Finally, we prove strict monotonicity on (−∞, b). For that fix � ∈ {0,1} and assume

by way of contradiction that p1 < p2 < b with �η(p1,�) = �η(p2,�). Now there exists
a sequence (Tn)n∈N such that �Tn(p2,�) (see (51)) decreases to �η(p2,�) with maximal
distance 1

n
. Then

0 = �η(p1,�) − �η(p2,�) ≤ �Tn(p1,�) − �Tn(p2,�) + 1

n

= 1 −E[e−rTn]
E[RTn−] + �

(p1 − p2) + 1

n
≤ 0 + 1

n

and therefore, by p1 < p2,

lim
n→∞

1 −E[e−rTn]
E[RTn−] + �

= 0.

Hence, we get by (59) that

0 > �η(p2,�) = lim
n→∞

1 −E[e−rTn]
E[RTn−] + �

(
p2 − E[e−rTn

∑NTn

k=1 Yk]
1 −E[e−rTn]

)

≥ lim
n→∞

1 −E[e−rTn]
E[RTn−] + �

(p2 − b) = 0,

which is the desired contradiction. �

The next lemma shows how the infimum in (50) is attained in a relaxed sense.
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LEMMA 4.7. In the case p(η) > 0, we have for p ∈ R and � ∈ {0,1} that

(67) �η(p,�) = (1 −E[e−rT �η (p,�)])p −E[e−rT �η (p,�)∑N
T �η (p,�)

k=1 Yk]
E[�RT �η (p,�)1(H�η (p,�))c + RT �η (p,�)−] + �

,

where

T �η

(p,�) := inf
{
t ∈ {�η

N > 0
} | �η(�η

P̃ t − p̃ + p,�η

(�N)t
)≥ �η(p,�)

}
,(68)

H�η

(p,�) := {
�η(�η

P T �η (p,�) − p̃ + p,�η

(�N)T �η (p,�)

)≥ �η(p,�)
}

∩ {�η

NT �η (p,�) > 0
}
.

(69)

REMARK 4.8. (i) The quadruple

τ �η

(p,�) := (
T �η

(p,�),∅,H�η

(p,�),H�η

(p,�)c
)

with T �η
(p,�) and H�η

(p,�) defined in the previous lemma is a so-called divided stopping
time. The theory of divided stopping times was developed in El Karoui (1981) and we will
give some more details in the Appendix.

(ii) Note that (67) does not by itself construct �η from (50) as �η is also contained on
the right-hand side. It shows, however, that we should restrict attention to a certain class
of stopping times (68) when computing the infimum in (50). This is the key to our explicit
solution.

PROOF. To verify (70), we will just write L and � instead of L�η
and �η in the follow-

ing.
Lemma 4.7 will follow from Lemma 4.1(ii) and from the fact that P̃ is a Lévy process, if

we can show for any S ∈ S� that

(70) L�
S =

�P S −E[PT L
S

|F�
S ]

E[�RT L
S
1Hc

S
+ RT L

S − − RS− | F�
S ] ,

where

T L
S := inf

{
t > S | Lt ≥ LS and �Nt > NS−

}
,

HS := {LT L
S

≥ LS} ∩ {�NT L
S

> NS−
}∩ {

S < T L
S

}
.

Let us consider the sequence

(71) T L
S,n := (

T L
S

)
HS

∧
((

T L
S

)
Hc

S
+ 1

n

)
, n ∈ N :

By Dellacherie and Meyer ((1978), Theorem 50, page 116), the random time T L
S is an F -

stopping time, whence (T L
S )Hc

S
+ 1

n
is a predictable F -stopping time and, therefore, also a

�-stopping time. Moreover we see that the graph of (T L
S )HS

is contained in {t > S | Lt ≥
LS and �Nt > �NS−} and therefore by Lenglart ((1980), Corollary 2, page 504), (T L

S )HS

is also a �-stopping time. As the minimum of two �-stopping times is a �-stopping time
we obtain that T L

S,n from (71) is a �-stopping time for every n ∈ N. We define next T
L,1
S :=

inf{t > T L
S |Nt > NT L

S
}. As N is piecewise constant, this implies T

L,1
S > T L

S almost surely on
{T L

S < ∞}. Now we define the sequence (An)n∈N ⊂ F�
T L

S,n

via

An := {
T

L,1
S > T L

S,n

}∩ {
T L

S < ∞}



2948 P. BANK AND D. BESSLICH

and observe that An ⊂ An+1 for n ∈ N with
⋃

n∈N An = {T L
S < ∞}. Note that

(72) dR(
(
T L

S ,T L
S,n]

)= 0 on An.

By (53) we have on An ∩ Hc
S that L∗

T L
S

= L
T L

S + 1
n

implying

(73) sup
v∈(T L

S ,t]
Lv = sup

v∈[T L
S,n,t]

Lv on An ∩ {
t ≥ T L

S,n

}∩ Hc
S for t ∈ (0,∞).

Next, we get by definition of An and (22) that

�PS = E

[∫
[S,∞)

sup
v∈[S,t]

Lv dRt

∣∣∣F�
S

]

= lim
n→∞E

[
1An

∫
[S,∞)

sup
v∈[S,t]

Lv dRt

∣∣∣F�
S

]
+ LSE

[
1{T L

S =∞}(R∞− − RS−) | F�
S

]
.

(74)

The first conditional expectation above is equal to

E

[
1Hc

S∩An

(∫
(T L

S ,∞)
sup

v∈(T L
S ,t]

Lv dRt +
∫
[S,T L

S ]
LS dRt

)

+ 1HS∩An

(∫
[T L

S ,∞)
sup

v∈[T L
S ,t]

Lv dRt +
∫
[S,T L

S )
LS dRt

) ∣∣∣F�
S

]
(72), (73)= LSE

[
1An(�RT L

S
1Hc

S
+ RT L

S − − RS−) | F�
S

]
+E

[
1An

∫
[T L

S,n,∞)
sup

v∈[T L
S,n,t]

Lv dRt

∣∣∣F�
S

]
(22)= LSE

[
1An(�RT L

S
1Hc

S
+ RT L

S − − RS−) | F�
S

]+E
[
1AnPT L

S,n
| F�

S

]
.

