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We present some applications of central limit theorems on mesoscopic
scales for random matrices. When combined with the recent theory of “ho-
mogenization” for Dyson Brownian motion, this yields the universality of
quantities which depend on the behavior of single eigenvalues of Wigner ma-
trices and β-ensembles. Among the results we obtain are the Gaussian fluc-
tuations of single eigenvalues for Wigner matrices (without an assumption of
4 matching moments) and classical β-ensembles (β = 1,2,4), Gaussian fluc-
tuations of the eigenvalue counting function, and an asymptotic expansion
up to order o(N−1) for the expected value of eigenvalues in the bulk of the
spectrum. The latter result solves a conjecture of Tao and Vu.

1. Introduction. The object of this note is to show how two recent results in random
matrix theory, central limit theorems for linear statistics of eigenvalues on mesoscopic scales
(see [3, 21]), and homogenization for Dyson Brownian motion (DBM) introduced in [6] and
refined in [25], can be used to derive a number of results concerning the fluctuations of single
eigenvalues. In particular, we obtain the following results:

1. Gaussian fluctuations on scale
√

logN
N

for individual eigenvalues of Wigner matrices in
the bulk,

2. Gaussian fluctuation on scale
√

logN
N

for individual eigenvalues of classical β-
ensembles in the bulk (β = 1,2,4),

3. Gaussian fluctuations for eigenvalue counting functions,
4. asympotic expansion of the mean and variance of eigenvalues in the bulk, up to an error

of order o(N−1).

Here, N denotes the dimension of the random matrix ensemble under consideration. Item 1
was first obtained for the Gaussian unitary ensemble (GUE) by Gustavsson [20], and then
for complex Hermitian Wigner matrices whose moments match the GUE to fourth order by
Tao and Vu [34]. O’Rourke [29] extended this to the Gaussian orthogonal and symplectic
ensembles (GOE/GSE) by applying a result of Forrester and Rains [19] (and then to Wigner
matrices of these symmetry classes with four matching moments). Gustaffson originally first
proved Item 3 and then obtained Item 1 via the duality∣∣{i : λi < y}∣∣ ≥ k ⇐⇒ λk < y,

where the {λi}i are random matrix eigenvalues in increasing order. Dallaporta and Vu [11]
used this to obtain the central limit theorem for the eigenvalue counting function of Wigner
matrices (of those with four moments matching the Gaussian ensembles) and additionally
computed the asymptotic expectation and variance of this quantity.

In the present work we remove all moment matching assumptions in Items 1 and 3. More-
over our approach also applies to β-ensembles and we obtain the Gaussian fluctuations for
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the eigenvalues of the classical β-ensembles. Our proof is based on universality, meaning that
we show that the eigenvalue fluctuations are universal, coinciding with the Gaussian case. In
the β-ensemble case, this approach applies for even nonclassical values of β ≥ 1, and so if
the analog of Gustavsson’s result were known for general Gaussian β-ensembles, then we
would obtain Item 2 for all β ≥ 1.

The formula we obtain for the expected value of a single bulk eigenvalue in Item 4 solves
a conjecture of Tao and Vu [33], Conjecture 1.7, and extends it to the real symmetric case.

1.1. Homogenization of Dyson Brownian motion. Our work relies on a recent technical
innovation in the study of Dyson Brownian motion (DBM), known as “homogenization.”
DBM is a stochastic process on random matrices first introduced by Dyson [13]. It was first
applied by Erdős, Schlein and Yau [16] who introduced DBM as a tool to study local eigen-
value fluctuations and prove Wigner–Dyson–Mehta conjecture for all symmetry classes.

Homogenization relies on a coupling between two Dyson Brownian motions x(t) and
y(t). The first process x(t) has initial data given by the Wigner matrix whose eigenvalues we
wish to study, and y(t) comes from the equilibrium Gaussian ensemble that we would like
to compare x(t) to. The difference between these two processes satisfies a discrete parabolic
equation; the work [6] of Bourgade, Erdős, Yau and Yin establishes a homogenization theory
for this parabolic equation, resulting in the estimate

(1.1) xi(t) − yi(t) = 1

N
ζx − 1

N
ζy +O

(
N−1−c)

for some c > 0 with probability 1 − o(1). Here,

(1.2) ζx =
N∑

j=1

�
(
xj (0)

) −
N∑

j=1

�(γj ), ζy =
N∑

j=1

�
(
yj (0)

) −
N∑

j=1

�(γj )

for some explicit, N -dependent function �. Above, the γj are the quantiles of the semicircle
density, the limit of the empirical eigenvalue density of x(0) and y(0), and so the second
sums are roughly the expected value of the first sums. The function G is constructed from the
heat kernel of a nonlocal operator that arises as a continuum approximation to the equation
satisfied by x − y (hence the name “homogenization”).

The linear statistic (1.2) is on the scale t which must satisfy 1 � t � N−1 for the estimate
(1.1) to hold. This scale is in between the microscopic and global scales, and so the quantity
(1.2) is known as a mesoscopic linear statistic.

The representation (1.1) allows for a precise description of the fluctuations of quantities
depending on single eigenvalues xi(t), provided one has good control of mesoscopic linear
statistics, specifically, the quantities (1.2). At the time of the publication of [6], such a gen-
eral result was not yet available, and the authors found that it sufficed, for their intended
application, to obtain a result about mesoscopic linear statistics for the GOE. The intended
application of homogenization in [6] was to the local correlation functions, which concern the
scale N−1 and differs crucially from the

√
log(N)N−1 of the single eigenvalue fluctuations.

For this reason, it was not necessary to treat the quantities (1.2) for the non-GOE case.
In [25], the authors of the present work (with Yau) revisited the argument in [6] and derived

a refined homogenization result depending only on local assumptions on the initial data. We
also obtained precise control on linear statistics of observables such as � in (1.2) in the
case of deformed Wigner matrices. The derivation of our main results will follow from a
combination of (1.1) and a strengthened version of the mesocopic CLT we proved in [25].
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1.2. Mesoscopic linear statistics. Let λ1 ≤ λ2 · · · ≤ λN , denote the eigenvalues of a
Wigner matrix. It is by now classical that for smooth functions f , the quantity

N∑
j=1

f (λj ) −E

[
N∑

j=1

f (λj )

]

is asymptotically Gaussian for smooth functions f . A general result applying to sufficiently
regular functions appears in the work of Lytova and Pastur [28]. For compactly supported or
rapidly decaying functions f , 0 < α < 1 and an energy E ∈ (−2,2),

(1.3)
N∑

j=1

f
(
Nα(λj − E)

) −E

[
N∑

j=1

f
(
Nα(λj − E)

)]

is asymptotically Gaussian, with limiting variance

(1.4)
csym

2π2

∫ ∫ (
f (x) − f (y)

x − y

)2
dx dy.

Here csym = 1
2 for Hermitian Wigner matrices, and csym = 1 for real symmetric Wigner ma-

trices. Because of the rescaling by Nα , the sums (1.3) typically involve about N1−α eigen-
values, and consequently such linear statistics are refered to as mesoscopic. This result has
been known in restricted cases for some time (see [8, 9, 27]). In [21], He and Knowles obtain
the result for general Wigner matrices and general f . See also the work of Bekerman and
Lodhia [3] for the case of β-ensembles. We gave proofs of more general results in [25] in the
deformed Wigner case, and one-cut β-ensembles.

The method we use to derive our mesoscopic CLT represents a considerable simplification
over the proof offered in [25]. Moreover, the result we derive here is stronger than that in
[25], which had some restrictions on the scale of the function under consideration—this was
an artifact of the proof given there, and absent from the present work.

This strengthening is in large part due to the fact that we are dealing with Wigner matrices,
rather than the deformed Wigner matrices of our previous paper. Our result improves on
the known results for Wigner matrices [3, 21] in that we allow the function f to not have
compact support or decay quickly at infinity. As a consequence, the variance of the linear
statistic may grow logarithmically with N . This is essential for our application to (1.2)—the
function G turns out to roughly behave as a smoothed out step function on the mesoscopic
scale t , and for such a function the quantity (1.4) is O(log(N)). Note that the size of the
fluctuations of the linear statistics (1.2) and the single eigenvalues are the same, and so the
mesoscopic central limit theorem is necessary for treating the single eigenvalue fluctuations
via the homogenization approach. Such a CLT was not known prior to the present work.

The proof of the CLT, Proposition 4.1, is inspired by the method of Shcherbina [31], but
uses the cumulant expansion (as in [21]) instead of the more intricate resolvent expansion in
[25]. We also rely on the isotropic local law of [4, 23] to simplify the treatment of some error
terms (this is not strictly necessary as such a result was not available for [25]).

1.3. Statement of results. For simplicity, we state all our results for Wigner matrices in
the case when H is real and symmetric. The same proofs apply with only minor modification
to random Hermitian matrices. Where relevant, we comment on the corresponding results
for the complex Hermitian case. In this case however, many of results below can be derived
using the Brézin–Hikami formula [10], requiring neither of the techniques highlighted in the
Introduction.
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Let ξo and ξd be two real centered random variables with bounded moments of all orders,
with the variance of ξo being 1. A real symmetric Wigner matrix is an N × N self adjoint
matrix so that the entries {Hij }i≤j are independent, and

√
NHii ∼ ξd,

√
NHij ∼ ξo, i 
= j.

We also use the following notation for the cumulants of the matrix entries:

sk := 1

ik

dk

dkt
logE

[
eitξo

]∣∣∣∣
t=0

,

sk + ak := 1

ik

dk

dkt
logE

[
eitξd

]∣∣∣∣
t=0

.

(1.5)

Our notational choice for the second line of (1.5) is so that the cumulant expansion we use to
derive our mesoscopic central limit theorem has a simple form (see the proof of Lemma 4.5).

We denote by λ1 ≤ · · · ≤ λN be the ordered eigenvalues of H . As a consequence of the
local semicircle law, Theorem 2.2, λi is typically very close to the ith N -quantile γi of the
semicircle distribution, also known as the “classical location” of λi . The semicircle and clas-
sical eigenvalue locations are defined by

(1.6) ρsc(x) = 1

2π

√(
4 − x2

)
+,

∫ γi

−2
ρsc(x)dx = i

N
.

Our first result describes the fluctuations of λi about γi .

THEOREM 1.1. Let κ > 0, and let λi be the eigenvalues of a symmetric Wigner matrix.
For any sequence i = iN such that κN ≤ i ≤ (1 − κ)N we have

(1.7) N
λi − γi√

log(N)

1−γ 2
i /4

d→ N(0,1).

In the case of complex Hermitian Wigner matrices, the same result holds with limiting vari-
ance 1

2 .

As explained in the Introduction, this has been obtained only for the Gaussian ensembles
and those Wigner matrices whose first four moments match the Gaussian ensembles [20, 29,
34]. Our contribution is thus to remove the assumption of matching moments. Theorem 1.1
has also been obtained independently by Bourgade and Krishnan [7] by different methods.

The result of Gustavsson holds for any sequence of indices iN such that iN → ∞ and
|N − iN | → ∞, that is, for indices close to the edge. We expect that our universality result
holds for any sequences such that κNN ≤ iN ≤ (1 − κN)N with κN ≥ N−c for some suffi-
ciently small c > 0. We do not pursue this here in the interest of brevity. Results for the case
of moderately growing iN follow from edge universality. For example, Gaussian fluctuations
in the case that iN → ∞ but iN ≤ Nc for some sufficiently small c > 0, follow from [5].

By a well-known argument (see [11, 20] or below), the result on fluctuations of eigenvalues
implies a CLT for indicator functions:

COROLLARY 1.2. For E ∈ (−2,2) let N (E) = #{i : λi ≤ E} be the eigenvalue counting
function of a real symmetric Wigner matrix. Then,

(1.8)
N (E) − N

∫ E
−∞ dρsc

π−1
√

log(N)

d→ N(0,1).
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A similar method gives the following for classical β-ensembles in the one-cut case. We
recall that a β-ensemble with potential V : R → R is the measure μV on the simplex {λ1 <

λ2 < · · · < λN ⊆ R
N proportional to the Gibbs weight with Hamiltonian H,

μV → e−βNH, H := 1

2

N∑
j=1

V (λj ) − 1

N

∑
i<j

log(λj − λi)

where V is assumed to satisfy a growth condition so that this measure is finite (see, eq., [1]).
For sufficiently regular V , the empirical measure is known to converge a.s. to a determinin-
istic probability measure we call the equilibrium measure and denote by ρ(V ) [1, 24]. The
one-cut case is the case that this measure is supported on a single interval.

THEOREM 1.3. Let V be a one-cut β-ensemble with equilibrium measure supported in
[A,B] and V ∈ C4. Assume that V is regular in the sense of [24]. Denote the particles by λi .
Let i = iN be a sequence of indices satisfying κN ≤ i ≤ (1 − κ)N for fixed κ > 0. Then, for
β = 1,2,4 we have

(1.9)
β1/2Nρ(V )(γ

(V )
i )π

2
√

log(N)

(
λi − γ

(V )
i

) d→ N(0,1),

where ρ(V ) is the equilibrium measure of V and γ
(V )
i is the ith classical eigenvalue location.

If the result for β /∈ {1,2,4} were known for the Gaussian β-ensemble, then the above
result would be true for all β ≥ 1. Instead, we have the statement that for all β ≥ 1 and
smooth test functions F ,

(1.10)
lim

N→∞
∣∣EV

[
F

(
Nρ(V )(γ (V )

i

)(
λi − γ

(V )
i

)
/
√

log(N)
)]

−EGβE

[
F

(
Nρsc(γi)(λi − γi)/

√
log(N)

)]∣∣ = 0.

The expectation on the LHS is with respect to the β-ensemble with potential V and on the
RHS we have the expectation with respect to the Gaussian β-ensemble.

As in Corollary 1.2 we also get a CLT for the eigenvalue counting function for β ensembles
with classical values of β . A similar result for the indicator function 1(a,b) where (a, b) ⊆
(A+κ,B−κ) was obtained by Shcherbina [32] for classical β , using Fredholm determinants.

Our method also allows for an asymptotic expansion of E[λi] for Wigner matrices up to
order o(N−1), resolving a conjecture of Tao and Vu [33]. A related result for Gaussian di-
visible ensembles in the complex Hermitian case was obtained by Edelman–Guionnet–Péché
[14] using the Brézin–Hikami formula. This result finds an expansion for the quantiles of the
expected density of states; however this result does not imply the corresponding expansion
for the expected eigenvalue location.

THEOREM 1.4. Fix κ > 0. Let H be a real symmetric Wigner matrix as above, and
κN ≤ i ≤ (1 − κ)N . Then,

(1.11) NEH [λi −γi] = 1

2πρsc(γi)
arcsin

(
γi

2

)
− 1

2ρsc(γi)
+ s4

4

(
γ 3
i −2γi

)+ a2 − 1

2
γi +o(1)

and

(1.12) VarH(λi) = VarGOE(λi) + s4

8N2 γ 2
i + a2 − 1

N2 + o
(
N−2)

.
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REMARK. Tao and Vu [33] conjectured in the complex Hermitian case a formula similar
to (1.11). The formula we find sharpens their prediction, by identifying the quantity Ci,N in
their proposed asympotic EGUE[λi] = γi + N−1Ci,N + o(N−1). Their main interest was the
dependence of the expectation on the fourth moment of the entries, and we find exactly the
dependence predicted in [33]. In the complex Hermitian analog of (1.11), the arcsin(γi) term
is not present, and s4 is replaced by the sum of the fourth cumulants of the real and imaginary
parts of the off-diagonal entries of the matrix. The formula (1.12) appears new.

For a 1-cut β-ensemble with equilibrium distribution ρV supported on [A,B] we obtain
the following:

THEOREM 1.5. Fix κ > 0. Let i be an index so that κN ≤ i ≤ (1 − κ)N . We have

NEV

[
ρV

(
γ

(V )
i

)(
λi − γ

(V )
i

)] = − 1

2
+ 1

2π2

(
2

β
− 1

)∫ γ
(V )
i

A
dνV (x),(1.13)

where νV (x) is a specific signed measure, described in more detail below.

The mesoscopic central limit theorem we present, Theorem 4.3, is fairly robust. To illus-
trate this, we state an extension of some previous results on “partial linear statistics” of Bao,
Pan and Zhou [2]. Specifically, we weaken the regularity assumptions on the functions f

appearing there, and do not require the moment matching hypotheses of [2].

THEOREM 1.6. Let H be a real symmetric Wigner matrix. Fix u ∈ (−2,2). Let f be a
C3 function such that f ′(x) 
= 0 only for x ∈ (−2 + κ,2 − κ), and f (u) = 0. Then,

(1.14)
∑
i

f (λi)1{λi≤u} −E

[∑
i

f (λi)1{λi≤u}
]

d→ N
(
0, σ 2)

,

where σ 2 is an explicit function of f . In fact,

σ 2 = V
(
f (·)1·≤u

)
,

where V is defined in (4.7).
Suppose k/N → u ∈ (−2,2). Then

(1.15)
k∑

i=1

f (λi) −E

[
k∑

i=1

f (λi)

]
→ N

(
0, σ ′2)

,

where σ ′2 = V (f (·)1·≤γ̃u
), where the function γ̃u is defined by∫ γ̃u

−2
ρsc(x)dx = u.