Plugging this into (74) leads to

(75) �PS = LSE
[
�RT L

S
1Hc

S
+ RT L

S − − RS− | F�
S

]+E
[
PT L

S
| F�

S

]
,

where we used the right-continuity of P and its class(D�) property to apply Lebesgue’s
theorem. Now, (75) is equivalent to the desired identity (70). �

COROLLARY 4.9. The constants a, b defined in Theorem 4.2 have the alternative de-
scriptions

(76) a = â := 1 −E[e−rT 0]
E[RT 0] , b = b̂ := E[e−rT 0 ∑N

T 0

k=1 Yk]
1 −E[e−rT 0] ,

where T 0 is defined in (62).

PROOF. For η = ∞ we have p(η) = 1 and �η
(�N) ≡ 0. Hence, by Lemma 4.1, Theo-

rem 4.2 and Lemma 4.7, we obtain that T �η
(p,0) = T 0, H�η

(p,0) =∅ giving (76). �

PROOF OF THEOREM 4.4. Lemma 4.1 shows that we only have to determine the function
�η of (50). For p ≥ b and � ∈ {0,1} this is already done by Proposition 4.6. So, assume
henceforth that p < b. We will prove in the next lines that

(77) �η(p,�) = f
η
�

(
�0(p,�) − p,�1(p,�) − p

)
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with f
η
� defined in (63) and

�0(p,�) := min
{
p̂ ∈ (−∞, b] | �η(p̂,0) ≥ �η(p,�)

}
,(78)

�1(p,�) := min
{
p̂ ∈ (−∞, b] | �η(p̂,1) ≥ �η(p,�)

}
.(79)

We prove (77) by clarifying the structure of T �η
(p,�) and H�η

(p,�) from (68) and (69)
respectively. As p < b we obtain by Proposition 4.6 that the minima in (78) and (79) are
well-defined and �0(p,�) > �1(p,�). Moreover, as p̂ 	→ �η(p̂,�) is strictly increasing on
(−∞, b) (see again Proposition 4.6) we get

(80) �0(p,0) = p and �1(p,1) = p.

Now, using the definitions of �0, �1 we can see that

T �η

(p,�) = T η(�0(p,�) − p,�1(p,�) − p
)
,

and

H�η

(p,�) = {|�P̃T �η (p,�)| ≥ η
}
,

where T η, H�η
are defined in (64) and (69) respectively. Hence, plugging those observations

into (67) proves (77).
Equation (77) implies immediately that

(81) �η(p,�) = inf
γ 0,γ 1∈(−∞,b−p]

f
η
�

(
γ 0, γ 1,p

)
.

Hence, to finish the proof of Theorem 4.4 we have to show that the infimum in (81) coin-
cides with those in (60) for the respectively pertinent cases. This will be accomplished by
characterizing further the optimal choices γ̂ 0 := �0(p,�) − p, γ̂ 1 := �1(p,�) − p.

Let � = 1. By (80) we get γ̂ 1 = 0 and hence we can reduce the infimum in (81) to an
infimum over f

η
1 (γ 0,0,p). Moreover, by γ̂ 0 > γ̂ 1 = 0 we can restrict to γ 0 > 0. Next we

want to obtain the stated upper bound for the relevant γ 0. Using T η(γ 0,0) ≥ T 1, with T 1 the
first jump of N , we obtain for any p̂ ≤ b that

(82)

�η(p̂,0) ≥ 1 −E[e−rT 0]
λ
r
(1 −E[e−rT 1]) −E[e−rT 11{|�P̃

T 1 |≥η}]
(p̂ − b)

= (λ + r)(1 −E[e−rT 0])
λp(η)

(p̂ − b).

On the other hand, using Tn := T 0 + 1
n

, n ∈ N, with T 0 from (62), we obtain due to (76) an
upper bound on �η(p,1):

(83) �η(p,1) ≤ 1 −E[e−rT 0]
λ
r
(1 −E[e−rT 0]) + 1

(p − b).

Observe that the right-hand side of (82) will be not smaller than the right-hand side of (83) if
and only if

(84) p̂ − p ≥ r + λ(1 −E[e−rT 0]) − λr
λ+r

(1 − p(η))

r + λ(1 −E[e−rT 0]) (b − p).

For such p̂(≤ b) we will have �η(p̂,0) ≥ �η(p,1) and thus �0(p,1) ≤ p̂, which is tanta-
mount with γ̂ 0 being less than the right-hand side in (84). This shows that we can restrict to
γ0 < B

η
0 (b − p), which we wanted to show.
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Let � = 0. By (80) we get γ̂ 0 = 0. Hence, we can assume in (81) that γ0 = 0 and by
γ̂ 0 > γ̂ 1 = 0 we only have to consider γ 1 < 0. To obtain a lower bound, we can use the
boundaries established in (82) and (83) to see that �η(p,0) > �η(p̂,1), if

p̂ − p < −
(1 − λp(η) + (λ+r)λ

r
(1 −E[e−rT 0])

λp(η)

)
(b − p).

This shows that γ1 has to be chosen larger than −B
η
1 (b − p), which finishes our proof. �

4.3. Optimal optional controls. Let us complete our analysis and determine the optimal
control in the case of p(η) = 0 where � = O(F) (see Lemma 4.1(ii)). This case is special
since Theorem 3.9 is not directly applicable as explained in the following proposition, which
at the same time provides us with a remedy:

PROPOSITION 4.10. Assume p(η) = 0.

(i) The process P is indistinguishable from �P .
(ii) For p̃ < mλ

r
the process P is not dR-right-upper-semicontinuous in expectation at

time 0 (see Assumption 3.3(iii)). In particular, P does not satisfy Assumption 3.3.
(iii) The process P̄ given by

(85) P̄t :=
⎧⎨⎩

λ

λ + r
(P̃t + m)e−rt for P̃t < m

λ

r
,�P̃t = 0,

Pt else,
t ∈ [0,∞),

with P̄∞ := 0, satisfies Assumption 3.3 and, for any stopping time S ∈ S ,

(86)

P̄S = esssup
T ≥S,dR([S,T ))=0 a.s.

E[PT |FS]

= PS ∨E[PT 1
S
|FS] = PS ∨ λ

λ + r
(P̃S + m)e−rS,

where

(87) T 1
S := inf{t ≥ S|Nt > NS}.

In particular, P̄ ≥ P , up to an evanescent set, and there exists a process L̄ satisfying (21) and
(22) with P replaced by P̄ . In fact, P̄ is the smallest optional process larger than P satisfying
Assumption 3.3, that is, for any other optional process P̂ ≥ P satisfying Assumption 3.3 we
have that {P̂ < P̄ } is evanescent.

PROOF. (i) is an immediate consequence of p(η) = 0 and Corollary 2.10 of the Meyer
section theorem.

(ii) With T1 denoting the first jump time of the Poisson process N , we have dR([0, T1)) = 0
and also

E[P0] = p̃ < (p̃ + m)
λ

λ + r
= E[PT1],

where the inequality holds because p̃ < mλ
r

by assumption. It follows that P is not dR-right-
upper-semicontinuous in expectation at 0.

(iii) Let us first argue (86) for any stopping time S. We have on {�P̃S = 0} ∩ {S < ∞} that

P̄S = esssup
T ≥S,dR([S,T ))=0 a.s.

E[PT |FS] = PS ∨E[PT 1
S
|FS] = PS ∨ λ

λ + r
(P̃S + m)e−rS,
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where T 1
S is defined in (87). As PS < λ

λ+r
(P̃S + m)e−rS is equivalent to P̃S < mλ

r
, we obtain

esssup
T ≥S,dR([S,T ))=0 a.s.

E[PT |FS] =
⎧⎨⎩

λ

λ + r
(P̃S + m)e−rS if P̃S < m

λ

r
,�P̃S = 0, S < ∞,

PS else.

This proves (86). We will show next that P̄ satisfies Assumption 3.3. Part (i) of Assump-
tion 3.3 is clear. Part (ii) follows by Fatou’s lemma and �P̄S = 0 a.s. at every predictable
F -stopping times since for ω ∈ {�P̃S = 0} such that P̃S(ω) = P̃S−(ω) < mλ

r
we will also

have P̃Sn(ω) < mλ
r

for n large enough. Hence, it remains to prove (iii) of Assumption 3.3.
For that fix an F -stopping time S and a sequence (Sn)n∈N of F -stopping times with Sn ≥ S

for all n ∈N such that we have limn→∞ dR([S,Sn)) = 0 almost surely. Then for almost every
ω ∈ �, we will have Sn(ω) ≤ T 1

S (ω) for sufficiently large n. Letting S̃n := (Sn){Sn≤T 1
S }, we

thus obtain by definition of P̄ and Fatou’s lemma that

lim sup
n→∞

E[P̄Sn] ≤ lim sup
n→∞

E[P̄
S̃n

] +E

[
lim sup
n→∞

P̄Sn1{Sn>T 1
S }
]

(86)= lim sup
n→∞

E

[
esssup

T ≥S̃n,dR([S̃n,T ))=0 a.s.

E[PT |F
S̃n

]
]
+ 0

= lim sup
n→∞

E

[
esssup

T ≥S̃n,dR([S,T ))=0 a.s.

E[PT |F
S̃n

]
]

= lim sup
n→∞

E

[
esssup

T ≥S̃n,dR([S,T ))=0 a.s.

E[PT |FS]
]

≤ E

[
esssup

T ≥S,dR([S,T ))=0 a.s.
E[PT |FS]

] (86)= E[P̄S].

Here, we have used in the second equality that on {Sn ≤ T 1
S } also dR([S,Sn)) = 0; in the

third equality we used that the essential supremum is upwards directed and so dominated
convergence allows us to interchange the esssup and the FS -conditional expectation. Hence,
Assumption 3.3(iii) is satisfied. It now remains to show that P̄ is the smallest optional process
larger than P satisfying Assumption 3.3. For that assume there exists another process P̂

with P̂ ≥ P satisfying Assumption 3.3. By the Meyer section theorem it is enough to prove
P̄S ≤ P̂S at every F -stopping time S. On the complement of A := {P̃S < mλ

r
} ∩ {�P̃S =

0} ∩ {S < ∞} = {PS < P̄S} we have by definition of P̄ that P̄S = PS ≤ P̂S . Therefore, let us
focus on A and assume by way of contradiction P(A) > 0. Then we can define the (constant)
sequence Sn := (T 1

S )A, n ∈ N, satisfying Sn ≥ SA and limn→∞ dR([SA,Sn)) = 0. Hence, as
P̂ satisfies Assumption 3.3(iii), we get

E[P̂(T 1
S )A

] ≤ E[P̂SA
] < E[P̄SA

] (86)= E
[
E[P(T 1

S )A
|FSA

]]= E[P(T 1
S )A

] ≤ E[P̂(T 1
S )A

],
which is the desired contradiction. �

Now we get the following analogue to Theorem 4.4 for the optional case:

THEOREM 4.11 (Optimal control in the optional case). In the case p(η) = 0, the value
of the optimization problem in (44) remains the same when we replace P by P̄ :

(88) v := sup
C∈C(c0)

V (C) = sup
C∈C̄(c0)

V̄ (C),
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where C̄(c0) and V̄ (C) denote the set of admissible controls and the value when P is replaced
by P̄ from (85). Moreover, an optimal optional control for both optimization problems is given
by

CO
t := c0 ∨ sup

v∈[0,t]
LO

v , t ∈ [0,∞),

with

(89) LO
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, P̃t ≥ b, |�P̃t | > 0,
r

λ
(P̃t − b), P̃t ≥ b,�P̃t = 0,

r

λ + r
(b − P̃t ), P̃t < b, |�P̃t | > 0,

inf
γ∈(−∞,0)

f (γ, P̃t ) < 0, m
λ

r
≤ P̃t < b,�P̃t = 0,

−∞, P̃t < m
λ

r
,�P̃t = 0.