REMARK. If f (u) 
= 0, the quantity (1.14) has variance of order logN ; a central limit
theorem for this case follows from our result for the eigenvalue counting function. Further,
we introduced the notation γ̃u as the inverse of the cumulative distribution function of the
semicircle distribution so as to not conflict with our earlier notation for the N -quantiles γk .
Note,

γk = γ̃k/N .
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2. The local semicircle law. Let H be a Wigner matrix as above. The empirical dis-
tribution of the eigenvalues of such a matrix converges to the semicircle distribution (1.6).
The local semicircle law, which will use throughout without further comment represents a
considerable strengthening of this statement. It is expressed in terms of the resolvent matrix

G(z) = (H − z)−1, Im z > 0.

Of particular importance is the normalized trace of G(z), because it equals the Stieltjes trans-
form of the empirical eigenvalue distribution:

mN(z) = 1

N
trG(z) = 1

N

N∑
j=1

1

λj − z
.

The semicircle law is equivalent to

mN(z) = m(z) + o(1),

where

m(z) =
∫ 1

x − z
ρsc(x)dx = −z + √

z2 − 4

2
.

The version of the local semicircle law we state here is taken from [22], Theorem 2.6, which
is a detailed, pedagogical treatment of the semicircle law and its applications. To state it we
introduce the following notion of overwhelming probability.

DEFINITION 2.1. We say that an event or family of events {Ai}i∈I hold with overwhelm-
ing probability if for all D > 0 there is an ND , so that supi∈I P[Ac

i ] ≤ N−D for N ≥ ND .

THEOREM 2.2 (Local semicircle law). Define

S = {
E + iη : |E| ≤ 10,0 < η ≤ 10

}
.

Then, for each ε > 0 and each D > 0 large, and all N sufficiently large, we have

max
i,j

∣∣Gij (z) − δijm(z)
∣∣ ≤

√
Imm(z)

N1−εη
+ 1

N1−εη

and ∣∣mN(z) − m(z)
∣∣ ≤ 1

N1−εη

uniformly in z ∈ S with overwhelming probability.

One consequence of the semicircle is that the eigenvalues λi are close to the classical
location (1.6).

THEOREM 2.3 (Eigenvalue rigidity). For each ε > 0 and D > 0, we have

|λi − γi | ≤ N−2/3+ε min
{
i, (N + 1 − i)

}−1/3

uniformly in i with overwhelming probability.
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3. Homogenization for DBM.

3.1. Wigner matrices. In this section we present the homogenization result of [6] for
Wigner matrices. We will need first the following definition.

DEFINITION 3.1. We say that X is a Wigner matrix with Gaussian component of size t0
if,

X = e−t0/2X′ + √
1 − e−t0W,(3.1)

where X′ is a Wigner matrix and W is an independent GOE.

Given a Wigner matrix X (which we will eventually take to have a Gaussian component)
and a GOE matrix W ′ independent of X, we define the following system of coupled SDEs.
First we define,

dxi(t) =
√

2

N
dBi + 1

N

∑
j 
=i

1

xi − xj

dt − xi

2
dt, xi(0) = λi(X)(3.2)

where the Bi are standard Brownian motions. Using the same Brownian motion terms, we
define

dyi(t) =
√

2

N
dBi + 1

N

∑
j 
=i

1

yi − yj

dt − yi

2
dt, yi(0) = λi

(
W ′).(3.3)

It is well known that for each time t , the vector xi(t) is distributed as the eigenvalues of the
matrix e−t/2X+√

1 − e−tW ′′ where W ′′ is an independent GOE matrix (see, e.g., the classic
calcuation of Dyson [13] or Section 4.3 of [1] for a pedagogical treatment). Consequently,
the vector yi(t) is distributed as the eigenvalues of a GOE matrix for every t .

The following homogenization result is Theorem 3.2 of [6].

THEOREM 3.2. Let κ > 0 and fix an index i with κN ≤ i ≤ (1 − κ)N . There are con-
stants τ0 < 1/4 and δ1, δ2 so that the following. Suppose that X is a Wigner matrix with
Gaussian component of size t0 = N−τ0 . Let W be a GOE matrix independent of X and con-
sider the coupled system of SDEs defined above. Then, with probability at least 1−N−δ1 and
t1 = t0/2,

xi(t1) − yi(t1) = 1

N

∑
j

pt1(γi, γj )
(
xj (0) − yj (0)

) +O
(

1

N1+δ2

)
.(3.4)

The function pt1(x, y) is smooth and its properties are given below.

REMARK. We could have also used instead the homogenization result of [25], which
would have yielded the above estimate with much higher probability. However, the result of
[25] is presented in a general setting, and it would take some exposition to specialize it to the
simpler Wigner case. Moreover, we will not need the stronger result proved there.

The function ps(x, y) is defined on [−2,2]2 is defined explicitly in (3.22) of [6]. It is
smooth and obeys the estimates [6],

(3.5) 0 ≤ ps(γi, γj ) ≤ Cs

s2 + (γi − γj )2 ,
∣∣∂xps(γi, x)

∣∣ ≤ C

s2 + (γi − x)2 .
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In preparation for the application of the mesoscopic central limit theorem, we show how to
rewrite the sum on the RHS as a linear statistic. Choose an ε1 > 0 so that 0 < ε1 < τ0/10.
Using rigidity, and the first estimate of (3.5) we see that,

1

N

∑
j

pt1(γi, γj )
(
xj (0) − γj

) = 1

N

∑
j

pt1(γi, γj )χ

(
γj − γi

t1Nε1

)(
xj (0) − γj

)
+O

(
1

N1+ε1/5

)(3.6)

with overwhelming probability. Here, χ is a smooth indicator function that is 1 for |y| ≤ 1
and 0 for |y| ≥ 2. An explicit calculation using (3.22) of [6] yields,

(3.7)
pt1(x, y) = 1

ρsc(γi)

t1ρsc(γi)

(x − y)2 + (t1ρsc(γi))2 (1 +O
(
N−ε1/5)

,

|x − γi | + |y − γi | ≤ 2t1N
ε1 .

Note that we left uncancelled the factor ρsc(γi) to show the connection of pt1(x, y) to the
Poisson kernel η

(x−y)2+η2 . Defining,

(3.8) �(y) =
∫ y

−2
χ

(
x − γi

t1Nε1

)
1

ρsc(γi)

t1ρsc(γi)

(x − γi)2 + (t1ρsc(γi))2 dx,

we see that, by a similar argument as Section 4 of [6] (near (4.57–4.58)) that on the event that
the conclusion of Theorem 3.2 holds, that

(3.9) xi(t1) − yi(t1) = 1

N
ζx − 1

N
ζy +O

(
N−1−c)

for some c > 0, where,

(3.10)
1

N
ζx = 1

N

∑
j

�(xj ) − �(γj ).

For later use, we note that for |x − γi | > t1N
ε1 ,

(3.11) �(x) = 1

ρsc(γi)
1{x≥γi} + o(1)

as well as the bounds,

(3.12) �(x) ≤ C,
∥∥�′(x)

∥∥
1 ≤ C,

∥∥�′′(x)
∥∥

1 ≤ C
Nε1

t1
� N.

3.2. β-Ensembles. In this section we discuss the analog of Theorem 3.2 for β-ensembles.
Let us consider the following set-up. Fix an index i0 with κN ≤ i0 ≤ (1 − κ)N with κ > 0,
and two β-ensembles with potentials V and U . Denote their classical eigenvalue locations by
γ

(V )
i and γ

(U)
i , and equilibrium measure by ρ(V ) and ρ(U). Assume that,

γ
(V )
i0

= γ
(U)
i0

= 0, ρ(V )(0) = ρ(U)(0) = ρsc(0).(3.13)

Let, xi(t) and yi(t) be the following coupled process:

dxi(t) =
√

2

Nβ
dBi + 1

N

∑
j 
=i

1

xi − xj

dt − V ′(xi)

2
dt(3.14)
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and

dyi(t) =
√

2

Nβ
dBi + 1

N

∑
j 
=i

1

yi − yj

dt − U ′(yi)

2
dt(3.15)

where the Bi are standard Brownian motions, and the initial data are independent β-
ensembles for potentials V and U , respectively. Note that the distribution of each of the sets
of particles is invariant under t (of course the joint distribution of all 2N particles together is
not).

The following theorem is a consequence of Section 8, specifically Theorem 8.15, of [25].

THEOREM 3.3. Let t1 = Nω1/N with 0 < ω1 < 1/10. Then there are ε, δ1, δ2 > 0 so
that the following estimate holds with probability at least 1 − N−δ1 . We have

(3.16) xi0(t1) − yi0(t1) = 1

N

∑
|i0−j |≤Nt1N

ε

p̂t1

(
γ

(f)
i0

, γ
(f)
j

)(
xj (0) − yj (0)

) +O
(
N−1−δ2

)
.