Here, b is as in Theorem 4.2 and the function f : R×R →R is given by

(90) f (γ,p) := (1 −E[e−rT (γ )])p −E[e−rT (γ )∑NT (γ )

k=1 Yk]
λ
r
(1 −E[e−rT (γ )]) −E[e−rT (γ )] ,

with

(91) T (γ ) := inf
{
t ∈ {N > 0} | |�P̃t | > 0 and P̃t − p̃ ≥ γ

}
.

REMARK 4.12. Notice, that the process LO of (89) is a solution to (21) and (22) with P

replaced by P̄ , but it is not necessarily the maximal one with (23). This is without harm for
our claim of optimality because for an application of Theorem 3.9 we can use any solution,
not necessarily the maximal one.

PROOF. Analogously to Lemma 4.1 one can show that we only have to establish the
explicit form of LO to prove that CO attains the supremum over V̄ . Moreover, one can see
that, with LO of the given form, CO only increases, when �P̃ > 0 or P̃ ≥ mλ

r
. This shows

V (CO) = V̄ (CO), which also establishes (88) since P ≤ P̄ . It thus suffices to establish the
stated characterization of LO . For this denote by L̄O the maximal solution to (21) and (22)
(for P̄ instead of P ) which then satisfies (23), that is,

(92) L̄O
S = essinf

S<T ∈S
P̄S −E[P̄T |FS]
E[dR([S,T ))|FS] , S ∈ S.

Let S ∈ S . We will argue now why for any T ∈ S� with T > S we can replace E[P̄T |FS] by
E[PT |FS] in (92). By definition of P̄ we have, that E[P̄T |FS] ≤ E[P̄

T̂
|FS] for T̂ given by

T̂ := T 1
T (see (87)) on {P̄T > PT } and T̂ := T else. We observe that dR([S,T )) = dR([S, T̂ ))

and P̄
T̂

= P
T̂

. Hence,

P̄S −E[P̄T |FS]
E[dR([S,T ))|FS] ≥ P̄S −E[P̄

T̂
|FS]

E[dR([S, T̂ ))|FS] = P̄S −E[P
T̂
|FS]

E[dR([S, T̂ ))|FS] ,

which shows our claim. Now, we can establish analogously to Lemma 4.1(ii) that

L̄O
t = �̄(P̃t ,�Nt), t ∈ [0,∞),(93)
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where �̄(p,�) := inf0<T ∈S �̄T (p,�) and, for random times T > 0,

�̄T (p,�) :=
λ

λ+r
(p + m)1{p<mλ

r
,�=0} + p1{p<mλ

r
,�=0}c −E[e−rT ]p −E[e−rT ∑NT

k=1 Yk]
E[RT −] + �

with the convention ·
0 = ∞. For p > mλ

r
or p < mλ

r
and � = 1 one can establish analogous

results to Proposition 4.6, Lemma 4.7 and deduce that L̄O is equal to LO given in (89) on the
set {P̄ = P }. Note that for γ0 ≥ 0 we have T (γ 0,0) = T 0, which explains the explicit form
of LO in the case P̃ < b and �N > 0. On {P̄S > PS} = {NS = NS−} ∩ {PS < b} we have by
(86) that P̄S = E[PT 1

S
|FS]. As L̄O satisfies (22) we get with the definition of P̄ , that

E

[∫
[T 1

S ,∞)

∂

∂c
ρt

(
sup

v∈[S,t]
L̄O

v

)
dRt

∣∣∣FS

]
= E

[∫
[S,∞)

∂

∂c
ρt

(
sup

v∈[S,t]
L̄O

v

)
dRt

∣∣∣FS

]

= P̄S
(86)= E[PT 1

S
|FS] = E[P̄T 1

S
|FS]

= E

[∫
[T 1

S ,∞)

∂

∂c
ρt

(
sup

v∈[T 1
S ,t]

L̄O
v

)
dRt

∣∣∣FS

]
,

where we have used that dR([S,T 1
S )) = 0. Hence, as dR({T 1

S }) > 0 on {S < ∞} we obtain
almost surely supv∈[S,T 1

S ] L̄O
v = L̄O

T 1
S

on {S < ∞}. Therefore we can replace L̄O by −∞ on

{P̄ > P } = {N = N−}∩ {P < b} to obtain another solution to (21) and (22), which is exactly
LO of (89). �

In analogy to the predictable case, the next corollary shows how the minimal storage level
L�η

approaches the minimal storage level under full immediate information LO when the
sensor’s probability to fail tends to 0:

COROLLARY 4.13. In the setting of Theorem 4.4, consider a sequence (ηn)n∈N ⊂ [0,∞]
such that limn p(ηn) = 0. Then the solution L�ηn , n ∈ N, converges to LO (see Theorem 4.11)
for n → ∞:

lim
n→∞L�ηn

t (ω) = LO
t (ω), t ∈ [0,∞),ω ∈ �.

PROOF. In the case P̃t (ω) ≥ b we have nothing to show. Assume now P̃t (ω) < b

and �Nt(ω) > 0. Using (67) and (93) shows LO
t (ω) ≤ L�η

t (ω) for all η ∈ [0,∞] with
η ≤ |�P̃t (ω)|. Moreover, for n ∈ N set T k

n := (T 0){|�P̃ 0
T |≥ηn} ∧ (T 0 + 1

k
), k ∈ N, where T 0 is

defined in (62). Then we obtain with δ as in (62) that

lim
n→∞L�ηn

t (ω) ≤ lim
n→∞ lim

k→∞�T k
n

(
P̃t (ω),1

)
= lim

n→∞
(1 − δ)(P̃t (ω) − b)

E[RT 0−] + 1 +E[e−rT 01{|�P̃T0 |<ηn}]

= r

r + λ

(
P̃t (ω) − b

)= LO
t (ω).

Next, let mλ
r

≤ P̃t (ω) < b and �Nt(ω) = 0. First, LO
t (ω) ≤ L�η

t (ω) for all η ∈ [0,∞) fol-
lows as before and we claim that for any γ < 0 we have for f from (90) that

(94) f (γ,p) = lim
n→∞f ηn(0, γ,p).
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Indeed, one can see that for γ < 0 we have T (γ ) ≤ T ηn(0, γ ) for any n ∈ N, where
T (γ ) is given by (91). Moreover, as {T (γ ) < T ηn(0, γ )} ⊂ {|�P̃T (γ )| < ηn} we see that
limn→∞ P(T ηn(0, γ ) > T (γ )) = 0. The rest follows now by Lebesgue’s theorem. As B

ηn

1 of
(61) decreases to −∞ for p(ηn) going to zero, we can choose ηn small enough to ensure that
γ > B

ηn

1 (b − P̃t (ω). Therefore, we obtain with (94) that

f
(
γ, P̃t (ω)

)= lim
n→∞f ηn

(
0, γ, P̃t (ω)

)≥ lim
n→∞L

ηn
t (ω),

which shows LO
t = infγ<0 f (γ, P̃t (ω)) ≥ limn→∞ L

ηn
t (ω).

Finally, let p := P̃t (ω) < mλ
r

and �Nt(ω) = 0. One can see that B
η
1 from (61) converges

to −∞. Moreover, for (p(ηn))n∈N going to zero and (γn)n∈N going to −∞ we get that
(T ηn(0, γn))n∈N is converging to T 1, which denotes the first jump of N . Hence,

lim
n→∞f ηn(0, γn,p) = (1 −E[e−rT 1])p −E[e−rT 1

Y1]
λ
r
(1 −E[e−rT 1]) −E[e−rT 1] =

r
λ+r

(p − mλ
r
)

0
= −∞,

where the last equities are meant as a limiting procedure as the nominator converges to
a strictly negative number and the denominator to zero. Hence, we obtain our result as
limn→∞ L�ηn

t (ω) = limn→∞ infγ∈(B
ηn
1 (b−p),0) f

ηn

0 (0, γ,p) = −∞. �

4.4. Illustration. For a detailed illustration of Theorem 4.2, Theorem 4.4 and Theo-
rem 4.11, let us fix λ = 1

2 , let Y1 be the bi-modal distribution 1
2(N (−3,2) + N (6,2)) and

choose p̃ = −10 and r = 1, which gives m = 1.5 and b ≈ 1.37642.
To obtain L�η

, η ∈ [0,∞], we need to calculate numerically f
η
�, � ∈ {0,1}, from (63),

which can be done via Monte Carlo (105 samples). Figure 1 plots a trajectory for the ex-
pected undiscounted reward process P̃ η (gray) with its critical level b (dotted gray) along
with the optimal Meyer-measurable controls for η = 3, η = 6, predictable (η = ∞) control,
the optional (η = 0) one, all starting in c0 = −12. Observe first of all that both of the Meyer
controls fail to detect some jumps of P̃ (and P ) immediately as they happen. The Meyer con-
trol with η = 6 also does not adjust its level after the jump number four, despite the higher
rewards obtainable then. So the controller here gambles on her ability to detect future risk
shocks in time to benefit then from even higher rewards and the risk reduction. In fact, after
the sixth jump of the reward process in this scenario, the accumulated value of the unde-
tected jumps of P̃ is finally high enough to make her adjust her position. The predictable
controller with no warnings about jumps can only adopt her position after the reward process
has changed. This leads to a left-continuous optimal control in the predictable case. More-
over, in this case the position is increased whenever P̃ reaches a new all-time high, the only
exception being the first jump at time t1 ≈ 0.5, because the endogenously given starting posi-
tion c0 = −12 is higher than the minimal position a predictable trader would tolerate, which
is approximately LP

t1
≈ −19.12. By contrast, the optional controller with perfect sensor can

always intervene when rewards increase and she chooses to do so before the risk clock rings
whenever the reward process P̃ is below the critical threshold b; with rewards beyond b, it is
optimal for her and all the other controllers to only react to jumps after they have happened.
One point of special interest is the moment Tb where P̃ η passes the critical value b for the
first time. The optional controller intervenes proactively to eliminate all risk (CTb

= 0) and
is reacting once more after the jump to profit from the newly available high rewards. Note
that also the Meyer controllers with η ∈ {3,6} act here in a similar way because the jump in
this scenario happens to be larger than their respective detection thresholds and so the con-
trollers become aware of this jump in the moment when it occurs. Hence, one can see that
neither the optimal control in the Meyer case nor the optimal control in the optional case is in
general left- or right-continuous; they are both just làdlàg, which illustrates the necessity of
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FIG. 1. P̃ η (gray), b (dotted gray) and optimal controls for η = 0 (optional, black), η = 3, η = 6
(black) and η = ∞ (predictable, black). The dots indicate the processes’ value at their jump times.

the general framework chosen in Section 3. Let us observe also that at the time of the fourth
jump, both the predictable and the optional controller intervene while one of the Meyer con-
trollers (η = 6) abstains; hence, the Meyer controls cannot be viewed as simple interpolations
between those two extreme cases.

We can use Monte Carlo simulation also to compute the value v(η) of an optimal control
depending on η for the fixed initial values p and c0 set above, see Figure 2. Obviously, v(η)

is decreasing in the detection threshold η, its maximum v(0) ≈ −22 corresponding to the
optional case with perfect sensor considerably exceeding its minimum v(∞) ≈ −33 without
sensor. In between these extremes, we can see the value function to be concave for “small”

FIG. 2. Value of an optimal control for η between 0 and 12 in our numerical example.
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and convex for “large” values of η. The switching point between these regimes is around
η ≈ 6.5 which marks the detection threshold where small improvements of the sensor will be
most effective. By contrast, the same small improvements will have very little effect when η

is small (as most jumps will be detected anyhow) and η is large (when only few jumps will
be large enough to be detected).