In the above theorem, the function p̂, as the theorem is written above, is not exactly the
same as p appearing earlier, however it also obeys the estimates (3.5). Above γ

(f)
j are the

“flattened” classical eigenvalue locations,

(3.17) γ
(f)
i = i

Nρsc(0)
.

Note that for |j − i0| ≤ √
N , the quantities γ

(f)
j , γ

(U)
j and γ

(V )
j all differ by less than C/N .

Similar arguments as to those in the Wigner case show that the sum on the RHS of (3.16) can
be written as

(3.18)
1

N

∑
|i−j |≤Nt1N

ε

p̂t1

(
γ

(f)
i , γ

(f)
j

)(
xi(0) − yi(0)

) = 1

N
(ζ̂x − ζ̂y) +O

(
N−1−c),

where

(3.19) ζ̂x = 1

N

∑
j

�̂(xi) − �̂
(
γ

(V )
i

)
and similarly for ζ̂y . Here �̂ obeys also (3.11) (with ρsc(γi) replaced by ρsc(0)) and (3.12).

4. Linear statistics. In this section, we derive the mesoscopic central limit theorem we
will use to prove our main results. Let H be a real symmetric Wigner matrix, and let ak and
sk be as in (1.5). We will use frequently the local semicircle law discussed in Section 2.

4.1. Statements. Let fN(x) ∈ C3 be a sequence of test functions. We will drop the N -
dependence from the notation and write f = fN . We assume that there are c,C > 0 so that

(4.1)
∥∥f ′′∥∥

1 ≤ N1−c,
∥∥f ′∥∥

1 + ‖f ‖1 ≤ C,

where ‖f ‖p denotes the Lp norm. We also assume that

(4.2) f ′(x) 
= 0 only if x ∈ (−2 + κ,2 − κ)

for some κ > 0. For definiteness we assume κ < 1
10 . Define, for λ,

(4.3) ψ(λ) = E
[
e(λ)

]
, e(λ) = exp

{
iλ

(
trf (H) −E

[
trf (H)

])}
.
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The function ψ is the characteristic function of the centered linear statistic. Let χ(y) be a
smooth function that is 1 for |y| ≤ 1 and 0 for |y| ≥ 2. We use the quasi-analytic extension of
f ,

(4.4) f̃ (x + iy) := χ(y)
(
f (x) + iyf ′(x)

)
.

In this section we make the following calculation.

PROPOSITION 4.1. We have for any ε > 0,

∂λψ(λ) = −λψ(λ)V (f ) +O
(
Nε(1 + |λ|5)

N−1/2(
1 + ∥∥f ′′∥∥1/2

1

))
,(4.5)

where

V (f ) := − 1

π2

∫ ∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′) 1

z + 2m(z)

{
2∂z′

m(z′) − m(z)

z′ − z

+ 2s4m
2(z)m

(
z′)m′(z′) + (a2 − 1)m′(z′)m(z)

}
dz dz′.

(4.6)

We can further calculate the variance and expectation.

LEMMA 4.2. We have

V (f ) = 1

2π2

∫ 2

−2

∫ 2

−2

(f (y) − f (x))2

(x − y)2

4 − xy√
4 − x2

√
4 − y2

dx dy

+ a2 − 1

4π2

(∫ 2

−2
f (x)

x√
4 − x2

dx

)2

+ s4

2π2

(∫ 2

−2
f (x)

2 − x2
√

4 − x2
dx

)2
.

(4.7)

For the expectation we have for any ε > 0,

E
[
trf (H)

] = N

∫ 2

−2
f (x)ρsc(x)dx + −1

2π

∫ 2

−2

f (x)√
4 − x2

dx + f (2) + f (−2)

4

+ 1 − a2

2π

∫ 2

−2
f (x)

2 − x2
√

4 − x2
dx

+ s4

2π

∫ 2

−2
f (x)

x4 − 4x2 + 2√
4 − x2

dx

+O
(
NεN−1/2(∥∥f ′′∥∥1/2

1 + 1
))

.

(4.8)

REMARK. The form of the variance (4.7) has appeared before in the literature. In the
case that the Wigner ensemble matches the GOE to four moments, a2 = 1 and s4 = 0, and the
formula matches that of Lytova and Pastur [28]. In the general case, this formula appeared in
the work of Shcherbina [31].

Integrating (4.5) gives us the following theorem.

THEOREM 4.3. Let f be as above and assume V (f ) ≥ c. Then

(4.9)
trf (H) −E[trf (H)]

V (f )

converges to a Gaussian with mean 0 and variance 1.
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4.2. Proof of Proposition 4.1. We recall here the Hellfer–Sjöstrand formula (see [12] or
Appendix C of [22]) which states that, we have

trf (H) −E
[
trf (H)

] = 1

π

∫
C2

(
∂z̄f̃ (z)

)
dz dz̄

= 1

2π

∫
R2

(
iyχ(y)f ′′(x) + i

(
f (x) + if ′(x)y

)
χ ′(y)

)
× N

(
mN(z) −E

[
mN(z)

])
dx dy,

(4.10)

where f̃ (x + iy) := (f (x) + iyf ′(x))χ(y) is a quasi-analytic extension of f and χ(y) is a
smooth cut-off function that is 1 for |y| < 1 and 0 for |y| > 2. Fix a small a > 0 and define
the domain

(4.11) �a := {
(x, y) ∈ R

2 : |y| > Na−1}
.

Using the fact that y → Im[mN(x + iy)]y is an increasing function and that mN(z̄) = m̄N(z)

we get,

trf (H) −E
[
trf (H)

] = 1

2π

∫
�a

(
iyχ(y)f ′′(x) + i

(
f (x) + if ′(x)y

)
χ ′(y)

)
× N

(
mN(z) −E

[
mN(z)

])
dx dy

+O
(
N2a−1∥∥f ′′∥∥

1

)(4.12)

with overwhelming probability. Using this, we have

ψ ′(λ) = i

2π

∫
�a

(
iyχ(y)f ′′(x) + i

(
f (x) + iyf ′(x)

)
χ ′(y)

)
E(z)dx dy

+O
(
N2a−1∥∥f ′′∥∥

1

)
,

(4.13)

where

(4.14) E(z) = NE
[
e(λ)

(
mN(z) −E

[
mN(z)

])] = ∑
i

E
[
e(λ)

(
Gii −E[Gii])].

The following lemma will be used repeatedly.

LEMMA 4.4. Let H(z) be a holomorphic function on C \R. Suppose that the estimate

(4.15)
∣∣H(z)

∣∣ ≤ K

| Im[z]|s
for some 1 ≤ s ≤ 2 whenever |z − 2| > κ/2 or |z + 2| > κ/2, where κ is as in the definition
of f . There is a C > 0 so that,∣∣∣∣∫

�a

(
iyχ(y)f ′′(x) + i

(
f (x) + iyf ′(x)

)
χ ′(y)

)
H(x + iy)dx dy

∣∣∣∣
≤ CK log(N)

(
1 + ∥∥f ′′∥∥

1

)s−1
.

(4.16)

PROOF. We have only to deal with the term involving f ′′(x). For this, we fix a scale η1
and integrate in parts for |y| > η1, to find

(4.17)
∣∣∣∣∫|y|>η1

yχ(y)f ′′(x)H(x + iy)dx dy

∣∣∣∣ =
∣∣∣∣∫|y|>η1

χ(y)f ′(x)y(∂zH)(x + iy)dx dy

∣∣∣∣,
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where we used the Cauchy–Riemann equations. Since H is holomorphic away from the real
axis we have by the Cauchy integral formula,

(4.18)
∣∣∂zH(x + iy)

∣∣ ≤ CK

| Im[z]|s+1 .

Hence, ∣∣∣∣∫
�a

yχ(y)f ′′(x)H dx dy

∣∣∣∣ ≤
∣∣∣∣∫|y|>η1

χ(y)f ′(x)y(∂zH)(x + iy)dx dy

∣∣∣∣
+

∣∣∣∣∫
�a∩{|y|≤η1}

yχ(y)f ′′(x)H dx dy

∣∣∣∣
≤ CK log(N)

(∥∥f ′∥∥
1(η1)

1−s + ∥∥f ′′∥∥
1(η1)

2−s)
≤ C′K log(N)

(
(η1)

1−s + ∥∥f ′′∥∥
1(η1)

2−s),
(4.19)

where we used the assumption that ‖f ′‖1 ≤ C. The result follows by taking η1 = ‖f ′′‖−1
1 .
�

REMARK. Note the integration by parts technique in the above proof; before the partial
integration, the integral over x contributes ‖f ′′‖1. Integrating by parts contributes O(|y|−1)

from the derivative of H(z), which is smaller when |y| > ‖f ′′‖−1
1 . The integral in the variable

y is always estimated by power counting. This argument of integration by parts and power
counting will be used repeatedly in what follows.