APPENDIX: PROPERTIES OF THE INTEGRAL FOR LÀDLÀG INTEGRATORS

We will prove some results for the ∗d-integral defined in (13), which are well known for
classical integrals and still valid for such ∗d-integrals. But before doing this we will start with
a motivation for our definition of this integral and we close this chapter with a comparison to
similar definitions in the literature.

For the rest of this section fix a filtered probability space (�,F,F := (Ft )t≥0,P) with F :=
F∞ := ∨

t Ft and F fulfills the usual conditions. Furthermore, we consider a P-complete
Meyer-σ -field � (see Definition and Theorem 2.2), such that P(F) ⊂ � ⊂ O(F), where
P(F) and O(F) denote, respectively, the predictable and the optional σ -field associated
with F .

Motivation of ∗d-integrals. Apart from the approximation argument for the ∗d-integral in
the proof of Proposition 3.6, one can motivate our ∗d-integral by showing that optimizing
our ∗d-integrals is equal to an optimal stopping problem over divided stopping times. This
can be viewed as a version of a result of Bismut (1979) for divided stopping times instead of
ordinary stopping times. Divided stopping times have been introduced in El Karoui (1981):

DEFINITION A.1 (El Karoui (1981), Definition 2.37, pages 136–137). A given quadru-
ple τ := (T ,H−,H,H+) is called a divided stopping time, if T is an F -stopping time and
H−, H , H+ build a partition of � such that:

(i) H− ∈ FT − and H− ∩ {T = 0} =∅,
(ii) H ∈ F�

T ,
(iii) H+ ∈ F�

T and H+ ∩ {T = ∞} = ∅,
(iv) TH− is an F -predictable stopping time,
(v) TH is a �-stopping time.

The set of all divided stopping times τ will be denoted as S�,div. For a �-measurable positive
process Z we define the value attained at a divided stopping time τ = (T ,H−,H,H+) as
Zτ := ∗ZT 1H− + ZT 1H + Z∗

T 1H+ , where (·)∗ is defined in (14) and ∗(·) is its analogue
where we take the lim sup from the left (see, e.g., Bank and Besslich (2018b), equation (5)).

One key advantage of divided stopping times over ordinary stopping times is that under
fairly mild conditions an optimal divided stopping time exists; see El Karoui ((1981), Theo-
rem 2.39, page 138). The following result shows that ∗d-integrals yield a convex relaxation of
optimal stopping over divided stopping times that is analogous to Bismut ((1979), equation
(2.1), page 938).

THEOREM A.2. Denote by C the set of increasing, �-measurable processes C satisfying
C0− := 0 and Ct ≤ 1, t ∈ [0,∞). Furthermore, let Z be a �-measurable nonnegative process
of class(D�) with Z∞ = 0. Then

(95) sup
τ∈S�,div

E[Zτ ] = sup
C∈C

E

[∫
[0,∞)

Zs
∗dCs

]
,

and there exists a divided stopping time τ̂ := (T̂ , Ĥ−, Ĥ , Ĥ+) attaining the value on the left
hand side of (95).
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If Z is additionally left-upper-semicontinuous in expectation at every predictable F -
stopping time (see Assumption 3.3(ii)) then

Ĉ := 1�τ̂ ,∞� :=
⎧⎨⎩1�T̂ ,∞� on Ĥ− ∪ Ĥ ,

1�T̂ ,∞� on
(
Ĥ− ∪ Ĥ

)c
,

will solve the optimal control problem, that is,

sup
C∈C

E

[∫
[0,∞)

Zs
∗dCs

]
= E

[∫
[0,∞)

Zs
∗dĈs

]
.

PROOF. By El Karoui ((1981), Theorem 2.39, page 138), there exists an optimal divided
stopping time τ̂ = (T̂ , Ĥ−, Ĥ , Ĥ+) for the left-hand side of (95). By definition S := T̂

Ĥ−
is an F -predictable stopping time. Note that S > 0 as {T̂ = 0} ∩ Ĥ− = ∅ by definition of
a divided stopping time. Hence, by Bank and Besslich ((2018b), Proposition 3.2(ii)), there
exists a sequence (Sn)n∈N of �-stopping times such that Sn < S for all n ∈ N, limn→∞ Sn = S

and limn→∞ ZSn = ∗ZS . Now define, for n ∈ N,

Ĉn := (�(1
Ĥ−)Sn1�Sn,T̂

Ĥ− � + 1�T̂
Ĥ− ,∞�

+ �(1
(Ĥ−)c

)
T̂

Ĥ
∧Sn

1�T̂
Ĥ

,∞� + 1
(Ĥ−)c

1�T̂
Ĥ+ ,∞�

)∧ 1.

Clearly, Ĉn is �-measurable taking values in [0,1]; moreover, it is increasing which we
verify separately on each part of the partition � = Ĥ− ∪ Ĥ ∪ Ĥ+: On the set Ĥ−, we have

(96) Ĉn = �(1
Ĥ−)Sn1�Sn,T̂ � + 1�T̂ ,∞� ≤ 1;

on the set Ĥ , we have

(97)
Ĉn = �(1

Ĥ−)Sn1�Sn,∞� + �(1
(Ĥ−)c

)
T̂ ∧Sn

1�T̂ ,∞�

= �(1
Ĥ−)Sn1�Sn,T̂ � + �(1

(Ĥ−)c
)
T̂
1�T̂ ,Sn� + 1�Sn∨T̂ ,∞� ≤ 1;

finally, on the set Ĥ+, we have

(98)
Ĉn = (�(1

Ĥ−)Sn1�Sn,∞� + 1
(Ĥ−)c

1�T̂ ,∞�

)∧ 1

= 1�Sn,∞�∩�T̂ ,∞� + �(1
Ĥ−)Sn1�Sn,T̂ � + 1�T̂ ,Sn�.