Let now

ea(λ) = exp
[

iλ

π

∫
�a

(
iyχ(y)f ′′(x) + i

(
f (x) + if ′(x)y

)
χ ′(y)

)
× N

(
mN(z) −E

[
mN(z)

])
dx dy

]
,

(4.20)

so that by (4.12),

(4.21)
∣∣e(λ) − ea(λ)

∣∣ ≤ C|λ|N2a−1∥∥f ′′∥∥
1.

Let Ea(z) be the same as E(z) but with ea(λ) in place of e(λ). Applying Lemma 4.4 with
H = E − Ea =O(|λ|Nε+2a−1‖f ′′‖1η

−1), we see that

ψ ′(λ) = i

π

∫
�a

(
iyχ(y)f ′′(x) + i

(
f (x) + iyf ′(x)

)
χ ′(y)

)
Ea(z)dx dy

+O
(
Nε+2a−1∥∥f ′′∥∥

1

)(4.22)

for any ε > 0.
We will use a cumulant expansion on the right-hand side of (4.22). Let ∂ab denote differen-

tiation with respect to Hab. By a direct calculation (similar to (4.36) below) using Lemma 4.4
one can see that with overwhelming probability,

(4.23)
∣∣∂k

abea(λ)
∣∣ ≤ (

1 + |λ|)kNε

for any ε > 0 and N large enough.
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LEMMA 4.5. For z ∈ �a we have(
z + 2m(z)

)
Ea(z) = ∑

ia

1 + a2δia

N
E

[
∂iaea(λ)(Gia)

] − ∑
a 
=i

s4

2N2E
[
∂2
aiea(λ)m2]

+O
(
Nε(1 + |λ|4)

× (
(Nη)−1/2(

1 + ∥∥f ′′∥∥
1

) + (
Nη2)−1 + N−1/2η−1))

.

(4.24)

PROOF. By the cumulant expansion (see, e.g., Lemma 3.2 of [26] and the discussion
therein for use of the cumulant expansion), we derive

zE
[
ea(λ)

(
Gii −E[Gii])] = ∑

a

E
[
ea(λ)

(
GiaHai −E[GiaHai])]

= ∑
a

1 + δiaa2

N
E

[
∂iaea(λ)Gia

]
(4.25)

− ∑
a

1 + δiaa2

N
E

[
ea(λ)

(
GiiGaa −E[GiiGaa])](4.26)

− ∑
a

1 + δia

N
E

[
ea(λ)

(
G2

ia −E
[
G2

ia

])]
(4.27)

+
{∑

a

s3 + δiaa3

2N3/2

[
E

[
∂2
aiea(λ)Gai

] + 2E
[
∂aiea(λ)∂aiGai

]
(4.28)

+E
[
ea(λ)

(
∂2
aiGai −E

[
∂2
aiGai

])]]}
+

{∑
a

s4 + δiaa4

6N2

[
E

[
∂3
aiea(λ)Gai

] + · · ·
(4.29)

+E
[
ea(λ)

(
∂3
aiGai −E

[
∂3
aiGai

])]]}
+O

(
Nε−3/2(

1 + |λ|4))
,(4.30)

any ε > 0. We begin calculating each term. Starting with (4.26) we have∑
i,a

1 + δiaa2

N
E

[
ea(λ)

(
GiiGaa −E[GiiGaa])] = 2

∑
i

mE
[
ea(λ)

(
Gii −E[Gii]))]

+O
(
Nε((Nη)−1/2 + (

Nη2)−1))
.

(4.31)

This term contributes the 2mEa to the LHS of (4.24). For (4.27) we have∑
i,a

1 − δia

N
E

[
ea(λ)

(
G2

ia −E
[
G2

ia

])] = E
[
ea(λ)∂z

(
mN −E[mN ])] +O

(
Nε(Nη)−1/2)

= O
(
Nε((Nη)−1/2 + (

Nη2)−1))
.

(4.32)

We now start with the terms in (4.28). For a combinatorial factor K ,∑
i,a

s3 + δiaa3

N3/2 E
[
e(λ)

(
∂2
aiGai −E

[
∂2
aiGai

])] = Km2 1

N3/2

∑
ia

E
[
e(λ)

(
Gia −E[Gia])]

+O
(
Nε(N−1/2 + N−1/2η−1))

.

(4.33)
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By the isotropic local law (Theorem 2.12 of [4]),

(4.34)
∣∣∣∣ 1

N1/2

∑
i

Gia

∣∣∣∣ ≤ Nε

√
Nη

with overwhelming probability, and so

(4.35)
1

N3/2

∑
ia

E
[
e(λ)

(
Gia −E[Gia])] =O

(
Nε(Nη)−1/2)

.

In preparation for the second term of (4.28) we calculate, for i 
= a,

(4.36) ∂iaea(λ) = −2iλ

π
ea(λ)

∫
�a

∂̄z′ f̃
(
z′)∑

b

GbiGab = −2iλ

π
ea(λ)

∫
�a

∂̄z′ f̃
(
z′)∂z′Gia.

Since with overwhelming probability,

(4.37)
∑
b

GbiGba = ∂z′Gai = O
(
Nε(Nη′)−1/2(

η′)−1)
,

we find that (using Lemma 4.4)

(4.38)
∣∣∂iaea(λ)

∣∣ ≤ Nε(1 + |λ|)(N−1/2(
1 + ∥∥f ′′∥∥

1

)1/2)
.

For the second term of (4.28) we have∑
ia

s3 + δiaa3

N3/2 E
[
∂aiea(λ)∂aiGai

] = − s3

N3/2

∑
i 
=a

E
[
∂aiea(λ)GaaGii

]
+O

(
Nε(1 + |λ|)(N−1/2 + N−1/2η−1))

.

(4.39)

We see, using (4.38),

s3

N3/2

∑
i 
=a

E
[
∂aiea(λ)GaaGii

] = s3m
2

N3/2

∑
i 
=a

E
[
∂aiea(λ)

]
+O

(
Nεη−1/2N−1/2(

1 + ∥∥f ′∥∥1/2
1

)(
1 + |λ|)).

(4.40)

The derivative in the above expression together with the sum over i, a gives us N−3/2 ×
∂z′

∑
i,a Gia = N−1/2∂z′m + O(N−3/2(η′)−2) by the isotropic local law. So, using Lem-

ma 4.4,

(4.41)
1

N3/2

∑
i 
=a

E
[
∂aiea(λ)

] = O
(
Nε(1 + |λ|)N−1/2)

.

For the first term of (4.28) we further calculate, for i 
= a,

∂2
iaea(λ) = ea(λ)(iλ)2π−2

(∫
�a

∂̄z′ f̃
(
z′)∑

b

GbiGab dz′ dz̄′
)2

+ 2ea(λ)
iλ

π

∫
�a

∂̄z′ f̃
(
z′)∂z′

(
GaaGii + G2

ia

)
= ea(λ)

iλ

π

∫
�a

∂̄z′ f̃
(
z′)4m

(
z′)m′(z′) dz′ dz̄′

+O
(
Nε(1 + |λ|)2

N−1/2(∥∥f ′′∥∥1/2
1 + 1

))
(4.42)
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and so ∑
a,i

s3 + δiaa3

N3/2 E
[
∂2
aiea(λ)Gai

]
= ∑

a,i

s3

N3/2E

[
ea(λ)iλπ−1

∫
�a

∂̄z′ f̃
(
z′)4m

(
z′)m′(z′)Gai dz′ dz̄′

]

+O
(
Nε(1 + |λ|)2

(Nη)−1/2(∥∥f ′′∥∥1/2
1 + 1

))
=O

(
Nε(1 + |λ|)2

(Nη)−1/2(∥∥f ′′∥∥1/2
1 + 1

))
(4.43)

where in the last line we used the isotropic law again.
Finally, for the terms (4.29) we see that (using (4.23) and the Green’s function estimates

of Theorem 2.2 repeatedly)∑
a,i

s4 + δiaa4

N2 E
[(

∂3
aiea

)
Gai

] + · · · +E
[
ea(λ)

(
∂3
aiGai −E

[
∂3
aiGai

])]
= −∑

a 
=i

3s4

N2 E
[
∂2
aiea(λ)m2] +O

(
Nε(1 + |λ|3)

(Nη)−1/2)
.

(4.44)

�

We further calculate the terms on the right side of (4.24).

LEMMA 4.6. We have∑
ia

1 + δia

N
E

[(
∂iaea(λ)

)
(Gia)

]
= −2iλ

π

∫
�a

∂̄z′ f̃
(
z′)∂z′

1

N
E

[
e(λ) trG

(
z′)G(z)

]
dz′ dz̄′

(4.45)

and
1

N

∑
i

E
[
∂iiea(λ)Gii

] = − iλE[ea(λ)]
π

∫
�a

∂̄z′ f̃
(
z′)m′(z′)m(z)dz′ dz̄′

+O
(
Nε(1 + |λ)

)
(Nη)−1/2)

(4.46)

and ∑
a 
=i

s4

2N2E
[
∂2
aiea(λ)m(z)2]

= 2s4E
[
ea(λ)

]
iλ

∫
�a

∂̄z′ f̃
(
z′)m(

z′)m′(z′)m(z)2 dz′ dz̄′

+O
(
Nε(1 + |λ|)2

N−1/2(∥∥f ′′∥∥1/2
1 + 1

))
.

(4.47)

PROOF. We see that,∑
ia

1 + δia

N
E

[(
∂iae(λ)

)
(Gia)

]
= − 2iλ

πN

∫
∂̄z′ f̃

(
z′)

E
∑
iab

e(λ)Gab

(
z′)Gbi

(
z′)Gia(z)dz′ dz̄′

= −2iλ

π

∫
∂̄z′ f̃

(
z′)∂z′

1

N
E

[
e(λ) trG

(
z′)G(z)

]
dz′ dz̄′.

(4.48)

The second estimate is similar, and the last estimate follows from (4.42). �
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Putting together the last two lemmas we obtain,

Ea(z) = 1

z + 2m(z)

iλ

π

∫
�a

dz′ dz̄′∂̄z′ f̃
(
z′)

×
{
∂z′

−2

N
E

[
ea(λ) trG

(
z′)G(z)

]
−E

[
ea(λ)

](
2s4m(z)2m

(
z′)∂z′m

(
z′) − (a2 − 1)m′(z′)m(z)

)}
+O

(
Nε(1 + |λ|4)

× (
(Nη)−1/2(

1 + ∥∥f ′′∥∥1/2
L1(R)

) + (
Nη2)−1 + N−1/2η−1))

.

(4.49)

We now complete the proof of Proposition 4.1. We see that with overwhelming probability,
if z and z′ are on different half-planes,

∂z′
1

N
trG

(
z′)G(z) = ∂z′

1

N
tr

G(z′) − G(z)

z′ − z

= ∂z′
m(z′) − m(z)

z′ − z

+O
(
Nε(η′)−1((

Nη′)−1 + (Nη)−1)(
η + η′)−1)

(4.50)

whereas if they are on the same half-plane, divide into the cases η < 2η′ and η > 2η′. In the
former, write m(z) − m(z′) = ∫

m′(s)ds to get

∂z′
1

N
trG

(
z′)G(z) = ∂z′

m(z′) − m(z)

z′ − z
+O

(
Nε(η′)−1((

Nη2)−1 + (
N

(
η′)2)−1))

= ∂z′
m(z′) − m(z)

z′ − z
+O

(
Nε(η′)−1(

Nη2)−1)
.

(4.51)

Whereas if η > 2η′ directly estimate mN(z′) − mN(z) = m(z′) − m(z) +O(Nε(Nη′)−1)) to
get,

∂z′
1

N
trG

(
z′)G(z) = ∂z′

m(z′) − m(z)

z′ − z
+O

(
Nε((Nη2η′)−1 + (

N
(
η′)2

η
)−1))

.(4.52)

Integrating all of this (i.e., using the integration by parts and power counting technique of
Lemma 4.4) we see that for any ε > 0,

d

dλ
ψ(λ)(4.53)

= λE
[
ea(λ)

][ 1

π2

∫
�2
a

∂̄zf̃ (z)∂̄z′ f̃
(
z′) 1

z + 2m(z)

×
(

2∂z′
m(z′) − m(z)

z′ − z
(4.54)

+ 2s4m
2(z)m

(
z′)m′(z′) + (a2 − 1)m′(z′)m(z)

)
dz dz̄ dz′ dz̄′

]
+O

(
Nε(1 + |λ|4)[

N−1/2∥∥f ′′∥∥
1 + N2a−1∥∥f ′′∥∥

1

])
.(4.55)

In order to complete the proof, we need only estimate the error in first replacing E[ea(λ)] by
E[e(λ)] and then restoring to the integral the region C

2 \ �2
a. First we estimate the size of

the integral appearing above, and show that it is at most O(log(N)2). We can then replace
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E[ea] by E[e(λ)] = ψ(λ) using (4.21). The terms which need to be estimated involve f ′′(x);
the contribution from the other terms are bounded, due to the assumptions (4.1) and the
appearance of χ ′(y) in these terms which is nonzero only for y of order 1. We turn to the
terms with f ′′(x). The second two terms in the line (4.54) are bounded functions, so we can
integrate by parts in x to estimate this contribution by O(1).

When z and z′ are in the same half-spaces, (m(z′) − m(z))/(z′ − z) is bounded, and so
the derivative is bounded by C/ Im[z′]. Using then (the proof of) Lemma 4.4 we can estimate
this contribution by O(log(N). When z and z′ are in separate half-spaces we use instead the
estimate

(4.56)
∣∣∣∣∂z′

m(z) − m(z′)
z − z′

∣∣∣∣ ≤ C

(Im[z′])2 + (Im[z])2 .

The largest contribution is from when both Im[z′] and Im[z] > ‖f ′′‖−1
1 , where we integrate

by parts in both Re[z] and Re[z′] and find a contribution of order O(log(N)2). The other
regions are at most O(log(N)).

Finally, we argue that we can restore to the integral the region C
2 \ �2

a at an error of at
most O(log(N)N2a−1‖f ′′‖1). The region (C \ �a)

2 is easy to control as the second line of
(4.54) is bounded by C/(Im[z] Im[z′]), and gives a contribution of O(N2a−2‖f ′′‖2

1). The
“cross terms” �a × (C \ �a) (and vice versa) must be handled by integration by parts again
in the region where Im[z] or Im[z′] > ‖f ′′‖−1

1 as above, and the cases of same and different
half-spaces are treated similarly, for example, using the estimate (4.56). The cross terms are
found to contribute O(Na−1‖f ′′‖1 log(N)). The claimed estimate of Proposition 4.1 follows
after taking a = ε. �

4.3. Proof of Lemma 4.2. We apply Green’s theorem to each term, which states

(4.57)
∫
�

∂̄zF (z)dz dz̄ = −i

2

∫
∂�

F (z)dz.

We write z′ = y ± i0 and z = x ± i0. First, we integrate by parts to find

−1

π2

∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′) 1

z + 2m(z)

(
2∂z′

m(z′) − m(z)

z′ − z

)
dz dz̄ dz′ dz̄′

= 1

π2

∫
C2

∂̄zf̃ (z)∂̄z′∂Re[z′]f̃
(
z′) 1

z + 2m(z)

(
2
m(z′) − m(z)

z′ − z

)
dz dz̄ dz′ dz̄′.

(4.58)

Note that x ± i0 + 2m(x ± i0) = ±i
√

4 − x21{|x|≤2}. Hence,

2

x + 2m(x ± i0)

(
m(y + i0) − m(x ± i0)

y − x
− m(y − i0) − m(x ± i0)

y − x

)

= ±2

√
4 − y2

√
4 − x2(y − x)

.

(4.59)

Hence, we find (note that some of the integrals over the real axes require intepretation as
principal values)

1

π2

∫
C2

∂̄zf̃ (z)∂̄z′∂Re[z′]f̃
(
z′) 1

z + 2m(z)

(
2
m(z′) − m(z)

z′ − z

)
dz dz̄ dz′ dz̄′

= −1

π2

∫ 2

−2

∫ 2

−2
f (x)f ′(y)

√
4 − y2

√
4 − x2(y − x)

dx dy(4.60)
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= 1

π2

∫ 2

−2
f ′(y)

√
4 − y2

∫ 2

−2

f (y) − f (x)√
4 − x2(y − x)

dx dy

= −1

2π2

∫ 2

−2

∫ 2

−2

(f (y) − f (x))2

(y − x)2

4 − xy√
4 − x2

√
4 − y2

dx dy,

where the last line follows by integration by parts in y and the second last line from the
identity

(4.61)
∫ 2

−2

1

(x − y)
√

4 − x2
dx = 0.

For the other terms, note that (z + 2m)m = m2 − 1 and since m′ = m2/(1 − m2),

(4.62)
m

z + 2m
= −m′.

Therefore,

−1

π2

∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′)m′(z′)m(z)

z + 2m(z)
dz dz̄ dz′ dz̄′

= 1

π2

∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′)m′(z′)m′(z)dz dz̄ dz′ dz̄′

= 1

4π2

(∫ 2

−2
f (x)

x√
4 − x2

dx

)2
.