It remains to show that

(99) E[Zτ̂ ] = lim
n→∞E

[∫
[0,∞)

Zs
∗dĈn

s

]
,

to conclude “≤” in (95).
To this end, we first calculate with (96), (97) and (98) that∫

[0,∞)
Zs

∗dĈn
s = 1{T̂ =∞}

�(1
Ĥ−)SnZSn

+ 1{T̂ <∞}1Ĥ−
(�(1

Ĥ−)SnZSn + (
1 − �(1

Ĥ−)Sn

)
Z

T̂

)
+ 1{T̂ <∞}1Ĥ∩{Sn≤T̂ }

(�(1
Ĥ−)SnZSn + (

1 − �(1
Ĥ−)Sn

)
Z

T̂

)
+ 1{T̂ <∞}1Ĥ∩{Sn>T̂ }

(�(1
(Ĥ−)c

)
T̂
Z

T̂
+ (

1 − �(1
(Ĥ−)c

)
T̂

)
ZSn

)
+ 1

Ĥ+∩{Sn≤T̂ }
(�(1

Ĥ−)SnZSn + (
1 − �(1

Ĥ−)Sn

)
Z∗

T̂

)
+ 1

Ĥ+∩{Sn>T̂ }Z
∗
T̂
,



2958 P. BANK AND D. BESSLICH

where we have used that Ĥ+ ∩ {T̂ = ∞} = ∅. Hence, from

lim
n→∞

�(1
Ĥ−)Sn = E[1

Ĥ−|FS−] = 1
Ĥ−,

lim
n→∞1{Sn≤T̂ } = 1

Ĥ−∪{T̂ =∞}, lim
n→∞1{Sn>T̂ } = 1

(Ĥ−)c∩{T̂ <∞},

we obtain, since Ĥ−, Ĥ , Ĥ+ form a partition of �, that

lim
n→∞E

[∫
[0,∞)

Zs
∗dĈn

s

]
= E

[
1

Ĥ− ∗Z
T̂

+ 1
Ĥ+Z∗

T̂
+ 1

Ĥ
Z

T̂

]
,

where we used (Ĥ−)c =∈F�

T̂H
and Z∞ = 0. This is our assertion (99).

We show next “≥” in (95). Denote by Z̄ El Karoui’s �-Snell envelope of Z (see Bank
and Besslich ((2018b), Definition 2.30), which is làdlàg (see Bank and Besslich ((2018b),
Proposition 2.28(ii)), of class(D�) (see Bank and Besslich ((2018b), Proposition 2.31) and
by Bank and Besslich ((2018b), Theorem 2.39), we have

(100) E[Z̄0] = sup
τ∈S�,div

E[Zτ ].

Furthermore, we can decompose Z̄ = M̄ − Ā into a �-martingale M̄ of class(D�) and an
increasing �-measurable process Ā with Ā0 = 0 and E[Ā∞] < ∞ (see Bank and Besslich
(2018b), Proposition 2.26(ii)). By Z̄∞ = Z∞ = 0, or equivalently, by Ā∞ = M̄∞ we obtain
for any �-stopping time T that (�Ā∞)T = E[Ā∞|F�

T ] = M̄T . Hence, for any C ∈ C we
obtain by using Z̄ = (�Ā∞) − Ā and Proposition A.4 below that

E

[∫
[0,∞)

Zs
∗dCs

]
≤ E

[∫
[0,∞)

Z̄s
∗dCs

]
= E

[∫
[0,∞)

Ā∞ − Ās
∗dCs

]
≤ E[Ā∞] = E[Z̄0],

which shows with the help of (100) that also “≥” is satisfied in (95).
If, additionally, Z is left-upper-semicontinuous in expectation at every predictable F -

stopping time, we obtain by Bank and Besslich ((2018b), Lemma 3.4(ii)), that ∗ZS ≤ PZS at
any predictable F -stopping time S. Hence, we can assume without loss of generality that the
optimal stopping time τ̂ is of the form τ̂ = (T̂ ,∅,H,H+). Then we have

E[Zτ̂ ] = E

[∫
[0,∞)

Zs
∗dĈs

]
,

which shows the result by (95). �

Two classical integration results for the ∗d-integral. Let us first verify that Fubini’s theorem
is still valid for a specific class of integrands.

PROPOSITION A.3 (Fubini’s theorem for ∗d-Integrals). Let A,B : [0,∞) → R be two
increasing functions with B right-continuous and A0−,B0− ∈ R. Additionally, let φ := φs,t :
[0,∞) × [0,∞) → R be a measurable function, which admits right limits in the first argu-
ment s ∈ [0,∞) for t ∈ [0,∞) fixed and which satisfies

(101)
∫
[0,∞)

sup
s∈[0,∞)

|φs,t |dBt < ∞.

(i) If φ ≥ 0 or
∫
[0,∞)

∫
[0,s] |φs,t |dBt

∗dAs < ∞ or
∫
[0,∞)

∫
[t,∞) |φs,t | ∗dAs dBt < ∞, then∫

[0,∞)

∫
[0,s]

φs,t dBt
∗dAs =

∫
[0,∞)

∫
[t,∞)

φs,t
∗dAs dBt .
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(ii) If φ ≥ 0 or
∫
[0,∞)

∫
[s,∞) |φs,t |dBt

∗dAs < ∞ or
∫
[0,∞)

∫
[0,t] |φs,t | ∗dAs dBt < ∞, then∫

[0,∞)

∫
[s,∞)

φs,t dBt
∗dAs =

∫
[0,∞)

∫
[0,t]

φs,t
∗dAs dBt .

PROOF. Observe that because of (101) we have for any s ∈ [0,∞) that

(102)
∫
[0,s]

φs+,t dBt = lim
u↓s

∫
[0,u]

φu,t dBt and
∫
(s,∞)

φs+,t dBt = lim
u↓s

∫
[u,∞)

φu,t dBt .

Now, recalling the notation Ac,l, Ar from (13), we get by (102) result (i) from the standard
Fubini theorem:∫

[0,∞)

∫
[0,s]

φs,t dBt
∗dAs =

∫
[0,∞)

∫
[0,s]

φs,t dBt dAc,l
s +

∫
[0,∞)

∫
[0,s]

φs+,t dBt dAr
s

=
∫
[0,∞)

∫
[t,∞)

φs,t dAc,l
s dBt +

∫
[0,∞)

∫
[t,∞)

φs+,t dAr
s dBt

=
∫
[0,∞)

∫
[t,∞)

φs,t
∗dAs dBt,

where we have used the definition (13) in the last step. Analogously we obtain by (102) result
(ii). �

Next we show that we can replace a suitable process φ inside of the extended integral by
the Meyer-projection of this process.