(4.63)

For the final term we have

−1

π2

∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′)m2(z)m′(z)m(z)

z + 2m(z)
dz dz̄ dz′ dz̄′

= 1

π2

∫
C2

∂̄zf̃ (z)∂̄z′ f̃
(
z′)m′(z′)m(

z′)m′(z)m(z)dz dz̄ dz′ dz̄′

= 1

4π2

(∫ 2

−2
f (x)

2 − x2
√

4 − x2
dx

)2
.

(4.64)

This completes the calculation of V (f ). To calculate the expectation, we use the cumulant
expanson on E[Gii]. Let �a and a > 0 be as earlier. For z ∈ �a we find for any ε > 0,

1 + zE[Gii] = − 1

N

∑
a 
=i

E
[
GiiGaa + G2

ia

] − 1 + a2

N
E

[
m2]

+ s3m
2

2N3/2

∑
a 
=i

E[Gia] − s4

N
m4

+O
(
NεN−1(

Nη2)−1/2)
.

(4.65)

The term with s3 can be absorbed into the error term using the isotropic local law. We there-
fore find, ∑

i

(z + 2m)E[Gii − m] = −∂zm − (a2 − 1)m2 − s4m
4

+O
(
Nε((Nη2)−1 + (

Nη2)−1/2))
.

(4.66)
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Integrating, we find

E
[
f (H)

] − N

∫
f (x)dρsc(x)dx = 1

π

∫
∂̄zf̃ (z)

(1 − a2)m
2 − s4m

4 − ∂zm

z + 2m
dz dz̄′

+O
(
NεN−1/2(∥∥f ′′∥∥

1 + 1
) + Na+ε−1∥∥f ′′∥∥

1

)
.

(4.67)

Note that we had to remove and then return the domain C \ �a as in the proof of Proposi-
tion 4.1; this is similar to what was done above. We take a = ε. We calculate using Green’s
theorem as above,

1

π

∫
C

∂̄zf̃ (z)
m2

z + 2m
dz dz̄′ = − 1

π

∫
C

∂̄zf̃ (z)m′(z)m(z)dz dz̄′

= 1

2π

∫ 2

−2
f (x)

2 − x2
√

4 − x2
dx,

(4.68)

and

−1

π

∫
C

∂̄zf̃ (z)
m4

z + 2m
dz dz̄′ = 1

π

∫
C

∂̄zf̃ (z)m3(z)m′(z)dz dz̄′

= 1

2π

∫ 2

−2
f (x)

x4 − 4x2 + 2√
4 − x2

dx.

(4.69)

Finally,

−1

π

∫
C

∂̄zf̃ (z)
m′(z)

z + 2m
dz dz̄′ = −1

2π

∫ 2

−2

f (x)√
4 − x2

dx + f (2) + f (−2)

4
.(4.70)

This completes the proof. �

5. Derivation of the main results.

5.1. Reduction to Gaussian divisible ensembles. We will only provide full details for
the proofs of Theorems 1.1 and 1.4 for those Wigner matrices with Gaussian components
(see Definition 3.1). The reduction from general Wigner matrices to those with a Gaussian
component is well known in the random matrix literature, and so we will be brief in our
discussion. In our setting, this reduction will be a consequence of the four moment method
of Tao and Vu [34]. For the specific case of single eigenvalue fluctuations, similar arguments
were made in [34] and [29]. First, we have

PROPOSITION 5.1. Let H and W be two Wigner matrices so that

(5.1)
∣∣E[

Hs
ij

] −E
[
Ws

ij

]∣∣ ≤ N−2−c, 1 ≤ s ≤ 4

for some c > 0. Then if the results of Theorems 1.1 or 1.4 hold for W , they hold for H .

This is essentially a consequence of Theorem 15 of [34], specialized to the real symmetric
setting. The only extension is that the original Theorem asks for equality of the first four
moments rather then the fact that they are only approximately equal. This extension is well
known; see, for example, [15].

The additional required input is that given a Wigner matrix, one can find a matching Gaus-
sian divisible ensemble. The following is a consequence of, for example, Lemma 3.4 of [18].

LEMMA 5.2. Let H be a Wigner matrix, and let τ0 > 0. Then there is a Wigner matrix
W with Gaussian component of size N−τ0 so that (5.1) holds with some c > 0.



APPLICATIONS OF MESOSCOPIC CLTS IN RANDOM MATRIX THEORY 2789

The consequence of these two results is that if there is a τ0 > 0 so that we can prove our
main results for Wigner matrices with Gaussian components of size N−τ0 , then our results
extend to all Wigner matrices. The τ0 we take is the one so that Theorem 3.2 holds.

5.2. Proof of Theorem 1.1. Let F be a smooth function, which we moreover take to be
of compact support. Let x(t) and y(t) be as in Section 3.1, so that the initial data x(0) are
the eigenvalues of a Wigner matrix with Gaussian component of size N−τ0 . We will need to
introduce a third process z(t) coupled to the same Brownian motions as x(t) and y(t), with
initial data an independent GOE matrix. We let

Zi(x) = N
xi(Ht) − γi√

logN

(1−γ 2
i /4)

,

and Zi(y) be the corresponding quantity for a GOE matrix. It suffices to show

E
[
F

(
Zi

(
x(t)

))] = E
[
F

(
Zi

(
z(t)

))] + o(1),

where the time parameter t = t1 as in Theorem 3.2. By (3.9) we have

E
[
F

(
Zi

(
x(t)

))] = E
[
F

(
Zi

(
y(t)

) + αN(ζx − ζy)
)] +O

(
N−c1

)
,

where

αN = 2π√
logN

×
√

1 − γ 2
i /4.

Denoting the characteristic function of αNζx by ψx(λ), we have

E
[
F

(
Zi

(
y(t)

) + αN(ζx − ζy)
)] =

∫
ψ(λ)F̂ (λ)E

[
eiλ(Zi(y(t))−αNζy)] dλ.

Repeating the same argument for z(t) we see that

E
[
F

(
Zi

(
x(t)

))] −E
[
F

(
Zi

(
z(t)

))]
=

∫ (
ψx(λ) − ψz(λ)

)
F̂ (λ)E

[
eiλ(Zi(y(t))−αNζy)] dλ + o(1).

(5.2)

Denote by Vx(�) and Vz(�) the functionals appearing in Lemma 4.2 for matrices X and Z.
Then we have

(5.3)
∣∣Vx(�) − Vz(�)

∣∣ ≤ C.

From this and Proposition 4.1, we obtain that

ψx(λ) = e−αλ2 + o(1), |λ| ≤ log(N)1/4,

where α is independent of the choice of x or z. Since F̂ is a Schwartz function, this yields
the claim. �

5.3. Proof of Corollary 1.2. The argument leading from Theorem 1.1 to the Corollary
1.2 was detailed in [20], Theorem 1.1. It suffices to notice that

P

(N (E) − N
∫ E
−2 ρsc(u)du√

1
2π2 logN

≤ x

)
= P(λiN ≤ E) = P

(
N

λiN − γiN√
logN

≤ xN

)
,

where iN is the integer part of

N

∫ E

−2
ρsc(y)dy − x

√
1

2π2 logN,
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and xN is defined by the equality. Note that,

iN

N
→

∫ E

−2
ρsc(y)dy.

xN → x.

The result now follows directly from the convergence in distribution of λiN . �

5.4. Proof of Theorem 1.3. Recall the following result for mesoscopic linear statistics,
[25], Theorem 6.18.

THEOREM 5.3. Suppose f is a C2 function with support in [A,B], where suppρV =
[−2,2], satisfying the assumptions in Section 4.1. Let λi , 1 ≤ i ≤ N be sampled from a β-
ensemble with potential V . Then, there exists ε > 0 such that

E
[
eiλ(

∑N
i=1 f (λi)−N

∫
f (x)ρV )] = exp

(
−λ2

2
V (f ) + iδ(f )

)
+O

(
N−1+10ε)∥∥f ′′∥∥

L1(R) +O
(
N−ε),(5.4)

where

V (f ) = 1

2βπ2

∫ B

A

∫ B

A

(
f (x) − f (y)

x − y

)2 −AB − xy + 1
2(A + B)(x + y)√

(x − A)(B − x)
√

(y − A)(B − y)
dx dy,

δ(f ) = 1

2π2

(
2

β
− 1

)∫ B

A
f (x)dνV (x)

where νV is a signed measure.

REMARK. The measure νV is characterized explicitly in the book of Pastur and
Shcherbina [30] (see Theorem 11.3.2) in the case of analytic V . In general it can be realized
as a boundary value of the Stieltjes transform of the equilbrium measure and its derivatives.
In the case of sufficiently regular equilibrium measures one can show that it is a sum of delta
functions at the spectral edges and a continuous density in the interior.

The proof of Theorem 1.3 is now nearly identical to the proof of Theorem 1.1, replacing
Propostion 4.1 with Theorem 5.3. We apply the homogenization result Theorem 3.3 to the
re-scaled β-ensembles,

(5.5)
ρ(V )(γ

(V )
i )

ρsc(0)

(
xj − γ

(V )
i

)
,

ρ(U)(γ
(U)
i )

ρsc(0)

(
yj − γ

(U)
i

)
,

where xi is the β-ensemble under consideration and yj is a Gaussian β-ensemble.
The only thing that needs to be checked is that the variance of V (�̂) does not depend on

the parameters A,B (up to o(log(N)) terms). Using the fact that �̂′ 
= 0 only near γ
(V )
i , a

short calculation using the bounds (3.12) (which also hold for �̂), one sees that for any κ > 0,

(5.6) V (�̂) = 1

2βπ2

∫
|y−γ

(V )
i |≤κ

∫
|x−γ

(V )
i |≤κ

(
�̂(x) − �̂(y)

x − y

)2
dx dy +O(1).

The double integral does not depend on A and B , and so the proof proceeds as before.
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5.5. Proof of Theorem 1.4 and Theorem 1.5. We note the following elementary definite
integrals, which correspond to the terms on the right side of (4.8).

PROPOSITION 5.4. Let γ ∈ (−2,2) and f be the indicator function:

f (x) = 1{x≤γ }.

Then,

1

2π

∫ 2

−2
f (x)

x4 − 4x2 + 2√
4 − x2

dx =
√

4 − γ 2

8π

(
2γ − γ 3)

,(5.7)

1

2π

∫ 2

−2
f (x)

2 − x2
√

4 − x2
dx =

√
4 − γ 2

4π
γ,(5.8)

1

2π

∫ 2

−2
f (x)

x√
4 − x2

dx = −
√

4 − γ 2

2π
.(5.9)

In order to prove the expansion (1.11), we will use the following estimate, which is a
consequence of gap universality [17]. This estimate states that there is a constant a > 0 so
that for all indices i, j with κN ≤ i, j ≤ (1 − κ)N where κ > 0,

(5.10) |EW

[
ρsc(γi)(λi+1 − λi)

] −EGOE
[
ρsc(γj )(λj+1 − λj )

] ≤ C

N1+a
,

where the first expectation is with respect to a Wigner matrix and the second is with respect
to a GOE matrix. Taking now a fixed Wigner matrix with eigenvalues λi , we fix a small ω > 0
and write

(5.11) λi0 = 1

2Nω + 1

∑
|i−i0|≤Nω

λi + 1

2Nω + 1

∑
|i−i0|≤Nω

λi0 − λi.

We compare the expectation of λi0 − λi0+k to λi0 − λi0−k . We can rewrite each of these
quantities as a telescoping sum of gaps of consecutive eigenvalues and apply (5.10). As a
consequence, using the smoothness of the semicircle distribution we see that by taking ω

small enough, depending on a, that

(5.12)
∣∣∣∣E 1

2Nω + 1

∑
|i−i0|≤Nω

λi0 − λi

∣∣∣∣ ≤ C

N1+a/2 .

Hence, it suffices to take the expectation of a local average of eigenvalues. Fix a small ε1 <

ω/10 and consider the following smooth function ϕ. We let

ϕ(x) = x − γi0, γi0−(Nω+Nε1 ) ≤ x ≤ γi0+Nω+Nε1 ,

ϕ(x) = γi0+Nω+2Nε1 − γi0, x ≥ γi0+Nω+3Nε1 ,

ϕ(x) = γi0−(Nω−2Nε1 ) − γi0, x ≤ γi0−(Nω+3Nε1 ).

(5.13)

We let ϕ smoothly interpolate between these values so that |ϕ′(x)| ≤ C, and |ϕ(k)(x)| ≤
CN(k−1)(1−ε1) for k = 2,3. Note that if

(5.14) f (x) = N

2Nω + 1
ϕ(x)

then ‖f (x)‖1 ≤ C, ‖f ′(x)‖1 ≤ C and ‖f ′′(x)‖1 ≤ Nω/N and so we can apply Lemma 4.2
to f .
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Let I denote the interval

(5.15) I = [γi0−Nω−1, γi0+Nω ].
By rigidity we have with overwhelming probability that

1

2Nω + 1

∣∣∣∣ ∑
|i−i0|>Nω

ϕ(λi) − N

∫
x /∈I

ϕ(x)ρsc(x)dx

∣∣∣∣ ≤ CN2ε1

N1+ω
≤ C

N1+ω/2(5.16)

by our choice of ε1. Using the fact that

(5.17) γi − γj = i − j

Nρsc(γi)
+O

(
(i − j)2

N2

)
one sees that

N

2Nω + 1

∫
I
ϕ(x)ρsc(x)dx = N

2Nω + 1

∫
I
(x − γi0)ρsc(x)dx

= −1

2ρ(γi0)N
+O

(
N2ω−2)

.

(5.18)

Hence, we see that for some c > 0 we have

(5.19) NE[λi0 − γi0] = ∑
i

E
[
f (λi)

] − N

∫
f (x)ρsc(x)dx − 1

2ρsc(γi0)
+O

(
N−c).

Note that,

(5.20) f (x) → 1

2ρsc(γi0)
(1{x≥γi0 } − 1{x≤γi0 }),

and so we see from Lemma 4.2 that∑
i

E
[
f (λi)

] − N

∫
f (x)ρsc(x)dx

= 1

2πρsc(γi)
arcsin

(
γi

2

)
− 1 − a2

2
γi + s4

4

(
γ 3
i − 2γi

) + o(1).

(5.21)

This yields the claim.
To obtain the result for the variance, we rearrange (3.9) into:

xi(t) −E
[
xi(t)

] + 1

N
ζy = yi(t) −E

[
yi(t)

]
+ 1

N

(
ζx −E[ζx])

+ 1

N
E[ζx] +E

[
yi(t)

] −E
[
xi(t)

] +O
(
N−1−c).

Squaring and using the independence between xi(t) and ζy , and yi(t) and ζx , we have

Var
(
xi(t)

) + 1

N2 Var(ζy) + 1

N2

(
E[ζy])2

= Var
(
yi(t)

) + 1

N2 Var(ζx) +
(
E

[
1

N
ζx − xi(t) + yi(t)

])2
+O

(
N−2−2c).

By (1.1), we have

1

N2

(
E[ζy])2 =

(
E

[
1

N
ζx − x(t) + y(t)

])2
+O

(
N−2−2c),
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so

Var
(
xi(t)

) = Var
(
yi(t)

) + 1

N2

(
Var(ζx) − Var(ζy)

) +O
(
N−2−2c)

= Var
(
yi(t)

) + a2 − 1

4π2N2

(∫ 2

−2
�(x)

x√
4 − x2

dx

)2

+ s4

2π2N2

(∫ 2

−2
�(x)

2 − x2
√

4 − x2
dx

)2
+O

(
N−2−2c).

Using (3.11) and Proposition 5.4, we have

a2 − 1

4π2

(∫ 2

−2
�(x)

x√
4 − x2

dx

)2
+ s4

2π2

(∫ 2

−2
�(x)

2 − x2
√

4 − x2
dx

)2

= (a2 − 1)γ 2
i + s4

8
+ o(1).

The gap universality result of [17] also holds for β-ensembles, and so the proof of Theorem
1.5 is similar to the Wigner matrix case. �

5.6. Proof of Theorem 1.6. First we consider the case (1.14). We will smooth out the
indicator function 1{x≤u}. Let χ(x) be a smooth function so that χ(x) = 1 for x ≤ u and
χ(x) = 0 for x ≥ u+Nω−1 where 0 < ω < 1/10, and |χ(k)(x)| ≤ CNk(ω−1), k = 1,2,3. Let
i0 be the index of the classical eigenvalue closest to u. By rigidity for any ε > 0, we have
with overwhelming probability

(5.22)
∣∣∣∣∑

i

f (λi)1{λi≤u} − ∑
i

f (λi)χ(λi)

∣∣∣∣ ≤ ∑
|i−i0|≤Nω+ε

∣∣f (λi)
∣∣ ≤ C

N2ω+2ε

N
,

where we used f (u) = 0, |f ′| ≤ C and |λi −u| ≤ CNω+ε/N for i appearing in the rightmost
sum. It then suffices to apply Proposition 4.1 to the function f (x)χ(x).

The proof of (1.15) is similar. First, by subtracting a constant we may assume that
f (γk) = 0. Let χ(x) be the indicator function as above, but for u = γk . Then, for any ε > 0,
we have with overwhelming probability,

(5.23)

∣∣∣∣∣
k∑

i=1

f (λi) −
N∑

i=1

f (λi)χ(λi)

∣∣∣∣∣ ≤ ∑
|i−k|≤Nω+ε

∣∣f (λi)
∣∣ ≤ C

N2ω+2ε

N
.

The result follows from applying Proposition 4.1 to f (x)χ(x).
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