PROPOSITION A.4. Fix a �-measurable increasing process A : � × [0,∞) → R and
an F ⊗B([0,∞)-measurable process φ : � × [0,∞) →R, such that

E

[∫
[0,∞)

|φt | ∗dAt

]
< ∞.

Then we have that

E

[∫
[0,∞)

φt
∗dAt

]
≥ E

[∫
[0,∞)

�φt
∗dAt

]
with equality if φ admits limits from the right or if A is right-continuous.

PROOF. By the integrability assumption we can assume without loss of generality that
the process φ is bounded. Otherwise we could consider φ ∧ M and use dominated conver-
gence for Lebesgue integrals to let M tend to ∞ afterwards.

Now we use the idea of the proof of Jacod and Shiryaev ((2003), Lemma 3.12, page 29),
and introduce the inverses of Ac,l and Ar by

T
c,l
t := inf

{
s ∈ [0,∞)|Ac,l

s ≥ t
}
, T r

t := inf
{
s ∈ [0,∞)|Ar

s ≥ t
}
, t ∈ [0,∞).

As A is �-measurable, T
c,l
t and T r

t define F -stopping times. Additionally

A
c,l
T

c,l
t

≥ t on
{
T

c,l
t < ∞}

.

Hence, we get by Lenglart ((1980), Corollary 2, page 504), that T c,l is even a �-stopping
time. Next, we have by definition

E

[∫
[0,∞)

φt
∗dAt

]
= E

[∫
[0,∞)

φt dA
c,l
t

]
+E

[∫
[0,∞)

φ∗
t dAr

t

]
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and we will show separately

E

[∫
[0,∞)

φt dA
c,l
t

]
= E

[∫
[0,∞)

�φt dA
c,l
t

]
,(103)

E

[∫
[0,∞)

φ∗
t dAr

t

]
≥ E

[∫
[0,∞)

(�φ
)∗
t dAr

t

]
,(104)

where we have equality in the latter inequality if φ admits limits from the right.
For (103) we follow the time-change argument of Jacod and Shiryaev ((2003), Lem-

ma 3.12, page 29), and use Fubini’s theorem and the definition of the �-projection (see
Definition and Theorem 2.11) to obtain

E

[∫
[0,∞)

φt dA
c,l
t

]
=
∫
[0,∞)

E[φ
T

c,l
t

1{T c,l
t <∞}]dt

=
∫
[0,∞)

E
[�φ

T
c,l
t

1{T c,l
t <∞}

]
dt = E

[∫
[0,∞)

�φt dA
c,l
t

]
.

Similarly, we get (104) by

E

[∫
[0,∞)

φ∗
t dAr

t

]
=
∫
[0,∞)

E
[O(φ∗)

T r
t
1{T r

t <∞}
]
dt

≥
∫
[0,∞)

E
[(�φ

)∗
T r

t
1{T r

t <∞}
]
dt = E

[∫
[0,∞)

(�φ
)∗
t dAr

t

]
.

Here, the inequality is due to Bank and Besslich ((2018b), Proposition 3.7), which would
give us equality if φ admits limits from the right. �

REMARK A.5. Proposition A.3 and Proposition A.4 remain valid with reversed inequal-
ity if we consider ∗d instead of ∗d (see the end of Definition 3.5).

Relation of our ∗d-integral to similar definitions in the literature. Let us compare our defi-
nition of an integral over làdàg integrators to other definitions proposed in Czichowsky and
Schachermayer (2016) (following Campi and Schachermayer (2006)), Guasoni, Lépinette
and Rásonyi (2012) and Lenglart (1980).

Comparison to Czichowsky and Schachermayer (2016) and Guasoni, Lépinette and Rá-
sonyi (2012): In Czichowsky and Schachermayer ((2016), pages 4–5), the integral with re-
spect to a làdlàg process φ and a process A of bounded variation with A0 = A0− is defined
as ∫

[0,t]
φv

CSdAv :=
∫
[0,t]

φv dAc
v + ∑

v∈(0,t]
φv−�−Av + ∑

v∈[0,t)

φv�
+Av, t ∈ [0,∞),

with �−Av := Av −Av− and �+Av := Av+ −Av . Additionally they also define the integral
with integrator φ in such a way that an integration by parts formula is satisfied. One can then
calculate that ∫

[0,t]
φv

CSdAv =
∫
[0,t]

φu dAu− − ∑
0<u≤t

�−φu�
−Au

and the right-hand side is actually the definition used in Guasoni, Lépinette and Rásonyi
((2012), Definition A.6, page 766), apart from the fact that Guasoni, Lépinette and Rásonyi
(2012) additionally assume that φ has to be right-continuous. For right-continuous φ, we get∫

[0,t]
φv

CSdAv =
∫
[0,t]

φv− ∗dAv,
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which also shows the main difference between the integral definition of Czichowsky and
Schachermayer (2016), Guasoni, Lépinette and Rásonyi (2012) and our definition: In the
definition of Czichowsky and Schachermayer (2016) the process A is integrated against the
“previous” values of φ. Our definition differs to be suitable for the use in our irreversible
investment problem with inventory risk and to connect the target functional Ṽ to the relaxed
one V (see Proposition 3.6).

Comparison to Lenglart (1980): As Lenglart (1980) lays the foundation for Meyer-σ -fields
we also want to mention the special integral proposed in that article: For a measurable and
locally bounded process φ and a process A of bounded variation, Lenglart (1980) lets∫

[0,t]
φv

LdAv :=
∫
[0,t]

φv dAv+ − φt�
+At

and we have ∫
[0,t]

φv
LdAv =

∫
[0,t]

φv
∗dAv −∑

v<t

(
φ∗

v − φv

)
�+Av.

The latter equation shows that the main difference to our ∗d-integral results from a different
treatment of the jumps �+A.
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